1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <kvm/iodev.h> 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/stat.h> 38 #include <linux/cpumask.h> 39 #include <linux/smp.h> 40 #include <linux/anon_inodes.h> 41 #include <linux/profile.h> 42 #include <linux/kvm_para.h> 43 #include <linux/pagemap.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/bitops.h> 47 #include <linux/spinlock.h> 48 #include <linux/compat.h> 49 #include <linux/srcu.h> 50 #include <linux/hugetlb.h> 51 #include <linux/slab.h> 52 #include <linux/sort.h> 53 #include <linux/bsearch.h> 54 55 #include <asm/processor.h> 56 #include <asm/io.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 #include <asm/pgtable.h> 60 61 #include "coalesced_mmio.h" 62 #include "async_pf.h" 63 #include "vfio.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/kvm.h> 67 68 /* Worst case buffer size needed for holding an integer. */ 69 #define ITOA_MAX_LEN 12 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 /* Architectures should define their poll value according to the halt latency */ 75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 76 module_param(halt_poll_ns, uint, 0644); 77 EXPORT_SYMBOL_GPL(halt_poll_ns); 78 79 /* Default doubles per-vcpu halt_poll_ns. */ 80 unsigned int halt_poll_ns_grow = 2; 81 module_param(halt_poll_ns_grow, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 83 84 /* Default resets per-vcpu halt_poll_ns . */ 85 unsigned int halt_poll_ns_shrink; 86 module_param(halt_poll_ns_shrink, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 88 89 /* 90 * Ordering of locks: 91 * 92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 93 */ 94 95 DEFINE_SPINLOCK(kvm_lock); 96 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 97 LIST_HEAD(vm_list); 98 99 static cpumask_var_t cpus_hardware_enabled; 100 static int kvm_usage_count; 101 static atomic_t hardware_enable_failed; 102 103 struct kmem_cache *kvm_vcpu_cache; 104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 105 106 static __read_mostly struct preempt_ops kvm_preempt_ops; 107 108 struct dentry *kvm_debugfs_dir; 109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 110 111 static int kvm_debugfs_num_entries; 112 static const struct file_operations *stat_fops_per_vm[]; 113 114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 115 unsigned long arg); 116 #ifdef CONFIG_KVM_COMPAT 117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #define KVM_COMPAT(c) .compat_ioctl = (c) 120 #else 121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg) { return -EINVAL; } 123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 124 #endif 125 static int hardware_enable_all(void); 126 static void hardware_disable_all(void); 127 128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 129 130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 131 132 __visible bool kvm_rebooting; 133 EXPORT_SYMBOL_GPL(kvm_rebooting); 134 135 static bool largepages_enabled = true; 136 137 #define KVM_EVENT_CREATE_VM 0 138 #define KVM_EVENT_DESTROY_VM 1 139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 140 static unsigned long long kvm_createvm_count; 141 static unsigned long long kvm_active_vms; 142 143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 144 unsigned long start, unsigned long end, bool blockable) 145 { 146 return 0; 147 } 148 149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 150 { 151 if (pfn_valid(pfn)) 152 return PageReserved(pfn_to_page(pfn)); 153 154 return true; 155 } 156 157 /* 158 * Switches to specified vcpu, until a matching vcpu_put() 159 */ 160 void vcpu_load(struct kvm_vcpu *vcpu) 161 { 162 int cpu = get_cpu(); 163 preempt_notifier_register(&vcpu->preempt_notifier); 164 kvm_arch_vcpu_load(vcpu, cpu); 165 put_cpu(); 166 } 167 EXPORT_SYMBOL_GPL(vcpu_load); 168 169 void vcpu_put(struct kvm_vcpu *vcpu) 170 { 171 preempt_disable(); 172 kvm_arch_vcpu_put(vcpu); 173 preempt_notifier_unregister(&vcpu->preempt_notifier); 174 preempt_enable(); 175 } 176 EXPORT_SYMBOL_GPL(vcpu_put); 177 178 /* TODO: merge with kvm_arch_vcpu_should_kick */ 179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 180 { 181 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 182 183 /* 184 * We need to wait for the VCPU to reenable interrupts and get out of 185 * READING_SHADOW_PAGE_TABLES mode. 186 */ 187 if (req & KVM_REQUEST_WAIT) 188 return mode != OUTSIDE_GUEST_MODE; 189 190 /* 191 * Need to kick a running VCPU, but otherwise there is nothing to do. 192 */ 193 return mode == IN_GUEST_MODE; 194 } 195 196 static void ack_flush(void *_completed) 197 { 198 } 199 200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 201 { 202 if (unlikely(!cpus)) 203 cpus = cpu_online_mask; 204 205 if (cpumask_empty(cpus)) 206 return false; 207 208 smp_call_function_many(cpus, ack_flush, NULL, wait); 209 return true; 210 } 211 212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 213 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 214 { 215 int i, cpu, me; 216 struct kvm_vcpu *vcpu; 217 bool called; 218 219 me = get_cpu(); 220 221 kvm_for_each_vcpu(i, vcpu, kvm) { 222 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 223 continue; 224 225 kvm_make_request(req, vcpu); 226 cpu = vcpu->cpu; 227 228 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 229 continue; 230 231 if (tmp != NULL && cpu != -1 && cpu != me && 232 kvm_request_needs_ipi(vcpu, req)) 233 __cpumask_set_cpu(cpu, tmp); 234 } 235 236 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 237 put_cpu(); 238 239 return called; 240 } 241 242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 243 { 244 cpumask_var_t cpus; 245 bool called; 246 247 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 248 249 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 250 251 free_cpumask_var(cpus); 252 return called; 253 } 254 255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 256 void kvm_flush_remote_tlbs(struct kvm *kvm) 257 { 258 /* 259 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 260 * kvm_make_all_cpus_request. 261 */ 262 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 263 264 /* 265 * We want to publish modifications to the page tables before reading 266 * mode. Pairs with a memory barrier in arch-specific code. 267 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 268 * and smp_mb in walk_shadow_page_lockless_begin/end. 269 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 270 * 271 * There is already an smp_mb__after_atomic() before 272 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 273 * barrier here. 274 */ 275 if (!kvm_arch_flush_remote_tlb(kvm) 276 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 277 ++kvm->stat.remote_tlb_flush; 278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 279 } 280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 281 #endif 282 283 void kvm_reload_remote_mmus(struct kvm *kvm) 284 { 285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 286 } 287 288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 289 { 290 struct page *page; 291 int r; 292 293 mutex_init(&vcpu->mutex); 294 vcpu->cpu = -1; 295 vcpu->kvm = kvm; 296 vcpu->vcpu_id = id; 297 vcpu->pid = NULL; 298 init_swait_queue_head(&vcpu->wq); 299 kvm_async_pf_vcpu_init(vcpu); 300 301 vcpu->pre_pcpu = -1; 302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 303 304 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 305 if (!page) { 306 r = -ENOMEM; 307 goto fail; 308 } 309 vcpu->run = page_address(page); 310 311 kvm_vcpu_set_in_spin_loop(vcpu, false); 312 kvm_vcpu_set_dy_eligible(vcpu, false); 313 vcpu->preempted = false; 314 315 r = kvm_arch_vcpu_init(vcpu); 316 if (r < 0) 317 goto fail_free_run; 318 return 0; 319 320 fail_free_run: 321 free_page((unsigned long)vcpu->run); 322 fail: 323 return r; 324 } 325 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 326 327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 328 { 329 /* 330 * no need for rcu_read_lock as VCPU_RUN is the only place that 331 * will change the vcpu->pid pointer and on uninit all file 332 * descriptors are already gone. 333 */ 334 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 335 kvm_arch_vcpu_uninit(vcpu); 336 free_page((unsigned long)vcpu->run); 337 } 338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 339 340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 342 { 343 return container_of(mn, struct kvm, mmu_notifier); 344 } 345 346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 347 struct mm_struct *mm, 348 unsigned long address, 349 pte_t pte) 350 { 351 struct kvm *kvm = mmu_notifier_to_kvm(mn); 352 int idx; 353 354 idx = srcu_read_lock(&kvm->srcu); 355 spin_lock(&kvm->mmu_lock); 356 kvm->mmu_notifier_seq++; 357 358 if (kvm_set_spte_hva(kvm, address, pte)) 359 kvm_flush_remote_tlbs(kvm); 360 361 spin_unlock(&kvm->mmu_lock); 362 srcu_read_unlock(&kvm->srcu, idx); 363 } 364 365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 366 const struct mmu_notifier_range *range) 367 { 368 struct kvm *kvm = mmu_notifier_to_kvm(mn); 369 int need_tlb_flush = 0, idx; 370 int ret; 371 372 idx = srcu_read_lock(&kvm->srcu); 373 spin_lock(&kvm->mmu_lock); 374 /* 375 * The count increase must become visible at unlock time as no 376 * spte can be established without taking the mmu_lock and 377 * count is also read inside the mmu_lock critical section. 378 */ 379 kvm->mmu_notifier_count++; 380 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 381 need_tlb_flush |= kvm->tlbs_dirty; 382 /* we've to flush the tlb before the pages can be freed */ 383 if (need_tlb_flush) 384 kvm_flush_remote_tlbs(kvm); 385 386 spin_unlock(&kvm->mmu_lock); 387 388 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 389 range->end, range->blockable); 390 391 srcu_read_unlock(&kvm->srcu, idx); 392 393 return ret; 394 } 395 396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 397 const struct mmu_notifier_range *range) 398 { 399 struct kvm *kvm = mmu_notifier_to_kvm(mn); 400 401 spin_lock(&kvm->mmu_lock); 402 /* 403 * This sequence increase will notify the kvm page fault that 404 * the page that is going to be mapped in the spte could have 405 * been freed. 406 */ 407 kvm->mmu_notifier_seq++; 408 smp_wmb(); 409 /* 410 * The above sequence increase must be visible before the 411 * below count decrease, which is ensured by the smp_wmb above 412 * in conjunction with the smp_rmb in mmu_notifier_retry(). 413 */ 414 kvm->mmu_notifier_count--; 415 spin_unlock(&kvm->mmu_lock); 416 417 BUG_ON(kvm->mmu_notifier_count < 0); 418 } 419 420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 421 struct mm_struct *mm, 422 unsigned long start, 423 unsigned long end) 424 { 425 struct kvm *kvm = mmu_notifier_to_kvm(mn); 426 int young, idx; 427 428 idx = srcu_read_lock(&kvm->srcu); 429 spin_lock(&kvm->mmu_lock); 430 431 young = kvm_age_hva(kvm, start, end); 432 if (young) 433 kvm_flush_remote_tlbs(kvm); 434 435 spin_unlock(&kvm->mmu_lock); 436 srcu_read_unlock(&kvm->srcu, idx); 437 438 return young; 439 } 440 441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 442 struct mm_struct *mm, 443 unsigned long start, 444 unsigned long end) 445 { 446 struct kvm *kvm = mmu_notifier_to_kvm(mn); 447 int young, idx; 448 449 idx = srcu_read_lock(&kvm->srcu); 450 spin_lock(&kvm->mmu_lock); 451 /* 452 * Even though we do not flush TLB, this will still adversely 453 * affect performance on pre-Haswell Intel EPT, where there is 454 * no EPT Access Bit to clear so that we have to tear down EPT 455 * tables instead. If we find this unacceptable, we can always 456 * add a parameter to kvm_age_hva so that it effectively doesn't 457 * do anything on clear_young. 458 * 459 * Also note that currently we never issue secondary TLB flushes 460 * from clear_young, leaving this job up to the regular system 461 * cadence. If we find this inaccurate, we might come up with a 462 * more sophisticated heuristic later. 463 */ 464 young = kvm_age_hva(kvm, start, end); 465 spin_unlock(&kvm->mmu_lock); 466 srcu_read_unlock(&kvm->srcu, idx); 467 468 return young; 469 } 470 471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 472 struct mm_struct *mm, 473 unsigned long address) 474 { 475 struct kvm *kvm = mmu_notifier_to_kvm(mn); 476 int young, idx; 477 478 idx = srcu_read_lock(&kvm->srcu); 479 spin_lock(&kvm->mmu_lock); 480 young = kvm_test_age_hva(kvm, address); 481 spin_unlock(&kvm->mmu_lock); 482 srcu_read_unlock(&kvm->srcu, idx); 483 484 return young; 485 } 486 487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 488 struct mm_struct *mm) 489 { 490 struct kvm *kvm = mmu_notifier_to_kvm(mn); 491 int idx; 492 493 idx = srcu_read_lock(&kvm->srcu); 494 kvm_arch_flush_shadow_all(kvm); 495 srcu_read_unlock(&kvm->srcu, idx); 496 } 497 498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 499 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 500 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 501 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 502 .clear_young = kvm_mmu_notifier_clear_young, 503 .test_young = kvm_mmu_notifier_test_young, 504 .change_pte = kvm_mmu_notifier_change_pte, 505 .release = kvm_mmu_notifier_release, 506 }; 507 508 static int kvm_init_mmu_notifier(struct kvm *kvm) 509 { 510 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 511 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 512 } 513 514 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 515 516 static int kvm_init_mmu_notifier(struct kvm *kvm) 517 { 518 return 0; 519 } 520 521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 522 523 static struct kvm_memslots *kvm_alloc_memslots(void) 524 { 525 int i; 526 struct kvm_memslots *slots; 527 528 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 529 if (!slots) 530 return NULL; 531 532 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 533 slots->id_to_index[i] = slots->memslots[i].id = i; 534 535 return slots; 536 } 537 538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 539 { 540 if (!memslot->dirty_bitmap) 541 return; 542 543 kvfree(memslot->dirty_bitmap); 544 memslot->dirty_bitmap = NULL; 545 } 546 547 /* 548 * Free any memory in @free but not in @dont. 549 */ 550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 551 struct kvm_memory_slot *dont) 552 { 553 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 554 kvm_destroy_dirty_bitmap(free); 555 556 kvm_arch_free_memslot(kvm, free, dont); 557 558 free->npages = 0; 559 } 560 561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 562 { 563 struct kvm_memory_slot *memslot; 564 565 if (!slots) 566 return; 567 568 kvm_for_each_memslot(memslot, slots) 569 kvm_free_memslot(kvm, memslot, NULL); 570 571 kvfree(slots); 572 } 573 574 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 575 { 576 int i; 577 578 if (!kvm->debugfs_dentry) 579 return; 580 581 debugfs_remove_recursive(kvm->debugfs_dentry); 582 583 if (kvm->debugfs_stat_data) { 584 for (i = 0; i < kvm_debugfs_num_entries; i++) 585 kfree(kvm->debugfs_stat_data[i]); 586 kfree(kvm->debugfs_stat_data); 587 } 588 } 589 590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 591 { 592 char dir_name[ITOA_MAX_LEN * 2]; 593 struct kvm_stat_data *stat_data; 594 struct kvm_stats_debugfs_item *p; 595 596 if (!debugfs_initialized()) 597 return 0; 598 599 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 600 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 601 602 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 603 sizeof(*kvm->debugfs_stat_data), 604 GFP_KERNEL); 605 if (!kvm->debugfs_stat_data) 606 return -ENOMEM; 607 608 for (p = debugfs_entries; p->name; p++) { 609 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL); 610 if (!stat_data) 611 return -ENOMEM; 612 613 stat_data->kvm = kvm; 614 stat_data->offset = p->offset; 615 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 616 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry, 617 stat_data, stat_fops_per_vm[p->kind]); 618 } 619 return 0; 620 } 621 622 static struct kvm *kvm_create_vm(unsigned long type) 623 { 624 int r, i; 625 struct kvm *kvm = kvm_arch_alloc_vm(); 626 627 if (!kvm) 628 return ERR_PTR(-ENOMEM); 629 630 spin_lock_init(&kvm->mmu_lock); 631 mmgrab(current->mm); 632 kvm->mm = current->mm; 633 kvm_eventfd_init(kvm); 634 mutex_init(&kvm->lock); 635 mutex_init(&kvm->irq_lock); 636 mutex_init(&kvm->slots_lock); 637 refcount_set(&kvm->users_count, 1); 638 INIT_LIST_HEAD(&kvm->devices); 639 640 r = kvm_arch_init_vm(kvm, type); 641 if (r) 642 goto out_err_no_disable; 643 644 r = hardware_enable_all(); 645 if (r) 646 goto out_err_no_disable; 647 648 #ifdef CONFIG_HAVE_KVM_IRQFD 649 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 650 #endif 651 652 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 653 654 r = -ENOMEM; 655 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 656 struct kvm_memslots *slots = kvm_alloc_memslots(); 657 if (!slots) 658 goto out_err_no_srcu; 659 /* 660 * Generations must be different for each address space. 661 * Init kvm generation close to the maximum to easily test the 662 * code of handling generation number wrap-around. 663 */ 664 slots->generation = i * 2 - 150; 665 rcu_assign_pointer(kvm->memslots[i], slots); 666 } 667 668 if (init_srcu_struct(&kvm->srcu)) 669 goto out_err_no_srcu; 670 if (init_srcu_struct(&kvm->irq_srcu)) 671 goto out_err_no_irq_srcu; 672 for (i = 0; i < KVM_NR_BUSES; i++) { 673 rcu_assign_pointer(kvm->buses[i], 674 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL)); 675 if (!kvm->buses[i]) 676 goto out_err; 677 } 678 679 r = kvm_init_mmu_notifier(kvm); 680 if (r) 681 goto out_err; 682 683 spin_lock(&kvm_lock); 684 list_add(&kvm->vm_list, &vm_list); 685 spin_unlock(&kvm_lock); 686 687 preempt_notifier_inc(); 688 689 return kvm; 690 691 out_err: 692 cleanup_srcu_struct(&kvm->irq_srcu); 693 out_err_no_irq_srcu: 694 cleanup_srcu_struct(&kvm->srcu); 695 out_err_no_srcu: 696 hardware_disable_all(); 697 out_err_no_disable: 698 refcount_set(&kvm->users_count, 0); 699 for (i = 0; i < KVM_NR_BUSES; i++) 700 kfree(kvm_get_bus(kvm, i)); 701 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 702 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 703 kvm_arch_free_vm(kvm); 704 mmdrop(current->mm); 705 return ERR_PTR(r); 706 } 707 708 static void kvm_destroy_devices(struct kvm *kvm) 709 { 710 struct kvm_device *dev, *tmp; 711 712 /* 713 * We do not need to take the kvm->lock here, because nobody else 714 * has a reference to the struct kvm at this point and therefore 715 * cannot access the devices list anyhow. 716 */ 717 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 718 list_del(&dev->vm_node); 719 dev->ops->destroy(dev); 720 } 721 } 722 723 static void kvm_destroy_vm(struct kvm *kvm) 724 { 725 int i; 726 struct mm_struct *mm = kvm->mm; 727 728 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 729 kvm_destroy_vm_debugfs(kvm); 730 kvm_arch_sync_events(kvm); 731 spin_lock(&kvm_lock); 732 list_del(&kvm->vm_list); 733 spin_unlock(&kvm_lock); 734 kvm_free_irq_routing(kvm); 735 for (i = 0; i < KVM_NR_BUSES; i++) { 736 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 737 738 if (bus) 739 kvm_io_bus_destroy(bus); 740 kvm->buses[i] = NULL; 741 } 742 kvm_coalesced_mmio_free(kvm); 743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 744 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 745 #else 746 kvm_arch_flush_shadow_all(kvm); 747 #endif 748 kvm_arch_destroy_vm(kvm); 749 kvm_destroy_devices(kvm); 750 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 751 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 752 cleanup_srcu_struct(&kvm->irq_srcu); 753 cleanup_srcu_struct(&kvm->srcu); 754 kvm_arch_free_vm(kvm); 755 preempt_notifier_dec(); 756 hardware_disable_all(); 757 mmdrop(mm); 758 } 759 760 void kvm_get_kvm(struct kvm *kvm) 761 { 762 refcount_inc(&kvm->users_count); 763 } 764 EXPORT_SYMBOL_GPL(kvm_get_kvm); 765 766 void kvm_put_kvm(struct kvm *kvm) 767 { 768 if (refcount_dec_and_test(&kvm->users_count)) 769 kvm_destroy_vm(kvm); 770 } 771 EXPORT_SYMBOL_GPL(kvm_put_kvm); 772 773 774 static int kvm_vm_release(struct inode *inode, struct file *filp) 775 { 776 struct kvm *kvm = filp->private_data; 777 778 kvm_irqfd_release(kvm); 779 780 kvm_put_kvm(kvm); 781 return 0; 782 } 783 784 /* 785 * Allocation size is twice as large as the actual dirty bitmap size. 786 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 787 */ 788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 789 { 790 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 791 792 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL); 793 if (!memslot->dirty_bitmap) 794 return -ENOMEM; 795 796 return 0; 797 } 798 799 /* 800 * Insert memslot and re-sort memslots based on their GFN, 801 * so binary search could be used to lookup GFN. 802 * Sorting algorithm takes advantage of having initially 803 * sorted array and known changed memslot position. 804 */ 805 static void update_memslots(struct kvm_memslots *slots, 806 struct kvm_memory_slot *new, 807 enum kvm_mr_change change) 808 { 809 int id = new->id; 810 int i = slots->id_to_index[id]; 811 struct kvm_memory_slot *mslots = slots->memslots; 812 813 WARN_ON(mslots[i].id != id); 814 switch (change) { 815 case KVM_MR_CREATE: 816 slots->used_slots++; 817 WARN_ON(mslots[i].npages || !new->npages); 818 break; 819 case KVM_MR_DELETE: 820 slots->used_slots--; 821 WARN_ON(new->npages || !mslots[i].npages); 822 break; 823 default: 824 break; 825 } 826 827 while (i < KVM_MEM_SLOTS_NUM - 1 && 828 new->base_gfn <= mslots[i + 1].base_gfn) { 829 if (!mslots[i + 1].npages) 830 break; 831 mslots[i] = mslots[i + 1]; 832 slots->id_to_index[mslots[i].id] = i; 833 i++; 834 } 835 836 /* 837 * The ">=" is needed when creating a slot with base_gfn == 0, 838 * so that it moves before all those with base_gfn == npages == 0. 839 * 840 * On the other hand, if new->npages is zero, the above loop has 841 * already left i pointing to the beginning of the empty part of 842 * mslots, and the ">=" would move the hole backwards in this 843 * case---which is wrong. So skip the loop when deleting a slot. 844 */ 845 if (new->npages) { 846 while (i > 0 && 847 new->base_gfn >= mslots[i - 1].base_gfn) { 848 mslots[i] = mslots[i - 1]; 849 slots->id_to_index[mslots[i].id] = i; 850 i--; 851 } 852 } else 853 WARN_ON_ONCE(i != slots->used_slots); 854 855 mslots[i] = *new; 856 slots->id_to_index[mslots[i].id] = i; 857 } 858 859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 860 { 861 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 862 863 #ifdef __KVM_HAVE_READONLY_MEM 864 valid_flags |= KVM_MEM_READONLY; 865 #endif 866 867 if (mem->flags & ~valid_flags) 868 return -EINVAL; 869 870 return 0; 871 } 872 873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 874 int as_id, struct kvm_memslots *slots) 875 { 876 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 877 878 /* 879 * Set the low bit in the generation, which disables SPTE caching 880 * until the end of synchronize_srcu_expedited. 881 */ 882 WARN_ON(old_memslots->generation & 1); 883 slots->generation = old_memslots->generation + 1; 884 885 rcu_assign_pointer(kvm->memslots[as_id], slots); 886 synchronize_srcu_expedited(&kvm->srcu); 887 888 /* 889 * Increment the new memslot generation a second time. This prevents 890 * vm exits that race with memslot updates from caching a memslot 891 * generation that will (potentially) be valid forever. 892 * 893 * Generations must be unique even across address spaces. We do not need 894 * a global counter for that, instead the generation space is evenly split 895 * across address spaces. For example, with two address spaces, address 896 * space 0 will use generations 0, 4, 8, ... while * address space 1 will 897 * use generations 2, 6, 10, 14, ... 898 */ 899 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1; 900 901 kvm_arch_memslots_updated(kvm, slots); 902 903 return old_memslots; 904 } 905 906 /* 907 * Allocate some memory and give it an address in the guest physical address 908 * space. 909 * 910 * Discontiguous memory is allowed, mostly for framebuffers. 911 * 912 * Must be called holding kvm->slots_lock for write. 913 */ 914 int __kvm_set_memory_region(struct kvm *kvm, 915 const struct kvm_userspace_memory_region *mem) 916 { 917 int r; 918 gfn_t base_gfn; 919 unsigned long npages; 920 struct kvm_memory_slot *slot; 921 struct kvm_memory_slot old, new; 922 struct kvm_memslots *slots = NULL, *old_memslots; 923 int as_id, id; 924 enum kvm_mr_change change; 925 926 r = check_memory_region_flags(mem); 927 if (r) 928 goto out; 929 930 r = -EINVAL; 931 as_id = mem->slot >> 16; 932 id = (u16)mem->slot; 933 934 /* General sanity checks */ 935 if (mem->memory_size & (PAGE_SIZE - 1)) 936 goto out; 937 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 938 goto out; 939 /* We can read the guest memory with __xxx_user() later on. */ 940 if ((id < KVM_USER_MEM_SLOTS) && 941 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 942 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 943 mem->memory_size))) 944 goto out; 945 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 946 goto out; 947 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 948 goto out; 949 950 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 951 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 952 npages = mem->memory_size >> PAGE_SHIFT; 953 954 if (npages > KVM_MEM_MAX_NR_PAGES) 955 goto out; 956 957 new = old = *slot; 958 959 new.id = id; 960 new.base_gfn = base_gfn; 961 new.npages = npages; 962 new.flags = mem->flags; 963 964 if (npages) { 965 if (!old.npages) 966 change = KVM_MR_CREATE; 967 else { /* Modify an existing slot. */ 968 if ((mem->userspace_addr != old.userspace_addr) || 969 (npages != old.npages) || 970 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 971 goto out; 972 973 if (base_gfn != old.base_gfn) 974 change = KVM_MR_MOVE; 975 else if (new.flags != old.flags) 976 change = KVM_MR_FLAGS_ONLY; 977 else { /* Nothing to change. */ 978 r = 0; 979 goto out; 980 } 981 } 982 } else { 983 if (!old.npages) 984 goto out; 985 986 change = KVM_MR_DELETE; 987 new.base_gfn = 0; 988 new.flags = 0; 989 } 990 991 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 992 /* Check for overlaps */ 993 r = -EEXIST; 994 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 995 if (slot->id == id) 996 continue; 997 if (!((base_gfn + npages <= slot->base_gfn) || 998 (base_gfn >= slot->base_gfn + slot->npages))) 999 goto out; 1000 } 1001 } 1002 1003 /* Free page dirty bitmap if unneeded */ 1004 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1005 new.dirty_bitmap = NULL; 1006 1007 r = -ENOMEM; 1008 if (change == KVM_MR_CREATE) { 1009 new.userspace_addr = mem->userspace_addr; 1010 1011 if (kvm_arch_create_memslot(kvm, &new, npages)) 1012 goto out_free; 1013 } 1014 1015 /* Allocate page dirty bitmap if needed */ 1016 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1017 if (kvm_create_dirty_bitmap(&new) < 0) 1018 goto out_free; 1019 } 1020 1021 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 1022 if (!slots) 1023 goto out_free; 1024 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1025 1026 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1027 slot = id_to_memslot(slots, id); 1028 slot->flags |= KVM_MEMSLOT_INVALID; 1029 1030 old_memslots = install_new_memslots(kvm, as_id, slots); 1031 1032 /* From this point no new shadow pages pointing to a deleted, 1033 * or moved, memslot will be created. 1034 * 1035 * validation of sp->gfn happens in: 1036 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1037 * - kvm_is_visible_gfn (mmu_check_roots) 1038 */ 1039 kvm_arch_flush_shadow_memslot(kvm, slot); 1040 1041 /* 1042 * We can re-use the old_memslots from above, the only difference 1043 * from the currently installed memslots is the invalid flag. This 1044 * will get overwritten by update_memslots anyway. 1045 */ 1046 slots = old_memslots; 1047 } 1048 1049 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1050 if (r) 1051 goto out_slots; 1052 1053 /* actual memory is freed via old in kvm_free_memslot below */ 1054 if (change == KVM_MR_DELETE) { 1055 new.dirty_bitmap = NULL; 1056 memset(&new.arch, 0, sizeof(new.arch)); 1057 } 1058 1059 update_memslots(slots, &new, change); 1060 old_memslots = install_new_memslots(kvm, as_id, slots); 1061 1062 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1063 1064 kvm_free_memslot(kvm, &old, &new); 1065 kvfree(old_memslots); 1066 return 0; 1067 1068 out_slots: 1069 kvfree(slots); 1070 out_free: 1071 kvm_free_memslot(kvm, &new, &old); 1072 out: 1073 return r; 1074 } 1075 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1076 1077 int kvm_set_memory_region(struct kvm *kvm, 1078 const struct kvm_userspace_memory_region *mem) 1079 { 1080 int r; 1081 1082 mutex_lock(&kvm->slots_lock); 1083 r = __kvm_set_memory_region(kvm, mem); 1084 mutex_unlock(&kvm->slots_lock); 1085 return r; 1086 } 1087 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1088 1089 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1090 struct kvm_userspace_memory_region *mem) 1091 { 1092 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1093 return -EINVAL; 1094 1095 return kvm_set_memory_region(kvm, mem); 1096 } 1097 1098 int kvm_get_dirty_log(struct kvm *kvm, 1099 struct kvm_dirty_log *log, int *is_dirty) 1100 { 1101 struct kvm_memslots *slots; 1102 struct kvm_memory_slot *memslot; 1103 int i, as_id, id; 1104 unsigned long n; 1105 unsigned long any = 0; 1106 1107 as_id = log->slot >> 16; 1108 id = (u16)log->slot; 1109 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1110 return -EINVAL; 1111 1112 slots = __kvm_memslots(kvm, as_id); 1113 memslot = id_to_memslot(slots, id); 1114 if (!memslot->dirty_bitmap) 1115 return -ENOENT; 1116 1117 n = kvm_dirty_bitmap_bytes(memslot); 1118 1119 for (i = 0; !any && i < n/sizeof(long); ++i) 1120 any = memslot->dirty_bitmap[i]; 1121 1122 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1123 return -EFAULT; 1124 1125 if (any) 1126 *is_dirty = 1; 1127 return 0; 1128 } 1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1130 1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1132 /** 1133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages 1134 * and reenable dirty page tracking for the corresponding pages. 1135 * @kvm: pointer to kvm instance 1136 * @log: slot id and address to which we copy the log 1137 * @is_dirty: flag set if any page is dirty 1138 * 1139 * We need to keep it in mind that VCPU threads can write to the bitmap 1140 * concurrently. So, to avoid losing track of dirty pages we keep the 1141 * following order: 1142 * 1143 * 1. Take a snapshot of the bit and clear it if needed. 1144 * 2. Write protect the corresponding page. 1145 * 3. Copy the snapshot to the userspace. 1146 * 4. Upon return caller flushes TLB's if needed. 1147 * 1148 * Between 2 and 4, the guest may write to the page using the remaining TLB 1149 * entry. This is not a problem because the page is reported dirty using 1150 * the snapshot taken before and step 4 ensures that writes done after 1151 * exiting to userspace will be logged for the next call. 1152 * 1153 */ 1154 int kvm_get_dirty_log_protect(struct kvm *kvm, 1155 struct kvm_dirty_log *log, bool *flush) 1156 { 1157 struct kvm_memslots *slots; 1158 struct kvm_memory_slot *memslot; 1159 int i, as_id, id; 1160 unsigned long n; 1161 unsigned long *dirty_bitmap; 1162 unsigned long *dirty_bitmap_buffer; 1163 1164 as_id = log->slot >> 16; 1165 id = (u16)log->slot; 1166 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1167 return -EINVAL; 1168 1169 slots = __kvm_memslots(kvm, as_id); 1170 memslot = id_to_memslot(slots, id); 1171 1172 dirty_bitmap = memslot->dirty_bitmap; 1173 if (!dirty_bitmap) 1174 return -ENOENT; 1175 1176 n = kvm_dirty_bitmap_bytes(memslot); 1177 *flush = false; 1178 if (kvm->manual_dirty_log_protect) { 1179 /* 1180 * Unlike kvm_get_dirty_log, we always return false in *flush, 1181 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1182 * is some code duplication between this function and 1183 * kvm_get_dirty_log, but hopefully all architecture 1184 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1185 * can be eliminated. 1186 */ 1187 dirty_bitmap_buffer = dirty_bitmap; 1188 } else { 1189 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1190 memset(dirty_bitmap_buffer, 0, n); 1191 1192 spin_lock(&kvm->mmu_lock); 1193 for (i = 0; i < n / sizeof(long); i++) { 1194 unsigned long mask; 1195 gfn_t offset; 1196 1197 if (!dirty_bitmap[i]) 1198 continue; 1199 1200 *flush = true; 1201 mask = xchg(&dirty_bitmap[i], 0); 1202 dirty_bitmap_buffer[i] = mask; 1203 1204 if (mask) { 1205 offset = i * BITS_PER_LONG; 1206 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1207 offset, mask); 1208 } 1209 } 1210 spin_unlock(&kvm->mmu_lock); 1211 } 1212 1213 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1214 return -EFAULT; 1215 return 0; 1216 } 1217 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1218 1219 /** 1220 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1221 * and reenable dirty page tracking for the corresponding pages. 1222 * @kvm: pointer to kvm instance 1223 * @log: slot id and address from which to fetch the bitmap of dirty pages 1224 */ 1225 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1226 struct kvm_clear_dirty_log *log, bool *flush) 1227 { 1228 struct kvm_memslots *slots; 1229 struct kvm_memory_slot *memslot; 1230 int as_id, id, n; 1231 gfn_t offset; 1232 unsigned long i; 1233 unsigned long *dirty_bitmap; 1234 unsigned long *dirty_bitmap_buffer; 1235 1236 as_id = log->slot >> 16; 1237 id = (u16)log->slot; 1238 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1239 return -EINVAL; 1240 1241 if ((log->first_page & 63) || (log->num_pages & 63)) 1242 return -EINVAL; 1243 1244 slots = __kvm_memslots(kvm, as_id); 1245 memslot = id_to_memslot(slots, id); 1246 1247 dirty_bitmap = memslot->dirty_bitmap; 1248 if (!dirty_bitmap) 1249 return -ENOENT; 1250 1251 n = kvm_dirty_bitmap_bytes(memslot); 1252 *flush = false; 1253 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1254 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1255 return -EFAULT; 1256 1257 spin_lock(&kvm->mmu_lock); 1258 for (offset = log->first_page, 1259 i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--; 1260 i++, offset += BITS_PER_LONG) { 1261 unsigned long mask = *dirty_bitmap_buffer++; 1262 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1263 if (!mask) 1264 continue; 1265 1266 mask &= atomic_long_fetch_andnot(mask, p); 1267 1268 /* 1269 * mask contains the bits that really have been cleared. This 1270 * never includes any bits beyond the length of the memslot (if 1271 * the length is not aligned to 64 pages), therefore it is not 1272 * a problem if userspace sets them in log->dirty_bitmap. 1273 */ 1274 if (mask) { 1275 *flush = true; 1276 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1277 offset, mask); 1278 } 1279 } 1280 spin_unlock(&kvm->mmu_lock); 1281 1282 return 0; 1283 } 1284 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1285 #endif 1286 1287 bool kvm_largepages_enabled(void) 1288 { 1289 return largepages_enabled; 1290 } 1291 1292 void kvm_disable_largepages(void) 1293 { 1294 largepages_enabled = false; 1295 } 1296 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1297 1298 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1299 { 1300 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1301 } 1302 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1303 1304 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1305 { 1306 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1307 } 1308 1309 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1310 { 1311 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1312 1313 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1314 memslot->flags & KVM_MEMSLOT_INVALID) 1315 return false; 1316 1317 return true; 1318 } 1319 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1320 1321 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1322 { 1323 struct vm_area_struct *vma; 1324 unsigned long addr, size; 1325 1326 size = PAGE_SIZE; 1327 1328 addr = gfn_to_hva(kvm, gfn); 1329 if (kvm_is_error_hva(addr)) 1330 return PAGE_SIZE; 1331 1332 down_read(¤t->mm->mmap_sem); 1333 vma = find_vma(current->mm, addr); 1334 if (!vma) 1335 goto out; 1336 1337 size = vma_kernel_pagesize(vma); 1338 1339 out: 1340 up_read(¤t->mm->mmap_sem); 1341 1342 return size; 1343 } 1344 1345 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1346 { 1347 return slot->flags & KVM_MEM_READONLY; 1348 } 1349 1350 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1351 gfn_t *nr_pages, bool write) 1352 { 1353 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1354 return KVM_HVA_ERR_BAD; 1355 1356 if (memslot_is_readonly(slot) && write) 1357 return KVM_HVA_ERR_RO_BAD; 1358 1359 if (nr_pages) 1360 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1361 1362 return __gfn_to_hva_memslot(slot, gfn); 1363 } 1364 1365 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1366 gfn_t *nr_pages) 1367 { 1368 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1369 } 1370 1371 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1372 gfn_t gfn) 1373 { 1374 return gfn_to_hva_many(slot, gfn, NULL); 1375 } 1376 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1377 1378 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1379 { 1380 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1381 } 1382 EXPORT_SYMBOL_GPL(gfn_to_hva); 1383 1384 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1385 { 1386 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1387 } 1388 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1389 1390 /* 1391 * Return the hva of a @gfn and the R/W attribute if possible. 1392 * 1393 * @slot: the kvm_memory_slot which contains @gfn 1394 * @gfn: the gfn to be translated 1395 * @writable: used to return the read/write attribute of the @slot if the hva 1396 * is valid and @writable is not NULL 1397 */ 1398 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1399 gfn_t gfn, bool *writable) 1400 { 1401 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1402 1403 if (!kvm_is_error_hva(hva) && writable) 1404 *writable = !memslot_is_readonly(slot); 1405 1406 return hva; 1407 } 1408 1409 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1410 { 1411 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1412 1413 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1414 } 1415 1416 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1417 { 1418 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1419 1420 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1421 } 1422 1423 static inline int check_user_page_hwpoison(unsigned long addr) 1424 { 1425 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1426 1427 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1428 return rc == -EHWPOISON; 1429 } 1430 1431 /* 1432 * The fast path to get the writable pfn which will be stored in @pfn, 1433 * true indicates success, otherwise false is returned. It's also the 1434 * only part that runs if we can are in atomic context. 1435 */ 1436 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1437 bool *writable, kvm_pfn_t *pfn) 1438 { 1439 struct page *page[1]; 1440 int npages; 1441 1442 /* 1443 * Fast pin a writable pfn only if it is a write fault request 1444 * or the caller allows to map a writable pfn for a read fault 1445 * request. 1446 */ 1447 if (!(write_fault || writable)) 1448 return false; 1449 1450 npages = __get_user_pages_fast(addr, 1, 1, page); 1451 if (npages == 1) { 1452 *pfn = page_to_pfn(page[0]); 1453 1454 if (writable) 1455 *writable = true; 1456 return true; 1457 } 1458 1459 return false; 1460 } 1461 1462 /* 1463 * The slow path to get the pfn of the specified host virtual address, 1464 * 1 indicates success, -errno is returned if error is detected. 1465 */ 1466 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1467 bool *writable, kvm_pfn_t *pfn) 1468 { 1469 unsigned int flags = FOLL_HWPOISON; 1470 struct page *page; 1471 int npages = 0; 1472 1473 might_sleep(); 1474 1475 if (writable) 1476 *writable = write_fault; 1477 1478 if (write_fault) 1479 flags |= FOLL_WRITE; 1480 if (async) 1481 flags |= FOLL_NOWAIT; 1482 1483 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1484 if (npages != 1) 1485 return npages; 1486 1487 /* map read fault as writable if possible */ 1488 if (unlikely(!write_fault) && writable) { 1489 struct page *wpage; 1490 1491 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1492 *writable = true; 1493 put_page(page); 1494 page = wpage; 1495 } 1496 } 1497 *pfn = page_to_pfn(page); 1498 return npages; 1499 } 1500 1501 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1502 { 1503 if (unlikely(!(vma->vm_flags & VM_READ))) 1504 return false; 1505 1506 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1507 return false; 1508 1509 return true; 1510 } 1511 1512 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1513 unsigned long addr, bool *async, 1514 bool write_fault, bool *writable, 1515 kvm_pfn_t *p_pfn) 1516 { 1517 unsigned long pfn; 1518 int r; 1519 1520 r = follow_pfn(vma, addr, &pfn); 1521 if (r) { 1522 /* 1523 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1524 * not call the fault handler, so do it here. 1525 */ 1526 bool unlocked = false; 1527 r = fixup_user_fault(current, current->mm, addr, 1528 (write_fault ? FAULT_FLAG_WRITE : 0), 1529 &unlocked); 1530 if (unlocked) 1531 return -EAGAIN; 1532 if (r) 1533 return r; 1534 1535 r = follow_pfn(vma, addr, &pfn); 1536 if (r) 1537 return r; 1538 1539 } 1540 1541 if (writable) 1542 *writable = true; 1543 1544 /* 1545 * Get a reference here because callers of *hva_to_pfn* and 1546 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1547 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1548 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1549 * simply do nothing for reserved pfns. 1550 * 1551 * Whoever called remap_pfn_range is also going to call e.g. 1552 * unmap_mapping_range before the underlying pages are freed, 1553 * causing a call to our MMU notifier. 1554 */ 1555 kvm_get_pfn(pfn); 1556 1557 *p_pfn = pfn; 1558 return 0; 1559 } 1560 1561 /* 1562 * Pin guest page in memory and return its pfn. 1563 * @addr: host virtual address which maps memory to the guest 1564 * @atomic: whether this function can sleep 1565 * @async: whether this function need to wait IO complete if the 1566 * host page is not in the memory 1567 * @write_fault: whether we should get a writable host page 1568 * @writable: whether it allows to map a writable host page for !@write_fault 1569 * 1570 * The function will map a writable host page for these two cases: 1571 * 1): @write_fault = true 1572 * 2): @write_fault = false && @writable, @writable will tell the caller 1573 * whether the mapping is writable. 1574 */ 1575 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1576 bool write_fault, bool *writable) 1577 { 1578 struct vm_area_struct *vma; 1579 kvm_pfn_t pfn = 0; 1580 int npages, r; 1581 1582 /* we can do it either atomically or asynchronously, not both */ 1583 BUG_ON(atomic && async); 1584 1585 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1586 return pfn; 1587 1588 if (atomic) 1589 return KVM_PFN_ERR_FAULT; 1590 1591 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1592 if (npages == 1) 1593 return pfn; 1594 1595 down_read(¤t->mm->mmap_sem); 1596 if (npages == -EHWPOISON || 1597 (!async && check_user_page_hwpoison(addr))) { 1598 pfn = KVM_PFN_ERR_HWPOISON; 1599 goto exit; 1600 } 1601 1602 retry: 1603 vma = find_vma_intersection(current->mm, addr, addr + 1); 1604 1605 if (vma == NULL) 1606 pfn = KVM_PFN_ERR_FAULT; 1607 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1608 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1609 if (r == -EAGAIN) 1610 goto retry; 1611 if (r < 0) 1612 pfn = KVM_PFN_ERR_FAULT; 1613 } else { 1614 if (async && vma_is_valid(vma, write_fault)) 1615 *async = true; 1616 pfn = KVM_PFN_ERR_FAULT; 1617 } 1618 exit: 1619 up_read(¤t->mm->mmap_sem); 1620 return pfn; 1621 } 1622 1623 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1624 bool atomic, bool *async, bool write_fault, 1625 bool *writable) 1626 { 1627 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1628 1629 if (addr == KVM_HVA_ERR_RO_BAD) { 1630 if (writable) 1631 *writable = false; 1632 return KVM_PFN_ERR_RO_FAULT; 1633 } 1634 1635 if (kvm_is_error_hva(addr)) { 1636 if (writable) 1637 *writable = false; 1638 return KVM_PFN_NOSLOT; 1639 } 1640 1641 /* Do not map writable pfn in the readonly memslot. */ 1642 if (writable && memslot_is_readonly(slot)) { 1643 *writable = false; 1644 writable = NULL; 1645 } 1646 1647 return hva_to_pfn(addr, atomic, async, write_fault, 1648 writable); 1649 } 1650 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1651 1652 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1653 bool *writable) 1654 { 1655 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1656 write_fault, writable); 1657 } 1658 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1659 1660 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1661 { 1662 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1663 } 1664 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1665 1666 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1667 { 1668 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1669 } 1670 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1671 1672 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1673 { 1674 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1675 } 1676 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1677 1678 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1679 { 1680 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1681 } 1682 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1683 1684 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1685 { 1686 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1687 } 1688 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1689 1690 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1691 { 1692 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1693 } 1694 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1695 1696 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1697 struct page **pages, int nr_pages) 1698 { 1699 unsigned long addr; 1700 gfn_t entry = 0; 1701 1702 addr = gfn_to_hva_many(slot, gfn, &entry); 1703 if (kvm_is_error_hva(addr)) 1704 return -1; 1705 1706 if (entry < nr_pages) 1707 return 0; 1708 1709 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1710 } 1711 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1712 1713 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1714 { 1715 if (is_error_noslot_pfn(pfn)) 1716 return KVM_ERR_PTR_BAD_PAGE; 1717 1718 if (kvm_is_reserved_pfn(pfn)) { 1719 WARN_ON(1); 1720 return KVM_ERR_PTR_BAD_PAGE; 1721 } 1722 1723 return pfn_to_page(pfn); 1724 } 1725 1726 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1727 { 1728 kvm_pfn_t pfn; 1729 1730 pfn = gfn_to_pfn(kvm, gfn); 1731 1732 return kvm_pfn_to_page(pfn); 1733 } 1734 EXPORT_SYMBOL_GPL(gfn_to_page); 1735 1736 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1737 { 1738 kvm_pfn_t pfn; 1739 1740 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1741 1742 return kvm_pfn_to_page(pfn); 1743 } 1744 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1745 1746 void kvm_release_page_clean(struct page *page) 1747 { 1748 WARN_ON(is_error_page(page)); 1749 1750 kvm_release_pfn_clean(page_to_pfn(page)); 1751 } 1752 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1753 1754 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1755 { 1756 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1757 put_page(pfn_to_page(pfn)); 1758 } 1759 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1760 1761 void kvm_release_page_dirty(struct page *page) 1762 { 1763 WARN_ON(is_error_page(page)); 1764 1765 kvm_release_pfn_dirty(page_to_pfn(page)); 1766 } 1767 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1768 1769 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1770 { 1771 kvm_set_pfn_dirty(pfn); 1772 kvm_release_pfn_clean(pfn); 1773 } 1774 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1775 1776 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1777 { 1778 if (!kvm_is_reserved_pfn(pfn)) { 1779 struct page *page = pfn_to_page(pfn); 1780 1781 if (!PageReserved(page)) 1782 SetPageDirty(page); 1783 } 1784 } 1785 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1786 1787 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1788 { 1789 if (!kvm_is_reserved_pfn(pfn)) 1790 mark_page_accessed(pfn_to_page(pfn)); 1791 } 1792 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1793 1794 void kvm_get_pfn(kvm_pfn_t pfn) 1795 { 1796 if (!kvm_is_reserved_pfn(pfn)) 1797 get_page(pfn_to_page(pfn)); 1798 } 1799 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1800 1801 static int next_segment(unsigned long len, int offset) 1802 { 1803 if (len > PAGE_SIZE - offset) 1804 return PAGE_SIZE - offset; 1805 else 1806 return len; 1807 } 1808 1809 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1810 void *data, int offset, int len) 1811 { 1812 int r; 1813 unsigned long addr; 1814 1815 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1816 if (kvm_is_error_hva(addr)) 1817 return -EFAULT; 1818 r = __copy_from_user(data, (void __user *)addr + offset, len); 1819 if (r) 1820 return -EFAULT; 1821 return 0; 1822 } 1823 1824 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1825 int len) 1826 { 1827 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1828 1829 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1830 } 1831 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1832 1833 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1834 int offset, int len) 1835 { 1836 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1837 1838 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1839 } 1840 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1841 1842 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1843 { 1844 gfn_t gfn = gpa >> PAGE_SHIFT; 1845 int seg; 1846 int offset = offset_in_page(gpa); 1847 int ret; 1848 1849 while ((seg = next_segment(len, offset)) != 0) { 1850 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1851 if (ret < 0) 1852 return ret; 1853 offset = 0; 1854 len -= seg; 1855 data += seg; 1856 ++gfn; 1857 } 1858 return 0; 1859 } 1860 EXPORT_SYMBOL_GPL(kvm_read_guest); 1861 1862 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1863 { 1864 gfn_t gfn = gpa >> PAGE_SHIFT; 1865 int seg; 1866 int offset = offset_in_page(gpa); 1867 int ret; 1868 1869 while ((seg = next_segment(len, offset)) != 0) { 1870 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1871 if (ret < 0) 1872 return ret; 1873 offset = 0; 1874 len -= seg; 1875 data += seg; 1876 ++gfn; 1877 } 1878 return 0; 1879 } 1880 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1881 1882 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1883 void *data, int offset, unsigned long len) 1884 { 1885 int r; 1886 unsigned long addr; 1887 1888 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1889 if (kvm_is_error_hva(addr)) 1890 return -EFAULT; 1891 pagefault_disable(); 1892 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1893 pagefault_enable(); 1894 if (r) 1895 return -EFAULT; 1896 return 0; 1897 } 1898 1899 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1900 unsigned long len) 1901 { 1902 gfn_t gfn = gpa >> PAGE_SHIFT; 1903 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1904 int offset = offset_in_page(gpa); 1905 1906 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1907 } 1908 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1909 1910 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1911 void *data, unsigned long len) 1912 { 1913 gfn_t gfn = gpa >> PAGE_SHIFT; 1914 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1915 int offset = offset_in_page(gpa); 1916 1917 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1918 } 1919 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 1920 1921 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 1922 const void *data, int offset, int len) 1923 { 1924 int r; 1925 unsigned long addr; 1926 1927 addr = gfn_to_hva_memslot(memslot, gfn); 1928 if (kvm_is_error_hva(addr)) 1929 return -EFAULT; 1930 r = __copy_to_user((void __user *)addr + offset, data, len); 1931 if (r) 1932 return -EFAULT; 1933 mark_page_dirty_in_slot(memslot, gfn); 1934 return 0; 1935 } 1936 1937 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 1938 const void *data, int offset, int len) 1939 { 1940 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1941 1942 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1943 } 1944 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1945 1946 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 1947 const void *data, int offset, int len) 1948 { 1949 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1950 1951 return __kvm_write_guest_page(slot, gfn, data, offset, len); 1952 } 1953 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 1954 1955 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1956 unsigned long len) 1957 { 1958 gfn_t gfn = gpa >> PAGE_SHIFT; 1959 int seg; 1960 int offset = offset_in_page(gpa); 1961 int ret; 1962 1963 while ((seg = next_segment(len, offset)) != 0) { 1964 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1965 if (ret < 0) 1966 return ret; 1967 offset = 0; 1968 len -= seg; 1969 data += seg; 1970 ++gfn; 1971 } 1972 return 0; 1973 } 1974 EXPORT_SYMBOL_GPL(kvm_write_guest); 1975 1976 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 1977 unsigned long len) 1978 { 1979 gfn_t gfn = gpa >> PAGE_SHIFT; 1980 int seg; 1981 int offset = offset_in_page(gpa); 1982 int ret; 1983 1984 while ((seg = next_segment(len, offset)) != 0) { 1985 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 1986 if (ret < 0) 1987 return ret; 1988 offset = 0; 1989 len -= seg; 1990 data += seg; 1991 ++gfn; 1992 } 1993 return 0; 1994 } 1995 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 1996 1997 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 1998 struct gfn_to_hva_cache *ghc, 1999 gpa_t gpa, unsigned long len) 2000 { 2001 int offset = offset_in_page(gpa); 2002 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2003 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2004 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2005 gfn_t nr_pages_avail; 2006 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2007 2008 ghc->gpa = gpa; 2009 ghc->generation = slots->generation; 2010 ghc->len = len; 2011 ghc->hva = KVM_HVA_ERR_BAD; 2012 2013 /* 2014 * If the requested region crosses two memslots, we still 2015 * verify that the entire region is valid here. 2016 */ 2017 while (!r && start_gfn <= end_gfn) { 2018 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2019 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2020 &nr_pages_avail); 2021 if (kvm_is_error_hva(ghc->hva)) 2022 r = -EFAULT; 2023 start_gfn += nr_pages_avail; 2024 } 2025 2026 /* Use the slow path for cross page reads and writes. */ 2027 if (!r && nr_pages_needed == 1) 2028 ghc->hva += offset; 2029 else 2030 ghc->memslot = NULL; 2031 2032 return r; 2033 } 2034 2035 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2036 gpa_t gpa, unsigned long len) 2037 { 2038 struct kvm_memslots *slots = kvm_memslots(kvm); 2039 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2040 } 2041 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2042 2043 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2044 void *data, unsigned int offset, 2045 unsigned long len) 2046 { 2047 struct kvm_memslots *slots = kvm_memslots(kvm); 2048 int r; 2049 gpa_t gpa = ghc->gpa + offset; 2050 2051 BUG_ON(len + offset > ghc->len); 2052 2053 if (slots->generation != ghc->generation) 2054 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2055 2056 if (unlikely(!ghc->memslot)) 2057 return kvm_write_guest(kvm, gpa, data, len); 2058 2059 if (kvm_is_error_hva(ghc->hva)) 2060 return -EFAULT; 2061 2062 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2063 if (r) 2064 return -EFAULT; 2065 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2066 2067 return 0; 2068 } 2069 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2070 2071 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2072 void *data, unsigned long len) 2073 { 2074 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2075 } 2076 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2077 2078 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2079 void *data, unsigned long len) 2080 { 2081 struct kvm_memslots *slots = kvm_memslots(kvm); 2082 int r; 2083 2084 BUG_ON(len > ghc->len); 2085 2086 if (slots->generation != ghc->generation) 2087 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2088 2089 if (unlikely(!ghc->memslot)) 2090 return kvm_read_guest(kvm, ghc->gpa, data, len); 2091 2092 if (kvm_is_error_hva(ghc->hva)) 2093 return -EFAULT; 2094 2095 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2096 if (r) 2097 return -EFAULT; 2098 2099 return 0; 2100 } 2101 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2102 2103 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2104 { 2105 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2106 2107 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2108 } 2109 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2110 2111 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2112 { 2113 gfn_t gfn = gpa >> PAGE_SHIFT; 2114 int seg; 2115 int offset = offset_in_page(gpa); 2116 int ret; 2117 2118 while ((seg = next_segment(len, offset)) != 0) { 2119 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2120 if (ret < 0) 2121 return ret; 2122 offset = 0; 2123 len -= seg; 2124 ++gfn; 2125 } 2126 return 0; 2127 } 2128 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2129 2130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2131 gfn_t gfn) 2132 { 2133 if (memslot && memslot->dirty_bitmap) { 2134 unsigned long rel_gfn = gfn - memslot->base_gfn; 2135 2136 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2137 } 2138 } 2139 2140 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2141 { 2142 struct kvm_memory_slot *memslot; 2143 2144 memslot = gfn_to_memslot(kvm, gfn); 2145 mark_page_dirty_in_slot(memslot, gfn); 2146 } 2147 EXPORT_SYMBOL_GPL(mark_page_dirty); 2148 2149 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2150 { 2151 struct kvm_memory_slot *memslot; 2152 2153 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2154 mark_page_dirty_in_slot(memslot, gfn); 2155 } 2156 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2157 2158 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2159 { 2160 if (!vcpu->sigset_active) 2161 return; 2162 2163 /* 2164 * This does a lockless modification of ->real_blocked, which is fine 2165 * because, only current can change ->real_blocked and all readers of 2166 * ->real_blocked don't care as long ->real_blocked is always a subset 2167 * of ->blocked. 2168 */ 2169 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2170 } 2171 2172 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2173 { 2174 if (!vcpu->sigset_active) 2175 return; 2176 2177 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2178 sigemptyset(¤t->real_blocked); 2179 } 2180 2181 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2182 { 2183 unsigned int old, val, grow; 2184 2185 old = val = vcpu->halt_poll_ns; 2186 grow = READ_ONCE(halt_poll_ns_grow); 2187 /* 10us base */ 2188 if (val == 0 && grow) 2189 val = 10000; 2190 else 2191 val *= grow; 2192 2193 if (val > halt_poll_ns) 2194 val = halt_poll_ns; 2195 2196 vcpu->halt_poll_ns = val; 2197 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2198 } 2199 2200 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2201 { 2202 unsigned int old, val, shrink; 2203 2204 old = val = vcpu->halt_poll_ns; 2205 shrink = READ_ONCE(halt_poll_ns_shrink); 2206 if (shrink == 0) 2207 val = 0; 2208 else 2209 val /= shrink; 2210 2211 vcpu->halt_poll_ns = val; 2212 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2213 } 2214 2215 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2216 { 2217 int ret = -EINTR; 2218 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2219 2220 if (kvm_arch_vcpu_runnable(vcpu)) { 2221 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2222 goto out; 2223 } 2224 if (kvm_cpu_has_pending_timer(vcpu)) 2225 goto out; 2226 if (signal_pending(current)) 2227 goto out; 2228 2229 ret = 0; 2230 out: 2231 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2232 return ret; 2233 } 2234 2235 /* 2236 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2237 */ 2238 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2239 { 2240 ktime_t start, cur; 2241 DECLARE_SWAITQUEUE(wait); 2242 bool waited = false; 2243 u64 block_ns; 2244 2245 start = cur = ktime_get(); 2246 if (vcpu->halt_poll_ns) { 2247 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2248 2249 ++vcpu->stat.halt_attempted_poll; 2250 do { 2251 /* 2252 * This sets KVM_REQ_UNHALT if an interrupt 2253 * arrives. 2254 */ 2255 if (kvm_vcpu_check_block(vcpu) < 0) { 2256 ++vcpu->stat.halt_successful_poll; 2257 if (!vcpu_valid_wakeup(vcpu)) 2258 ++vcpu->stat.halt_poll_invalid; 2259 goto out; 2260 } 2261 cur = ktime_get(); 2262 } while (single_task_running() && ktime_before(cur, stop)); 2263 } 2264 2265 kvm_arch_vcpu_blocking(vcpu); 2266 2267 for (;;) { 2268 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2269 2270 if (kvm_vcpu_check_block(vcpu) < 0) 2271 break; 2272 2273 waited = true; 2274 schedule(); 2275 } 2276 2277 finish_swait(&vcpu->wq, &wait); 2278 cur = ktime_get(); 2279 2280 kvm_arch_vcpu_unblocking(vcpu); 2281 out: 2282 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2283 2284 if (!vcpu_valid_wakeup(vcpu)) 2285 shrink_halt_poll_ns(vcpu); 2286 else if (halt_poll_ns) { 2287 if (block_ns <= vcpu->halt_poll_ns) 2288 ; 2289 /* we had a long block, shrink polling */ 2290 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2291 shrink_halt_poll_ns(vcpu); 2292 /* we had a short halt and our poll time is too small */ 2293 else if (vcpu->halt_poll_ns < halt_poll_ns && 2294 block_ns < halt_poll_ns) 2295 grow_halt_poll_ns(vcpu); 2296 } else 2297 vcpu->halt_poll_ns = 0; 2298 2299 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2300 kvm_arch_vcpu_block_finish(vcpu); 2301 } 2302 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2303 2304 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2305 { 2306 struct swait_queue_head *wqp; 2307 2308 wqp = kvm_arch_vcpu_wq(vcpu); 2309 if (swq_has_sleeper(wqp)) { 2310 swake_up_one(wqp); 2311 ++vcpu->stat.halt_wakeup; 2312 return true; 2313 } 2314 2315 return false; 2316 } 2317 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2318 2319 #ifndef CONFIG_S390 2320 /* 2321 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2322 */ 2323 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2324 { 2325 int me; 2326 int cpu = vcpu->cpu; 2327 2328 if (kvm_vcpu_wake_up(vcpu)) 2329 return; 2330 2331 me = get_cpu(); 2332 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2333 if (kvm_arch_vcpu_should_kick(vcpu)) 2334 smp_send_reschedule(cpu); 2335 put_cpu(); 2336 } 2337 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2338 #endif /* !CONFIG_S390 */ 2339 2340 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2341 { 2342 struct pid *pid; 2343 struct task_struct *task = NULL; 2344 int ret = 0; 2345 2346 rcu_read_lock(); 2347 pid = rcu_dereference(target->pid); 2348 if (pid) 2349 task = get_pid_task(pid, PIDTYPE_PID); 2350 rcu_read_unlock(); 2351 if (!task) 2352 return ret; 2353 ret = yield_to(task, 1); 2354 put_task_struct(task); 2355 2356 return ret; 2357 } 2358 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2359 2360 /* 2361 * Helper that checks whether a VCPU is eligible for directed yield. 2362 * Most eligible candidate to yield is decided by following heuristics: 2363 * 2364 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2365 * (preempted lock holder), indicated by @in_spin_loop. 2366 * Set at the beiginning and cleared at the end of interception/PLE handler. 2367 * 2368 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2369 * chance last time (mostly it has become eligible now since we have probably 2370 * yielded to lockholder in last iteration. This is done by toggling 2371 * @dy_eligible each time a VCPU checked for eligibility.) 2372 * 2373 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2374 * to preempted lock-holder could result in wrong VCPU selection and CPU 2375 * burning. Giving priority for a potential lock-holder increases lock 2376 * progress. 2377 * 2378 * Since algorithm is based on heuristics, accessing another VCPU data without 2379 * locking does not harm. It may result in trying to yield to same VCPU, fail 2380 * and continue with next VCPU and so on. 2381 */ 2382 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2383 { 2384 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2385 bool eligible; 2386 2387 eligible = !vcpu->spin_loop.in_spin_loop || 2388 vcpu->spin_loop.dy_eligible; 2389 2390 if (vcpu->spin_loop.in_spin_loop) 2391 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2392 2393 return eligible; 2394 #else 2395 return true; 2396 #endif 2397 } 2398 2399 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2400 { 2401 struct kvm *kvm = me->kvm; 2402 struct kvm_vcpu *vcpu; 2403 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2404 int yielded = 0; 2405 int try = 3; 2406 int pass; 2407 int i; 2408 2409 kvm_vcpu_set_in_spin_loop(me, true); 2410 /* 2411 * We boost the priority of a VCPU that is runnable but not 2412 * currently running, because it got preempted by something 2413 * else and called schedule in __vcpu_run. Hopefully that 2414 * VCPU is holding the lock that we need and will release it. 2415 * We approximate round-robin by starting at the last boosted VCPU. 2416 */ 2417 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2418 kvm_for_each_vcpu(i, vcpu, kvm) { 2419 if (!pass && i <= last_boosted_vcpu) { 2420 i = last_boosted_vcpu; 2421 continue; 2422 } else if (pass && i > last_boosted_vcpu) 2423 break; 2424 if (!READ_ONCE(vcpu->preempted)) 2425 continue; 2426 if (vcpu == me) 2427 continue; 2428 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu)) 2429 continue; 2430 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu)) 2431 continue; 2432 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2433 continue; 2434 2435 yielded = kvm_vcpu_yield_to(vcpu); 2436 if (yielded > 0) { 2437 kvm->last_boosted_vcpu = i; 2438 break; 2439 } else if (yielded < 0) { 2440 try--; 2441 if (!try) 2442 break; 2443 } 2444 } 2445 } 2446 kvm_vcpu_set_in_spin_loop(me, false); 2447 2448 /* Ensure vcpu is not eligible during next spinloop */ 2449 kvm_vcpu_set_dy_eligible(me, false); 2450 } 2451 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2452 2453 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2454 { 2455 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2456 struct page *page; 2457 2458 if (vmf->pgoff == 0) 2459 page = virt_to_page(vcpu->run); 2460 #ifdef CONFIG_X86 2461 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2462 page = virt_to_page(vcpu->arch.pio_data); 2463 #endif 2464 #ifdef CONFIG_KVM_MMIO 2465 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2466 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2467 #endif 2468 else 2469 return kvm_arch_vcpu_fault(vcpu, vmf); 2470 get_page(page); 2471 vmf->page = page; 2472 return 0; 2473 } 2474 2475 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2476 .fault = kvm_vcpu_fault, 2477 }; 2478 2479 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2480 { 2481 vma->vm_ops = &kvm_vcpu_vm_ops; 2482 return 0; 2483 } 2484 2485 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2486 { 2487 struct kvm_vcpu *vcpu = filp->private_data; 2488 2489 debugfs_remove_recursive(vcpu->debugfs_dentry); 2490 kvm_put_kvm(vcpu->kvm); 2491 return 0; 2492 } 2493 2494 static struct file_operations kvm_vcpu_fops = { 2495 .release = kvm_vcpu_release, 2496 .unlocked_ioctl = kvm_vcpu_ioctl, 2497 .mmap = kvm_vcpu_mmap, 2498 .llseek = noop_llseek, 2499 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2500 }; 2501 2502 /* 2503 * Allocates an inode for the vcpu. 2504 */ 2505 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2506 { 2507 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2508 2509 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2510 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2511 } 2512 2513 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2514 { 2515 char dir_name[ITOA_MAX_LEN * 2]; 2516 int ret; 2517 2518 if (!kvm_arch_has_vcpu_debugfs()) 2519 return 0; 2520 2521 if (!debugfs_initialized()) 2522 return 0; 2523 2524 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2525 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2526 vcpu->kvm->debugfs_dentry); 2527 if (!vcpu->debugfs_dentry) 2528 return -ENOMEM; 2529 2530 ret = kvm_arch_create_vcpu_debugfs(vcpu); 2531 if (ret < 0) { 2532 debugfs_remove_recursive(vcpu->debugfs_dentry); 2533 return ret; 2534 } 2535 2536 return 0; 2537 } 2538 2539 /* 2540 * Creates some virtual cpus. Good luck creating more than one. 2541 */ 2542 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2543 { 2544 int r; 2545 struct kvm_vcpu *vcpu; 2546 2547 if (id >= KVM_MAX_VCPU_ID) 2548 return -EINVAL; 2549 2550 mutex_lock(&kvm->lock); 2551 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2552 mutex_unlock(&kvm->lock); 2553 return -EINVAL; 2554 } 2555 2556 kvm->created_vcpus++; 2557 mutex_unlock(&kvm->lock); 2558 2559 vcpu = kvm_arch_vcpu_create(kvm, id); 2560 if (IS_ERR(vcpu)) { 2561 r = PTR_ERR(vcpu); 2562 goto vcpu_decrement; 2563 } 2564 2565 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2566 2567 r = kvm_arch_vcpu_setup(vcpu); 2568 if (r) 2569 goto vcpu_destroy; 2570 2571 r = kvm_create_vcpu_debugfs(vcpu); 2572 if (r) 2573 goto vcpu_destroy; 2574 2575 mutex_lock(&kvm->lock); 2576 if (kvm_get_vcpu_by_id(kvm, id)) { 2577 r = -EEXIST; 2578 goto unlock_vcpu_destroy; 2579 } 2580 2581 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2582 2583 /* Now it's all set up, let userspace reach it */ 2584 kvm_get_kvm(kvm); 2585 r = create_vcpu_fd(vcpu); 2586 if (r < 0) { 2587 kvm_put_kvm(kvm); 2588 goto unlock_vcpu_destroy; 2589 } 2590 2591 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2592 2593 /* 2594 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2595 * before kvm->online_vcpu's incremented value. 2596 */ 2597 smp_wmb(); 2598 atomic_inc(&kvm->online_vcpus); 2599 2600 mutex_unlock(&kvm->lock); 2601 kvm_arch_vcpu_postcreate(vcpu); 2602 return r; 2603 2604 unlock_vcpu_destroy: 2605 mutex_unlock(&kvm->lock); 2606 debugfs_remove_recursive(vcpu->debugfs_dentry); 2607 vcpu_destroy: 2608 kvm_arch_vcpu_destroy(vcpu); 2609 vcpu_decrement: 2610 mutex_lock(&kvm->lock); 2611 kvm->created_vcpus--; 2612 mutex_unlock(&kvm->lock); 2613 return r; 2614 } 2615 2616 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2617 { 2618 if (sigset) { 2619 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2620 vcpu->sigset_active = 1; 2621 vcpu->sigset = *sigset; 2622 } else 2623 vcpu->sigset_active = 0; 2624 return 0; 2625 } 2626 2627 static long kvm_vcpu_ioctl(struct file *filp, 2628 unsigned int ioctl, unsigned long arg) 2629 { 2630 struct kvm_vcpu *vcpu = filp->private_data; 2631 void __user *argp = (void __user *)arg; 2632 int r; 2633 struct kvm_fpu *fpu = NULL; 2634 struct kvm_sregs *kvm_sregs = NULL; 2635 2636 if (vcpu->kvm->mm != current->mm) 2637 return -EIO; 2638 2639 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2640 return -EINVAL; 2641 2642 /* 2643 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2644 * execution; mutex_lock() would break them. 2645 */ 2646 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2647 if (r != -ENOIOCTLCMD) 2648 return r; 2649 2650 if (mutex_lock_killable(&vcpu->mutex)) 2651 return -EINTR; 2652 switch (ioctl) { 2653 case KVM_RUN: { 2654 struct pid *oldpid; 2655 r = -EINVAL; 2656 if (arg) 2657 goto out; 2658 oldpid = rcu_access_pointer(vcpu->pid); 2659 if (unlikely(oldpid != task_pid(current))) { 2660 /* The thread running this VCPU changed. */ 2661 struct pid *newpid; 2662 2663 r = kvm_arch_vcpu_run_pid_change(vcpu); 2664 if (r) 2665 break; 2666 2667 newpid = get_task_pid(current, PIDTYPE_PID); 2668 rcu_assign_pointer(vcpu->pid, newpid); 2669 if (oldpid) 2670 synchronize_rcu(); 2671 put_pid(oldpid); 2672 } 2673 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2674 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2675 break; 2676 } 2677 case KVM_GET_REGS: { 2678 struct kvm_regs *kvm_regs; 2679 2680 r = -ENOMEM; 2681 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 2682 if (!kvm_regs) 2683 goto out; 2684 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2685 if (r) 2686 goto out_free1; 2687 r = -EFAULT; 2688 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2689 goto out_free1; 2690 r = 0; 2691 out_free1: 2692 kfree(kvm_regs); 2693 break; 2694 } 2695 case KVM_SET_REGS: { 2696 struct kvm_regs *kvm_regs; 2697 2698 r = -ENOMEM; 2699 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2700 if (IS_ERR(kvm_regs)) { 2701 r = PTR_ERR(kvm_regs); 2702 goto out; 2703 } 2704 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2705 kfree(kvm_regs); 2706 break; 2707 } 2708 case KVM_GET_SREGS: { 2709 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2710 r = -ENOMEM; 2711 if (!kvm_sregs) 2712 goto out; 2713 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2714 if (r) 2715 goto out; 2716 r = -EFAULT; 2717 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2718 goto out; 2719 r = 0; 2720 break; 2721 } 2722 case KVM_SET_SREGS: { 2723 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2724 if (IS_ERR(kvm_sregs)) { 2725 r = PTR_ERR(kvm_sregs); 2726 kvm_sregs = NULL; 2727 goto out; 2728 } 2729 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2730 break; 2731 } 2732 case KVM_GET_MP_STATE: { 2733 struct kvm_mp_state mp_state; 2734 2735 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2736 if (r) 2737 goto out; 2738 r = -EFAULT; 2739 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2740 goto out; 2741 r = 0; 2742 break; 2743 } 2744 case KVM_SET_MP_STATE: { 2745 struct kvm_mp_state mp_state; 2746 2747 r = -EFAULT; 2748 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2749 goto out; 2750 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2751 break; 2752 } 2753 case KVM_TRANSLATE: { 2754 struct kvm_translation tr; 2755 2756 r = -EFAULT; 2757 if (copy_from_user(&tr, argp, sizeof(tr))) 2758 goto out; 2759 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2760 if (r) 2761 goto out; 2762 r = -EFAULT; 2763 if (copy_to_user(argp, &tr, sizeof(tr))) 2764 goto out; 2765 r = 0; 2766 break; 2767 } 2768 case KVM_SET_GUEST_DEBUG: { 2769 struct kvm_guest_debug dbg; 2770 2771 r = -EFAULT; 2772 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2773 goto out; 2774 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2775 break; 2776 } 2777 case KVM_SET_SIGNAL_MASK: { 2778 struct kvm_signal_mask __user *sigmask_arg = argp; 2779 struct kvm_signal_mask kvm_sigmask; 2780 sigset_t sigset, *p; 2781 2782 p = NULL; 2783 if (argp) { 2784 r = -EFAULT; 2785 if (copy_from_user(&kvm_sigmask, argp, 2786 sizeof(kvm_sigmask))) 2787 goto out; 2788 r = -EINVAL; 2789 if (kvm_sigmask.len != sizeof(sigset)) 2790 goto out; 2791 r = -EFAULT; 2792 if (copy_from_user(&sigset, sigmask_arg->sigset, 2793 sizeof(sigset))) 2794 goto out; 2795 p = &sigset; 2796 } 2797 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2798 break; 2799 } 2800 case KVM_GET_FPU: { 2801 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2802 r = -ENOMEM; 2803 if (!fpu) 2804 goto out; 2805 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2806 if (r) 2807 goto out; 2808 r = -EFAULT; 2809 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2810 goto out; 2811 r = 0; 2812 break; 2813 } 2814 case KVM_SET_FPU: { 2815 fpu = memdup_user(argp, sizeof(*fpu)); 2816 if (IS_ERR(fpu)) { 2817 r = PTR_ERR(fpu); 2818 fpu = NULL; 2819 goto out; 2820 } 2821 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2822 break; 2823 } 2824 default: 2825 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2826 } 2827 out: 2828 mutex_unlock(&vcpu->mutex); 2829 kfree(fpu); 2830 kfree(kvm_sregs); 2831 return r; 2832 } 2833 2834 #ifdef CONFIG_KVM_COMPAT 2835 static long kvm_vcpu_compat_ioctl(struct file *filp, 2836 unsigned int ioctl, unsigned long arg) 2837 { 2838 struct kvm_vcpu *vcpu = filp->private_data; 2839 void __user *argp = compat_ptr(arg); 2840 int r; 2841 2842 if (vcpu->kvm->mm != current->mm) 2843 return -EIO; 2844 2845 switch (ioctl) { 2846 case KVM_SET_SIGNAL_MASK: { 2847 struct kvm_signal_mask __user *sigmask_arg = argp; 2848 struct kvm_signal_mask kvm_sigmask; 2849 sigset_t sigset; 2850 2851 if (argp) { 2852 r = -EFAULT; 2853 if (copy_from_user(&kvm_sigmask, argp, 2854 sizeof(kvm_sigmask))) 2855 goto out; 2856 r = -EINVAL; 2857 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2858 goto out; 2859 r = -EFAULT; 2860 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2861 goto out; 2862 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2863 } else 2864 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2865 break; 2866 } 2867 default: 2868 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2869 } 2870 2871 out: 2872 return r; 2873 } 2874 #endif 2875 2876 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2877 int (*accessor)(struct kvm_device *dev, 2878 struct kvm_device_attr *attr), 2879 unsigned long arg) 2880 { 2881 struct kvm_device_attr attr; 2882 2883 if (!accessor) 2884 return -EPERM; 2885 2886 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2887 return -EFAULT; 2888 2889 return accessor(dev, &attr); 2890 } 2891 2892 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2893 unsigned long arg) 2894 { 2895 struct kvm_device *dev = filp->private_data; 2896 2897 switch (ioctl) { 2898 case KVM_SET_DEVICE_ATTR: 2899 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2900 case KVM_GET_DEVICE_ATTR: 2901 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2902 case KVM_HAS_DEVICE_ATTR: 2903 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2904 default: 2905 if (dev->ops->ioctl) 2906 return dev->ops->ioctl(dev, ioctl, arg); 2907 2908 return -ENOTTY; 2909 } 2910 } 2911 2912 static int kvm_device_release(struct inode *inode, struct file *filp) 2913 { 2914 struct kvm_device *dev = filp->private_data; 2915 struct kvm *kvm = dev->kvm; 2916 2917 kvm_put_kvm(kvm); 2918 return 0; 2919 } 2920 2921 static const struct file_operations kvm_device_fops = { 2922 .unlocked_ioctl = kvm_device_ioctl, 2923 .release = kvm_device_release, 2924 KVM_COMPAT(kvm_device_ioctl), 2925 }; 2926 2927 struct kvm_device *kvm_device_from_filp(struct file *filp) 2928 { 2929 if (filp->f_op != &kvm_device_fops) 2930 return NULL; 2931 2932 return filp->private_data; 2933 } 2934 2935 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 2936 #ifdef CONFIG_KVM_MPIC 2937 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 2938 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 2939 #endif 2940 }; 2941 2942 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 2943 { 2944 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 2945 return -ENOSPC; 2946 2947 if (kvm_device_ops_table[type] != NULL) 2948 return -EEXIST; 2949 2950 kvm_device_ops_table[type] = ops; 2951 return 0; 2952 } 2953 2954 void kvm_unregister_device_ops(u32 type) 2955 { 2956 if (kvm_device_ops_table[type] != NULL) 2957 kvm_device_ops_table[type] = NULL; 2958 } 2959 2960 static int kvm_ioctl_create_device(struct kvm *kvm, 2961 struct kvm_create_device *cd) 2962 { 2963 struct kvm_device_ops *ops = NULL; 2964 struct kvm_device *dev; 2965 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2966 int ret; 2967 2968 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 2969 return -ENODEV; 2970 2971 ops = kvm_device_ops_table[cd->type]; 2972 if (ops == NULL) 2973 return -ENODEV; 2974 2975 if (test) 2976 return 0; 2977 2978 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2979 if (!dev) 2980 return -ENOMEM; 2981 2982 dev->ops = ops; 2983 dev->kvm = kvm; 2984 2985 mutex_lock(&kvm->lock); 2986 ret = ops->create(dev, cd->type); 2987 if (ret < 0) { 2988 mutex_unlock(&kvm->lock); 2989 kfree(dev); 2990 return ret; 2991 } 2992 list_add(&dev->vm_node, &kvm->devices); 2993 mutex_unlock(&kvm->lock); 2994 2995 if (ops->init) 2996 ops->init(dev); 2997 2998 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2999 if (ret < 0) { 3000 mutex_lock(&kvm->lock); 3001 list_del(&dev->vm_node); 3002 mutex_unlock(&kvm->lock); 3003 ops->destroy(dev); 3004 return ret; 3005 } 3006 3007 kvm_get_kvm(kvm); 3008 cd->fd = ret; 3009 return 0; 3010 } 3011 3012 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3013 { 3014 switch (arg) { 3015 case KVM_CAP_USER_MEMORY: 3016 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3017 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3018 case KVM_CAP_INTERNAL_ERROR_DATA: 3019 #ifdef CONFIG_HAVE_KVM_MSI 3020 case KVM_CAP_SIGNAL_MSI: 3021 #endif 3022 #ifdef CONFIG_HAVE_KVM_IRQFD 3023 case KVM_CAP_IRQFD: 3024 case KVM_CAP_IRQFD_RESAMPLE: 3025 #endif 3026 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3027 case KVM_CAP_CHECK_EXTENSION_VM: 3028 case KVM_CAP_ENABLE_CAP_VM: 3029 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3030 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3031 #endif 3032 return 1; 3033 #ifdef CONFIG_KVM_MMIO 3034 case KVM_CAP_COALESCED_MMIO: 3035 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3036 case KVM_CAP_COALESCED_PIO: 3037 return 1; 3038 #endif 3039 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3040 case KVM_CAP_IRQ_ROUTING: 3041 return KVM_MAX_IRQ_ROUTES; 3042 #endif 3043 #if KVM_ADDRESS_SPACE_NUM > 1 3044 case KVM_CAP_MULTI_ADDRESS_SPACE: 3045 return KVM_ADDRESS_SPACE_NUM; 3046 #endif 3047 case KVM_CAP_MAX_VCPU_ID: 3048 return KVM_MAX_VCPU_ID; 3049 default: 3050 break; 3051 } 3052 return kvm_vm_ioctl_check_extension(kvm, arg); 3053 } 3054 3055 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3056 struct kvm_enable_cap *cap) 3057 { 3058 return -EINVAL; 3059 } 3060 3061 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3062 struct kvm_enable_cap *cap) 3063 { 3064 switch (cap->cap) { 3065 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3066 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT: 3067 if (cap->flags || (cap->args[0] & ~1)) 3068 return -EINVAL; 3069 kvm->manual_dirty_log_protect = cap->args[0]; 3070 return 0; 3071 #endif 3072 default: 3073 return kvm_vm_ioctl_enable_cap(kvm, cap); 3074 } 3075 } 3076 3077 static long kvm_vm_ioctl(struct file *filp, 3078 unsigned int ioctl, unsigned long arg) 3079 { 3080 struct kvm *kvm = filp->private_data; 3081 void __user *argp = (void __user *)arg; 3082 int r; 3083 3084 if (kvm->mm != current->mm) 3085 return -EIO; 3086 switch (ioctl) { 3087 case KVM_CREATE_VCPU: 3088 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3089 break; 3090 case KVM_ENABLE_CAP: { 3091 struct kvm_enable_cap cap; 3092 3093 r = -EFAULT; 3094 if (copy_from_user(&cap, argp, sizeof(cap))) 3095 goto out; 3096 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3097 break; 3098 } 3099 case KVM_SET_USER_MEMORY_REGION: { 3100 struct kvm_userspace_memory_region kvm_userspace_mem; 3101 3102 r = -EFAULT; 3103 if (copy_from_user(&kvm_userspace_mem, argp, 3104 sizeof(kvm_userspace_mem))) 3105 goto out; 3106 3107 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3108 break; 3109 } 3110 case KVM_GET_DIRTY_LOG: { 3111 struct kvm_dirty_log log; 3112 3113 r = -EFAULT; 3114 if (copy_from_user(&log, argp, sizeof(log))) 3115 goto out; 3116 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3117 break; 3118 } 3119 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3120 case KVM_CLEAR_DIRTY_LOG: { 3121 struct kvm_clear_dirty_log log; 3122 3123 r = -EFAULT; 3124 if (copy_from_user(&log, argp, sizeof(log))) 3125 goto out; 3126 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3127 break; 3128 } 3129 #endif 3130 #ifdef CONFIG_KVM_MMIO 3131 case KVM_REGISTER_COALESCED_MMIO: { 3132 struct kvm_coalesced_mmio_zone zone; 3133 3134 r = -EFAULT; 3135 if (copy_from_user(&zone, argp, sizeof(zone))) 3136 goto out; 3137 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3138 break; 3139 } 3140 case KVM_UNREGISTER_COALESCED_MMIO: { 3141 struct kvm_coalesced_mmio_zone zone; 3142 3143 r = -EFAULT; 3144 if (copy_from_user(&zone, argp, sizeof(zone))) 3145 goto out; 3146 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3147 break; 3148 } 3149 #endif 3150 case KVM_IRQFD: { 3151 struct kvm_irqfd data; 3152 3153 r = -EFAULT; 3154 if (copy_from_user(&data, argp, sizeof(data))) 3155 goto out; 3156 r = kvm_irqfd(kvm, &data); 3157 break; 3158 } 3159 case KVM_IOEVENTFD: { 3160 struct kvm_ioeventfd data; 3161 3162 r = -EFAULT; 3163 if (copy_from_user(&data, argp, sizeof(data))) 3164 goto out; 3165 r = kvm_ioeventfd(kvm, &data); 3166 break; 3167 } 3168 #ifdef CONFIG_HAVE_KVM_MSI 3169 case KVM_SIGNAL_MSI: { 3170 struct kvm_msi msi; 3171 3172 r = -EFAULT; 3173 if (copy_from_user(&msi, argp, sizeof(msi))) 3174 goto out; 3175 r = kvm_send_userspace_msi(kvm, &msi); 3176 break; 3177 } 3178 #endif 3179 #ifdef __KVM_HAVE_IRQ_LINE 3180 case KVM_IRQ_LINE_STATUS: 3181 case KVM_IRQ_LINE: { 3182 struct kvm_irq_level irq_event; 3183 3184 r = -EFAULT; 3185 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3186 goto out; 3187 3188 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3189 ioctl == KVM_IRQ_LINE_STATUS); 3190 if (r) 3191 goto out; 3192 3193 r = -EFAULT; 3194 if (ioctl == KVM_IRQ_LINE_STATUS) { 3195 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3196 goto out; 3197 } 3198 3199 r = 0; 3200 break; 3201 } 3202 #endif 3203 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3204 case KVM_SET_GSI_ROUTING: { 3205 struct kvm_irq_routing routing; 3206 struct kvm_irq_routing __user *urouting; 3207 struct kvm_irq_routing_entry *entries = NULL; 3208 3209 r = -EFAULT; 3210 if (copy_from_user(&routing, argp, sizeof(routing))) 3211 goto out; 3212 r = -EINVAL; 3213 if (!kvm_arch_can_set_irq_routing(kvm)) 3214 goto out; 3215 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3216 goto out; 3217 if (routing.flags) 3218 goto out; 3219 if (routing.nr) { 3220 r = -ENOMEM; 3221 entries = vmalloc(array_size(sizeof(*entries), 3222 routing.nr)); 3223 if (!entries) 3224 goto out; 3225 r = -EFAULT; 3226 urouting = argp; 3227 if (copy_from_user(entries, urouting->entries, 3228 routing.nr * sizeof(*entries))) 3229 goto out_free_irq_routing; 3230 } 3231 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3232 routing.flags); 3233 out_free_irq_routing: 3234 vfree(entries); 3235 break; 3236 } 3237 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3238 case KVM_CREATE_DEVICE: { 3239 struct kvm_create_device cd; 3240 3241 r = -EFAULT; 3242 if (copy_from_user(&cd, argp, sizeof(cd))) 3243 goto out; 3244 3245 r = kvm_ioctl_create_device(kvm, &cd); 3246 if (r) 3247 goto out; 3248 3249 r = -EFAULT; 3250 if (copy_to_user(argp, &cd, sizeof(cd))) 3251 goto out; 3252 3253 r = 0; 3254 break; 3255 } 3256 case KVM_CHECK_EXTENSION: 3257 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3258 break; 3259 default: 3260 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3261 } 3262 out: 3263 return r; 3264 } 3265 3266 #ifdef CONFIG_KVM_COMPAT 3267 struct compat_kvm_dirty_log { 3268 __u32 slot; 3269 __u32 padding1; 3270 union { 3271 compat_uptr_t dirty_bitmap; /* one bit per page */ 3272 __u64 padding2; 3273 }; 3274 }; 3275 3276 static long kvm_vm_compat_ioctl(struct file *filp, 3277 unsigned int ioctl, unsigned long arg) 3278 { 3279 struct kvm *kvm = filp->private_data; 3280 int r; 3281 3282 if (kvm->mm != current->mm) 3283 return -EIO; 3284 switch (ioctl) { 3285 case KVM_GET_DIRTY_LOG: { 3286 struct compat_kvm_dirty_log compat_log; 3287 struct kvm_dirty_log log; 3288 3289 if (copy_from_user(&compat_log, (void __user *)arg, 3290 sizeof(compat_log))) 3291 return -EFAULT; 3292 log.slot = compat_log.slot; 3293 log.padding1 = compat_log.padding1; 3294 log.padding2 = compat_log.padding2; 3295 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3296 3297 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3298 break; 3299 } 3300 default: 3301 r = kvm_vm_ioctl(filp, ioctl, arg); 3302 } 3303 return r; 3304 } 3305 #endif 3306 3307 static struct file_operations kvm_vm_fops = { 3308 .release = kvm_vm_release, 3309 .unlocked_ioctl = kvm_vm_ioctl, 3310 .llseek = noop_llseek, 3311 KVM_COMPAT(kvm_vm_compat_ioctl), 3312 }; 3313 3314 static int kvm_dev_ioctl_create_vm(unsigned long type) 3315 { 3316 int r; 3317 struct kvm *kvm; 3318 struct file *file; 3319 3320 kvm = kvm_create_vm(type); 3321 if (IS_ERR(kvm)) 3322 return PTR_ERR(kvm); 3323 #ifdef CONFIG_KVM_MMIO 3324 r = kvm_coalesced_mmio_init(kvm); 3325 if (r < 0) 3326 goto put_kvm; 3327 #endif 3328 r = get_unused_fd_flags(O_CLOEXEC); 3329 if (r < 0) 3330 goto put_kvm; 3331 3332 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3333 if (IS_ERR(file)) { 3334 put_unused_fd(r); 3335 r = PTR_ERR(file); 3336 goto put_kvm; 3337 } 3338 3339 /* 3340 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3341 * already set, with ->release() being kvm_vm_release(). In error 3342 * cases it will be called by the final fput(file) and will take 3343 * care of doing kvm_put_kvm(kvm). 3344 */ 3345 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3346 put_unused_fd(r); 3347 fput(file); 3348 return -ENOMEM; 3349 } 3350 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3351 3352 fd_install(r, file); 3353 return r; 3354 3355 put_kvm: 3356 kvm_put_kvm(kvm); 3357 return r; 3358 } 3359 3360 static long kvm_dev_ioctl(struct file *filp, 3361 unsigned int ioctl, unsigned long arg) 3362 { 3363 long r = -EINVAL; 3364 3365 switch (ioctl) { 3366 case KVM_GET_API_VERSION: 3367 if (arg) 3368 goto out; 3369 r = KVM_API_VERSION; 3370 break; 3371 case KVM_CREATE_VM: 3372 r = kvm_dev_ioctl_create_vm(arg); 3373 break; 3374 case KVM_CHECK_EXTENSION: 3375 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3376 break; 3377 case KVM_GET_VCPU_MMAP_SIZE: 3378 if (arg) 3379 goto out; 3380 r = PAGE_SIZE; /* struct kvm_run */ 3381 #ifdef CONFIG_X86 3382 r += PAGE_SIZE; /* pio data page */ 3383 #endif 3384 #ifdef CONFIG_KVM_MMIO 3385 r += PAGE_SIZE; /* coalesced mmio ring page */ 3386 #endif 3387 break; 3388 case KVM_TRACE_ENABLE: 3389 case KVM_TRACE_PAUSE: 3390 case KVM_TRACE_DISABLE: 3391 r = -EOPNOTSUPP; 3392 break; 3393 default: 3394 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3395 } 3396 out: 3397 return r; 3398 } 3399 3400 static struct file_operations kvm_chardev_ops = { 3401 .unlocked_ioctl = kvm_dev_ioctl, 3402 .llseek = noop_llseek, 3403 KVM_COMPAT(kvm_dev_ioctl), 3404 }; 3405 3406 static struct miscdevice kvm_dev = { 3407 KVM_MINOR, 3408 "kvm", 3409 &kvm_chardev_ops, 3410 }; 3411 3412 static void hardware_enable_nolock(void *junk) 3413 { 3414 int cpu = raw_smp_processor_id(); 3415 int r; 3416 3417 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3418 return; 3419 3420 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3421 3422 r = kvm_arch_hardware_enable(); 3423 3424 if (r) { 3425 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3426 atomic_inc(&hardware_enable_failed); 3427 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3428 } 3429 } 3430 3431 static int kvm_starting_cpu(unsigned int cpu) 3432 { 3433 raw_spin_lock(&kvm_count_lock); 3434 if (kvm_usage_count) 3435 hardware_enable_nolock(NULL); 3436 raw_spin_unlock(&kvm_count_lock); 3437 return 0; 3438 } 3439 3440 static void hardware_disable_nolock(void *junk) 3441 { 3442 int cpu = raw_smp_processor_id(); 3443 3444 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3445 return; 3446 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3447 kvm_arch_hardware_disable(); 3448 } 3449 3450 static int kvm_dying_cpu(unsigned int cpu) 3451 { 3452 raw_spin_lock(&kvm_count_lock); 3453 if (kvm_usage_count) 3454 hardware_disable_nolock(NULL); 3455 raw_spin_unlock(&kvm_count_lock); 3456 return 0; 3457 } 3458 3459 static void hardware_disable_all_nolock(void) 3460 { 3461 BUG_ON(!kvm_usage_count); 3462 3463 kvm_usage_count--; 3464 if (!kvm_usage_count) 3465 on_each_cpu(hardware_disable_nolock, NULL, 1); 3466 } 3467 3468 static void hardware_disable_all(void) 3469 { 3470 raw_spin_lock(&kvm_count_lock); 3471 hardware_disable_all_nolock(); 3472 raw_spin_unlock(&kvm_count_lock); 3473 } 3474 3475 static int hardware_enable_all(void) 3476 { 3477 int r = 0; 3478 3479 raw_spin_lock(&kvm_count_lock); 3480 3481 kvm_usage_count++; 3482 if (kvm_usage_count == 1) { 3483 atomic_set(&hardware_enable_failed, 0); 3484 on_each_cpu(hardware_enable_nolock, NULL, 1); 3485 3486 if (atomic_read(&hardware_enable_failed)) { 3487 hardware_disable_all_nolock(); 3488 r = -EBUSY; 3489 } 3490 } 3491 3492 raw_spin_unlock(&kvm_count_lock); 3493 3494 return r; 3495 } 3496 3497 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3498 void *v) 3499 { 3500 /* 3501 * Some (well, at least mine) BIOSes hang on reboot if 3502 * in vmx root mode. 3503 * 3504 * And Intel TXT required VMX off for all cpu when system shutdown. 3505 */ 3506 pr_info("kvm: exiting hardware virtualization\n"); 3507 kvm_rebooting = true; 3508 on_each_cpu(hardware_disable_nolock, NULL, 1); 3509 return NOTIFY_OK; 3510 } 3511 3512 static struct notifier_block kvm_reboot_notifier = { 3513 .notifier_call = kvm_reboot, 3514 .priority = 0, 3515 }; 3516 3517 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3518 { 3519 int i; 3520 3521 for (i = 0; i < bus->dev_count; i++) { 3522 struct kvm_io_device *pos = bus->range[i].dev; 3523 3524 kvm_iodevice_destructor(pos); 3525 } 3526 kfree(bus); 3527 } 3528 3529 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3530 const struct kvm_io_range *r2) 3531 { 3532 gpa_t addr1 = r1->addr; 3533 gpa_t addr2 = r2->addr; 3534 3535 if (addr1 < addr2) 3536 return -1; 3537 3538 /* If r2->len == 0, match the exact address. If r2->len != 0, 3539 * accept any overlapping write. Any order is acceptable for 3540 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3541 * we process all of them. 3542 */ 3543 if (r2->len) { 3544 addr1 += r1->len; 3545 addr2 += r2->len; 3546 } 3547 3548 if (addr1 > addr2) 3549 return 1; 3550 3551 return 0; 3552 } 3553 3554 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3555 { 3556 return kvm_io_bus_cmp(p1, p2); 3557 } 3558 3559 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3560 gpa_t addr, int len) 3561 { 3562 struct kvm_io_range *range, key; 3563 int off; 3564 3565 key = (struct kvm_io_range) { 3566 .addr = addr, 3567 .len = len, 3568 }; 3569 3570 range = bsearch(&key, bus->range, bus->dev_count, 3571 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3572 if (range == NULL) 3573 return -ENOENT; 3574 3575 off = range - bus->range; 3576 3577 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3578 off--; 3579 3580 return off; 3581 } 3582 3583 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3584 struct kvm_io_range *range, const void *val) 3585 { 3586 int idx; 3587 3588 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3589 if (idx < 0) 3590 return -EOPNOTSUPP; 3591 3592 while (idx < bus->dev_count && 3593 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3594 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3595 range->len, val)) 3596 return idx; 3597 idx++; 3598 } 3599 3600 return -EOPNOTSUPP; 3601 } 3602 3603 /* kvm_io_bus_write - called under kvm->slots_lock */ 3604 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3605 int len, const void *val) 3606 { 3607 struct kvm_io_bus *bus; 3608 struct kvm_io_range range; 3609 int r; 3610 3611 range = (struct kvm_io_range) { 3612 .addr = addr, 3613 .len = len, 3614 }; 3615 3616 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3617 if (!bus) 3618 return -ENOMEM; 3619 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3620 return r < 0 ? r : 0; 3621 } 3622 3623 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3624 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3625 gpa_t addr, int len, const void *val, long cookie) 3626 { 3627 struct kvm_io_bus *bus; 3628 struct kvm_io_range range; 3629 3630 range = (struct kvm_io_range) { 3631 .addr = addr, 3632 .len = len, 3633 }; 3634 3635 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3636 if (!bus) 3637 return -ENOMEM; 3638 3639 /* First try the device referenced by cookie. */ 3640 if ((cookie >= 0) && (cookie < bus->dev_count) && 3641 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3642 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3643 val)) 3644 return cookie; 3645 3646 /* 3647 * cookie contained garbage; fall back to search and return the 3648 * correct cookie value. 3649 */ 3650 return __kvm_io_bus_write(vcpu, bus, &range, val); 3651 } 3652 3653 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3654 struct kvm_io_range *range, void *val) 3655 { 3656 int idx; 3657 3658 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3659 if (idx < 0) 3660 return -EOPNOTSUPP; 3661 3662 while (idx < bus->dev_count && 3663 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3664 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3665 range->len, val)) 3666 return idx; 3667 idx++; 3668 } 3669 3670 return -EOPNOTSUPP; 3671 } 3672 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3673 3674 /* kvm_io_bus_read - called under kvm->slots_lock */ 3675 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3676 int len, void *val) 3677 { 3678 struct kvm_io_bus *bus; 3679 struct kvm_io_range range; 3680 int r; 3681 3682 range = (struct kvm_io_range) { 3683 .addr = addr, 3684 .len = len, 3685 }; 3686 3687 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3688 if (!bus) 3689 return -ENOMEM; 3690 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3691 return r < 0 ? r : 0; 3692 } 3693 3694 3695 /* Caller must hold slots_lock. */ 3696 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3697 int len, struct kvm_io_device *dev) 3698 { 3699 int i; 3700 struct kvm_io_bus *new_bus, *bus; 3701 struct kvm_io_range range; 3702 3703 bus = kvm_get_bus(kvm, bus_idx); 3704 if (!bus) 3705 return -ENOMEM; 3706 3707 /* exclude ioeventfd which is limited by maximum fd */ 3708 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3709 return -ENOSPC; 3710 3711 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3712 sizeof(struct kvm_io_range)), GFP_KERNEL); 3713 if (!new_bus) 3714 return -ENOMEM; 3715 3716 range = (struct kvm_io_range) { 3717 .addr = addr, 3718 .len = len, 3719 .dev = dev, 3720 }; 3721 3722 for (i = 0; i < bus->dev_count; i++) 3723 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3724 break; 3725 3726 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3727 new_bus->dev_count++; 3728 new_bus->range[i] = range; 3729 memcpy(new_bus->range + i + 1, bus->range + i, 3730 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3731 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3732 synchronize_srcu_expedited(&kvm->srcu); 3733 kfree(bus); 3734 3735 return 0; 3736 } 3737 3738 /* Caller must hold slots_lock. */ 3739 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3740 struct kvm_io_device *dev) 3741 { 3742 int i; 3743 struct kvm_io_bus *new_bus, *bus; 3744 3745 bus = kvm_get_bus(kvm, bus_idx); 3746 if (!bus) 3747 return; 3748 3749 for (i = 0; i < bus->dev_count; i++) 3750 if (bus->range[i].dev == dev) { 3751 break; 3752 } 3753 3754 if (i == bus->dev_count) 3755 return; 3756 3757 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3758 sizeof(struct kvm_io_range)), GFP_KERNEL); 3759 if (!new_bus) { 3760 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3761 goto broken; 3762 } 3763 3764 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3765 new_bus->dev_count--; 3766 memcpy(new_bus->range + i, bus->range + i + 1, 3767 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3768 3769 broken: 3770 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3771 synchronize_srcu_expedited(&kvm->srcu); 3772 kfree(bus); 3773 return; 3774 } 3775 3776 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3777 gpa_t addr) 3778 { 3779 struct kvm_io_bus *bus; 3780 int dev_idx, srcu_idx; 3781 struct kvm_io_device *iodev = NULL; 3782 3783 srcu_idx = srcu_read_lock(&kvm->srcu); 3784 3785 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3786 if (!bus) 3787 goto out_unlock; 3788 3789 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3790 if (dev_idx < 0) 3791 goto out_unlock; 3792 3793 iodev = bus->range[dev_idx].dev; 3794 3795 out_unlock: 3796 srcu_read_unlock(&kvm->srcu, srcu_idx); 3797 3798 return iodev; 3799 } 3800 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3801 3802 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3803 int (*get)(void *, u64 *), int (*set)(void *, u64), 3804 const char *fmt) 3805 { 3806 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3807 inode->i_private; 3808 3809 /* The debugfs files are a reference to the kvm struct which 3810 * is still valid when kvm_destroy_vm is called. 3811 * To avoid the race between open and the removal of the debugfs 3812 * directory we test against the users count. 3813 */ 3814 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3815 return -ENOENT; 3816 3817 if (simple_attr_open(inode, file, get, set, fmt)) { 3818 kvm_put_kvm(stat_data->kvm); 3819 return -ENOMEM; 3820 } 3821 3822 return 0; 3823 } 3824 3825 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3826 { 3827 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3828 inode->i_private; 3829 3830 simple_attr_release(inode, file); 3831 kvm_put_kvm(stat_data->kvm); 3832 3833 return 0; 3834 } 3835 3836 static int vm_stat_get_per_vm(void *data, u64 *val) 3837 { 3838 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3839 3840 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3841 3842 return 0; 3843 } 3844 3845 static int vm_stat_clear_per_vm(void *data, u64 val) 3846 { 3847 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3848 3849 if (val) 3850 return -EINVAL; 3851 3852 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3853 3854 return 0; 3855 } 3856 3857 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3858 { 3859 __simple_attr_check_format("%llu\n", 0ull); 3860 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3861 vm_stat_clear_per_vm, "%llu\n"); 3862 } 3863 3864 static const struct file_operations vm_stat_get_per_vm_fops = { 3865 .owner = THIS_MODULE, 3866 .open = vm_stat_get_per_vm_open, 3867 .release = kvm_debugfs_release, 3868 .read = simple_attr_read, 3869 .write = simple_attr_write, 3870 .llseek = no_llseek, 3871 }; 3872 3873 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3874 { 3875 int i; 3876 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3877 struct kvm_vcpu *vcpu; 3878 3879 *val = 0; 3880 3881 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3882 *val += *(u64 *)((void *)vcpu + stat_data->offset); 3883 3884 return 0; 3885 } 3886 3887 static int vcpu_stat_clear_per_vm(void *data, u64 val) 3888 { 3889 int i; 3890 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3891 struct kvm_vcpu *vcpu; 3892 3893 if (val) 3894 return -EINVAL; 3895 3896 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 3897 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 3898 3899 return 0; 3900 } 3901 3902 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 3903 { 3904 __simple_attr_check_format("%llu\n", 0ull); 3905 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 3906 vcpu_stat_clear_per_vm, "%llu\n"); 3907 } 3908 3909 static const struct file_operations vcpu_stat_get_per_vm_fops = { 3910 .owner = THIS_MODULE, 3911 .open = vcpu_stat_get_per_vm_open, 3912 .release = kvm_debugfs_release, 3913 .read = simple_attr_read, 3914 .write = simple_attr_write, 3915 .llseek = no_llseek, 3916 }; 3917 3918 static const struct file_operations *stat_fops_per_vm[] = { 3919 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 3920 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 3921 }; 3922 3923 static int vm_stat_get(void *_offset, u64 *val) 3924 { 3925 unsigned offset = (long)_offset; 3926 struct kvm *kvm; 3927 struct kvm_stat_data stat_tmp = {.offset = offset}; 3928 u64 tmp_val; 3929 3930 *val = 0; 3931 spin_lock(&kvm_lock); 3932 list_for_each_entry(kvm, &vm_list, vm_list) { 3933 stat_tmp.kvm = kvm; 3934 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3935 *val += tmp_val; 3936 } 3937 spin_unlock(&kvm_lock); 3938 return 0; 3939 } 3940 3941 static int vm_stat_clear(void *_offset, u64 val) 3942 { 3943 unsigned offset = (long)_offset; 3944 struct kvm *kvm; 3945 struct kvm_stat_data stat_tmp = {.offset = offset}; 3946 3947 if (val) 3948 return -EINVAL; 3949 3950 spin_lock(&kvm_lock); 3951 list_for_each_entry(kvm, &vm_list, vm_list) { 3952 stat_tmp.kvm = kvm; 3953 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 3954 } 3955 spin_unlock(&kvm_lock); 3956 3957 return 0; 3958 } 3959 3960 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 3961 3962 static int vcpu_stat_get(void *_offset, u64 *val) 3963 { 3964 unsigned offset = (long)_offset; 3965 struct kvm *kvm; 3966 struct kvm_stat_data stat_tmp = {.offset = offset}; 3967 u64 tmp_val; 3968 3969 *val = 0; 3970 spin_lock(&kvm_lock); 3971 list_for_each_entry(kvm, &vm_list, vm_list) { 3972 stat_tmp.kvm = kvm; 3973 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 3974 *val += tmp_val; 3975 } 3976 spin_unlock(&kvm_lock); 3977 return 0; 3978 } 3979 3980 static int vcpu_stat_clear(void *_offset, u64 val) 3981 { 3982 unsigned offset = (long)_offset; 3983 struct kvm *kvm; 3984 struct kvm_stat_data stat_tmp = {.offset = offset}; 3985 3986 if (val) 3987 return -EINVAL; 3988 3989 spin_lock(&kvm_lock); 3990 list_for_each_entry(kvm, &vm_list, vm_list) { 3991 stat_tmp.kvm = kvm; 3992 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 3993 } 3994 spin_unlock(&kvm_lock); 3995 3996 return 0; 3997 } 3998 3999 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4000 "%llu\n"); 4001 4002 static const struct file_operations *stat_fops[] = { 4003 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4004 [KVM_STAT_VM] = &vm_stat_fops, 4005 }; 4006 4007 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4008 { 4009 struct kobj_uevent_env *env; 4010 unsigned long long created, active; 4011 4012 if (!kvm_dev.this_device || !kvm) 4013 return; 4014 4015 spin_lock(&kvm_lock); 4016 if (type == KVM_EVENT_CREATE_VM) { 4017 kvm_createvm_count++; 4018 kvm_active_vms++; 4019 } else if (type == KVM_EVENT_DESTROY_VM) { 4020 kvm_active_vms--; 4021 } 4022 created = kvm_createvm_count; 4023 active = kvm_active_vms; 4024 spin_unlock(&kvm_lock); 4025 4026 env = kzalloc(sizeof(*env), GFP_KERNEL); 4027 if (!env) 4028 return; 4029 4030 add_uevent_var(env, "CREATED=%llu", created); 4031 add_uevent_var(env, "COUNT=%llu", active); 4032 4033 if (type == KVM_EVENT_CREATE_VM) { 4034 add_uevent_var(env, "EVENT=create"); 4035 kvm->userspace_pid = task_pid_nr(current); 4036 } else if (type == KVM_EVENT_DESTROY_VM) { 4037 add_uevent_var(env, "EVENT=destroy"); 4038 } 4039 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4040 4041 if (kvm->debugfs_dentry) { 4042 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL); 4043 4044 if (p) { 4045 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4046 if (!IS_ERR(tmp)) 4047 add_uevent_var(env, "STATS_PATH=%s", tmp); 4048 kfree(p); 4049 } 4050 } 4051 /* no need for checks, since we are adding at most only 5 keys */ 4052 env->envp[env->envp_idx++] = NULL; 4053 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4054 kfree(env); 4055 } 4056 4057 static void kvm_init_debug(void) 4058 { 4059 struct kvm_stats_debugfs_item *p; 4060 4061 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4062 4063 kvm_debugfs_num_entries = 0; 4064 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4065 debugfs_create_file(p->name, 0644, kvm_debugfs_dir, 4066 (void *)(long)p->offset, 4067 stat_fops[p->kind]); 4068 } 4069 } 4070 4071 static int kvm_suspend(void) 4072 { 4073 if (kvm_usage_count) 4074 hardware_disable_nolock(NULL); 4075 return 0; 4076 } 4077 4078 static void kvm_resume(void) 4079 { 4080 if (kvm_usage_count) { 4081 WARN_ON(raw_spin_is_locked(&kvm_count_lock)); 4082 hardware_enable_nolock(NULL); 4083 } 4084 } 4085 4086 static struct syscore_ops kvm_syscore_ops = { 4087 .suspend = kvm_suspend, 4088 .resume = kvm_resume, 4089 }; 4090 4091 static inline 4092 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4093 { 4094 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4095 } 4096 4097 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4098 { 4099 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4100 4101 if (vcpu->preempted) 4102 vcpu->preempted = false; 4103 4104 kvm_arch_sched_in(vcpu, cpu); 4105 4106 kvm_arch_vcpu_load(vcpu, cpu); 4107 } 4108 4109 static void kvm_sched_out(struct preempt_notifier *pn, 4110 struct task_struct *next) 4111 { 4112 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4113 4114 if (current->state == TASK_RUNNING) 4115 vcpu->preempted = true; 4116 kvm_arch_vcpu_put(vcpu); 4117 } 4118 4119 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4120 struct module *module) 4121 { 4122 int r; 4123 int cpu; 4124 4125 r = kvm_arch_init(opaque); 4126 if (r) 4127 goto out_fail; 4128 4129 /* 4130 * kvm_arch_init makes sure there's at most one caller 4131 * for architectures that support multiple implementations, 4132 * like intel and amd on x86. 4133 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4134 * conflicts in case kvm is already setup for another implementation. 4135 */ 4136 r = kvm_irqfd_init(); 4137 if (r) 4138 goto out_irqfd; 4139 4140 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4141 r = -ENOMEM; 4142 goto out_free_0; 4143 } 4144 4145 r = kvm_arch_hardware_setup(); 4146 if (r < 0) 4147 goto out_free_0a; 4148 4149 for_each_online_cpu(cpu) { 4150 smp_call_function_single(cpu, 4151 kvm_arch_check_processor_compat, 4152 &r, 1); 4153 if (r < 0) 4154 goto out_free_1; 4155 } 4156 4157 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4158 kvm_starting_cpu, kvm_dying_cpu); 4159 if (r) 4160 goto out_free_2; 4161 register_reboot_notifier(&kvm_reboot_notifier); 4162 4163 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4164 if (!vcpu_align) 4165 vcpu_align = __alignof__(struct kvm_vcpu); 4166 kvm_vcpu_cache = 4167 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4168 SLAB_ACCOUNT, 4169 offsetof(struct kvm_vcpu, arch), 4170 sizeof_field(struct kvm_vcpu, arch), 4171 NULL); 4172 if (!kvm_vcpu_cache) { 4173 r = -ENOMEM; 4174 goto out_free_3; 4175 } 4176 4177 r = kvm_async_pf_init(); 4178 if (r) 4179 goto out_free; 4180 4181 kvm_chardev_ops.owner = module; 4182 kvm_vm_fops.owner = module; 4183 kvm_vcpu_fops.owner = module; 4184 4185 r = misc_register(&kvm_dev); 4186 if (r) { 4187 pr_err("kvm: misc device register failed\n"); 4188 goto out_unreg; 4189 } 4190 4191 register_syscore_ops(&kvm_syscore_ops); 4192 4193 kvm_preempt_ops.sched_in = kvm_sched_in; 4194 kvm_preempt_ops.sched_out = kvm_sched_out; 4195 4196 kvm_init_debug(); 4197 4198 r = kvm_vfio_ops_init(); 4199 WARN_ON(r); 4200 4201 return 0; 4202 4203 out_unreg: 4204 kvm_async_pf_deinit(); 4205 out_free: 4206 kmem_cache_destroy(kvm_vcpu_cache); 4207 out_free_3: 4208 unregister_reboot_notifier(&kvm_reboot_notifier); 4209 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4210 out_free_2: 4211 out_free_1: 4212 kvm_arch_hardware_unsetup(); 4213 out_free_0a: 4214 free_cpumask_var(cpus_hardware_enabled); 4215 out_free_0: 4216 kvm_irqfd_exit(); 4217 out_irqfd: 4218 kvm_arch_exit(); 4219 out_fail: 4220 return r; 4221 } 4222 EXPORT_SYMBOL_GPL(kvm_init); 4223 4224 void kvm_exit(void) 4225 { 4226 debugfs_remove_recursive(kvm_debugfs_dir); 4227 misc_deregister(&kvm_dev); 4228 kmem_cache_destroy(kvm_vcpu_cache); 4229 kvm_async_pf_deinit(); 4230 unregister_syscore_ops(&kvm_syscore_ops); 4231 unregister_reboot_notifier(&kvm_reboot_notifier); 4232 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4233 on_each_cpu(hardware_disable_nolock, NULL, 1); 4234 kvm_arch_hardware_unsetup(); 4235 kvm_arch_exit(); 4236 kvm_irqfd_exit(); 4237 free_cpumask_var(cpus_hardware_enabled); 4238 kvm_vfio_ops_exit(); 4239 } 4240 EXPORT_SYMBOL_GPL(kvm_exit); 4241