xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 1cac4f26)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 				unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127 
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129 
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131 
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134 
135 static bool largepages_enabled = true;
136 
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142 
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 		unsigned long start, unsigned long end, bool blockable)
145 {
146 	return 0;
147 }
148 
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151 	if (pfn_valid(pfn))
152 		return PageReserved(pfn_to_page(pfn));
153 
154 	return true;
155 }
156 
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162 	int cpu = get_cpu();
163 	preempt_notifier_register(&vcpu->preempt_notifier);
164 	kvm_arch_vcpu_load(vcpu, cpu);
165 	put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168 
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 	preempt_disable();
172 	kvm_arch_vcpu_put(vcpu);
173 	preempt_notifier_unregister(&vcpu->preempt_notifier);
174 	preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177 
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182 
183 	/*
184 	 * We need to wait for the VCPU to reenable interrupts and get out of
185 	 * READING_SHADOW_PAGE_TABLES mode.
186 	 */
187 	if (req & KVM_REQUEST_WAIT)
188 		return mode != OUTSIDE_GUEST_MODE;
189 
190 	/*
191 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 	 */
193 	return mode == IN_GUEST_MODE;
194 }
195 
196 static void ack_flush(void *_completed)
197 {
198 }
199 
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 	if (unlikely(!cpus))
203 		cpus = cpu_online_mask;
204 
205 	if (cpumask_empty(cpus))
206 		return false;
207 
208 	smp_call_function_many(cpus, ack_flush, NULL, wait);
209 	return true;
210 }
211 
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215 	int i, cpu, me;
216 	struct kvm_vcpu *vcpu;
217 	bool called;
218 
219 	me = get_cpu();
220 
221 	kvm_for_each_vcpu(i, vcpu, kvm) {
222 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223 			continue;
224 
225 		kvm_make_request(req, vcpu);
226 		cpu = vcpu->cpu;
227 
228 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 			continue;
230 
231 		if (tmp != NULL && cpu != -1 && cpu != me &&
232 		    kvm_request_needs_ipi(vcpu, req))
233 			__cpumask_set_cpu(cpu, tmp);
234 	}
235 
236 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237 	put_cpu();
238 
239 	return called;
240 }
241 
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244 	cpumask_var_t cpus;
245 	bool called;
246 
247 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248 
249 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250 
251 	free_cpumask_var(cpus);
252 	return called;
253 }
254 
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258 	/*
259 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260 	 * kvm_make_all_cpus_request.
261 	 */
262 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263 
264 	/*
265 	 * We want to publish modifications to the page tables before reading
266 	 * mode. Pairs with a memory barrier in arch-specific code.
267 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
269 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270 	 *
271 	 * There is already an smp_mb__after_atomic() before
272 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273 	 * barrier here.
274 	 */
275 	if (!kvm_arch_flush_remote_tlb(kvm)
276 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 		++kvm->stat.remote_tlb_flush;
278 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282 
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287 
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290 	struct page *page;
291 	int r;
292 
293 	mutex_init(&vcpu->mutex);
294 	vcpu->cpu = -1;
295 	vcpu->kvm = kvm;
296 	vcpu->vcpu_id = id;
297 	vcpu->pid = NULL;
298 	init_swait_queue_head(&vcpu->wq);
299 	kvm_async_pf_vcpu_init(vcpu);
300 
301 	vcpu->pre_pcpu = -1;
302 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303 
304 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 	if (!page) {
306 		r = -ENOMEM;
307 		goto fail;
308 	}
309 	vcpu->run = page_address(page);
310 
311 	kvm_vcpu_set_in_spin_loop(vcpu, false);
312 	kvm_vcpu_set_dy_eligible(vcpu, false);
313 	vcpu->preempted = false;
314 
315 	r = kvm_arch_vcpu_init(vcpu);
316 	if (r < 0)
317 		goto fail_free_run;
318 	return 0;
319 
320 fail_free_run:
321 	free_page((unsigned long)vcpu->run);
322 fail:
323 	return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326 
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329 	/*
330 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 	 * will change the vcpu->pid pointer and on uninit all file
332 	 * descriptors are already gone.
333 	 */
334 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 	kvm_arch_vcpu_uninit(vcpu);
336 	free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339 
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343 	return container_of(mn, struct kvm, mmu_notifier);
344 }
345 
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 					struct mm_struct *mm,
348 					unsigned long address,
349 					pte_t pte)
350 {
351 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 	int idx;
353 
354 	idx = srcu_read_lock(&kvm->srcu);
355 	spin_lock(&kvm->mmu_lock);
356 	kvm->mmu_notifier_seq++;
357 
358 	if (kvm_set_spte_hva(kvm, address, pte))
359 		kvm_flush_remote_tlbs(kvm);
360 
361 	spin_unlock(&kvm->mmu_lock);
362 	srcu_read_unlock(&kvm->srcu, idx);
363 }
364 
365 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
366 					const struct mmu_notifier_range *range)
367 {
368 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
369 	int need_tlb_flush = 0, idx;
370 	int ret;
371 
372 	idx = srcu_read_lock(&kvm->srcu);
373 	spin_lock(&kvm->mmu_lock);
374 	/*
375 	 * The count increase must become visible at unlock time as no
376 	 * spte can be established without taking the mmu_lock and
377 	 * count is also read inside the mmu_lock critical section.
378 	 */
379 	kvm->mmu_notifier_count++;
380 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
381 	need_tlb_flush |= kvm->tlbs_dirty;
382 	/* we've to flush the tlb before the pages can be freed */
383 	if (need_tlb_flush)
384 		kvm_flush_remote_tlbs(kvm);
385 
386 	spin_unlock(&kvm->mmu_lock);
387 
388 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
389 					range->end, range->blockable);
390 
391 	srcu_read_unlock(&kvm->srcu, idx);
392 
393 	return ret;
394 }
395 
396 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
397 					const struct mmu_notifier_range *range)
398 {
399 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 
401 	spin_lock(&kvm->mmu_lock);
402 	/*
403 	 * This sequence increase will notify the kvm page fault that
404 	 * the page that is going to be mapped in the spte could have
405 	 * been freed.
406 	 */
407 	kvm->mmu_notifier_seq++;
408 	smp_wmb();
409 	/*
410 	 * The above sequence increase must be visible before the
411 	 * below count decrease, which is ensured by the smp_wmb above
412 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
413 	 */
414 	kvm->mmu_notifier_count--;
415 	spin_unlock(&kvm->mmu_lock);
416 
417 	BUG_ON(kvm->mmu_notifier_count < 0);
418 }
419 
420 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
421 					      struct mm_struct *mm,
422 					      unsigned long start,
423 					      unsigned long end)
424 {
425 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
426 	int young, idx;
427 
428 	idx = srcu_read_lock(&kvm->srcu);
429 	spin_lock(&kvm->mmu_lock);
430 
431 	young = kvm_age_hva(kvm, start, end);
432 	if (young)
433 		kvm_flush_remote_tlbs(kvm);
434 
435 	spin_unlock(&kvm->mmu_lock);
436 	srcu_read_unlock(&kvm->srcu, idx);
437 
438 	return young;
439 }
440 
441 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
442 					struct mm_struct *mm,
443 					unsigned long start,
444 					unsigned long end)
445 {
446 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
447 	int young, idx;
448 
449 	idx = srcu_read_lock(&kvm->srcu);
450 	spin_lock(&kvm->mmu_lock);
451 	/*
452 	 * Even though we do not flush TLB, this will still adversely
453 	 * affect performance on pre-Haswell Intel EPT, where there is
454 	 * no EPT Access Bit to clear so that we have to tear down EPT
455 	 * tables instead. If we find this unacceptable, we can always
456 	 * add a parameter to kvm_age_hva so that it effectively doesn't
457 	 * do anything on clear_young.
458 	 *
459 	 * Also note that currently we never issue secondary TLB flushes
460 	 * from clear_young, leaving this job up to the regular system
461 	 * cadence. If we find this inaccurate, we might come up with a
462 	 * more sophisticated heuristic later.
463 	 */
464 	young = kvm_age_hva(kvm, start, end);
465 	spin_unlock(&kvm->mmu_lock);
466 	srcu_read_unlock(&kvm->srcu, idx);
467 
468 	return young;
469 }
470 
471 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
472 				       struct mm_struct *mm,
473 				       unsigned long address)
474 {
475 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
476 	int young, idx;
477 
478 	idx = srcu_read_lock(&kvm->srcu);
479 	spin_lock(&kvm->mmu_lock);
480 	young = kvm_test_age_hva(kvm, address);
481 	spin_unlock(&kvm->mmu_lock);
482 	srcu_read_unlock(&kvm->srcu, idx);
483 
484 	return young;
485 }
486 
487 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
488 				     struct mm_struct *mm)
489 {
490 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
491 	int idx;
492 
493 	idx = srcu_read_lock(&kvm->srcu);
494 	kvm_arch_flush_shadow_all(kvm);
495 	srcu_read_unlock(&kvm->srcu, idx);
496 }
497 
498 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
499 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
500 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
501 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
502 	.clear_young		= kvm_mmu_notifier_clear_young,
503 	.test_young		= kvm_mmu_notifier_test_young,
504 	.change_pte		= kvm_mmu_notifier_change_pte,
505 	.release		= kvm_mmu_notifier_release,
506 };
507 
508 static int kvm_init_mmu_notifier(struct kvm *kvm)
509 {
510 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
511 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
512 }
513 
514 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
515 
516 static int kvm_init_mmu_notifier(struct kvm *kvm)
517 {
518 	return 0;
519 }
520 
521 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
522 
523 static struct kvm_memslots *kvm_alloc_memslots(void)
524 {
525 	int i;
526 	struct kvm_memslots *slots;
527 
528 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
529 	if (!slots)
530 		return NULL;
531 
532 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
533 		slots->id_to_index[i] = slots->memslots[i].id = i;
534 
535 	return slots;
536 }
537 
538 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
539 {
540 	if (!memslot->dirty_bitmap)
541 		return;
542 
543 	kvfree(memslot->dirty_bitmap);
544 	memslot->dirty_bitmap = NULL;
545 }
546 
547 /*
548  * Free any memory in @free but not in @dont.
549  */
550 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
551 			      struct kvm_memory_slot *dont)
552 {
553 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
554 		kvm_destroy_dirty_bitmap(free);
555 
556 	kvm_arch_free_memslot(kvm, free, dont);
557 
558 	free->npages = 0;
559 }
560 
561 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
562 {
563 	struct kvm_memory_slot *memslot;
564 
565 	if (!slots)
566 		return;
567 
568 	kvm_for_each_memslot(memslot, slots)
569 		kvm_free_memslot(kvm, memslot, NULL);
570 
571 	kvfree(slots);
572 }
573 
574 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
575 {
576 	int i;
577 
578 	if (!kvm->debugfs_dentry)
579 		return;
580 
581 	debugfs_remove_recursive(kvm->debugfs_dentry);
582 
583 	if (kvm->debugfs_stat_data) {
584 		for (i = 0; i < kvm_debugfs_num_entries; i++)
585 			kfree(kvm->debugfs_stat_data[i]);
586 		kfree(kvm->debugfs_stat_data);
587 	}
588 }
589 
590 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
591 {
592 	char dir_name[ITOA_MAX_LEN * 2];
593 	struct kvm_stat_data *stat_data;
594 	struct kvm_stats_debugfs_item *p;
595 
596 	if (!debugfs_initialized())
597 		return 0;
598 
599 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
600 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
601 
602 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
603 					 sizeof(*kvm->debugfs_stat_data),
604 					 GFP_KERNEL);
605 	if (!kvm->debugfs_stat_data)
606 		return -ENOMEM;
607 
608 	for (p = debugfs_entries; p->name; p++) {
609 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
610 		if (!stat_data)
611 			return -ENOMEM;
612 
613 		stat_data->kvm = kvm;
614 		stat_data->offset = p->offset;
615 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
616 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
617 				    stat_data, stat_fops_per_vm[p->kind]);
618 	}
619 	return 0;
620 }
621 
622 static struct kvm *kvm_create_vm(unsigned long type)
623 {
624 	int r, i;
625 	struct kvm *kvm = kvm_arch_alloc_vm();
626 
627 	if (!kvm)
628 		return ERR_PTR(-ENOMEM);
629 
630 	spin_lock_init(&kvm->mmu_lock);
631 	mmgrab(current->mm);
632 	kvm->mm = current->mm;
633 	kvm_eventfd_init(kvm);
634 	mutex_init(&kvm->lock);
635 	mutex_init(&kvm->irq_lock);
636 	mutex_init(&kvm->slots_lock);
637 	refcount_set(&kvm->users_count, 1);
638 	INIT_LIST_HEAD(&kvm->devices);
639 
640 	r = kvm_arch_init_vm(kvm, type);
641 	if (r)
642 		goto out_err_no_disable;
643 
644 	r = hardware_enable_all();
645 	if (r)
646 		goto out_err_no_disable;
647 
648 #ifdef CONFIG_HAVE_KVM_IRQFD
649 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
650 #endif
651 
652 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
653 
654 	r = -ENOMEM;
655 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
656 		struct kvm_memslots *slots = kvm_alloc_memslots();
657 		if (!slots)
658 			goto out_err_no_srcu;
659 		/*
660 		 * Generations must be different for each address space.
661 		 * Init kvm generation close to the maximum to easily test the
662 		 * code of handling generation number wrap-around.
663 		 */
664 		slots->generation = i * 2 - 150;
665 		rcu_assign_pointer(kvm->memslots[i], slots);
666 	}
667 
668 	if (init_srcu_struct(&kvm->srcu))
669 		goto out_err_no_srcu;
670 	if (init_srcu_struct(&kvm->irq_srcu))
671 		goto out_err_no_irq_srcu;
672 	for (i = 0; i < KVM_NR_BUSES; i++) {
673 		rcu_assign_pointer(kvm->buses[i],
674 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
675 		if (!kvm->buses[i])
676 			goto out_err;
677 	}
678 
679 	r = kvm_init_mmu_notifier(kvm);
680 	if (r)
681 		goto out_err;
682 
683 	spin_lock(&kvm_lock);
684 	list_add(&kvm->vm_list, &vm_list);
685 	spin_unlock(&kvm_lock);
686 
687 	preempt_notifier_inc();
688 
689 	return kvm;
690 
691 out_err:
692 	cleanup_srcu_struct(&kvm->irq_srcu);
693 out_err_no_irq_srcu:
694 	cleanup_srcu_struct(&kvm->srcu);
695 out_err_no_srcu:
696 	hardware_disable_all();
697 out_err_no_disable:
698 	refcount_set(&kvm->users_count, 0);
699 	for (i = 0; i < KVM_NR_BUSES; i++)
700 		kfree(kvm_get_bus(kvm, i));
701 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
702 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
703 	kvm_arch_free_vm(kvm);
704 	mmdrop(current->mm);
705 	return ERR_PTR(r);
706 }
707 
708 static void kvm_destroy_devices(struct kvm *kvm)
709 {
710 	struct kvm_device *dev, *tmp;
711 
712 	/*
713 	 * We do not need to take the kvm->lock here, because nobody else
714 	 * has a reference to the struct kvm at this point and therefore
715 	 * cannot access the devices list anyhow.
716 	 */
717 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
718 		list_del(&dev->vm_node);
719 		dev->ops->destroy(dev);
720 	}
721 }
722 
723 static void kvm_destroy_vm(struct kvm *kvm)
724 {
725 	int i;
726 	struct mm_struct *mm = kvm->mm;
727 
728 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
729 	kvm_destroy_vm_debugfs(kvm);
730 	kvm_arch_sync_events(kvm);
731 	spin_lock(&kvm_lock);
732 	list_del(&kvm->vm_list);
733 	spin_unlock(&kvm_lock);
734 	kvm_free_irq_routing(kvm);
735 	for (i = 0; i < KVM_NR_BUSES; i++) {
736 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
737 
738 		if (bus)
739 			kvm_io_bus_destroy(bus);
740 		kvm->buses[i] = NULL;
741 	}
742 	kvm_coalesced_mmio_free(kvm);
743 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
744 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
745 #else
746 	kvm_arch_flush_shadow_all(kvm);
747 #endif
748 	kvm_arch_destroy_vm(kvm);
749 	kvm_destroy_devices(kvm);
750 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
751 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
752 	cleanup_srcu_struct(&kvm->irq_srcu);
753 	cleanup_srcu_struct(&kvm->srcu);
754 	kvm_arch_free_vm(kvm);
755 	preempt_notifier_dec();
756 	hardware_disable_all();
757 	mmdrop(mm);
758 }
759 
760 void kvm_get_kvm(struct kvm *kvm)
761 {
762 	refcount_inc(&kvm->users_count);
763 }
764 EXPORT_SYMBOL_GPL(kvm_get_kvm);
765 
766 void kvm_put_kvm(struct kvm *kvm)
767 {
768 	if (refcount_dec_and_test(&kvm->users_count))
769 		kvm_destroy_vm(kvm);
770 }
771 EXPORT_SYMBOL_GPL(kvm_put_kvm);
772 
773 
774 static int kvm_vm_release(struct inode *inode, struct file *filp)
775 {
776 	struct kvm *kvm = filp->private_data;
777 
778 	kvm_irqfd_release(kvm);
779 
780 	kvm_put_kvm(kvm);
781 	return 0;
782 }
783 
784 /*
785  * Allocation size is twice as large as the actual dirty bitmap size.
786  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
787  */
788 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
789 {
790 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
791 
792 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
793 	if (!memslot->dirty_bitmap)
794 		return -ENOMEM;
795 
796 	return 0;
797 }
798 
799 /*
800  * Insert memslot and re-sort memslots based on their GFN,
801  * so binary search could be used to lookup GFN.
802  * Sorting algorithm takes advantage of having initially
803  * sorted array and known changed memslot position.
804  */
805 static void update_memslots(struct kvm_memslots *slots,
806 			    struct kvm_memory_slot *new,
807 			    enum kvm_mr_change change)
808 {
809 	int id = new->id;
810 	int i = slots->id_to_index[id];
811 	struct kvm_memory_slot *mslots = slots->memslots;
812 
813 	WARN_ON(mslots[i].id != id);
814 	switch (change) {
815 	case KVM_MR_CREATE:
816 		slots->used_slots++;
817 		WARN_ON(mslots[i].npages || !new->npages);
818 		break;
819 	case KVM_MR_DELETE:
820 		slots->used_slots--;
821 		WARN_ON(new->npages || !mslots[i].npages);
822 		break;
823 	default:
824 		break;
825 	}
826 
827 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
828 	       new->base_gfn <= mslots[i + 1].base_gfn) {
829 		if (!mslots[i + 1].npages)
830 			break;
831 		mslots[i] = mslots[i + 1];
832 		slots->id_to_index[mslots[i].id] = i;
833 		i++;
834 	}
835 
836 	/*
837 	 * The ">=" is needed when creating a slot with base_gfn == 0,
838 	 * so that it moves before all those with base_gfn == npages == 0.
839 	 *
840 	 * On the other hand, if new->npages is zero, the above loop has
841 	 * already left i pointing to the beginning of the empty part of
842 	 * mslots, and the ">=" would move the hole backwards in this
843 	 * case---which is wrong.  So skip the loop when deleting a slot.
844 	 */
845 	if (new->npages) {
846 		while (i > 0 &&
847 		       new->base_gfn >= mslots[i - 1].base_gfn) {
848 			mslots[i] = mslots[i - 1];
849 			slots->id_to_index[mslots[i].id] = i;
850 			i--;
851 		}
852 	} else
853 		WARN_ON_ONCE(i != slots->used_slots);
854 
855 	mslots[i] = *new;
856 	slots->id_to_index[mslots[i].id] = i;
857 }
858 
859 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
860 {
861 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
862 
863 #ifdef __KVM_HAVE_READONLY_MEM
864 	valid_flags |= KVM_MEM_READONLY;
865 #endif
866 
867 	if (mem->flags & ~valid_flags)
868 		return -EINVAL;
869 
870 	return 0;
871 }
872 
873 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
874 		int as_id, struct kvm_memslots *slots)
875 {
876 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
877 
878 	/*
879 	 * Set the low bit in the generation, which disables SPTE caching
880 	 * until the end of synchronize_srcu_expedited.
881 	 */
882 	WARN_ON(old_memslots->generation & 1);
883 	slots->generation = old_memslots->generation + 1;
884 
885 	rcu_assign_pointer(kvm->memslots[as_id], slots);
886 	synchronize_srcu_expedited(&kvm->srcu);
887 
888 	/*
889 	 * Increment the new memslot generation a second time. This prevents
890 	 * vm exits that race with memslot updates from caching a memslot
891 	 * generation that will (potentially) be valid forever.
892 	 *
893 	 * Generations must be unique even across address spaces.  We do not need
894 	 * a global counter for that, instead the generation space is evenly split
895 	 * across address spaces.  For example, with two address spaces, address
896 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
897 	 * use generations 2, 6, 10, 14, ...
898 	 */
899 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
900 
901 	kvm_arch_memslots_updated(kvm, slots);
902 
903 	return old_memslots;
904 }
905 
906 /*
907  * Allocate some memory and give it an address in the guest physical address
908  * space.
909  *
910  * Discontiguous memory is allowed, mostly for framebuffers.
911  *
912  * Must be called holding kvm->slots_lock for write.
913  */
914 int __kvm_set_memory_region(struct kvm *kvm,
915 			    const struct kvm_userspace_memory_region *mem)
916 {
917 	int r;
918 	gfn_t base_gfn;
919 	unsigned long npages;
920 	struct kvm_memory_slot *slot;
921 	struct kvm_memory_slot old, new;
922 	struct kvm_memslots *slots = NULL, *old_memslots;
923 	int as_id, id;
924 	enum kvm_mr_change change;
925 
926 	r = check_memory_region_flags(mem);
927 	if (r)
928 		goto out;
929 
930 	r = -EINVAL;
931 	as_id = mem->slot >> 16;
932 	id = (u16)mem->slot;
933 
934 	/* General sanity checks */
935 	if (mem->memory_size & (PAGE_SIZE - 1))
936 		goto out;
937 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
938 		goto out;
939 	/* We can read the guest memory with __xxx_user() later on. */
940 	if ((id < KVM_USER_MEM_SLOTS) &&
941 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
942 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
943 			mem->memory_size)))
944 		goto out;
945 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
946 		goto out;
947 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
948 		goto out;
949 
950 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
951 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
952 	npages = mem->memory_size >> PAGE_SHIFT;
953 
954 	if (npages > KVM_MEM_MAX_NR_PAGES)
955 		goto out;
956 
957 	new = old = *slot;
958 
959 	new.id = id;
960 	new.base_gfn = base_gfn;
961 	new.npages = npages;
962 	new.flags = mem->flags;
963 
964 	if (npages) {
965 		if (!old.npages)
966 			change = KVM_MR_CREATE;
967 		else { /* Modify an existing slot. */
968 			if ((mem->userspace_addr != old.userspace_addr) ||
969 			    (npages != old.npages) ||
970 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
971 				goto out;
972 
973 			if (base_gfn != old.base_gfn)
974 				change = KVM_MR_MOVE;
975 			else if (new.flags != old.flags)
976 				change = KVM_MR_FLAGS_ONLY;
977 			else { /* Nothing to change. */
978 				r = 0;
979 				goto out;
980 			}
981 		}
982 	} else {
983 		if (!old.npages)
984 			goto out;
985 
986 		change = KVM_MR_DELETE;
987 		new.base_gfn = 0;
988 		new.flags = 0;
989 	}
990 
991 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
992 		/* Check for overlaps */
993 		r = -EEXIST;
994 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
995 			if (slot->id == id)
996 				continue;
997 			if (!((base_gfn + npages <= slot->base_gfn) ||
998 			      (base_gfn >= slot->base_gfn + slot->npages)))
999 				goto out;
1000 		}
1001 	}
1002 
1003 	/* Free page dirty bitmap if unneeded */
1004 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1005 		new.dirty_bitmap = NULL;
1006 
1007 	r = -ENOMEM;
1008 	if (change == KVM_MR_CREATE) {
1009 		new.userspace_addr = mem->userspace_addr;
1010 
1011 		if (kvm_arch_create_memslot(kvm, &new, npages))
1012 			goto out_free;
1013 	}
1014 
1015 	/* Allocate page dirty bitmap if needed */
1016 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1017 		if (kvm_create_dirty_bitmap(&new) < 0)
1018 			goto out_free;
1019 	}
1020 
1021 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1022 	if (!slots)
1023 		goto out_free;
1024 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1025 
1026 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1027 		slot = id_to_memslot(slots, id);
1028 		slot->flags |= KVM_MEMSLOT_INVALID;
1029 
1030 		old_memslots = install_new_memslots(kvm, as_id, slots);
1031 
1032 		/* From this point no new shadow pages pointing to a deleted,
1033 		 * or moved, memslot will be created.
1034 		 *
1035 		 * validation of sp->gfn happens in:
1036 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1037 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1038 		 */
1039 		kvm_arch_flush_shadow_memslot(kvm, slot);
1040 
1041 		/*
1042 		 * We can re-use the old_memslots from above, the only difference
1043 		 * from the currently installed memslots is the invalid flag.  This
1044 		 * will get overwritten by update_memslots anyway.
1045 		 */
1046 		slots = old_memslots;
1047 	}
1048 
1049 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1050 	if (r)
1051 		goto out_slots;
1052 
1053 	/* actual memory is freed via old in kvm_free_memslot below */
1054 	if (change == KVM_MR_DELETE) {
1055 		new.dirty_bitmap = NULL;
1056 		memset(&new.arch, 0, sizeof(new.arch));
1057 	}
1058 
1059 	update_memslots(slots, &new, change);
1060 	old_memslots = install_new_memslots(kvm, as_id, slots);
1061 
1062 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1063 
1064 	kvm_free_memslot(kvm, &old, &new);
1065 	kvfree(old_memslots);
1066 	return 0;
1067 
1068 out_slots:
1069 	kvfree(slots);
1070 out_free:
1071 	kvm_free_memslot(kvm, &new, &old);
1072 out:
1073 	return r;
1074 }
1075 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1076 
1077 int kvm_set_memory_region(struct kvm *kvm,
1078 			  const struct kvm_userspace_memory_region *mem)
1079 {
1080 	int r;
1081 
1082 	mutex_lock(&kvm->slots_lock);
1083 	r = __kvm_set_memory_region(kvm, mem);
1084 	mutex_unlock(&kvm->slots_lock);
1085 	return r;
1086 }
1087 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1088 
1089 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1090 					  struct kvm_userspace_memory_region *mem)
1091 {
1092 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1093 		return -EINVAL;
1094 
1095 	return kvm_set_memory_region(kvm, mem);
1096 }
1097 
1098 int kvm_get_dirty_log(struct kvm *kvm,
1099 			struct kvm_dirty_log *log, int *is_dirty)
1100 {
1101 	struct kvm_memslots *slots;
1102 	struct kvm_memory_slot *memslot;
1103 	int i, as_id, id;
1104 	unsigned long n;
1105 	unsigned long any = 0;
1106 
1107 	as_id = log->slot >> 16;
1108 	id = (u16)log->slot;
1109 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1110 		return -EINVAL;
1111 
1112 	slots = __kvm_memslots(kvm, as_id);
1113 	memslot = id_to_memslot(slots, id);
1114 	if (!memslot->dirty_bitmap)
1115 		return -ENOENT;
1116 
1117 	n = kvm_dirty_bitmap_bytes(memslot);
1118 
1119 	for (i = 0; !any && i < n/sizeof(long); ++i)
1120 		any = memslot->dirty_bitmap[i];
1121 
1122 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1123 		return -EFAULT;
1124 
1125 	if (any)
1126 		*is_dirty = 1;
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130 
1131 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132 /**
1133  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134  *	and reenable dirty page tracking for the corresponding pages.
1135  * @kvm:	pointer to kvm instance
1136  * @log:	slot id and address to which we copy the log
1137  * @is_dirty:	flag set if any page is dirty
1138  *
1139  * We need to keep it in mind that VCPU threads can write to the bitmap
1140  * concurrently. So, to avoid losing track of dirty pages we keep the
1141  * following order:
1142  *
1143  *    1. Take a snapshot of the bit and clear it if needed.
1144  *    2. Write protect the corresponding page.
1145  *    3. Copy the snapshot to the userspace.
1146  *    4. Upon return caller flushes TLB's if needed.
1147  *
1148  * Between 2 and 4, the guest may write to the page using the remaining TLB
1149  * entry.  This is not a problem because the page is reported dirty using
1150  * the snapshot taken before and step 4 ensures that writes done after
1151  * exiting to userspace will be logged for the next call.
1152  *
1153  */
1154 int kvm_get_dirty_log_protect(struct kvm *kvm,
1155 			struct kvm_dirty_log *log, bool *flush)
1156 {
1157 	struct kvm_memslots *slots;
1158 	struct kvm_memory_slot *memslot;
1159 	int i, as_id, id;
1160 	unsigned long n;
1161 	unsigned long *dirty_bitmap;
1162 	unsigned long *dirty_bitmap_buffer;
1163 
1164 	as_id = log->slot >> 16;
1165 	id = (u16)log->slot;
1166 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1167 		return -EINVAL;
1168 
1169 	slots = __kvm_memslots(kvm, as_id);
1170 	memslot = id_to_memslot(slots, id);
1171 
1172 	dirty_bitmap = memslot->dirty_bitmap;
1173 	if (!dirty_bitmap)
1174 		return -ENOENT;
1175 
1176 	n = kvm_dirty_bitmap_bytes(memslot);
1177 	*flush = false;
1178 	if (kvm->manual_dirty_log_protect) {
1179 		/*
1180 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1181 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1182 		 * is some code duplication between this function and
1183 		 * kvm_get_dirty_log, but hopefully all architecture
1184 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1185 		 * can be eliminated.
1186 		 */
1187 		dirty_bitmap_buffer = dirty_bitmap;
1188 	} else {
1189 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1190 		memset(dirty_bitmap_buffer, 0, n);
1191 
1192 		spin_lock(&kvm->mmu_lock);
1193 		for (i = 0; i < n / sizeof(long); i++) {
1194 			unsigned long mask;
1195 			gfn_t offset;
1196 
1197 			if (!dirty_bitmap[i])
1198 				continue;
1199 
1200 			*flush = true;
1201 			mask = xchg(&dirty_bitmap[i], 0);
1202 			dirty_bitmap_buffer[i] = mask;
1203 
1204 			if (mask) {
1205 				offset = i * BITS_PER_LONG;
1206 				kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1207 									offset, mask);
1208 			}
1209 		}
1210 		spin_unlock(&kvm->mmu_lock);
1211 	}
1212 
1213 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1214 		return -EFAULT;
1215 	return 0;
1216 }
1217 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1218 
1219 /**
1220  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1221  *	and reenable dirty page tracking for the corresponding pages.
1222  * @kvm:	pointer to kvm instance
1223  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1224  */
1225 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1226 				struct kvm_clear_dirty_log *log, bool *flush)
1227 {
1228 	struct kvm_memslots *slots;
1229 	struct kvm_memory_slot *memslot;
1230 	int as_id, id, n;
1231 	gfn_t offset;
1232 	unsigned long i;
1233 	unsigned long *dirty_bitmap;
1234 	unsigned long *dirty_bitmap_buffer;
1235 
1236 	as_id = log->slot >> 16;
1237 	id = (u16)log->slot;
1238 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1239 		return -EINVAL;
1240 
1241 	if ((log->first_page & 63) || (log->num_pages & 63))
1242 		return -EINVAL;
1243 
1244 	slots = __kvm_memslots(kvm, as_id);
1245 	memslot = id_to_memslot(slots, id);
1246 
1247 	dirty_bitmap = memslot->dirty_bitmap;
1248 	if (!dirty_bitmap)
1249 		return -ENOENT;
1250 
1251 	n = kvm_dirty_bitmap_bytes(memslot);
1252 	*flush = false;
1253 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1254 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1255 		return -EFAULT;
1256 
1257 	spin_lock(&kvm->mmu_lock);
1258 	for (offset = log->first_page,
1259 	     i = offset / BITS_PER_LONG, n = log->num_pages / BITS_PER_LONG; n--;
1260 	     i++, offset += BITS_PER_LONG) {
1261 		unsigned long mask = *dirty_bitmap_buffer++;
1262 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1263 		if (!mask)
1264 			continue;
1265 
1266 		mask &= atomic_long_fetch_andnot(mask, p);
1267 
1268 		/*
1269 		 * mask contains the bits that really have been cleared.  This
1270 		 * never includes any bits beyond the length of the memslot (if
1271 		 * the length is not aligned to 64 pages), therefore it is not
1272 		 * a problem if userspace sets them in log->dirty_bitmap.
1273 		*/
1274 		if (mask) {
1275 			*flush = true;
1276 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1277 								offset, mask);
1278 		}
1279 	}
1280 	spin_unlock(&kvm->mmu_lock);
1281 
1282 	return 0;
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1285 #endif
1286 
1287 bool kvm_largepages_enabled(void)
1288 {
1289 	return largepages_enabled;
1290 }
1291 
1292 void kvm_disable_largepages(void)
1293 {
1294 	largepages_enabled = false;
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1297 
1298 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1299 {
1300 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1303 
1304 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1305 {
1306 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1307 }
1308 
1309 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1310 {
1311 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1312 
1313 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1314 	      memslot->flags & KVM_MEMSLOT_INVALID)
1315 		return false;
1316 
1317 	return true;
1318 }
1319 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1320 
1321 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1322 {
1323 	struct vm_area_struct *vma;
1324 	unsigned long addr, size;
1325 
1326 	size = PAGE_SIZE;
1327 
1328 	addr = gfn_to_hva(kvm, gfn);
1329 	if (kvm_is_error_hva(addr))
1330 		return PAGE_SIZE;
1331 
1332 	down_read(&current->mm->mmap_sem);
1333 	vma = find_vma(current->mm, addr);
1334 	if (!vma)
1335 		goto out;
1336 
1337 	size = vma_kernel_pagesize(vma);
1338 
1339 out:
1340 	up_read(&current->mm->mmap_sem);
1341 
1342 	return size;
1343 }
1344 
1345 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1346 {
1347 	return slot->flags & KVM_MEM_READONLY;
1348 }
1349 
1350 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1351 				       gfn_t *nr_pages, bool write)
1352 {
1353 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1354 		return KVM_HVA_ERR_BAD;
1355 
1356 	if (memslot_is_readonly(slot) && write)
1357 		return KVM_HVA_ERR_RO_BAD;
1358 
1359 	if (nr_pages)
1360 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1361 
1362 	return __gfn_to_hva_memslot(slot, gfn);
1363 }
1364 
1365 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1366 				     gfn_t *nr_pages)
1367 {
1368 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1369 }
1370 
1371 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1372 					gfn_t gfn)
1373 {
1374 	return gfn_to_hva_many(slot, gfn, NULL);
1375 }
1376 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1377 
1378 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1379 {
1380 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1381 }
1382 EXPORT_SYMBOL_GPL(gfn_to_hva);
1383 
1384 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1385 {
1386 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1387 }
1388 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1389 
1390 /*
1391  * Return the hva of a @gfn and the R/W attribute if possible.
1392  *
1393  * @slot: the kvm_memory_slot which contains @gfn
1394  * @gfn: the gfn to be translated
1395  * @writable: used to return the read/write attribute of the @slot if the hva
1396  * is valid and @writable is not NULL
1397  */
1398 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1399 				      gfn_t gfn, bool *writable)
1400 {
1401 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1402 
1403 	if (!kvm_is_error_hva(hva) && writable)
1404 		*writable = !memslot_is_readonly(slot);
1405 
1406 	return hva;
1407 }
1408 
1409 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1410 {
1411 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1412 
1413 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1414 }
1415 
1416 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1417 {
1418 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1419 
1420 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1421 }
1422 
1423 static inline int check_user_page_hwpoison(unsigned long addr)
1424 {
1425 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1426 
1427 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1428 	return rc == -EHWPOISON;
1429 }
1430 
1431 /*
1432  * The fast path to get the writable pfn which will be stored in @pfn,
1433  * true indicates success, otherwise false is returned.  It's also the
1434  * only part that runs if we can are in atomic context.
1435  */
1436 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1437 			    bool *writable, kvm_pfn_t *pfn)
1438 {
1439 	struct page *page[1];
1440 	int npages;
1441 
1442 	/*
1443 	 * Fast pin a writable pfn only if it is a write fault request
1444 	 * or the caller allows to map a writable pfn for a read fault
1445 	 * request.
1446 	 */
1447 	if (!(write_fault || writable))
1448 		return false;
1449 
1450 	npages = __get_user_pages_fast(addr, 1, 1, page);
1451 	if (npages == 1) {
1452 		*pfn = page_to_pfn(page[0]);
1453 
1454 		if (writable)
1455 			*writable = true;
1456 		return true;
1457 	}
1458 
1459 	return false;
1460 }
1461 
1462 /*
1463  * The slow path to get the pfn of the specified host virtual address,
1464  * 1 indicates success, -errno is returned if error is detected.
1465  */
1466 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1467 			   bool *writable, kvm_pfn_t *pfn)
1468 {
1469 	unsigned int flags = FOLL_HWPOISON;
1470 	struct page *page;
1471 	int npages = 0;
1472 
1473 	might_sleep();
1474 
1475 	if (writable)
1476 		*writable = write_fault;
1477 
1478 	if (write_fault)
1479 		flags |= FOLL_WRITE;
1480 	if (async)
1481 		flags |= FOLL_NOWAIT;
1482 
1483 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1484 	if (npages != 1)
1485 		return npages;
1486 
1487 	/* map read fault as writable if possible */
1488 	if (unlikely(!write_fault) && writable) {
1489 		struct page *wpage;
1490 
1491 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1492 			*writable = true;
1493 			put_page(page);
1494 			page = wpage;
1495 		}
1496 	}
1497 	*pfn = page_to_pfn(page);
1498 	return npages;
1499 }
1500 
1501 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1502 {
1503 	if (unlikely(!(vma->vm_flags & VM_READ)))
1504 		return false;
1505 
1506 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1507 		return false;
1508 
1509 	return true;
1510 }
1511 
1512 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1513 			       unsigned long addr, bool *async,
1514 			       bool write_fault, bool *writable,
1515 			       kvm_pfn_t *p_pfn)
1516 {
1517 	unsigned long pfn;
1518 	int r;
1519 
1520 	r = follow_pfn(vma, addr, &pfn);
1521 	if (r) {
1522 		/*
1523 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1524 		 * not call the fault handler, so do it here.
1525 		 */
1526 		bool unlocked = false;
1527 		r = fixup_user_fault(current, current->mm, addr,
1528 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1529 				     &unlocked);
1530 		if (unlocked)
1531 			return -EAGAIN;
1532 		if (r)
1533 			return r;
1534 
1535 		r = follow_pfn(vma, addr, &pfn);
1536 		if (r)
1537 			return r;
1538 
1539 	}
1540 
1541 	if (writable)
1542 		*writable = true;
1543 
1544 	/*
1545 	 * Get a reference here because callers of *hva_to_pfn* and
1546 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1547 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1548 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1549 	 * simply do nothing for reserved pfns.
1550 	 *
1551 	 * Whoever called remap_pfn_range is also going to call e.g.
1552 	 * unmap_mapping_range before the underlying pages are freed,
1553 	 * causing a call to our MMU notifier.
1554 	 */
1555 	kvm_get_pfn(pfn);
1556 
1557 	*p_pfn = pfn;
1558 	return 0;
1559 }
1560 
1561 /*
1562  * Pin guest page in memory and return its pfn.
1563  * @addr: host virtual address which maps memory to the guest
1564  * @atomic: whether this function can sleep
1565  * @async: whether this function need to wait IO complete if the
1566  *         host page is not in the memory
1567  * @write_fault: whether we should get a writable host page
1568  * @writable: whether it allows to map a writable host page for !@write_fault
1569  *
1570  * The function will map a writable host page for these two cases:
1571  * 1): @write_fault = true
1572  * 2): @write_fault = false && @writable, @writable will tell the caller
1573  *     whether the mapping is writable.
1574  */
1575 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1576 			bool write_fault, bool *writable)
1577 {
1578 	struct vm_area_struct *vma;
1579 	kvm_pfn_t pfn = 0;
1580 	int npages, r;
1581 
1582 	/* we can do it either atomically or asynchronously, not both */
1583 	BUG_ON(atomic && async);
1584 
1585 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1586 		return pfn;
1587 
1588 	if (atomic)
1589 		return KVM_PFN_ERR_FAULT;
1590 
1591 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1592 	if (npages == 1)
1593 		return pfn;
1594 
1595 	down_read(&current->mm->mmap_sem);
1596 	if (npages == -EHWPOISON ||
1597 	      (!async && check_user_page_hwpoison(addr))) {
1598 		pfn = KVM_PFN_ERR_HWPOISON;
1599 		goto exit;
1600 	}
1601 
1602 retry:
1603 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1604 
1605 	if (vma == NULL)
1606 		pfn = KVM_PFN_ERR_FAULT;
1607 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1608 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1609 		if (r == -EAGAIN)
1610 			goto retry;
1611 		if (r < 0)
1612 			pfn = KVM_PFN_ERR_FAULT;
1613 	} else {
1614 		if (async && vma_is_valid(vma, write_fault))
1615 			*async = true;
1616 		pfn = KVM_PFN_ERR_FAULT;
1617 	}
1618 exit:
1619 	up_read(&current->mm->mmap_sem);
1620 	return pfn;
1621 }
1622 
1623 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1624 			       bool atomic, bool *async, bool write_fault,
1625 			       bool *writable)
1626 {
1627 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1628 
1629 	if (addr == KVM_HVA_ERR_RO_BAD) {
1630 		if (writable)
1631 			*writable = false;
1632 		return KVM_PFN_ERR_RO_FAULT;
1633 	}
1634 
1635 	if (kvm_is_error_hva(addr)) {
1636 		if (writable)
1637 			*writable = false;
1638 		return KVM_PFN_NOSLOT;
1639 	}
1640 
1641 	/* Do not map writable pfn in the readonly memslot. */
1642 	if (writable && memslot_is_readonly(slot)) {
1643 		*writable = false;
1644 		writable = NULL;
1645 	}
1646 
1647 	return hva_to_pfn(addr, atomic, async, write_fault,
1648 			  writable);
1649 }
1650 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1651 
1652 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1653 		      bool *writable)
1654 {
1655 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1656 				    write_fault, writable);
1657 }
1658 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1659 
1660 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1661 {
1662 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1663 }
1664 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1665 
1666 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1667 {
1668 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1669 }
1670 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1671 
1672 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1673 {
1674 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1675 }
1676 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1677 
1678 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1679 {
1680 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1681 }
1682 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1683 
1684 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1685 {
1686 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1687 }
1688 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1689 
1690 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1691 {
1692 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1693 }
1694 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1695 
1696 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1697 			    struct page **pages, int nr_pages)
1698 {
1699 	unsigned long addr;
1700 	gfn_t entry = 0;
1701 
1702 	addr = gfn_to_hva_many(slot, gfn, &entry);
1703 	if (kvm_is_error_hva(addr))
1704 		return -1;
1705 
1706 	if (entry < nr_pages)
1707 		return 0;
1708 
1709 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1710 }
1711 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1712 
1713 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1714 {
1715 	if (is_error_noslot_pfn(pfn))
1716 		return KVM_ERR_PTR_BAD_PAGE;
1717 
1718 	if (kvm_is_reserved_pfn(pfn)) {
1719 		WARN_ON(1);
1720 		return KVM_ERR_PTR_BAD_PAGE;
1721 	}
1722 
1723 	return pfn_to_page(pfn);
1724 }
1725 
1726 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1727 {
1728 	kvm_pfn_t pfn;
1729 
1730 	pfn = gfn_to_pfn(kvm, gfn);
1731 
1732 	return kvm_pfn_to_page(pfn);
1733 }
1734 EXPORT_SYMBOL_GPL(gfn_to_page);
1735 
1736 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1737 {
1738 	kvm_pfn_t pfn;
1739 
1740 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1741 
1742 	return kvm_pfn_to_page(pfn);
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1745 
1746 void kvm_release_page_clean(struct page *page)
1747 {
1748 	WARN_ON(is_error_page(page));
1749 
1750 	kvm_release_pfn_clean(page_to_pfn(page));
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1753 
1754 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1755 {
1756 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1757 		put_page(pfn_to_page(pfn));
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1760 
1761 void kvm_release_page_dirty(struct page *page)
1762 {
1763 	WARN_ON(is_error_page(page));
1764 
1765 	kvm_release_pfn_dirty(page_to_pfn(page));
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1768 
1769 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1770 {
1771 	kvm_set_pfn_dirty(pfn);
1772 	kvm_release_pfn_clean(pfn);
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1775 
1776 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1777 {
1778 	if (!kvm_is_reserved_pfn(pfn)) {
1779 		struct page *page = pfn_to_page(pfn);
1780 
1781 		if (!PageReserved(page))
1782 			SetPageDirty(page);
1783 	}
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1786 
1787 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1788 {
1789 	if (!kvm_is_reserved_pfn(pfn))
1790 		mark_page_accessed(pfn_to_page(pfn));
1791 }
1792 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1793 
1794 void kvm_get_pfn(kvm_pfn_t pfn)
1795 {
1796 	if (!kvm_is_reserved_pfn(pfn))
1797 		get_page(pfn_to_page(pfn));
1798 }
1799 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1800 
1801 static int next_segment(unsigned long len, int offset)
1802 {
1803 	if (len > PAGE_SIZE - offset)
1804 		return PAGE_SIZE - offset;
1805 	else
1806 		return len;
1807 }
1808 
1809 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1810 				 void *data, int offset, int len)
1811 {
1812 	int r;
1813 	unsigned long addr;
1814 
1815 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1816 	if (kvm_is_error_hva(addr))
1817 		return -EFAULT;
1818 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1819 	if (r)
1820 		return -EFAULT;
1821 	return 0;
1822 }
1823 
1824 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1825 			int len)
1826 {
1827 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1828 
1829 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1830 }
1831 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1832 
1833 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1834 			     int offset, int len)
1835 {
1836 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1837 
1838 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1839 }
1840 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1841 
1842 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1843 {
1844 	gfn_t gfn = gpa >> PAGE_SHIFT;
1845 	int seg;
1846 	int offset = offset_in_page(gpa);
1847 	int ret;
1848 
1849 	while ((seg = next_segment(len, offset)) != 0) {
1850 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1851 		if (ret < 0)
1852 			return ret;
1853 		offset = 0;
1854 		len -= seg;
1855 		data += seg;
1856 		++gfn;
1857 	}
1858 	return 0;
1859 }
1860 EXPORT_SYMBOL_GPL(kvm_read_guest);
1861 
1862 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1863 {
1864 	gfn_t gfn = gpa >> PAGE_SHIFT;
1865 	int seg;
1866 	int offset = offset_in_page(gpa);
1867 	int ret;
1868 
1869 	while ((seg = next_segment(len, offset)) != 0) {
1870 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1871 		if (ret < 0)
1872 			return ret;
1873 		offset = 0;
1874 		len -= seg;
1875 		data += seg;
1876 		++gfn;
1877 	}
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1881 
1882 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1883 			           void *data, int offset, unsigned long len)
1884 {
1885 	int r;
1886 	unsigned long addr;
1887 
1888 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1889 	if (kvm_is_error_hva(addr))
1890 		return -EFAULT;
1891 	pagefault_disable();
1892 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1893 	pagefault_enable();
1894 	if (r)
1895 		return -EFAULT;
1896 	return 0;
1897 }
1898 
1899 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1900 			  unsigned long len)
1901 {
1902 	gfn_t gfn = gpa >> PAGE_SHIFT;
1903 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1904 	int offset = offset_in_page(gpa);
1905 
1906 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1909 
1910 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1911 			       void *data, unsigned long len)
1912 {
1913 	gfn_t gfn = gpa >> PAGE_SHIFT;
1914 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1915 	int offset = offset_in_page(gpa);
1916 
1917 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1920 
1921 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1922 			          const void *data, int offset, int len)
1923 {
1924 	int r;
1925 	unsigned long addr;
1926 
1927 	addr = gfn_to_hva_memslot(memslot, gfn);
1928 	if (kvm_is_error_hva(addr))
1929 		return -EFAULT;
1930 	r = __copy_to_user((void __user *)addr + offset, data, len);
1931 	if (r)
1932 		return -EFAULT;
1933 	mark_page_dirty_in_slot(memslot, gfn);
1934 	return 0;
1935 }
1936 
1937 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1938 			 const void *data, int offset, int len)
1939 {
1940 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1941 
1942 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1945 
1946 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1947 			      const void *data, int offset, int len)
1948 {
1949 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1950 
1951 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1952 }
1953 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1954 
1955 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1956 		    unsigned long len)
1957 {
1958 	gfn_t gfn = gpa >> PAGE_SHIFT;
1959 	int seg;
1960 	int offset = offset_in_page(gpa);
1961 	int ret;
1962 
1963 	while ((seg = next_segment(len, offset)) != 0) {
1964 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1965 		if (ret < 0)
1966 			return ret;
1967 		offset = 0;
1968 		len -= seg;
1969 		data += seg;
1970 		++gfn;
1971 	}
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(kvm_write_guest);
1975 
1976 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1977 		         unsigned long len)
1978 {
1979 	gfn_t gfn = gpa >> PAGE_SHIFT;
1980 	int seg;
1981 	int offset = offset_in_page(gpa);
1982 	int ret;
1983 
1984 	while ((seg = next_segment(len, offset)) != 0) {
1985 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1986 		if (ret < 0)
1987 			return ret;
1988 		offset = 0;
1989 		len -= seg;
1990 		data += seg;
1991 		++gfn;
1992 	}
1993 	return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1996 
1997 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1998 				       struct gfn_to_hva_cache *ghc,
1999 				       gpa_t gpa, unsigned long len)
2000 {
2001 	int offset = offset_in_page(gpa);
2002 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2003 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2004 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2005 	gfn_t nr_pages_avail;
2006 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2007 
2008 	ghc->gpa = gpa;
2009 	ghc->generation = slots->generation;
2010 	ghc->len = len;
2011 	ghc->hva = KVM_HVA_ERR_BAD;
2012 
2013 	/*
2014 	 * If the requested region crosses two memslots, we still
2015 	 * verify that the entire region is valid here.
2016 	 */
2017 	while (!r && start_gfn <= end_gfn) {
2018 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2019 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2020 					   &nr_pages_avail);
2021 		if (kvm_is_error_hva(ghc->hva))
2022 			r = -EFAULT;
2023 		start_gfn += nr_pages_avail;
2024 	}
2025 
2026 	/* Use the slow path for cross page reads and writes. */
2027 	if (!r && nr_pages_needed == 1)
2028 		ghc->hva += offset;
2029 	else
2030 		ghc->memslot = NULL;
2031 
2032 	return r;
2033 }
2034 
2035 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2036 			      gpa_t gpa, unsigned long len)
2037 {
2038 	struct kvm_memslots *slots = kvm_memslots(kvm);
2039 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2042 
2043 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2044 				  void *data, unsigned int offset,
2045 				  unsigned long len)
2046 {
2047 	struct kvm_memslots *slots = kvm_memslots(kvm);
2048 	int r;
2049 	gpa_t gpa = ghc->gpa + offset;
2050 
2051 	BUG_ON(len + offset > ghc->len);
2052 
2053 	if (slots->generation != ghc->generation)
2054 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2055 
2056 	if (unlikely(!ghc->memslot))
2057 		return kvm_write_guest(kvm, gpa, data, len);
2058 
2059 	if (kvm_is_error_hva(ghc->hva))
2060 		return -EFAULT;
2061 
2062 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2063 	if (r)
2064 		return -EFAULT;
2065 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2066 
2067 	return 0;
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2070 
2071 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2072 			   void *data, unsigned long len)
2073 {
2074 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2077 
2078 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2079 			   void *data, unsigned long len)
2080 {
2081 	struct kvm_memslots *slots = kvm_memslots(kvm);
2082 	int r;
2083 
2084 	BUG_ON(len > ghc->len);
2085 
2086 	if (slots->generation != ghc->generation)
2087 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2088 
2089 	if (unlikely(!ghc->memslot))
2090 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2091 
2092 	if (kvm_is_error_hva(ghc->hva))
2093 		return -EFAULT;
2094 
2095 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2096 	if (r)
2097 		return -EFAULT;
2098 
2099 	return 0;
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2102 
2103 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2104 {
2105 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2106 
2107 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2108 }
2109 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2110 
2111 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2112 {
2113 	gfn_t gfn = gpa >> PAGE_SHIFT;
2114 	int seg;
2115 	int offset = offset_in_page(gpa);
2116 	int ret;
2117 
2118 	while ((seg = next_segment(len, offset)) != 0) {
2119 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2120 		if (ret < 0)
2121 			return ret;
2122 		offset = 0;
2123 		len -= seg;
2124 		++gfn;
2125 	}
2126 	return 0;
2127 }
2128 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2129 
2130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2131 				    gfn_t gfn)
2132 {
2133 	if (memslot && memslot->dirty_bitmap) {
2134 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2135 
2136 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2137 	}
2138 }
2139 
2140 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2141 {
2142 	struct kvm_memory_slot *memslot;
2143 
2144 	memslot = gfn_to_memslot(kvm, gfn);
2145 	mark_page_dirty_in_slot(memslot, gfn);
2146 }
2147 EXPORT_SYMBOL_GPL(mark_page_dirty);
2148 
2149 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2150 {
2151 	struct kvm_memory_slot *memslot;
2152 
2153 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2154 	mark_page_dirty_in_slot(memslot, gfn);
2155 }
2156 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2157 
2158 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2159 {
2160 	if (!vcpu->sigset_active)
2161 		return;
2162 
2163 	/*
2164 	 * This does a lockless modification of ->real_blocked, which is fine
2165 	 * because, only current can change ->real_blocked and all readers of
2166 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2167 	 * of ->blocked.
2168 	 */
2169 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2170 }
2171 
2172 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2173 {
2174 	if (!vcpu->sigset_active)
2175 		return;
2176 
2177 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2178 	sigemptyset(&current->real_blocked);
2179 }
2180 
2181 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2182 {
2183 	unsigned int old, val, grow;
2184 
2185 	old = val = vcpu->halt_poll_ns;
2186 	grow = READ_ONCE(halt_poll_ns_grow);
2187 	/* 10us base */
2188 	if (val == 0 && grow)
2189 		val = 10000;
2190 	else
2191 		val *= grow;
2192 
2193 	if (val > halt_poll_ns)
2194 		val = halt_poll_ns;
2195 
2196 	vcpu->halt_poll_ns = val;
2197 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2198 }
2199 
2200 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2201 {
2202 	unsigned int old, val, shrink;
2203 
2204 	old = val = vcpu->halt_poll_ns;
2205 	shrink = READ_ONCE(halt_poll_ns_shrink);
2206 	if (shrink == 0)
2207 		val = 0;
2208 	else
2209 		val /= shrink;
2210 
2211 	vcpu->halt_poll_ns = val;
2212 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2213 }
2214 
2215 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2216 {
2217 	int ret = -EINTR;
2218 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2219 
2220 	if (kvm_arch_vcpu_runnable(vcpu)) {
2221 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2222 		goto out;
2223 	}
2224 	if (kvm_cpu_has_pending_timer(vcpu))
2225 		goto out;
2226 	if (signal_pending(current))
2227 		goto out;
2228 
2229 	ret = 0;
2230 out:
2231 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2232 	return ret;
2233 }
2234 
2235 /*
2236  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2237  */
2238 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2239 {
2240 	ktime_t start, cur;
2241 	DECLARE_SWAITQUEUE(wait);
2242 	bool waited = false;
2243 	u64 block_ns;
2244 
2245 	start = cur = ktime_get();
2246 	if (vcpu->halt_poll_ns) {
2247 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2248 
2249 		++vcpu->stat.halt_attempted_poll;
2250 		do {
2251 			/*
2252 			 * This sets KVM_REQ_UNHALT if an interrupt
2253 			 * arrives.
2254 			 */
2255 			if (kvm_vcpu_check_block(vcpu) < 0) {
2256 				++vcpu->stat.halt_successful_poll;
2257 				if (!vcpu_valid_wakeup(vcpu))
2258 					++vcpu->stat.halt_poll_invalid;
2259 				goto out;
2260 			}
2261 			cur = ktime_get();
2262 		} while (single_task_running() && ktime_before(cur, stop));
2263 	}
2264 
2265 	kvm_arch_vcpu_blocking(vcpu);
2266 
2267 	for (;;) {
2268 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2269 
2270 		if (kvm_vcpu_check_block(vcpu) < 0)
2271 			break;
2272 
2273 		waited = true;
2274 		schedule();
2275 	}
2276 
2277 	finish_swait(&vcpu->wq, &wait);
2278 	cur = ktime_get();
2279 
2280 	kvm_arch_vcpu_unblocking(vcpu);
2281 out:
2282 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2283 
2284 	if (!vcpu_valid_wakeup(vcpu))
2285 		shrink_halt_poll_ns(vcpu);
2286 	else if (halt_poll_ns) {
2287 		if (block_ns <= vcpu->halt_poll_ns)
2288 			;
2289 		/* we had a long block, shrink polling */
2290 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2291 			shrink_halt_poll_ns(vcpu);
2292 		/* we had a short halt and our poll time is too small */
2293 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2294 			block_ns < halt_poll_ns)
2295 			grow_halt_poll_ns(vcpu);
2296 	} else
2297 		vcpu->halt_poll_ns = 0;
2298 
2299 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2300 	kvm_arch_vcpu_block_finish(vcpu);
2301 }
2302 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2303 
2304 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2305 {
2306 	struct swait_queue_head *wqp;
2307 
2308 	wqp = kvm_arch_vcpu_wq(vcpu);
2309 	if (swq_has_sleeper(wqp)) {
2310 		swake_up_one(wqp);
2311 		++vcpu->stat.halt_wakeup;
2312 		return true;
2313 	}
2314 
2315 	return false;
2316 }
2317 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2318 
2319 #ifndef CONFIG_S390
2320 /*
2321  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2322  */
2323 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2324 {
2325 	int me;
2326 	int cpu = vcpu->cpu;
2327 
2328 	if (kvm_vcpu_wake_up(vcpu))
2329 		return;
2330 
2331 	me = get_cpu();
2332 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2333 		if (kvm_arch_vcpu_should_kick(vcpu))
2334 			smp_send_reschedule(cpu);
2335 	put_cpu();
2336 }
2337 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2338 #endif /* !CONFIG_S390 */
2339 
2340 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2341 {
2342 	struct pid *pid;
2343 	struct task_struct *task = NULL;
2344 	int ret = 0;
2345 
2346 	rcu_read_lock();
2347 	pid = rcu_dereference(target->pid);
2348 	if (pid)
2349 		task = get_pid_task(pid, PIDTYPE_PID);
2350 	rcu_read_unlock();
2351 	if (!task)
2352 		return ret;
2353 	ret = yield_to(task, 1);
2354 	put_task_struct(task);
2355 
2356 	return ret;
2357 }
2358 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2359 
2360 /*
2361  * Helper that checks whether a VCPU is eligible for directed yield.
2362  * Most eligible candidate to yield is decided by following heuristics:
2363  *
2364  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2365  *  (preempted lock holder), indicated by @in_spin_loop.
2366  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2367  *
2368  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2369  *  chance last time (mostly it has become eligible now since we have probably
2370  *  yielded to lockholder in last iteration. This is done by toggling
2371  *  @dy_eligible each time a VCPU checked for eligibility.)
2372  *
2373  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2374  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2375  *  burning. Giving priority for a potential lock-holder increases lock
2376  *  progress.
2377  *
2378  *  Since algorithm is based on heuristics, accessing another VCPU data without
2379  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2380  *  and continue with next VCPU and so on.
2381  */
2382 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2383 {
2384 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2385 	bool eligible;
2386 
2387 	eligible = !vcpu->spin_loop.in_spin_loop ||
2388 		    vcpu->spin_loop.dy_eligible;
2389 
2390 	if (vcpu->spin_loop.in_spin_loop)
2391 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2392 
2393 	return eligible;
2394 #else
2395 	return true;
2396 #endif
2397 }
2398 
2399 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2400 {
2401 	struct kvm *kvm = me->kvm;
2402 	struct kvm_vcpu *vcpu;
2403 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2404 	int yielded = 0;
2405 	int try = 3;
2406 	int pass;
2407 	int i;
2408 
2409 	kvm_vcpu_set_in_spin_loop(me, true);
2410 	/*
2411 	 * We boost the priority of a VCPU that is runnable but not
2412 	 * currently running, because it got preempted by something
2413 	 * else and called schedule in __vcpu_run.  Hopefully that
2414 	 * VCPU is holding the lock that we need and will release it.
2415 	 * We approximate round-robin by starting at the last boosted VCPU.
2416 	 */
2417 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2418 		kvm_for_each_vcpu(i, vcpu, kvm) {
2419 			if (!pass && i <= last_boosted_vcpu) {
2420 				i = last_boosted_vcpu;
2421 				continue;
2422 			} else if (pass && i > last_boosted_vcpu)
2423 				break;
2424 			if (!READ_ONCE(vcpu->preempted))
2425 				continue;
2426 			if (vcpu == me)
2427 				continue;
2428 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2429 				continue;
2430 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2431 				continue;
2432 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2433 				continue;
2434 
2435 			yielded = kvm_vcpu_yield_to(vcpu);
2436 			if (yielded > 0) {
2437 				kvm->last_boosted_vcpu = i;
2438 				break;
2439 			} else if (yielded < 0) {
2440 				try--;
2441 				if (!try)
2442 					break;
2443 			}
2444 		}
2445 	}
2446 	kvm_vcpu_set_in_spin_loop(me, false);
2447 
2448 	/* Ensure vcpu is not eligible during next spinloop */
2449 	kvm_vcpu_set_dy_eligible(me, false);
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2452 
2453 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2454 {
2455 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2456 	struct page *page;
2457 
2458 	if (vmf->pgoff == 0)
2459 		page = virt_to_page(vcpu->run);
2460 #ifdef CONFIG_X86
2461 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2462 		page = virt_to_page(vcpu->arch.pio_data);
2463 #endif
2464 #ifdef CONFIG_KVM_MMIO
2465 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2466 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2467 #endif
2468 	else
2469 		return kvm_arch_vcpu_fault(vcpu, vmf);
2470 	get_page(page);
2471 	vmf->page = page;
2472 	return 0;
2473 }
2474 
2475 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2476 	.fault = kvm_vcpu_fault,
2477 };
2478 
2479 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2480 {
2481 	vma->vm_ops = &kvm_vcpu_vm_ops;
2482 	return 0;
2483 }
2484 
2485 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2486 {
2487 	struct kvm_vcpu *vcpu = filp->private_data;
2488 
2489 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2490 	kvm_put_kvm(vcpu->kvm);
2491 	return 0;
2492 }
2493 
2494 static struct file_operations kvm_vcpu_fops = {
2495 	.release        = kvm_vcpu_release,
2496 	.unlocked_ioctl = kvm_vcpu_ioctl,
2497 	.mmap           = kvm_vcpu_mmap,
2498 	.llseek		= noop_llseek,
2499 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2500 };
2501 
2502 /*
2503  * Allocates an inode for the vcpu.
2504  */
2505 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2506 {
2507 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2508 
2509 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2510 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2511 }
2512 
2513 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2514 {
2515 	char dir_name[ITOA_MAX_LEN * 2];
2516 	int ret;
2517 
2518 	if (!kvm_arch_has_vcpu_debugfs())
2519 		return 0;
2520 
2521 	if (!debugfs_initialized())
2522 		return 0;
2523 
2524 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2525 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2526 								vcpu->kvm->debugfs_dentry);
2527 	if (!vcpu->debugfs_dentry)
2528 		return -ENOMEM;
2529 
2530 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2531 	if (ret < 0) {
2532 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2533 		return ret;
2534 	}
2535 
2536 	return 0;
2537 }
2538 
2539 /*
2540  * Creates some virtual cpus.  Good luck creating more than one.
2541  */
2542 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2543 {
2544 	int r;
2545 	struct kvm_vcpu *vcpu;
2546 
2547 	if (id >= KVM_MAX_VCPU_ID)
2548 		return -EINVAL;
2549 
2550 	mutex_lock(&kvm->lock);
2551 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2552 		mutex_unlock(&kvm->lock);
2553 		return -EINVAL;
2554 	}
2555 
2556 	kvm->created_vcpus++;
2557 	mutex_unlock(&kvm->lock);
2558 
2559 	vcpu = kvm_arch_vcpu_create(kvm, id);
2560 	if (IS_ERR(vcpu)) {
2561 		r = PTR_ERR(vcpu);
2562 		goto vcpu_decrement;
2563 	}
2564 
2565 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2566 
2567 	r = kvm_arch_vcpu_setup(vcpu);
2568 	if (r)
2569 		goto vcpu_destroy;
2570 
2571 	r = kvm_create_vcpu_debugfs(vcpu);
2572 	if (r)
2573 		goto vcpu_destroy;
2574 
2575 	mutex_lock(&kvm->lock);
2576 	if (kvm_get_vcpu_by_id(kvm, id)) {
2577 		r = -EEXIST;
2578 		goto unlock_vcpu_destroy;
2579 	}
2580 
2581 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2582 
2583 	/* Now it's all set up, let userspace reach it */
2584 	kvm_get_kvm(kvm);
2585 	r = create_vcpu_fd(vcpu);
2586 	if (r < 0) {
2587 		kvm_put_kvm(kvm);
2588 		goto unlock_vcpu_destroy;
2589 	}
2590 
2591 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2592 
2593 	/*
2594 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2595 	 * before kvm->online_vcpu's incremented value.
2596 	 */
2597 	smp_wmb();
2598 	atomic_inc(&kvm->online_vcpus);
2599 
2600 	mutex_unlock(&kvm->lock);
2601 	kvm_arch_vcpu_postcreate(vcpu);
2602 	return r;
2603 
2604 unlock_vcpu_destroy:
2605 	mutex_unlock(&kvm->lock);
2606 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2607 vcpu_destroy:
2608 	kvm_arch_vcpu_destroy(vcpu);
2609 vcpu_decrement:
2610 	mutex_lock(&kvm->lock);
2611 	kvm->created_vcpus--;
2612 	mutex_unlock(&kvm->lock);
2613 	return r;
2614 }
2615 
2616 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2617 {
2618 	if (sigset) {
2619 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2620 		vcpu->sigset_active = 1;
2621 		vcpu->sigset = *sigset;
2622 	} else
2623 		vcpu->sigset_active = 0;
2624 	return 0;
2625 }
2626 
2627 static long kvm_vcpu_ioctl(struct file *filp,
2628 			   unsigned int ioctl, unsigned long arg)
2629 {
2630 	struct kvm_vcpu *vcpu = filp->private_data;
2631 	void __user *argp = (void __user *)arg;
2632 	int r;
2633 	struct kvm_fpu *fpu = NULL;
2634 	struct kvm_sregs *kvm_sregs = NULL;
2635 
2636 	if (vcpu->kvm->mm != current->mm)
2637 		return -EIO;
2638 
2639 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2640 		return -EINVAL;
2641 
2642 	/*
2643 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2644 	 * execution; mutex_lock() would break them.
2645 	 */
2646 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2647 	if (r != -ENOIOCTLCMD)
2648 		return r;
2649 
2650 	if (mutex_lock_killable(&vcpu->mutex))
2651 		return -EINTR;
2652 	switch (ioctl) {
2653 	case KVM_RUN: {
2654 		struct pid *oldpid;
2655 		r = -EINVAL;
2656 		if (arg)
2657 			goto out;
2658 		oldpid = rcu_access_pointer(vcpu->pid);
2659 		if (unlikely(oldpid != task_pid(current))) {
2660 			/* The thread running this VCPU changed. */
2661 			struct pid *newpid;
2662 
2663 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2664 			if (r)
2665 				break;
2666 
2667 			newpid = get_task_pid(current, PIDTYPE_PID);
2668 			rcu_assign_pointer(vcpu->pid, newpid);
2669 			if (oldpid)
2670 				synchronize_rcu();
2671 			put_pid(oldpid);
2672 		}
2673 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2674 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2675 		break;
2676 	}
2677 	case KVM_GET_REGS: {
2678 		struct kvm_regs *kvm_regs;
2679 
2680 		r = -ENOMEM;
2681 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2682 		if (!kvm_regs)
2683 			goto out;
2684 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2685 		if (r)
2686 			goto out_free1;
2687 		r = -EFAULT;
2688 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2689 			goto out_free1;
2690 		r = 0;
2691 out_free1:
2692 		kfree(kvm_regs);
2693 		break;
2694 	}
2695 	case KVM_SET_REGS: {
2696 		struct kvm_regs *kvm_regs;
2697 
2698 		r = -ENOMEM;
2699 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2700 		if (IS_ERR(kvm_regs)) {
2701 			r = PTR_ERR(kvm_regs);
2702 			goto out;
2703 		}
2704 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2705 		kfree(kvm_regs);
2706 		break;
2707 	}
2708 	case KVM_GET_SREGS: {
2709 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2710 		r = -ENOMEM;
2711 		if (!kvm_sregs)
2712 			goto out;
2713 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2714 		if (r)
2715 			goto out;
2716 		r = -EFAULT;
2717 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2718 			goto out;
2719 		r = 0;
2720 		break;
2721 	}
2722 	case KVM_SET_SREGS: {
2723 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2724 		if (IS_ERR(kvm_sregs)) {
2725 			r = PTR_ERR(kvm_sregs);
2726 			kvm_sregs = NULL;
2727 			goto out;
2728 		}
2729 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2730 		break;
2731 	}
2732 	case KVM_GET_MP_STATE: {
2733 		struct kvm_mp_state mp_state;
2734 
2735 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2736 		if (r)
2737 			goto out;
2738 		r = -EFAULT;
2739 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2740 			goto out;
2741 		r = 0;
2742 		break;
2743 	}
2744 	case KVM_SET_MP_STATE: {
2745 		struct kvm_mp_state mp_state;
2746 
2747 		r = -EFAULT;
2748 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2749 			goto out;
2750 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2751 		break;
2752 	}
2753 	case KVM_TRANSLATE: {
2754 		struct kvm_translation tr;
2755 
2756 		r = -EFAULT;
2757 		if (copy_from_user(&tr, argp, sizeof(tr)))
2758 			goto out;
2759 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2760 		if (r)
2761 			goto out;
2762 		r = -EFAULT;
2763 		if (copy_to_user(argp, &tr, sizeof(tr)))
2764 			goto out;
2765 		r = 0;
2766 		break;
2767 	}
2768 	case KVM_SET_GUEST_DEBUG: {
2769 		struct kvm_guest_debug dbg;
2770 
2771 		r = -EFAULT;
2772 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2773 			goto out;
2774 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2775 		break;
2776 	}
2777 	case KVM_SET_SIGNAL_MASK: {
2778 		struct kvm_signal_mask __user *sigmask_arg = argp;
2779 		struct kvm_signal_mask kvm_sigmask;
2780 		sigset_t sigset, *p;
2781 
2782 		p = NULL;
2783 		if (argp) {
2784 			r = -EFAULT;
2785 			if (copy_from_user(&kvm_sigmask, argp,
2786 					   sizeof(kvm_sigmask)))
2787 				goto out;
2788 			r = -EINVAL;
2789 			if (kvm_sigmask.len != sizeof(sigset))
2790 				goto out;
2791 			r = -EFAULT;
2792 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2793 					   sizeof(sigset)))
2794 				goto out;
2795 			p = &sigset;
2796 		}
2797 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2798 		break;
2799 	}
2800 	case KVM_GET_FPU: {
2801 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2802 		r = -ENOMEM;
2803 		if (!fpu)
2804 			goto out;
2805 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2806 		if (r)
2807 			goto out;
2808 		r = -EFAULT;
2809 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2810 			goto out;
2811 		r = 0;
2812 		break;
2813 	}
2814 	case KVM_SET_FPU: {
2815 		fpu = memdup_user(argp, sizeof(*fpu));
2816 		if (IS_ERR(fpu)) {
2817 			r = PTR_ERR(fpu);
2818 			fpu = NULL;
2819 			goto out;
2820 		}
2821 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2822 		break;
2823 	}
2824 	default:
2825 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2826 	}
2827 out:
2828 	mutex_unlock(&vcpu->mutex);
2829 	kfree(fpu);
2830 	kfree(kvm_sregs);
2831 	return r;
2832 }
2833 
2834 #ifdef CONFIG_KVM_COMPAT
2835 static long kvm_vcpu_compat_ioctl(struct file *filp,
2836 				  unsigned int ioctl, unsigned long arg)
2837 {
2838 	struct kvm_vcpu *vcpu = filp->private_data;
2839 	void __user *argp = compat_ptr(arg);
2840 	int r;
2841 
2842 	if (vcpu->kvm->mm != current->mm)
2843 		return -EIO;
2844 
2845 	switch (ioctl) {
2846 	case KVM_SET_SIGNAL_MASK: {
2847 		struct kvm_signal_mask __user *sigmask_arg = argp;
2848 		struct kvm_signal_mask kvm_sigmask;
2849 		sigset_t sigset;
2850 
2851 		if (argp) {
2852 			r = -EFAULT;
2853 			if (copy_from_user(&kvm_sigmask, argp,
2854 					   sizeof(kvm_sigmask)))
2855 				goto out;
2856 			r = -EINVAL;
2857 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2858 				goto out;
2859 			r = -EFAULT;
2860 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2861 				goto out;
2862 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2863 		} else
2864 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2865 		break;
2866 	}
2867 	default:
2868 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2869 	}
2870 
2871 out:
2872 	return r;
2873 }
2874 #endif
2875 
2876 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2877 				 int (*accessor)(struct kvm_device *dev,
2878 						 struct kvm_device_attr *attr),
2879 				 unsigned long arg)
2880 {
2881 	struct kvm_device_attr attr;
2882 
2883 	if (!accessor)
2884 		return -EPERM;
2885 
2886 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2887 		return -EFAULT;
2888 
2889 	return accessor(dev, &attr);
2890 }
2891 
2892 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2893 			     unsigned long arg)
2894 {
2895 	struct kvm_device *dev = filp->private_data;
2896 
2897 	switch (ioctl) {
2898 	case KVM_SET_DEVICE_ATTR:
2899 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2900 	case KVM_GET_DEVICE_ATTR:
2901 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2902 	case KVM_HAS_DEVICE_ATTR:
2903 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2904 	default:
2905 		if (dev->ops->ioctl)
2906 			return dev->ops->ioctl(dev, ioctl, arg);
2907 
2908 		return -ENOTTY;
2909 	}
2910 }
2911 
2912 static int kvm_device_release(struct inode *inode, struct file *filp)
2913 {
2914 	struct kvm_device *dev = filp->private_data;
2915 	struct kvm *kvm = dev->kvm;
2916 
2917 	kvm_put_kvm(kvm);
2918 	return 0;
2919 }
2920 
2921 static const struct file_operations kvm_device_fops = {
2922 	.unlocked_ioctl = kvm_device_ioctl,
2923 	.release = kvm_device_release,
2924 	KVM_COMPAT(kvm_device_ioctl),
2925 };
2926 
2927 struct kvm_device *kvm_device_from_filp(struct file *filp)
2928 {
2929 	if (filp->f_op != &kvm_device_fops)
2930 		return NULL;
2931 
2932 	return filp->private_data;
2933 }
2934 
2935 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2936 #ifdef CONFIG_KVM_MPIC
2937 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2938 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2939 #endif
2940 };
2941 
2942 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2943 {
2944 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2945 		return -ENOSPC;
2946 
2947 	if (kvm_device_ops_table[type] != NULL)
2948 		return -EEXIST;
2949 
2950 	kvm_device_ops_table[type] = ops;
2951 	return 0;
2952 }
2953 
2954 void kvm_unregister_device_ops(u32 type)
2955 {
2956 	if (kvm_device_ops_table[type] != NULL)
2957 		kvm_device_ops_table[type] = NULL;
2958 }
2959 
2960 static int kvm_ioctl_create_device(struct kvm *kvm,
2961 				   struct kvm_create_device *cd)
2962 {
2963 	struct kvm_device_ops *ops = NULL;
2964 	struct kvm_device *dev;
2965 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2966 	int ret;
2967 
2968 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2969 		return -ENODEV;
2970 
2971 	ops = kvm_device_ops_table[cd->type];
2972 	if (ops == NULL)
2973 		return -ENODEV;
2974 
2975 	if (test)
2976 		return 0;
2977 
2978 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2979 	if (!dev)
2980 		return -ENOMEM;
2981 
2982 	dev->ops = ops;
2983 	dev->kvm = kvm;
2984 
2985 	mutex_lock(&kvm->lock);
2986 	ret = ops->create(dev, cd->type);
2987 	if (ret < 0) {
2988 		mutex_unlock(&kvm->lock);
2989 		kfree(dev);
2990 		return ret;
2991 	}
2992 	list_add(&dev->vm_node, &kvm->devices);
2993 	mutex_unlock(&kvm->lock);
2994 
2995 	if (ops->init)
2996 		ops->init(dev);
2997 
2998 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2999 	if (ret < 0) {
3000 		mutex_lock(&kvm->lock);
3001 		list_del(&dev->vm_node);
3002 		mutex_unlock(&kvm->lock);
3003 		ops->destroy(dev);
3004 		return ret;
3005 	}
3006 
3007 	kvm_get_kvm(kvm);
3008 	cd->fd = ret;
3009 	return 0;
3010 }
3011 
3012 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3013 {
3014 	switch (arg) {
3015 	case KVM_CAP_USER_MEMORY:
3016 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3017 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3018 	case KVM_CAP_INTERNAL_ERROR_DATA:
3019 #ifdef CONFIG_HAVE_KVM_MSI
3020 	case KVM_CAP_SIGNAL_MSI:
3021 #endif
3022 #ifdef CONFIG_HAVE_KVM_IRQFD
3023 	case KVM_CAP_IRQFD:
3024 	case KVM_CAP_IRQFD_RESAMPLE:
3025 #endif
3026 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3027 	case KVM_CAP_CHECK_EXTENSION_VM:
3028 	case KVM_CAP_ENABLE_CAP_VM:
3029 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3030 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3031 #endif
3032 		return 1;
3033 #ifdef CONFIG_KVM_MMIO
3034 	case KVM_CAP_COALESCED_MMIO:
3035 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3036 	case KVM_CAP_COALESCED_PIO:
3037 		return 1;
3038 #endif
3039 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3040 	case KVM_CAP_IRQ_ROUTING:
3041 		return KVM_MAX_IRQ_ROUTES;
3042 #endif
3043 #if KVM_ADDRESS_SPACE_NUM > 1
3044 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3045 		return KVM_ADDRESS_SPACE_NUM;
3046 #endif
3047 	case KVM_CAP_MAX_VCPU_ID:
3048 		return KVM_MAX_VCPU_ID;
3049 	default:
3050 		break;
3051 	}
3052 	return kvm_vm_ioctl_check_extension(kvm, arg);
3053 }
3054 
3055 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3056 						  struct kvm_enable_cap *cap)
3057 {
3058 	return -EINVAL;
3059 }
3060 
3061 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3062 					   struct kvm_enable_cap *cap)
3063 {
3064 	switch (cap->cap) {
3065 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3066 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT:
3067 		if (cap->flags || (cap->args[0] & ~1))
3068 			return -EINVAL;
3069 		kvm->manual_dirty_log_protect = cap->args[0];
3070 		return 0;
3071 #endif
3072 	default:
3073 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3074 	}
3075 }
3076 
3077 static long kvm_vm_ioctl(struct file *filp,
3078 			   unsigned int ioctl, unsigned long arg)
3079 {
3080 	struct kvm *kvm = filp->private_data;
3081 	void __user *argp = (void __user *)arg;
3082 	int r;
3083 
3084 	if (kvm->mm != current->mm)
3085 		return -EIO;
3086 	switch (ioctl) {
3087 	case KVM_CREATE_VCPU:
3088 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3089 		break;
3090 	case KVM_ENABLE_CAP: {
3091 		struct kvm_enable_cap cap;
3092 
3093 		r = -EFAULT;
3094 		if (copy_from_user(&cap, argp, sizeof(cap)))
3095 			goto out;
3096 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3097 		break;
3098 	}
3099 	case KVM_SET_USER_MEMORY_REGION: {
3100 		struct kvm_userspace_memory_region kvm_userspace_mem;
3101 
3102 		r = -EFAULT;
3103 		if (copy_from_user(&kvm_userspace_mem, argp,
3104 						sizeof(kvm_userspace_mem)))
3105 			goto out;
3106 
3107 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3108 		break;
3109 	}
3110 	case KVM_GET_DIRTY_LOG: {
3111 		struct kvm_dirty_log log;
3112 
3113 		r = -EFAULT;
3114 		if (copy_from_user(&log, argp, sizeof(log)))
3115 			goto out;
3116 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3117 		break;
3118 	}
3119 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3120 	case KVM_CLEAR_DIRTY_LOG: {
3121 		struct kvm_clear_dirty_log log;
3122 
3123 		r = -EFAULT;
3124 		if (copy_from_user(&log, argp, sizeof(log)))
3125 			goto out;
3126 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3127 		break;
3128 	}
3129 #endif
3130 #ifdef CONFIG_KVM_MMIO
3131 	case KVM_REGISTER_COALESCED_MMIO: {
3132 		struct kvm_coalesced_mmio_zone zone;
3133 
3134 		r = -EFAULT;
3135 		if (copy_from_user(&zone, argp, sizeof(zone)))
3136 			goto out;
3137 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3138 		break;
3139 	}
3140 	case KVM_UNREGISTER_COALESCED_MMIO: {
3141 		struct kvm_coalesced_mmio_zone zone;
3142 
3143 		r = -EFAULT;
3144 		if (copy_from_user(&zone, argp, sizeof(zone)))
3145 			goto out;
3146 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3147 		break;
3148 	}
3149 #endif
3150 	case KVM_IRQFD: {
3151 		struct kvm_irqfd data;
3152 
3153 		r = -EFAULT;
3154 		if (copy_from_user(&data, argp, sizeof(data)))
3155 			goto out;
3156 		r = kvm_irqfd(kvm, &data);
3157 		break;
3158 	}
3159 	case KVM_IOEVENTFD: {
3160 		struct kvm_ioeventfd data;
3161 
3162 		r = -EFAULT;
3163 		if (copy_from_user(&data, argp, sizeof(data)))
3164 			goto out;
3165 		r = kvm_ioeventfd(kvm, &data);
3166 		break;
3167 	}
3168 #ifdef CONFIG_HAVE_KVM_MSI
3169 	case KVM_SIGNAL_MSI: {
3170 		struct kvm_msi msi;
3171 
3172 		r = -EFAULT;
3173 		if (copy_from_user(&msi, argp, sizeof(msi)))
3174 			goto out;
3175 		r = kvm_send_userspace_msi(kvm, &msi);
3176 		break;
3177 	}
3178 #endif
3179 #ifdef __KVM_HAVE_IRQ_LINE
3180 	case KVM_IRQ_LINE_STATUS:
3181 	case KVM_IRQ_LINE: {
3182 		struct kvm_irq_level irq_event;
3183 
3184 		r = -EFAULT;
3185 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3186 			goto out;
3187 
3188 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3189 					ioctl == KVM_IRQ_LINE_STATUS);
3190 		if (r)
3191 			goto out;
3192 
3193 		r = -EFAULT;
3194 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3195 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3196 				goto out;
3197 		}
3198 
3199 		r = 0;
3200 		break;
3201 	}
3202 #endif
3203 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3204 	case KVM_SET_GSI_ROUTING: {
3205 		struct kvm_irq_routing routing;
3206 		struct kvm_irq_routing __user *urouting;
3207 		struct kvm_irq_routing_entry *entries = NULL;
3208 
3209 		r = -EFAULT;
3210 		if (copy_from_user(&routing, argp, sizeof(routing)))
3211 			goto out;
3212 		r = -EINVAL;
3213 		if (!kvm_arch_can_set_irq_routing(kvm))
3214 			goto out;
3215 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3216 			goto out;
3217 		if (routing.flags)
3218 			goto out;
3219 		if (routing.nr) {
3220 			r = -ENOMEM;
3221 			entries = vmalloc(array_size(sizeof(*entries),
3222 						     routing.nr));
3223 			if (!entries)
3224 				goto out;
3225 			r = -EFAULT;
3226 			urouting = argp;
3227 			if (copy_from_user(entries, urouting->entries,
3228 					   routing.nr * sizeof(*entries)))
3229 				goto out_free_irq_routing;
3230 		}
3231 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3232 					routing.flags);
3233 out_free_irq_routing:
3234 		vfree(entries);
3235 		break;
3236 	}
3237 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3238 	case KVM_CREATE_DEVICE: {
3239 		struct kvm_create_device cd;
3240 
3241 		r = -EFAULT;
3242 		if (copy_from_user(&cd, argp, sizeof(cd)))
3243 			goto out;
3244 
3245 		r = kvm_ioctl_create_device(kvm, &cd);
3246 		if (r)
3247 			goto out;
3248 
3249 		r = -EFAULT;
3250 		if (copy_to_user(argp, &cd, sizeof(cd)))
3251 			goto out;
3252 
3253 		r = 0;
3254 		break;
3255 	}
3256 	case KVM_CHECK_EXTENSION:
3257 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3258 		break;
3259 	default:
3260 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3261 	}
3262 out:
3263 	return r;
3264 }
3265 
3266 #ifdef CONFIG_KVM_COMPAT
3267 struct compat_kvm_dirty_log {
3268 	__u32 slot;
3269 	__u32 padding1;
3270 	union {
3271 		compat_uptr_t dirty_bitmap; /* one bit per page */
3272 		__u64 padding2;
3273 	};
3274 };
3275 
3276 static long kvm_vm_compat_ioctl(struct file *filp,
3277 			   unsigned int ioctl, unsigned long arg)
3278 {
3279 	struct kvm *kvm = filp->private_data;
3280 	int r;
3281 
3282 	if (kvm->mm != current->mm)
3283 		return -EIO;
3284 	switch (ioctl) {
3285 	case KVM_GET_DIRTY_LOG: {
3286 		struct compat_kvm_dirty_log compat_log;
3287 		struct kvm_dirty_log log;
3288 
3289 		if (copy_from_user(&compat_log, (void __user *)arg,
3290 				   sizeof(compat_log)))
3291 			return -EFAULT;
3292 		log.slot	 = compat_log.slot;
3293 		log.padding1	 = compat_log.padding1;
3294 		log.padding2	 = compat_log.padding2;
3295 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3296 
3297 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3298 		break;
3299 	}
3300 	default:
3301 		r = kvm_vm_ioctl(filp, ioctl, arg);
3302 	}
3303 	return r;
3304 }
3305 #endif
3306 
3307 static struct file_operations kvm_vm_fops = {
3308 	.release        = kvm_vm_release,
3309 	.unlocked_ioctl = kvm_vm_ioctl,
3310 	.llseek		= noop_llseek,
3311 	KVM_COMPAT(kvm_vm_compat_ioctl),
3312 };
3313 
3314 static int kvm_dev_ioctl_create_vm(unsigned long type)
3315 {
3316 	int r;
3317 	struct kvm *kvm;
3318 	struct file *file;
3319 
3320 	kvm = kvm_create_vm(type);
3321 	if (IS_ERR(kvm))
3322 		return PTR_ERR(kvm);
3323 #ifdef CONFIG_KVM_MMIO
3324 	r = kvm_coalesced_mmio_init(kvm);
3325 	if (r < 0)
3326 		goto put_kvm;
3327 #endif
3328 	r = get_unused_fd_flags(O_CLOEXEC);
3329 	if (r < 0)
3330 		goto put_kvm;
3331 
3332 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3333 	if (IS_ERR(file)) {
3334 		put_unused_fd(r);
3335 		r = PTR_ERR(file);
3336 		goto put_kvm;
3337 	}
3338 
3339 	/*
3340 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3341 	 * already set, with ->release() being kvm_vm_release().  In error
3342 	 * cases it will be called by the final fput(file) and will take
3343 	 * care of doing kvm_put_kvm(kvm).
3344 	 */
3345 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3346 		put_unused_fd(r);
3347 		fput(file);
3348 		return -ENOMEM;
3349 	}
3350 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3351 
3352 	fd_install(r, file);
3353 	return r;
3354 
3355 put_kvm:
3356 	kvm_put_kvm(kvm);
3357 	return r;
3358 }
3359 
3360 static long kvm_dev_ioctl(struct file *filp,
3361 			  unsigned int ioctl, unsigned long arg)
3362 {
3363 	long r = -EINVAL;
3364 
3365 	switch (ioctl) {
3366 	case KVM_GET_API_VERSION:
3367 		if (arg)
3368 			goto out;
3369 		r = KVM_API_VERSION;
3370 		break;
3371 	case KVM_CREATE_VM:
3372 		r = kvm_dev_ioctl_create_vm(arg);
3373 		break;
3374 	case KVM_CHECK_EXTENSION:
3375 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3376 		break;
3377 	case KVM_GET_VCPU_MMAP_SIZE:
3378 		if (arg)
3379 			goto out;
3380 		r = PAGE_SIZE;     /* struct kvm_run */
3381 #ifdef CONFIG_X86
3382 		r += PAGE_SIZE;    /* pio data page */
3383 #endif
3384 #ifdef CONFIG_KVM_MMIO
3385 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3386 #endif
3387 		break;
3388 	case KVM_TRACE_ENABLE:
3389 	case KVM_TRACE_PAUSE:
3390 	case KVM_TRACE_DISABLE:
3391 		r = -EOPNOTSUPP;
3392 		break;
3393 	default:
3394 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3395 	}
3396 out:
3397 	return r;
3398 }
3399 
3400 static struct file_operations kvm_chardev_ops = {
3401 	.unlocked_ioctl = kvm_dev_ioctl,
3402 	.llseek		= noop_llseek,
3403 	KVM_COMPAT(kvm_dev_ioctl),
3404 };
3405 
3406 static struct miscdevice kvm_dev = {
3407 	KVM_MINOR,
3408 	"kvm",
3409 	&kvm_chardev_ops,
3410 };
3411 
3412 static void hardware_enable_nolock(void *junk)
3413 {
3414 	int cpu = raw_smp_processor_id();
3415 	int r;
3416 
3417 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3418 		return;
3419 
3420 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3421 
3422 	r = kvm_arch_hardware_enable();
3423 
3424 	if (r) {
3425 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3426 		atomic_inc(&hardware_enable_failed);
3427 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3428 	}
3429 }
3430 
3431 static int kvm_starting_cpu(unsigned int cpu)
3432 {
3433 	raw_spin_lock(&kvm_count_lock);
3434 	if (kvm_usage_count)
3435 		hardware_enable_nolock(NULL);
3436 	raw_spin_unlock(&kvm_count_lock);
3437 	return 0;
3438 }
3439 
3440 static void hardware_disable_nolock(void *junk)
3441 {
3442 	int cpu = raw_smp_processor_id();
3443 
3444 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3445 		return;
3446 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3447 	kvm_arch_hardware_disable();
3448 }
3449 
3450 static int kvm_dying_cpu(unsigned int cpu)
3451 {
3452 	raw_spin_lock(&kvm_count_lock);
3453 	if (kvm_usage_count)
3454 		hardware_disable_nolock(NULL);
3455 	raw_spin_unlock(&kvm_count_lock);
3456 	return 0;
3457 }
3458 
3459 static void hardware_disable_all_nolock(void)
3460 {
3461 	BUG_ON(!kvm_usage_count);
3462 
3463 	kvm_usage_count--;
3464 	if (!kvm_usage_count)
3465 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3466 }
3467 
3468 static void hardware_disable_all(void)
3469 {
3470 	raw_spin_lock(&kvm_count_lock);
3471 	hardware_disable_all_nolock();
3472 	raw_spin_unlock(&kvm_count_lock);
3473 }
3474 
3475 static int hardware_enable_all(void)
3476 {
3477 	int r = 0;
3478 
3479 	raw_spin_lock(&kvm_count_lock);
3480 
3481 	kvm_usage_count++;
3482 	if (kvm_usage_count == 1) {
3483 		atomic_set(&hardware_enable_failed, 0);
3484 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3485 
3486 		if (atomic_read(&hardware_enable_failed)) {
3487 			hardware_disable_all_nolock();
3488 			r = -EBUSY;
3489 		}
3490 	}
3491 
3492 	raw_spin_unlock(&kvm_count_lock);
3493 
3494 	return r;
3495 }
3496 
3497 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3498 		      void *v)
3499 {
3500 	/*
3501 	 * Some (well, at least mine) BIOSes hang on reboot if
3502 	 * in vmx root mode.
3503 	 *
3504 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3505 	 */
3506 	pr_info("kvm: exiting hardware virtualization\n");
3507 	kvm_rebooting = true;
3508 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3509 	return NOTIFY_OK;
3510 }
3511 
3512 static struct notifier_block kvm_reboot_notifier = {
3513 	.notifier_call = kvm_reboot,
3514 	.priority = 0,
3515 };
3516 
3517 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3518 {
3519 	int i;
3520 
3521 	for (i = 0; i < bus->dev_count; i++) {
3522 		struct kvm_io_device *pos = bus->range[i].dev;
3523 
3524 		kvm_iodevice_destructor(pos);
3525 	}
3526 	kfree(bus);
3527 }
3528 
3529 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3530 				 const struct kvm_io_range *r2)
3531 {
3532 	gpa_t addr1 = r1->addr;
3533 	gpa_t addr2 = r2->addr;
3534 
3535 	if (addr1 < addr2)
3536 		return -1;
3537 
3538 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3539 	 * accept any overlapping write.  Any order is acceptable for
3540 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3541 	 * we process all of them.
3542 	 */
3543 	if (r2->len) {
3544 		addr1 += r1->len;
3545 		addr2 += r2->len;
3546 	}
3547 
3548 	if (addr1 > addr2)
3549 		return 1;
3550 
3551 	return 0;
3552 }
3553 
3554 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3555 {
3556 	return kvm_io_bus_cmp(p1, p2);
3557 }
3558 
3559 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3560 			     gpa_t addr, int len)
3561 {
3562 	struct kvm_io_range *range, key;
3563 	int off;
3564 
3565 	key = (struct kvm_io_range) {
3566 		.addr = addr,
3567 		.len = len,
3568 	};
3569 
3570 	range = bsearch(&key, bus->range, bus->dev_count,
3571 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3572 	if (range == NULL)
3573 		return -ENOENT;
3574 
3575 	off = range - bus->range;
3576 
3577 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3578 		off--;
3579 
3580 	return off;
3581 }
3582 
3583 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3584 			      struct kvm_io_range *range, const void *val)
3585 {
3586 	int idx;
3587 
3588 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3589 	if (idx < 0)
3590 		return -EOPNOTSUPP;
3591 
3592 	while (idx < bus->dev_count &&
3593 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3594 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3595 					range->len, val))
3596 			return idx;
3597 		idx++;
3598 	}
3599 
3600 	return -EOPNOTSUPP;
3601 }
3602 
3603 /* kvm_io_bus_write - called under kvm->slots_lock */
3604 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3605 		     int len, const void *val)
3606 {
3607 	struct kvm_io_bus *bus;
3608 	struct kvm_io_range range;
3609 	int r;
3610 
3611 	range = (struct kvm_io_range) {
3612 		.addr = addr,
3613 		.len = len,
3614 	};
3615 
3616 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3617 	if (!bus)
3618 		return -ENOMEM;
3619 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3620 	return r < 0 ? r : 0;
3621 }
3622 
3623 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3624 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3625 			    gpa_t addr, int len, const void *val, long cookie)
3626 {
3627 	struct kvm_io_bus *bus;
3628 	struct kvm_io_range range;
3629 
3630 	range = (struct kvm_io_range) {
3631 		.addr = addr,
3632 		.len = len,
3633 	};
3634 
3635 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3636 	if (!bus)
3637 		return -ENOMEM;
3638 
3639 	/* First try the device referenced by cookie. */
3640 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3641 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3642 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3643 					val))
3644 			return cookie;
3645 
3646 	/*
3647 	 * cookie contained garbage; fall back to search and return the
3648 	 * correct cookie value.
3649 	 */
3650 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3651 }
3652 
3653 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3654 			     struct kvm_io_range *range, void *val)
3655 {
3656 	int idx;
3657 
3658 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3659 	if (idx < 0)
3660 		return -EOPNOTSUPP;
3661 
3662 	while (idx < bus->dev_count &&
3663 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3664 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3665 				       range->len, val))
3666 			return idx;
3667 		idx++;
3668 	}
3669 
3670 	return -EOPNOTSUPP;
3671 }
3672 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3673 
3674 /* kvm_io_bus_read - called under kvm->slots_lock */
3675 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3676 		    int len, void *val)
3677 {
3678 	struct kvm_io_bus *bus;
3679 	struct kvm_io_range range;
3680 	int r;
3681 
3682 	range = (struct kvm_io_range) {
3683 		.addr = addr,
3684 		.len = len,
3685 	};
3686 
3687 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3688 	if (!bus)
3689 		return -ENOMEM;
3690 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3691 	return r < 0 ? r : 0;
3692 }
3693 
3694 
3695 /* Caller must hold slots_lock. */
3696 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3697 			    int len, struct kvm_io_device *dev)
3698 {
3699 	int i;
3700 	struct kvm_io_bus *new_bus, *bus;
3701 	struct kvm_io_range range;
3702 
3703 	bus = kvm_get_bus(kvm, bus_idx);
3704 	if (!bus)
3705 		return -ENOMEM;
3706 
3707 	/* exclude ioeventfd which is limited by maximum fd */
3708 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3709 		return -ENOSPC;
3710 
3711 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3712 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3713 	if (!new_bus)
3714 		return -ENOMEM;
3715 
3716 	range = (struct kvm_io_range) {
3717 		.addr = addr,
3718 		.len = len,
3719 		.dev = dev,
3720 	};
3721 
3722 	for (i = 0; i < bus->dev_count; i++)
3723 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3724 			break;
3725 
3726 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3727 	new_bus->dev_count++;
3728 	new_bus->range[i] = range;
3729 	memcpy(new_bus->range + i + 1, bus->range + i,
3730 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3731 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3732 	synchronize_srcu_expedited(&kvm->srcu);
3733 	kfree(bus);
3734 
3735 	return 0;
3736 }
3737 
3738 /* Caller must hold slots_lock. */
3739 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3740 			       struct kvm_io_device *dev)
3741 {
3742 	int i;
3743 	struct kvm_io_bus *new_bus, *bus;
3744 
3745 	bus = kvm_get_bus(kvm, bus_idx);
3746 	if (!bus)
3747 		return;
3748 
3749 	for (i = 0; i < bus->dev_count; i++)
3750 		if (bus->range[i].dev == dev) {
3751 			break;
3752 		}
3753 
3754 	if (i == bus->dev_count)
3755 		return;
3756 
3757 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3758 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3759 	if (!new_bus)  {
3760 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3761 		goto broken;
3762 	}
3763 
3764 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3765 	new_bus->dev_count--;
3766 	memcpy(new_bus->range + i, bus->range + i + 1,
3767 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3768 
3769 broken:
3770 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3771 	synchronize_srcu_expedited(&kvm->srcu);
3772 	kfree(bus);
3773 	return;
3774 }
3775 
3776 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3777 					 gpa_t addr)
3778 {
3779 	struct kvm_io_bus *bus;
3780 	int dev_idx, srcu_idx;
3781 	struct kvm_io_device *iodev = NULL;
3782 
3783 	srcu_idx = srcu_read_lock(&kvm->srcu);
3784 
3785 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3786 	if (!bus)
3787 		goto out_unlock;
3788 
3789 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3790 	if (dev_idx < 0)
3791 		goto out_unlock;
3792 
3793 	iodev = bus->range[dev_idx].dev;
3794 
3795 out_unlock:
3796 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3797 
3798 	return iodev;
3799 }
3800 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3801 
3802 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3803 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3804 			   const char *fmt)
3805 {
3806 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3807 					  inode->i_private;
3808 
3809 	/* The debugfs files are a reference to the kvm struct which
3810 	 * is still valid when kvm_destroy_vm is called.
3811 	 * To avoid the race between open and the removal of the debugfs
3812 	 * directory we test against the users count.
3813 	 */
3814 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3815 		return -ENOENT;
3816 
3817 	if (simple_attr_open(inode, file, get, set, fmt)) {
3818 		kvm_put_kvm(stat_data->kvm);
3819 		return -ENOMEM;
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3826 {
3827 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3828 					  inode->i_private;
3829 
3830 	simple_attr_release(inode, file);
3831 	kvm_put_kvm(stat_data->kvm);
3832 
3833 	return 0;
3834 }
3835 
3836 static int vm_stat_get_per_vm(void *data, u64 *val)
3837 {
3838 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3839 
3840 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3841 
3842 	return 0;
3843 }
3844 
3845 static int vm_stat_clear_per_vm(void *data, u64 val)
3846 {
3847 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3848 
3849 	if (val)
3850 		return -EINVAL;
3851 
3852 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3853 
3854 	return 0;
3855 }
3856 
3857 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3858 {
3859 	__simple_attr_check_format("%llu\n", 0ull);
3860 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3861 				vm_stat_clear_per_vm, "%llu\n");
3862 }
3863 
3864 static const struct file_operations vm_stat_get_per_vm_fops = {
3865 	.owner   = THIS_MODULE,
3866 	.open    = vm_stat_get_per_vm_open,
3867 	.release = kvm_debugfs_release,
3868 	.read    = simple_attr_read,
3869 	.write   = simple_attr_write,
3870 	.llseek  = no_llseek,
3871 };
3872 
3873 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3874 {
3875 	int i;
3876 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3877 	struct kvm_vcpu *vcpu;
3878 
3879 	*val = 0;
3880 
3881 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3882 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3883 
3884 	return 0;
3885 }
3886 
3887 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3888 {
3889 	int i;
3890 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3891 	struct kvm_vcpu *vcpu;
3892 
3893 	if (val)
3894 		return -EINVAL;
3895 
3896 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3897 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3898 
3899 	return 0;
3900 }
3901 
3902 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3903 {
3904 	__simple_attr_check_format("%llu\n", 0ull);
3905 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3906 				 vcpu_stat_clear_per_vm, "%llu\n");
3907 }
3908 
3909 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3910 	.owner   = THIS_MODULE,
3911 	.open    = vcpu_stat_get_per_vm_open,
3912 	.release = kvm_debugfs_release,
3913 	.read    = simple_attr_read,
3914 	.write   = simple_attr_write,
3915 	.llseek  = no_llseek,
3916 };
3917 
3918 static const struct file_operations *stat_fops_per_vm[] = {
3919 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3920 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3921 };
3922 
3923 static int vm_stat_get(void *_offset, u64 *val)
3924 {
3925 	unsigned offset = (long)_offset;
3926 	struct kvm *kvm;
3927 	struct kvm_stat_data stat_tmp = {.offset = offset};
3928 	u64 tmp_val;
3929 
3930 	*val = 0;
3931 	spin_lock(&kvm_lock);
3932 	list_for_each_entry(kvm, &vm_list, vm_list) {
3933 		stat_tmp.kvm = kvm;
3934 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3935 		*val += tmp_val;
3936 	}
3937 	spin_unlock(&kvm_lock);
3938 	return 0;
3939 }
3940 
3941 static int vm_stat_clear(void *_offset, u64 val)
3942 {
3943 	unsigned offset = (long)_offset;
3944 	struct kvm *kvm;
3945 	struct kvm_stat_data stat_tmp = {.offset = offset};
3946 
3947 	if (val)
3948 		return -EINVAL;
3949 
3950 	spin_lock(&kvm_lock);
3951 	list_for_each_entry(kvm, &vm_list, vm_list) {
3952 		stat_tmp.kvm = kvm;
3953 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3954 	}
3955 	spin_unlock(&kvm_lock);
3956 
3957 	return 0;
3958 }
3959 
3960 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3961 
3962 static int vcpu_stat_get(void *_offset, u64 *val)
3963 {
3964 	unsigned offset = (long)_offset;
3965 	struct kvm *kvm;
3966 	struct kvm_stat_data stat_tmp = {.offset = offset};
3967 	u64 tmp_val;
3968 
3969 	*val = 0;
3970 	spin_lock(&kvm_lock);
3971 	list_for_each_entry(kvm, &vm_list, vm_list) {
3972 		stat_tmp.kvm = kvm;
3973 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3974 		*val += tmp_val;
3975 	}
3976 	spin_unlock(&kvm_lock);
3977 	return 0;
3978 }
3979 
3980 static int vcpu_stat_clear(void *_offset, u64 val)
3981 {
3982 	unsigned offset = (long)_offset;
3983 	struct kvm *kvm;
3984 	struct kvm_stat_data stat_tmp = {.offset = offset};
3985 
3986 	if (val)
3987 		return -EINVAL;
3988 
3989 	spin_lock(&kvm_lock);
3990 	list_for_each_entry(kvm, &vm_list, vm_list) {
3991 		stat_tmp.kvm = kvm;
3992 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3993 	}
3994 	spin_unlock(&kvm_lock);
3995 
3996 	return 0;
3997 }
3998 
3999 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4000 			"%llu\n");
4001 
4002 static const struct file_operations *stat_fops[] = {
4003 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4004 	[KVM_STAT_VM]   = &vm_stat_fops,
4005 };
4006 
4007 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4008 {
4009 	struct kobj_uevent_env *env;
4010 	unsigned long long created, active;
4011 
4012 	if (!kvm_dev.this_device || !kvm)
4013 		return;
4014 
4015 	spin_lock(&kvm_lock);
4016 	if (type == KVM_EVENT_CREATE_VM) {
4017 		kvm_createvm_count++;
4018 		kvm_active_vms++;
4019 	} else if (type == KVM_EVENT_DESTROY_VM) {
4020 		kvm_active_vms--;
4021 	}
4022 	created = kvm_createvm_count;
4023 	active = kvm_active_vms;
4024 	spin_unlock(&kvm_lock);
4025 
4026 	env = kzalloc(sizeof(*env), GFP_KERNEL);
4027 	if (!env)
4028 		return;
4029 
4030 	add_uevent_var(env, "CREATED=%llu", created);
4031 	add_uevent_var(env, "COUNT=%llu", active);
4032 
4033 	if (type == KVM_EVENT_CREATE_VM) {
4034 		add_uevent_var(env, "EVENT=create");
4035 		kvm->userspace_pid = task_pid_nr(current);
4036 	} else if (type == KVM_EVENT_DESTROY_VM) {
4037 		add_uevent_var(env, "EVENT=destroy");
4038 	}
4039 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4040 
4041 	if (kvm->debugfs_dentry) {
4042 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
4043 
4044 		if (p) {
4045 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4046 			if (!IS_ERR(tmp))
4047 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4048 			kfree(p);
4049 		}
4050 	}
4051 	/* no need for checks, since we are adding at most only 5 keys */
4052 	env->envp[env->envp_idx++] = NULL;
4053 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4054 	kfree(env);
4055 }
4056 
4057 static void kvm_init_debug(void)
4058 {
4059 	struct kvm_stats_debugfs_item *p;
4060 
4061 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4062 
4063 	kvm_debugfs_num_entries = 0;
4064 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4065 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4066 				    (void *)(long)p->offset,
4067 				    stat_fops[p->kind]);
4068 	}
4069 }
4070 
4071 static int kvm_suspend(void)
4072 {
4073 	if (kvm_usage_count)
4074 		hardware_disable_nolock(NULL);
4075 	return 0;
4076 }
4077 
4078 static void kvm_resume(void)
4079 {
4080 	if (kvm_usage_count) {
4081 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
4082 		hardware_enable_nolock(NULL);
4083 	}
4084 }
4085 
4086 static struct syscore_ops kvm_syscore_ops = {
4087 	.suspend = kvm_suspend,
4088 	.resume = kvm_resume,
4089 };
4090 
4091 static inline
4092 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4093 {
4094 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4095 }
4096 
4097 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4098 {
4099 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4100 
4101 	if (vcpu->preempted)
4102 		vcpu->preempted = false;
4103 
4104 	kvm_arch_sched_in(vcpu, cpu);
4105 
4106 	kvm_arch_vcpu_load(vcpu, cpu);
4107 }
4108 
4109 static void kvm_sched_out(struct preempt_notifier *pn,
4110 			  struct task_struct *next)
4111 {
4112 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4113 
4114 	if (current->state == TASK_RUNNING)
4115 		vcpu->preempted = true;
4116 	kvm_arch_vcpu_put(vcpu);
4117 }
4118 
4119 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4120 		  struct module *module)
4121 {
4122 	int r;
4123 	int cpu;
4124 
4125 	r = kvm_arch_init(opaque);
4126 	if (r)
4127 		goto out_fail;
4128 
4129 	/*
4130 	 * kvm_arch_init makes sure there's at most one caller
4131 	 * for architectures that support multiple implementations,
4132 	 * like intel and amd on x86.
4133 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4134 	 * conflicts in case kvm is already setup for another implementation.
4135 	 */
4136 	r = kvm_irqfd_init();
4137 	if (r)
4138 		goto out_irqfd;
4139 
4140 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4141 		r = -ENOMEM;
4142 		goto out_free_0;
4143 	}
4144 
4145 	r = kvm_arch_hardware_setup();
4146 	if (r < 0)
4147 		goto out_free_0a;
4148 
4149 	for_each_online_cpu(cpu) {
4150 		smp_call_function_single(cpu,
4151 				kvm_arch_check_processor_compat,
4152 				&r, 1);
4153 		if (r < 0)
4154 			goto out_free_1;
4155 	}
4156 
4157 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4158 				      kvm_starting_cpu, kvm_dying_cpu);
4159 	if (r)
4160 		goto out_free_2;
4161 	register_reboot_notifier(&kvm_reboot_notifier);
4162 
4163 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4164 	if (!vcpu_align)
4165 		vcpu_align = __alignof__(struct kvm_vcpu);
4166 	kvm_vcpu_cache =
4167 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4168 					   SLAB_ACCOUNT,
4169 					   offsetof(struct kvm_vcpu, arch),
4170 					   sizeof_field(struct kvm_vcpu, arch),
4171 					   NULL);
4172 	if (!kvm_vcpu_cache) {
4173 		r = -ENOMEM;
4174 		goto out_free_3;
4175 	}
4176 
4177 	r = kvm_async_pf_init();
4178 	if (r)
4179 		goto out_free;
4180 
4181 	kvm_chardev_ops.owner = module;
4182 	kvm_vm_fops.owner = module;
4183 	kvm_vcpu_fops.owner = module;
4184 
4185 	r = misc_register(&kvm_dev);
4186 	if (r) {
4187 		pr_err("kvm: misc device register failed\n");
4188 		goto out_unreg;
4189 	}
4190 
4191 	register_syscore_ops(&kvm_syscore_ops);
4192 
4193 	kvm_preempt_ops.sched_in = kvm_sched_in;
4194 	kvm_preempt_ops.sched_out = kvm_sched_out;
4195 
4196 	kvm_init_debug();
4197 
4198 	r = kvm_vfio_ops_init();
4199 	WARN_ON(r);
4200 
4201 	return 0;
4202 
4203 out_unreg:
4204 	kvm_async_pf_deinit();
4205 out_free:
4206 	kmem_cache_destroy(kvm_vcpu_cache);
4207 out_free_3:
4208 	unregister_reboot_notifier(&kvm_reboot_notifier);
4209 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4210 out_free_2:
4211 out_free_1:
4212 	kvm_arch_hardware_unsetup();
4213 out_free_0a:
4214 	free_cpumask_var(cpus_hardware_enabled);
4215 out_free_0:
4216 	kvm_irqfd_exit();
4217 out_irqfd:
4218 	kvm_arch_exit();
4219 out_fail:
4220 	return r;
4221 }
4222 EXPORT_SYMBOL_GPL(kvm_init);
4223 
4224 void kvm_exit(void)
4225 {
4226 	debugfs_remove_recursive(kvm_debugfs_dir);
4227 	misc_deregister(&kvm_dev);
4228 	kmem_cache_destroy(kvm_vcpu_cache);
4229 	kvm_async_pf_deinit();
4230 	unregister_syscore_ops(&kvm_syscore_ops);
4231 	unregister_reboot_notifier(&kvm_reboot_notifier);
4232 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4233 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4234 	kvm_arch_hardware_unsetup();
4235 	kvm_arch_exit();
4236 	kvm_irqfd_exit();
4237 	free_cpumask_var(cpus_hardware_enabled);
4238 	kvm_vfio_ops_exit();
4239 }
4240 EXPORT_SYMBOL_GPL(kvm_exit);
4241