xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 179dd8c0348af75b02c7d72eaaf1cb179f1721ef)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71 
72 /*
73  * Ordering of locks:
74  *
75  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76  */
77 
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81 
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85 
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88 
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90 
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93 
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 			   unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 				  unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102 
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104 
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
107 
108 __visible bool kvm_rebooting;
109 EXPORT_SYMBOL_GPL(kvm_rebooting);
110 
111 static bool largepages_enabled = true;
112 
113 bool kvm_is_reserved_pfn(pfn_t pfn)
114 {
115 	if (pfn_valid(pfn))
116 		return PageReserved(pfn_to_page(pfn));
117 
118 	return true;
119 }
120 
121 /*
122  * Switches to specified vcpu, until a matching vcpu_put()
123  */
124 int vcpu_load(struct kvm_vcpu *vcpu)
125 {
126 	int cpu;
127 
128 	if (mutex_lock_killable(&vcpu->mutex))
129 		return -EINTR;
130 	cpu = get_cpu();
131 	preempt_notifier_register(&vcpu->preempt_notifier);
132 	kvm_arch_vcpu_load(vcpu, cpu);
133 	put_cpu();
134 	return 0;
135 }
136 
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139 	preempt_disable();
140 	kvm_arch_vcpu_put(vcpu);
141 	preempt_notifier_unregister(&vcpu->preempt_notifier);
142 	preempt_enable();
143 	mutex_unlock(&vcpu->mutex);
144 }
145 
146 static void ack_flush(void *_completed)
147 {
148 }
149 
150 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
151 {
152 	int i, cpu, me;
153 	cpumask_var_t cpus;
154 	bool called = true;
155 	struct kvm_vcpu *vcpu;
156 
157 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
158 
159 	me = get_cpu();
160 	kvm_for_each_vcpu(i, vcpu, kvm) {
161 		kvm_make_request(req, vcpu);
162 		cpu = vcpu->cpu;
163 
164 		/* Set ->requests bit before we read ->mode */
165 		smp_mb();
166 
167 		if (cpus != NULL && cpu != -1 && cpu != me &&
168 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
169 			cpumask_set_cpu(cpu, cpus);
170 	}
171 	if (unlikely(cpus == NULL))
172 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
173 	else if (!cpumask_empty(cpus))
174 		smp_call_function_many(cpus, ack_flush, NULL, 1);
175 	else
176 		called = false;
177 	put_cpu();
178 	free_cpumask_var(cpus);
179 	return called;
180 }
181 
182 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
183 void kvm_flush_remote_tlbs(struct kvm *kvm)
184 {
185 	long dirty_count = kvm->tlbs_dirty;
186 
187 	smp_mb();
188 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
189 		++kvm->stat.remote_tlb_flush;
190 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
191 }
192 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
193 #endif
194 
195 void kvm_reload_remote_mmus(struct kvm *kvm)
196 {
197 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
198 }
199 
200 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
201 {
202 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
203 }
204 
205 void kvm_make_scan_ioapic_request(struct kvm *kvm)
206 {
207 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
208 }
209 
210 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
211 {
212 	struct page *page;
213 	int r;
214 
215 	mutex_init(&vcpu->mutex);
216 	vcpu->cpu = -1;
217 	vcpu->kvm = kvm;
218 	vcpu->vcpu_id = id;
219 	vcpu->pid = NULL;
220 	init_waitqueue_head(&vcpu->wq);
221 	kvm_async_pf_vcpu_init(vcpu);
222 
223 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
224 	if (!page) {
225 		r = -ENOMEM;
226 		goto fail;
227 	}
228 	vcpu->run = page_address(page);
229 
230 	kvm_vcpu_set_in_spin_loop(vcpu, false);
231 	kvm_vcpu_set_dy_eligible(vcpu, false);
232 	vcpu->preempted = false;
233 
234 	r = kvm_arch_vcpu_init(vcpu);
235 	if (r < 0)
236 		goto fail_free_run;
237 	return 0;
238 
239 fail_free_run:
240 	free_page((unsigned long)vcpu->run);
241 fail:
242 	return r;
243 }
244 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
245 
246 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
247 {
248 	put_pid(vcpu->pid);
249 	kvm_arch_vcpu_uninit(vcpu);
250 	free_page((unsigned long)vcpu->run);
251 }
252 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
253 
254 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
255 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
256 {
257 	return container_of(mn, struct kvm, mmu_notifier);
258 }
259 
260 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
261 					     struct mm_struct *mm,
262 					     unsigned long address)
263 {
264 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
265 	int need_tlb_flush, idx;
266 
267 	/*
268 	 * When ->invalidate_page runs, the linux pte has been zapped
269 	 * already but the page is still allocated until
270 	 * ->invalidate_page returns. So if we increase the sequence
271 	 * here the kvm page fault will notice if the spte can't be
272 	 * established because the page is going to be freed. If
273 	 * instead the kvm page fault establishes the spte before
274 	 * ->invalidate_page runs, kvm_unmap_hva will release it
275 	 * before returning.
276 	 *
277 	 * The sequence increase only need to be seen at spin_unlock
278 	 * time, and not at spin_lock time.
279 	 *
280 	 * Increasing the sequence after the spin_unlock would be
281 	 * unsafe because the kvm page fault could then establish the
282 	 * pte after kvm_unmap_hva returned, without noticing the page
283 	 * is going to be freed.
284 	 */
285 	idx = srcu_read_lock(&kvm->srcu);
286 	spin_lock(&kvm->mmu_lock);
287 
288 	kvm->mmu_notifier_seq++;
289 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
290 	/* we've to flush the tlb before the pages can be freed */
291 	if (need_tlb_flush)
292 		kvm_flush_remote_tlbs(kvm);
293 
294 	spin_unlock(&kvm->mmu_lock);
295 
296 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
297 
298 	srcu_read_unlock(&kvm->srcu, idx);
299 }
300 
301 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
302 					struct mm_struct *mm,
303 					unsigned long address,
304 					pte_t pte)
305 {
306 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
307 	int idx;
308 
309 	idx = srcu_read_lock(&kvm->srcu);
310 	spin_lock(&kvm->mmu_lock);
311 	kvm->mmu_notifier_seq++;
312 	kvm_set_spte_hva(kvm, address, pte);
313 	spin_unlock(&kvm->mmu_lock);
314 	srcu_read_unlock(&kvm->srcu, idx);
315 }
316 
317 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
318 						    struct mm_struct *mm,
319 						    unsigned long start,
320 						    unsigned long end)
321 {
322 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
323 	int need_tlb_flush = 0, idx;
324 
325 	idx = srcu_read_lock(&kvm->srcu);
326 	spin_lock(&kvm->mmu_lock);
327 	/*
328 	 * The count increase must become visible at unlock time as no
329 	 * spte can be established without taking the mmu_lock and
330 	 * count is also read inside the mmu_lock critical section.
331 	 */
332 	kvm->mmu_notifier_count++;
333 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
334 	need_tlb_flush |= kvm->tlbs_dirty;
335 	/* we've to flush the tlb before the pages can be freed */
336 	if (need_tlb_flush)
337 		kvm_flush_remote_tlbs(kvm);
338 
339 	spin_unlock(&kvm->mmu_lock);
340 	srcu_read_unlock(&kvm->srcu, idx);
341 }
342 
343 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
344 						  struct mm_struct *mm,
345 						  unsigned long start,
346 						  unsigned long end)
347 {
348 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
349 
350 	spin_lock(&kvm->mmu_lock);
351 	/*
352 	 * This sequence increase will notify the kvm page fault that
353 	 * the page that is going to be mapped in the spte could have
354 	 * been freed.
355 	 */
356 	kvm->mmu_notifier_seq++;
357 	smp_wmb();
358 	/*
359 	 * The above sequence increase must be visible before the
360 	 * below count decrease, which is ensured by the smp_wmb above
361 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
362 	 */
363 	kvm->mmu_notifier_count--;
364 	spin_unlock(&kvm->mmu_lock);
365 
366 	BUG_ON(kvm->mmu_notifier_count < 0);
367 }
368 
369 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
370 					      struct mm_struct *mm,
371 					      unsigned long start,
372 					      unsigned long end)
373 {
374 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
375 	int young, idx;
376 
377 	idx = srcu_read_lock(&kvm->srcu);
378 	spin_lock(&kvm->mmu_lock);
379 
380 	young = kvm_age_hva(kvm, start, end);
381 	if (young)
382 		kvm_flush_remote_tlbs(kvm);
383 
384 	spin_unlock(&kvm->mmu_lock);
385 	srcu_read_unlock(&kvm->srcu, idx);
386 
387 	return young;
388 }
389 
390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
391 				       struct mm_struct *mm,
392 				       unsigned long address)
393 {
394 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
395 	int young, idx;
396 
397 	idx = srcu_read_lock(&kvm->srcu);
398 	spin_lock(&kvm->mmu_lock);
399 	young = kvm_test_age_hva(kvm, address);
400 	spin_unlock(&kvm->mmu_lock);
401 	srcu_read_unlock(&kvm->srcu, idx);
402 
403 	return young;
404 }
405 
406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
407 				     struct mm_struct *mm)
408 {
409 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
410 	int idx;
411 
412 	idx = srcu_read_lock(&kvm->srcu);
413 	kvm_arch_flush_shadow_all(kvm);
414 	srcu_read_unlock(&kvm->srcu, idx);
415 }
416 
417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
418 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
419 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
420 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
421 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
422 	.test_young		= kvm_mmu_notifier_test_young,
423 	.change_pte		= kvm_mmu_notifier_change_pte,
424 	.release		= kvm_mmu_notifier_release,
425 };
426 
427 static int kvm_init_mmu_notifier(struct kvm *kvm)
428 {
429 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
430 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
431 }
432 
433 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
434 
435 static int kvm_init_mmu_notifier(struct kvm *kvm)
436 {
437 	return 0;
438 }
439 
440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
441 
442 static struct kvm_memslots *kvm_alloc_memslots(void)
443 {
444 	int i;
445 	struct kvm_memslots *slots;
446 
447 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
448 	if (!slots)
449 		return NULL;
450 
451 	/*
452 	 * Init kvm generation close to the maximum to easily test the
453 	 * code of handling generation number wrap-around.
454 	 */
455 	slots->generation = -150;
456 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
457 		slots->id_to_index[i] = slots->memslots[i].id = i;
458 
459 	return slots;
460 }
461 
462 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
463 {
464 	if (!memslot->dirty_bitmap)
465 		return;
466 
467 	kvfree(memslot->dirty_bitmap);
468 	memslot->dirty_bitmap = NULL;
469 }
470 
471 /*
472  * Free any memory in @free but not in @dont.
473  */
474 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
475 			      struct kvm_memory_slot *dont)
476 {
477 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
478 		kvm_destroy_dirty_bitmap(free);
479 
480 	kvm_arch_free_memslot(kvm, free, dont);
481 
482 	free->npages = 0;
483 }
484 
485 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
486 {
487 	struct kvm_memory_slot *memslot;
488 
489 	if (!slots)
490 		return;
491 
492 	kvm_for_each_memslot(memslot, slots)
493 		kvm_free_memslot(kvm, memslot, NULL);
494 
495 	kvfree(slots);
496 }
497 
498 static struct kvm *kvm_create_vm(unsigned long type)
499 {
500 	int r, i;
501 	struct kvm *kvm = kvm_arch_alloc_vm();
502 
503 	if (!kvm)
504 		return ERR_PTR(-ENOMEM);
505 
506 	r = kvm_arch_init_vm(kvm, type);
507 	if (r)
508 		goto out_err_no_disable;
509 
510 	r = hardware_enable_all();
511 	if (r)
512 		goto out_err_no_disable;
513 
514 #ifdef CONFIG_HAVE_KVM_IRQFD
515 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
516 #endif
517 
518 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
519 
520 	r = -ENOMEM;
521 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
522 		kvm->memslots[i] = kvm_alloc_memslots();
523 		if (!kvm->memslots[i])
524 			goto out_err_no_srcu;
525 	}
526 
527 	if (init_srcu_struct(&kvm->srcu))
528 		goto out_err_no_srcu;
529 	if (init_srcu_struct(&kvm->irq_srcu))
530 		goto out_err_no_irq_srcu;
531 	for (i = 0; i < KVM_NR_BUSES; i++) {
532 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
533 					GFP_KERNEL);
534 		if (!kvm->buses[i])
535 			goto out_err;
536 	}
537 
538 	spin_lock_init(&kvm->mmu_lock);
539 	kvm->mm = current->mm;
540 	atomic_inc(&kvm->mm->mm_count);
541 	kvm_eventfd_init(kvm);
542 	mutex_init(&kvm->lock);
543 	mutex_init(&kvm->irq_lock);
544 	mutex_init(&kvm->slots_lock);
545 	atomic_set(&kvm->users_count, 1);
546 	INIT_LIST_HEAD(&kvm->devices);
547 
548 	r = kvm_init_mmu_notifier(kvm);
549 	if (r)
550 		goto out_err;
551 
552 	spin_lock(&kvm_lock);
553 	list_add(&kvm->vm_list, &vm_list);
554 	spin_unlock(&kvm_lock);
555 
556 	preempt_notifier_inc();
557 
558 	return kvm;
559 
560 out_err:
561 	cleanup_srcu_struct(&kvm->irq_srcu);
562 out_err_no_irq_srcu:
563 	cleanup_srcu_struct(&kvm->srcu);
564 out_err_no_srcu:
565 	hardware_disable_all();
566 out_err_no_disable:
567 	for (i = 0; i < KVM_NR_BUSES; i++)
568 		kfree(kvm->buses[i]);
569 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
570 		kvm_free_memslots(kvm, kvm->memslots[i]);
571 	kvm_arch_free_vm(kvm);
572 	return ERR_PTR(r);
573 }
574 
575 /*
576  * Avoid using vmalloc for a small buffer.
577  * Should not be used when the size is statically known.
578  */
579 void *kvm_kvzalloc(unsigned long size)
580 {
581 	if (size > PAGE_SIZE)
582 		return vzalloc(size);
583 	else
584 		return kzalloc(size, GFP_KERNEL);
585 }
586 
587 static void kvm_destroy_devices(struct kvm *kvm)
588 {
589 	struct list_head *node, *tmp;
590 
591 	list_for_each_safe(node, tmp, &kvm->devices) {
592 		struct kvm_device *dev =
593 			list_entry(node, struct kvm_device, vm_node);
594 
595 		list_del(node);
596 		dev->ops->destroy(dev);
597 	}
598 }
599 
600 static void kvm_destroy_vm(struct kvm *kvm)
601 {
602 	int i;
603 	struct mm_struct *mm = kvm->mm;
604 
605 	kvm_arch_sync_events(kvm);
606 	spin_lock(&kvm_lock);
607 	list_del(&kvm->vm_list);
608 	spin_unlock(&kvm_lock);
609 	kvm_free_irq_routing(kvm);
610 	for (i = 0; i < KVM_NR_BUSES; i++)
611 		kvm_io_bus_destroy(kvm->buses[i]);
612 	kvm_coalesced_mmio_free(kvm);
613 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
614 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
615 #else
616 	kvm_arch_flush_shadow_all(kvm);
617 #endif
618 	kvm_arch_destroy_vm(kvm);
619 	kvm_destroy_devices(kvm);
620 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
621 		kvm_free_memslots(kvm, kvm->memslots[i]);
622 	cleanup_srcu_struct(&kvm->irq_srcu);
623 	cleanup_srcu_struct(&kvm->srcu);
624 	kvm_arch_free_vm(kvm);
625 	preempt_notifier_dec();
626 	hardware_disable_all();
627 	mmdrop(mm);
628 }
629 
630 void kvm_get_kvm(struct kvm *kvm)
631 {
632 	atomic_inc(&kvm->users_count);
633 }
634 EXPORT_SYMBOL_GPL(kvm_get_kvm);
635 
636 void kvm_put_kvm(struct kvm *kvm)
637 {
638 	if (atomic_dec_and_test(&kvm->users_count))
639 		kvm_destroy_vm(kvm);
640 }
641 EXPORT_SYMBOL_GPL(kvm_put_kvm);
642 
643 
644 static int kvm_vm_release(struct inode *inode, struct file *filp)
645 {
646 	struct kvm *kvm = filp->private_data;
647 
648 	kvm_irqfd_release(kvm);
649 
650 	kvm_put_kvm(kvm);
651 	return 0;
652 }
653 
654 /*
655  * Allocation size is twice as large as the actual dirty bitmap size.
656  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
657  */
658 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
659 {
660 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
661 
662 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
663 	if (!memslot->dirty_bitmap)
664 		return -ENOMEM;
665 
666 	return 0;
667 }
668 
669 /*
670  * Insert memslot and re-sort memslots based on their GFN,
671  * so binary search could be used to lookup GFN.
672  * Sorting algorithm takes advantage of having initially
673  * sorted array and known changed memslot position.
674  */
675 static void update_memslots(struct kvm_memslots *slots,
676 			    struct kvm_memory_slot *new)
677 {
678 	int id = new->id;
679 	int i = slots->id_to_index[id];
680 	struct kvm_memory_slot *mslots = slots->memslots;
681 
682 	WARN_ON(mslots[i].id != id);
683 	if (!new->npages) {
684 		WARN_ON(!mslots[i].npages);
685 		if (mslots[i].npages)
686 			slots->used_slots--;
687 	} else {
688 		if (!mslots[i].npages)
689 			slots->used_slots++;
690 	}
691 
692 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
693 	       new->base_gfn <= mslots[i + 1].base_gfn) {
694 		if (!mslots[i + 1].npages)
695 			break;
696 		mslots[i] = mslots[i + 1];
697 		slots->id_to_index[mslots[i].id] = i;
698 		i++;
699 	}
700 
701 	/*
702 	 * The ">=" is needed when creating a slot with base_gfn == 0,
703 	 * so that it moves before all those with base_gfn == npages == 0.
704 	 *
705 	 * On the other hand, if new->npages is zero, the above loop has
706 	 * already left i pointing to the beginning of the empty part of
707 	 * mslots, and the ">=" would move the hole backwards in this
708 	 * case---which is wrong.  So skip the loop when deleting a slot.
709 	 */
710 	if (new->npages) {
711 		while (i > 0 &&
712 		       new->base_gfn >= mslots[i - 1].base_gfn) {
713 			mslots[i] = mslots[i - 1];
714 			slots->id_to_index[mslots[i].id] = i;
715 			i--;
716 		}
717 	} else
718 		WARN_ON_ONCE(i != slots->used_slots);
719 
720 	mslots[i] = *new;
721 	slots->id_to_index[mslots[i].id] = i;
722 }
723 
724 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
725 {
726 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
727 
728 #ifdef __KVM_HAVE_READONLY_MEM
729 	valid_flags |= KVM_MEM_READONLY;
730 #endif
731 
732 	if (mem->flags & ~valid_flags)
733 		return -EINVAL;
734 
735 	return 0;
736 }
737 
738 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
739 		int as_id, struct kvm_memslots *slots)
740 {
741 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
742 
743 	/*
744 	 * Set the low bit in the generation, which disables SPTE caching
745 	 * until the end of synchronize_srcu_expedited.
746 	 */
747 	WARN_ON(old_memslots->generation & 1);
748 	slots->generation = old_memslots->generation + 1;
749 
750 	rcu_assign_pointer(kvm->memslots[as_id], slots);
751 	synchronize_srcu_expedited(&kvm->srcu);
752 
753 	/*
754 	 * Increment the new memslot generation a second time. This prevents
755 	 * vm exits that race with memslot updates from caching a memslot
756 	 * generation that will (potentially) be valid forever.
757 	 */
758 	slots->generation++;
759 
760 	kvm_arch_memslots_updated(kvm, slots);
761 
762 	return old_memslots;
763 }
764 
765 /*
766  * Allocate some memory and give it an address in the guest physical address
767  * space.
768  *
769  * Discontiguous memory is allowed, mostly for framebuffers.
770  *
771  * Must be called holding kvm->slots_lock for write.
772  */
773 int __kvm_set_memory_region(struct kvm *kvm,
774 			    const struct kvm_userspace_memory_region *mem)
775 {
776 	int r;
777 	gfn_t base_gfn;
778 	unsigned long npages;
779 	struct kvm_memory_slot *slot;
780 	struct kvm_memory_slot old, new;
781 	struct kvm_memslots *slots = NULL, *old_memslots;
782 	int as_id, id;
783 	enum kvm_mr_change change;
784 
785 	r = check_memory_region_flags(mem);
786 	if (r)
787 		goto out;
788 
789 	r = -EINVAL;
790 	as_id = mem->slot >> 16;
791 	id = (u16)mem->slot;
792 
793 	/* General sanity checks */
794 	if (mem->memory_size & (PAGE_SIZE - 1))
795 		goto out;
796 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
797 		goto out;
798 	/* We can read the guest memory with __xxx_user() later on. */
799 	if ((id < KVM_USER_MEM_SLOTS) &&
800 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
801 	     !access_ok(VERIFY_WRITE,
802 			(void __user *)(unsigned long)mem->userspace_addr,
803 			mem->memory_size)))
804 		goto out;
805 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
806 		goto out;
807 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
808 		goto out;
809 
810 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
811 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
812 	npages = mem->memory_size >> PAGE_SHIFT;
813 
814 	if (npages > KVM_MEM_MAX_NR_PAGES)
815 		goto out;
816 
817 	new = old = *slot;
818 
819 	new.id = id;
820 	new.base_gfn = base_gfn;
821 	new.npages = npages;
822 	new.flags = mem->flags;
823 
824 	if (npages) {
825 		if (!old.npages)
826 			change = KVM_MR_CREATE;
827 		else { /* Modify an existing slot. */
828 			if ((mem->userspace_addr != old.userspace_addr) ||
829 			    (npages != old.npages) ||
830 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
831 				goto out;
832 
833 			if (base_gfn != old.base_gfn)
834 				change = KVM_MR_MOVE;
835 			else if (new.flags != old.flags)
836 				change = KVM_MR_FLAGS_ONLY;
837 			else { /* Nothing to change. */
838 				r = 0;
839 				goto out;
840 			}
841 		}
842 	} else {
843 		if (!old.npages)
844 			goto out;
845 
846 		change = KVM_MR_DELETE;
847 		new.base_gfn = 0;
848 		new.flags = 0;
849 	}
850 
851 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
852 		/* Check for overlaps */
853 		r = -EEXIST;
854 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
855 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
856 			    (slot->id == id))
857 				continue;
858 			if (!((base_gfn + npages <= slot->base_gfn) ||
859 			      (base_gfn >= slot->base_gfn + slot->npages)))
860 				goto out;
861 		}
862 	}
863 
864 	/* Free page dirty bitmap if unneeded */
865 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
866 		new.dirty_bitmap = NULL;
867 
868 	r = -ENOMEM;
869 	if (change == KVM_MR_CREATE) {
870 		new.userspace_addr = mem->userspace_addr;
871 
872 		if (kvm_arch_create_memslot(kvm, &new, npages))
873 			goto out_free;
874 	}
875 
876 	/* Allocate page dirty bitmap if needed */
877 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
878 		if (kvm_create_dirty_bitmap(&new) < 0)
879 			goto out_free;
880 	}
881 
882 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
883 	if (!slots)
884 		goto out_free;
885 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
886 
887 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
888 		slot = id_to_memslot(slots, id);
889 		slot->flags |= KVM_MEMSLOT_INVALID;
890 
891 		old_memslots = install_new_memslots(kvm, as_id, slots);
892 
893 		/* slot was deleted or moved, clear iommu mapping */
894 		kvm_iommu_unmap_pages(kvm, &old);
895 		/* From this point no new shadow pages pointing to a deleted,
896 		 * or moved, memslot will be created.
897 		 *
898 		 * validation of sp->gfn happens in:
899 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
900 		 *	- kvm_is_visible_gfn (mmu_check_roots)
901 		 */
902 		kvm_arch_flush_shadow_memslot(kvm, slot);
903 
904 		/*
905 		 * We can re-use the old_memslots from above, the only difference
906 		 * from the currently installed memslots is the invalid flag.  This
907 		 * will get overwritten by update_memslots anyway.
908 		 */
909 		slots = old_memslots;
910 	}
911 
912 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
913 	if (r)
914 		goto out_slots;
915 
916 	/* actual memory is freed via old in kvm_free_memslot below */
917 	if (change == KVM_MR_DELETE) {
918 		new.dirty_bitmap = NULL;
919 		memset(&new.arch, 0, sizeof(new.arch));
920 	}
921 
922 	update_memslots(slots, &new);
923 	old_memslots = install_new_memslots(kvm, as_id, slots);
924 
925 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
926 
927 	kvm_free_memslot(kvm, &old, &new);
928 	kvfree(old_memslots);
929 
930 	/*
931 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
932 	 * un-mapped and re-mapped if their base changes.  Since base change
933 	 * unmapping is handled above with slot deletion, mapping alone is
934 	 * needed here.  Anything else the iommu might care about for existing
935 	 * slots (size changes, userspace addr changes and read-only flag
936 	 * changes) is disallowed above, so any other attribute changes getting
937 	 * here can be skipped.
938 	 */
939 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
940 		r = kvm_iommu_map_pages(kvm, &new);
941 		return r;
942 	}
943 
944 	return 0;
945 
946 out_slots:
947 	kvfree(slots);
948 out_free:
949 	kvm_free_memslot(kvm, &new, &old);
950 out:
951 	return r;
952 }
953 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
954 
955 int kvm_set_memory_region(struct kvm *kvm,
956 			  const struct kvm_userspace_memory_region *mem)
957 {
958 	int r;
959 
960 	mutex_lock(&kvm->slots_lock);
961 	r = __kvm_set_memory_region(kvm, mem);
962 	mutex_unlock(&kvm->slots_lock);
963 	return r;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
966 
967 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
968 					  struct kvm_userspace_memory_region *mem)
969 {
970 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
971 		return -EINVAL;
972 
973 	return kvm_set_memory_region(kvm, mem);
974 }
975 
976 int kvm_get_dirty_log(struct kvm *kvm,
977 			struct kvm_dirty_log *log, int *is_dirty)
978 {
979 	struct kvm_memslots *slots;
980 	struct kvm_memory_slot *memslot;
981 	int r, i, as_id, id;
982 	unsigned long n;
983 	unsigned long any = 0;
984 
985 	r = -EINVAL;
986 	as_id = log->slot >> 16;
987 	id = (u16)log->slot;
988 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
989 		goto out;
990 
991 	slots = __kvm_memslots(kvm, as_id);
992 	memslot = id_to_memslot(slots, id);
993 	r = -ENOENT;
994 	if (!memslot->dirty_bitmap)
995 		goto out;
996 
997 	n = kvm_dirty_bitmap_bytes(memslot);
998 
999 	for (i = 0; !any && i < n/sizeof(long); ++i)
1000 		any = memslot->dirty_bitmap[i];
1001 
1002 	r = -EFAULT;
1003 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1004 		goto out;
1005 
1006 	if (any)
1007 		*is_dirty = 1;
1008 
1009 	r = 0;
1010 out:
1011 	return r;
1012 }
1013 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1014 
1015 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1016 /**
1017  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1018  *	are dirty write protect them for next write.
1019  * @kvm:	pointer to kvm instance
1020  * @log:	slot id and address to which we copy the log
1021  * @is_dirty:	flag set if any page is dirty
1022  *
1023  * We need to keep it in mind that VCPU threads can write to the bitmap
1024  * concurrently. So, to avoid losing track of dirty pages we keep the
1025  * following order:
1026  *
1027  *    1. Take a snapshot of the bit and clear it if needed.
1028  *    2. Write protect the corresponding page.
1029  *    3. Copy the snapshot to the userspace.
1030  *    4. Upon return caller flushes TLB's if needed.
1031  *
1032  * Between 2 and 4, the guest may write to the page using the remaining TLB
1033  * entry.  This is not a problem because the page is reported dirty using
1034  * the snapshot taken before and step 4 ensures that writes done after
1035  * exiting to userspace will be logged for the next call.
1036  *
1037  */
1038 int kvm_get_dirty_log_protect(struct kvm *kvm,
1039 			struct kvm_dirty_log *log, bool *is_dirty)
1040 {
1041 	struct kvm_memslots *slots;
1042 	struct kvm_memory_slot *memslot;
1043 	int r, i, as_id, id;
1044 	unsigned long n;
1045 	unsigned long *dirty_bitmap;
1046 	unsigned long *dirty_bitmap_buffer;
1047 
1048 	r = -EINVAL;
1049 	as_id = log->slot >> 16;
1050 	id = (u16)log->slot;
1051 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1052 		goto out;
1053 
1054 	slots = __kvm_memslots(kvm, as_id);
1055 	memslot = id_to_memslot(slots, id);
1056 
1057 	dirty_bitmap = memslot->dirty_bitmap;
1058 	r = -ENOENT;
1059 	if (!dirty_bitmap)
1060 		goto out;
1061 
1062 	n = kvm_dirty_bitmap_bytes(memslot);
1063 
1064 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1065 	memset(dirty_bitmap_buffer, 0, n);
1066 
1067 	spin_lock(&kvm->mmu_lock);
1068 	*is_dirty = false;
1069 	for (i = 0; i < n / sizeof(long); i++) {
1070 		unsigned long mask;
1071 		gfn_t offset;
1072 
1073 		if (!dirty_bitmap[i])
1074 			continue;
1075 
1076 		*is_dirty = true;
1077 
1078 		mask = xchg(&dirty_bitmap[i], 0);
1079 		dirty_bitmap_buffer[i] = mask;
1080 
1081 		if (mask) {
1082 			offset = i * BITS_PER_LONG;
1083 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1084 								offset, mask);
1085 		}
1086 	}
1087 
1088 	spin_unlock(&kvm->mmu_lock);
1089 
1090 	r = -EFAULT;
1091 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1092 		goto out;
1093 
1094 	r = 0;
1095 out:
1096 	return r;
1097 }
1098 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1099 #endif
1100 
1101 bool kvm_largepages_enabled(void)
1102 {
1103 	return largepages_enabled;
1104 }
1105 
1106 void kvm_disable_largepages(void)
1107 {
1108 	largepages_enabled = false;
1109 }
1110 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1111 
1112 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1113 {
1114 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1115 }
1116 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1117 
1118 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1119 {
1120 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1121 }
1122 
1123 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1124 {
1125 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1126 
1127 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1128 	      memslot->flags & KVM_MEMSLOT_INVALID)
1129 		return 0;
1130 
1131 	return 1;
1132 }
1133 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1134 
1135 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1136 {
1137 	struct vm_area_struct *vma;
1138 	unsigned long addr, size;
1139 
1140 	size = PAGE_SIZE;
1141 
1142 	addr = gfn_to_hva(kvm, gfn);
1143 	if (kvm_is_error_hva(addr))
1144 		return PAGE_SIZE;
1145 
1146 	down_read(&current->mm->mmap_sem);
1147 	vma = find_vma(current->mm, addr);
1148 	if (!vma)
1149 		goto out;
1150 
1151 	size = vma_kernel_pagesize(vma);
1152 
1153 out:
1154 	up_read(&current->mm->mmap_sem);
1155 
1156 	return size;
1157 }
1158 
1159 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1160 {
1161 	return slot->flags & KVM_MEM_READONLY;
1162 }
1163 
1164 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1165 				       gfn_t *nr_pages, bool write)
1166 {
1167 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1168 		return KVM_HVA_ERR_BAD;
1169 
1170 	if (memslot_is_readonly(slot) && write)
1171 		return KVM_HVA_ERR_RO_BAD;
1172 
1173 	if (nr_pages)
1174 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1175 
1176 	return __gfn_to_hva_memslot(slot, gfn);
1177 }
1178 
1179 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1180 				     gfn_t *nr_pages)
1181 {
1182 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1183 }
1184 
1185 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1186 					gfn_t gfn)
1187 {
1188 	return gfn_to_hva_many(slot, gfn, NULL);
1189 }
1190 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1191 
1192 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1193 {
1194 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1195 }
1196 EXPORT_SYMBOL_GPL(gfn_to_hva);
1197 
1198 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1199 {
1200 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1201 }
1202 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1203 
1204 /*
1205  * If writable is set to false, the hva returned by this function is only
1206  * allowed to be read.
1207  */
1208 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1209 				      gfn_t gfn, bool *writable)
1210 {
1211 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1212 
1213 	if (!kvm_is_error_hva(hva) && writable)
1214 		*writable = !memslot_is_readonly(slot);
1215 
1216 	return hva;
1217 }
1218 
1219 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1220 {
1221 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1222 
1223 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1224 }
1225 
1226 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1227 {
1228 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1229 
1230 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1231 }
1232 
1233 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1234 	unsigned long start, int write, struct page **page)
1235 {
1236 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1237 
1238 	if (write)
1239 		flags |= FOLL_WRITE;
1240 
1241 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1242 }
1243 
1244 static inline int check_user_page_hwpoison(unsigned long addr)
1245 {
1246 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1247 
1248 	rc = __get_user_pages(current, current->mm, addr, 1,
1249 			      flags, NULL, NULL, NULL);
1250 	return rc == -EHWPOISON;
1251 }
1252 
1253 /*
1254  * The atomic path to get the writable pfn which will be stored in @pfn,
1255  * true indicates success, otherwise false is returned.
1256  */
1257 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1258 			    bool write_fault, bool *writable, pfn_t *pfn)
1259 {
1260 	struct page *page[1];
1261 	int npages;
1262 
1263 	if (!(async || atomic))
1264 		return false;
1265 
1266 	/*
1267 	 * Fast pin a writable pfn only if it is a write fault request
1268 	 * or the caller allows to map a writable pfn for a read fault
1269 	 * request.
1270 	 */
1271 	if (!(write_fault || writable))
1272 		return false;
1273 
1274 	npages = __get_user_pages_fast(addr, 1, 1, page);
1275 	if (npages == 1) {
1276 		*pfn = page_to_pfn(page[0]);
1277 
1278 		if (writable)
1279 			*writable = true;
1280 		return true;
1281 	}
1282 
1283 	return false;
1284 }
1285 
1286 /*
1287  * The slow path to get the pfn of the specified host virtual address,
1288  * 1 indicates success, -errno is returned if error is detected.
1289  */
1290 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1291 			   bool *writable, pfn_t *pfn)
1292 {
1293 	struct page *page[1];
1294 	int npages = 0;
1295 
1296 	might_sleep();
1297 
1298 	if (writable)
1299 		*writable = write_fault;
1300 
1301 	if (async) {
1302 		down_read(&current->mm->mmap_sem);
1303 		npages = get_user_page_nowait(current, current->mm,
1304 					      addr, write_fault, page);
1305 		up_read(&current->mm->mmap_sem);
1306 	} else
1307 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1308 						   write_fault, 0, page,
1309 						   FOLL_TOUCH|FOLL_HWPOISON);
1310 	if (npages != 1)
1311 		return npages;
1312 
1313 	/* map read fault as writable if possible */
1314 	if (unlikely(!write_fault) && writable) {
1315 		struct page *wpage[1];
1316 
1317 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1318 		if (npages == 1) {
1319 			*writable = true;
1320 			put_page(page[0]);
1321 			page[0] = wpage[0];
1322 		}
1323 
1324 		npages = 1;
1325 	}
1326 	*pfn = page_to_pfn(page[0]);
1327 	return npages;
1328 }
1329 
1330 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1331 {
1332 	if (unlikely(!(vma->vm_flags & VM_READ)))
1333 		return false;
1334 
1335 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1336 		return false;
1337 
1338 	return true;
1339 }
1340 
1341 /*
1342  * Pin guest page in memory and return its pfn.
1343  * @addr: host virtual address which maps memory to the guest
1344  * @atomic: whether this function can sleep
1345  * @async: whether this function need to wait IO complete if the
1346  *         host page is not in the memory
1347  * @write_fault: whether we should get a writable host page
1348  * @writable: whether it allows to map a writable host page for !@write_fault
1349  *
1350  * The function will map a writable host page for these two cases:
1351  * 1): @write_fault = true
1352  * 2): @write_fault = false && @writable, @writable will tell the caller
1353  *     whether the mapping is writable.
1354  */
1355 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1356 			bool write_fault, bool *writable)
1357 {
1358 	struct vm_area_struct *vma;
1359 	pfn_t pfn = 0;
1360 	int npages;
1361 
1362 	/* we can do it either atomically or asynchronously, not both */
1363 	BUG_ON(atomic && async);
1364 
1365 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1366 		return pfn;
1367 
1368 	if (atomic)
1369 		return KVM_PFN_ERR_FAULT;
1370 
1371 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1372 	if (npages == 1)
1373 		return pfn;
1374 
1375 	down_read(&current->mm->mmap_sem);
1376 	if (npages == -EHWPOISON ||
1377 	      (!async && check_user_page_hwpoison(addr))) {
1378 		pfn = KVM_PFN_ERR_HWPOISON;
1379 		goto exit;
1380 	}
1381 
1382 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1383 
1384 	if (vma == NULL)
1385 		pfn = KVM_PFN_ERR_FAULT;
1386 	else if ((vma->vm_flags & VM_PFNMAP)) {
1387 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1388 			vma->vm_pgoff;
1389 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1390 	} else {
1391 		if (async && vma_is_valid(vma, write_fault))
1392 			*async = true;
1393 		pfn = KVM_PFN_ERR_FAULT;
1394 	}
1395 exit:
1396 	up_read(&current->mm->mmap_sem);
1397 	return pfn;
1398 }
1399 
1400 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1401 			   bool *async, bool write_fault, bool *writable)
1402 {
1403 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1404 
1405 	if (addr == KVM_HVA_ERR_RO_BAD)
1406 		return KVM_PFN_ERR_RO_FAULT;
1407 
1408 	if (kvm_is_error_hva(addr))
1409 		return KVM_PFN_NOSLOT;
1410 
1411 	/* Do not map writable pfn in the readonly memslot. */
1412 	if (writable && memslot_is_readonly(slot)) {
1413 		*writable = false;
1414 		writable = NULL;
1415 	}
1416 
1417 	return hva_to_pfn(addr, atomic, async, write_fault,
1418 			  writable);
1419 }
1420 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1421 
1422 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1423 		      bool *writable)
1424 {
1425 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1426 				    write_fault, writable);
1427 }
1428 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1429 
1430 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1431 {
1432 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1433 }
1434 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1435 
1436 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1437 {
1438 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1439 }
1440 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1441 
1442 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1443 {
1444 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1445 }
1446 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1447 
1448 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1449 {
1450 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1451 }
1452 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1453 
1454 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1455 {
1456 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1457 }
1458 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1459 
1460 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1461 {
1462 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1463 }
1464 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1465 
1466 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1467 			    struct page **pages, int nr_pages)
1468 {
1469 	unsigned long addr;
1470 	gfn_t entry;
1471 
1472 	addr = gfn_to_hva_many(slot, gfn, &entry);
1473 	if (kvm_is_error_hva(addr))
1474 		return -1;
1475 
1476 	if (entry < nr_pages)
1477 		return 0;
1478 
1479 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1480 }
1481 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1482 
1483 static struct page *kvm_pfn_to_page(pfn_t pfn)
1484 {
1485 	if (is_error_noslot_pfn(pfn))
1486 		return KVM_ERR_PTR_BAD_PAGE;
1487 
1488 	if (kvm_is_reserved_pfn(pfn)) {
1489 		WARN_ON(1);
1490 		return KVM_ERR_PTR_BAD_PAGE;
1491 	}
1492 
1493 	return pfn_to_page(pfn);
1494 }
1495 
1496 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1497 {
1498 	pfn_t pfn;
1499 
1500 	pfn = gfn_to_pfn(kvm, gfn);
1501 
1502 	return kvm_pfn_to_page(pfn);
1503 }
1504 EXPORT_SYMBOL_GPL(gfn_to_page);
1505 
1506 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1507 {
1508 	pfn_t pfn;
1509 
1510 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1511 
1512 	return kvm_pfn_to_page(pfn);
1513 }
1514 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1515 
1516 void kvm_release_page_clean(struct page *page)
1517 {
1518 	WARN_ON(is_error_page(page));
1519 
1520 	kvm_release_pfn_clean(page_to_pfn(page));
1521 }
1522 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1523 
1524 void kvm_release_pfn_clean(pfn_t pfn)
1525 {
1526 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1527 		put_page(pfn_to_page(pfn));
1528 }
1529 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1530 
1531 void kvm_release_page_dirty(struct page *page)
1532 {
1533 	WARN_ON(is_error_page(page));
1534 
1535 	kvm_release_pfn_dirty(page_to_pfn(page));
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1538 
1539 static void kvm_release_pfn_dirty(pfn_t pfn)
1540 {
1541 	kvm_set_pfn_dirty(pfn);
1542 	kvm_release_pfn_clean(pfn);
1543 }
1544 
1545 void kvm_set_pfn_dirty(pfn_t pfn)
1546 {
1547 	if (!kvm_is_reserved_pfn(pfn)) {
1548 		struct page *page = pfn_to_page(pfn);
1549 
1550 		if (!PageReserved(page))
1551 			SetPageDirty(page);
1552 	}
1553 }
1554 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1555 
1556 void kvm_set_pfn_accessed(pfn_t pfn)
1557 {
1558 	if (!kvm_is_reserved_pfn(pfn))
1559 		mark_page_accessed(pfn_to_page(pfn));
1560 }
1561 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1562 
1563 void kvm_get_pfn(pfn_t pfn)
1564 {
1565 	if (!kvm_is_reserved_pfn(pfn))
1566 		get_page(pfn_to_page(pfn));
1567 }
1568 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1569 
1570 static int next_segment(unsigned long len, int offset)
1571 {
1572 	if (len > PAGE_SIZE - offset)
1573 		return PAGE_SIZE - offset;
1574 	else
1575 		return len;
1576 }
1577 
1578 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1579 				 void *data, int offset, int len)
1580 {
1581 	int r;
1582 	unsigned long addr;
1583 
1584 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1585 	if (kvm_is_error_hva(addr))
1586 		return -EFAULT;
1587 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1588 	if (r)
1589 		return -EFAULT;
1590 	return 0;
1591 }
1592 
1593 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1594 			int len)
1595 {
1596 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1597 
1598 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1599 }
1600 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1601 
1602 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1603 			     int offset, int len)
1604 {
1605 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1606 
1607 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1610 
1611 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1612 {
1613 	gfn_t gfn = gpa >> PAGE_SHIFT;
1614 	int seg;
1615 	int offset = offset_in_page(gpa);
1616 	int ret;
1617 
1618 	while ((seg = next_segment(len, offset)) != 0) {
1619 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1620 		if (ret < 0)
1621 			return ret;
1622 		offset = 0;
1623 		len -= seg;
1624 		data += seg;
1625 		++gfn;
1626 	}
1627 	return 0;
1628 }
1629 EXPORT_SYMBOL_GPL(kvm_read_guest);
1630 
1631 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1632 {
1633 	gfn_t gfn = gpa >> PAGE_SHIFT;
1634 	int seg;
1635 	int offset = offset_in_page(gpa);
1636 	int ret;
1637 
1638 	while ((seg = next_segment(len, offset)) != 0) {
1639 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1640 		if (ret < 0)
1641 			return ret;
1642 		offset = 0;
1643 		len -= seg;
1644 		data += seg;
1645 		++gfn;
1646 	}
1647 	return 0;
1648 }
1649 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1650 
1651 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1652 			           void *data, int offset, unsigned long len)
1653 {
1654 	int r;
1655 	unsigned long addr;
1656 
1657 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1658 	if (kvm_is_error_hva(addr))
1659 		return -EFAULT;
1660 	pagefault_disable();
1661 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1662 	pagefault_enable();
1663 	if (r)
1664 		return -EFAULT;
1665 	return 0;
1666 }
1667 
1668 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1669 			  unsigned long len)
1670 {
1671 	gfn_t gfn = gpa >> PAGE_SHIFT;
1672 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1673 	int offset = offset_in_page(gpa);
1674 
1675 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1678 
1679 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1680 			       void *data, unsigned long len)
1681 {
1682 	gfn_t gfn = gpa >> PAGE_SHIFT;
1683 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1684 	int offset = offset_in_page(gpa);
1685 
1686 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1689 
1690 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1691 			          const void *data, int offset, int len)
1692 {
1693 	int r;
1694 	unsigned long addr;
1695 
1696 	addr = gfn_to_hva_memslot(memslot, gfn);
1697 	if (kvm_is_error_hva(addr))
1698 		return -EFAULT;
1699 	r = __copy_to_user((void __user *)addr + offset, data, len);
1700 	if (r)
1701 		return -EFAULT;
1702 	mark_page_dirty_in_slot(memslot, gfn);
1703 	return 0;
1704 }
1705 
1706 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1707 			 const void *data, int offset, int len)
1708 {
1709 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1710 
1711 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1714 
1715 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1716 			      const void *data, int offset, int len)
1717 {
1718 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1719 
1720 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1721 }
1722 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1723 
1724 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1725 		    unsigned long len)
1726 {
1727 	gfn_t gfn = gpa >> PAGE_SHIFT;
1728 	int seg;
1729 	int offset = offset_in_page(gpa);
1730 	int ret;
1731 
1732 	while ((seg = next_segment(len, offset)) != 0) {
1733 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1734 		if (ret < 0)
1735 			return ret;
1736 		offset = 0;
1737 		len -= seg;
1738 		data += seg;
1739 		++gfn;
1740 	}
1741 	return 0;
1742 }
1743 EXPORT_SYMBOL_GPL(kvm_write_guest);
1744 
1745 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1746 		         unsigned long len)
1747 {
1748 	gfn_t gfn = gpa >> PAGE_SHIFT;
1749 	int seg;
1750 	int offset = offset_in_page(gpa);
1751 	int ret;
1752 
1753 	while ((seg = next_segment(len, offset)) != 0) {
1754 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1755 		if (ret < 0)
1756 			return ret;
1757 		offset = 0;
1758 		len -= seg;
1759 		data += seg;
1760 		++gfn;
1761 	}
1762 	return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1765 
1766 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1767 			      gpa_t gpa, unsigned long len)
1768 {
1769 	struct kvm_memslots *slots = kvm_memslots(kvm);
1770 	int offset = offset_in_page(gpa);
1771 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1772 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1773 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1774 	gfn_t nr_pages_avail;
1775 
1776 	ghc->gpa = gpa;
1777 	ghc->generation = slots->generation;
1778 	ghc->len = len;
1779 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1780 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1781 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1782 		ghc->hva += offset;
1783 	} else {
1784 		/*
1785 		 * If the requested region crosses two memslots, we still
1786 		 * verify that the entire region is valid here.
1787 		 */
1788 		while (start_gfn <= end_gfn) {
1789 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1790 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1791 						   &nr_pages_avail);
1792 			if (kvm_is_error_hva(ghc->hva))
1793 				return -EFAULT;
1794 			start_gfn += nr_pages_avail;
1795 		}
1796 		/* Use the slow path for cross page reads and writes. */
1797 		ghc->memslot = NULL;
1798 	}
1799 	return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1802 
1803 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1804 			   void *data, unsigned long len)
1805 {
1806 	struct kvm_memslots *slots = kvm_memslots(kvm);
1807 	int r;
1808 
1809 	BUG_ON(len > ghc->len);
1810 
1811 	if (slots->generation != ghc->generation)
1812 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1813 
1814 	if (unlikely(!ghc->memslot))
1815 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1816 
1817 	if (kvm_is_error_hva(ghc->hva))
1818 		return -EFAULT;
1819 
1820 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1821 	if (r)
1822 		return -EFAULT;
1823 	mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1824 
1825 	return 0;
1826 }
1827 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1828 
1829 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1830 			   void *data, unsigned long len)
1831 {
1832 	struct kvm_memslots *slots = kvm_memslots(kvm);
1833 	int r;
1834 
1835 	BUG_ON(len > ghc->len);
1836 
1837 	if (slots->generation != ghc->generation)
1838 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1839 
1840 	if (unlikely(!ghc->memslot))
1841 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1842 
1843 	if (kvm_is_error_hva(ghc->hva))
1844 		return -EFAULT;
1845 
1846 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1847 	if (r)
1848 		return -EFAULT;
1849 
1850 	return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1853 
1854 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1855 {
1856 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1857 
1858 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1859 }
1860 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1861 
1862 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1863 {
1864 	gfn_t gfn = gpa >> PAGE_SHIFT;
1865 	int seg;
1866 	int offset = offset_in_page(gpa);
1867 	int ret;
1868 
1869 	while ((seg = next_segment(len, offset)) != 0) {
1870 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1871 		if (ret < 0)
1872 			return ret;
1873 		offset = 0;
1874 		len -= seg;
1875 		++gfn;
1876 	}
1877 	return 0;
1878 }
1879 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1880 
1881 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1882 				    gfn_t gfn)
1883 {
1884 	if (memslot && memslot->dirty_bitmap) {
1885 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1886 
1887 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1888 	}
1889 }
1890 
1891 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1892 {
1893 	struct kvm_memory_slot *memslot;
1894 
1895 	memslot = gfn_to_memslot(kvm, gfn);
1896 	mark_page_dirty_in_slot(memslot, gfn);
1897 }
1898 EXPORT_SYMBOL_GPL(mark_page_dirty);
1899 
1900 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1901 {
1902 	struct kvm_memory_slot *memslot;
1903 
1904 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1905 	mark_page_dirty_in_slot(memslot, gfn);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1908 
1909 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1910 {
1911 	if (kvm_arch_vcpu_runnable(vcpu)) {
1912 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1913 		return -EINTR;
1914 	}
1915 	if (kvm_cpu_has_pending_timer(vcpu))
1916 		return -EINTR;
1917 	if (signal_pending(current))
1918 		return -EINTR;
1919 
1920 	return 0;
1921 }
1922 
1923 /*
1924  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1925  */
1926 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1927 {
1928 	ktime_t start, cur;
1929 	DEFINE_WAIT(wait);
1930 	bool waited = false;
1931 
1932 	start = cur = ktime_get();
1933 	if (halt_poll_ns) {
1934 		ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1935 
1936 		do {
1937 			/*
1938 			 * This sets KVM_REQ_UNHALT if an interrupt
1939 			 * arrives.
1940 			 */
1941 			if (kvm_vcpu_check_block(vcpu) < 0) {
1942 				++vcpu->stat.halt_successful_poll;
1943 				goto out;
1944 			}
1945 			cur = ktime_get();
1946 		} while (single_task_running() && ktime_before(cur, stop));
1947 	}
1948 
1949 	for (;;) {
1950 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1951 
1952 		if (kvm_vcpu_check_block(vcpu) < 0)
1953 			break;
1954 
1955 		waited = true;
1956 		schedule();
1957 	}
1958 
1959 	finish_wait(&vcpu->wq, &wait);
1960 	cur = ktime_get();
1961 
1962 out:
1963 	trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1966 
1967 #ifndef CONFIG_S390
1968 /*
1969  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1970  */
1971 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1972 {
1973 	int me;
1974 	int cpu = vcpu->cpu;
1975 	wait_queue_head_t *wqp;
1976 
1977 	wqp = kvm_arch_vcpu_wq(vcpu);
1978 	if (waitqueue_active(wqp)) {
1979 		wake_up_interruptible(wqp);
1980 		++vcpu->stat.halt_wakeup;
1981 	}
1982 
1983 	me = get_cpu();
1984 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1985 		if (kvm_arch_vcpu_should_kick(vcpu))
1986 			smp_send_reschedule(cpu);
1987 	put_cpu();
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1990 #endif /* !CONFIG_S390 */
1991 
1992 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1993 {
1994 	struct pid *pid;
1995 	struct task_struct *task = NULL;
1996 	int ret = 0;
1997 
1998 	rcu_read_lock();
1999 	pid = rcu_dereference(target->pid);
2000 	if (pid)
2001 		task = get_pid_task(pid, PIDTYPE_PID);
2002 	rcu_read_unlock();
2003 	if (!task)
2004 		return ret;
2005 	ret = yield_to(task, 1);
2006 	put_task_struct(task);
2007 
2008 	return ret;
2009 }
2010 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2011 
2012 /*
2013  * Helper that checks whether a VCPU is eligible for directed yield.
2014  * Most eligible candidate to yield is decided by following heuristics:
2015  *
2016  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2017  *  (preempted lock holder), indicated by @in_spin_loop.
2018  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2019  *
2020  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2021  *  chance last time (mostly it has become eligible now since we have probably
2022  *  yielded to lockholder in last iteration. This is done by toggling
2023  *  @dy_eligible each time a VCPU checked for eligibility.)
2024  *
2025  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2026  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2027  *  burning. Giving priority for a potential lock-holder increases lock
2028  *  progress.
2029  *
2030  *  Since algorithm is based on heuristics, accessing another VCPU data without
2031  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2032  *  and continue with next VCPU and so on.
2033  */
2034 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2035 {
2036 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2037 	bool eligible;
2038 
2039 	eligible = !vcpu->spin_loop.in_spin_loop ||
2040 		    vcpu->spin_loop.dy_eligible;
2041 
2042 	if (vcpu->spin_loop.in_spin_loop)
2043 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2044 
2045 	return eligible;
2046 #else
2047 	return true;
2048 #endif
2049 }
2050 
2051 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2052 {
2053 	struct kvm *kvm = me->kvm;
2054 	struct kvm_vcpu *vcpu;
2055 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2056 	int yielded = 0;
2057 	int try = 3;
2058 	int pass;
2059 	int i;
2060 
2061 	kvm_vcpu_set_in_spin_loop(me, true);
2062 	/*
2063 	 * We boost the priority of a VCPU that is runnable but not
2064 	 * currently running, because it got preempted by something
2065 	 * else and called schedule in __vcpu_run.  Hopefully that
2066 	 * VCPU is holding the lock that we need and will release it.
2067 	 * We approximate round-robin by starting at the last boosted VCPU.
2068 	 */
2069 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2070 		kvm_for_each_vcpu(i, vcpu, kvm) {
2071 			if (!pass && i <= last_boosted_vcpu) {
2072 				i = last_boosted_vcpu;
2073 				continue;
2074 			} else if (pass && i > last_boosted_vcpu)
2075 				break;
2076 			if (!ACCESS_ONCE(vcpu->preempted))
2077 				continue;
2078 			if (vcpu == me)
2079 				continue;
2080 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2081 				continue;
2082 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2083 				continue;
2084 
2085 			yielded = kvm_vcpu_yield_to(vcpu);
2086 			if (yielded > 0) {
2087 				kvm->last_boosted_vcpu = i;
2088 				break;
2089 			} else if (yielded < 0) {
2090 				try--;
2091 				if (!try)
2092 					break;
2093 			}
2094 		}
2095 	}
2096 	kvm_vcpu_set_in_spin_loop(me, false);
2097 
2098 	/* Ensure vcpu is not eligible during next spinloop */
2099 	kvm_vcpu_set_dy_eligible(me, false);
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2102 
2103 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2104 {
2105 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2106 	struct page *page;
2107 
2108 	if (vmf->pgoff == 0)
2109 		page = virt_to_page(vcpu->run);
2110 #ifdef CONFIG_X86
2111 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2112 		page = virt_to_page(vcpu->arch.pio_data);
2113 #endif
2114 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2115 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2116 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2117 #endif
2118 	else
2119 		return kvm_arch_vcpu_fault(vcpu, vmf);
2120 	get_page(page);
2121 	vmf->page = page;
2122 	return 0;
2123 }
2124 
2125 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2126 	.fault = kvm_vcpu_fault,
2127 };
2128 
2129 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2130 {
2131 	vma->vm_ops = &kvm_vcpu_vm_ops;
2132 	return 0;
2133 }
2134 
2135 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2136 {
2137 	struct kvm_vcpu *vcpu = filp->private_data;
2138 
2139 	kvm_put_kvm(vcpu->kvm);
2140 	return 0;
2141 }
2142 
2143 static struct file_operations kvm_vcpu_fops = {
2144 	.release        = kvm_vcpu_release,
2145 	.unlocked_ioctl = kvm_vcpu_ioctl,
2146 #ifdef CONFIG_KVM_COMPAT
2147 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2148 #endif
2149 	.mmap           = kvm_vcpu_mmap,
2150 	.llseek		= noop_llseek,
2151 };
2152 
2153 /*
2154  * Allocates an inode for the vcpu.
2155  */
2156 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2157 {
2158 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2159 }
2160 
2161 /*
2162  * Creates some virtual cpus.  Good luck creating more than one.
2163  */
2164 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2165 {
2166 	int r;
2167 	struct kvm_vcpu *vcpu, *v;
2168 
2169 	if (id >= KVM_MAX_VCPUS)
2170 		return -EINVAL;
2171 
2172 	vcpu = kvm_arch_vcpu_create(kvm, id);
2173 	if (IS_ERR(vcpu))
2174 		return PTR_ERR(vcpu);
2175 
2176 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2177 
2178 	r = kvm_arch_vcpu_setup(vcpu);
2179 	if (r)
2180 		goto vcpu_destroy;
2181 
2182 	mutex_lock(&kvm->lock);
2183 	if (!kvm_vcpu_compatible(vcpu)) {
2184 		r = -EINVAL;
2185 		goto unlock_vcpu_destroy;
2186 	}
2187 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2188 		r = -EINVAL;
2189 		goto unlock_vcpu_destroy;
2190 	}
2191 
2192 	kvm_for_each_vcpu(r, v, kvm)
2193 		if (v->vcpu_id == id) {
2194 			r = -EEXIST;
2195 			goto unlock_vcpu_destroy;
2196 		}
2197 
2198 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2199 
2200 	/* Now it's all set up, let userspace reach it */
2201 	kvm_get_kvm(kvm);
2202 	r = create_vcpu_fd(vcpu);
2203 	if (r < 0) {
2204 		kvm_put_kvm(kvm);
2205 		goto unlock_vcpu_destroy;
2206 	}
2207 
2208 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2209 	smp_wmb();
2210 	atomic_inc(&kvm->online_vcpus);
2211 
2212 	mutex_unlock(&kvm->lock);
2213 	kvm_arch_vcpu_postcreate(vcpu);
2214 	return r;
2215 
2216 unlock_vcpu_destroy:
2217 	mutex_unlock(&kvm->lock);
2218 vcpu_destroy:
2219 	kvm_arch_vcpu_destroy(vcpu);
2220 	return r;
2221 }
2222 
2223 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2224 {
2225 	if (sigset) {
2226 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2227 		vcpu->sigset_active = 1;
2228 		vcpu->sigset = *sigset;
2229 	} else
2230 		vcpu->sigset_active = 0;
2231 	return 0;
2232 }
2233 
2234 static long kvm_vcpu_ioctl(struct file *filp,
2235 			   unsigned int ioctl, unsigned long arg)
2236 {
2237 	struct kvm_vcpu *vcpu = filp->private_data;
2238 	void __user *argp = (void __user *)arg;
2239 	int r;
2240 	struct kvm_fpu *fpu = NULL;
2241 	struct kvm_sregs *kvm_sregs = NULL;
2242 
2243 	if (vcpu->kvm->mm != current->mm)
2244 		return -EIO;
2245 
2246 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2247 		return -EINVAL;
2248 
2249 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2250 	/*
2251 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2252 	 * so vcpu_load() would break it.
2253 	 */
2254 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2255 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2256 #endif
2257 
2258 
2259 	r = vcpu_load(vcpu);
2260 	if (r)
2261 		return r;
2262 	switch (ioctl) {
2263 	case KVM_RUN:
2264 		r = -EINVAL;
2265 		if (arg)
2266 			goto out;
2267 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2268 			/* The thread running this VCPU changed. */
2269 			struct pid *oldpid = vcpu->pid;
2270 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2271 
2272 			rcu_assign_pointer(vcpu->pid, newpid);
2273 			if (oldpid)
2274 				synchronize_rcu();
2275 			put_pid(oldpid);
2276 		}
2277 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2278 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2279 		break;
2280 	case KVM_GET_REGS: {
2281 		struct kvm_regs *kvm_regs;
2282 
2283 		r = -ENOMEM;
2284 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2285 		if (!kvm_regs)
2286 			goto out;
2287 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2288 		if (r)
2289 			goto out_free1;
2290 		r = -EFAULT;
2291 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2292 			goto out_free1;
2293 		r = 0;
2294 out_free1:
2295 		kfree(kvm_regs);
2296 		break;
2297 	}
2298 	case KVM_SET_REGS: {
2299 		struct kvm_regs *kvm_regs;
2300 
2301 		r = -ENOMEM;
2302 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2303 		if (IS_ERR(kvm_regs)) {
2304 			r = PTR_ERR(kvm_regs);
2305 			goto out;
2306 		}
2307 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2308 		kfree(kvm_regs);
2309 		break;
2310 	}
2311 	case KVM_GET_SREGS: {
2312 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2313 		r = -ENOMEM;
2314 		if (!kvm_sregs)
2315 			goto out;
2316 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2317 		if (r)
2318 			goto out;
2319 		r = -EFAULT;
2320 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2321 			goto out;
2322 		r = 0;
2323 		break;
2324 	}
2325 	case KVM_SET_SREGS: {
2326 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2327 		if (IS_ERR(kvm_sregs)) {
2328 			r = PTR_ERR(kvm_sregs);
2329 			kvm_sregs = NULL;
2330 			goto out;
2331 		}
2332 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2333 		break;
2334 	}
2335 	case KVM_GET_MP_STATE: {
2336 		struct kvm_mp_state mp_state;
2337 
2338 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2339 		if (r)
2340 			goto out;
2341 		r = -EFAULT;
2342 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2343 			goto out;
2344 		r = 0;
2345 		break;
2346 	}
2347 	case KVM_SET_MP_STATE: {
2348 		struct kvm_mp_state mp_state;
2349 
2350 		r = -EFAULT;
2351 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2352 			goto out;
2353 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2354 		break;
2355 	}
2356 	case KVM_TRANSLATE: {
2357 		struct kvm_translation tr;
2358 
2359 		r = -EFAULT;
2360 		if (copy_from_user(&tr, argp, sizeof(tr)))
2361 			goto out;
2362 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2363 		if (r)
2364 			goto out;
2365 		r = -EFAULT;
2366 		if (copy_to_user(argp, &tr, sizeof(tr)))
2367 			goto out;
2368 		r = 0;
2369 		break;
2370 	}
2371 	case KVM_SET_GUEST_DEBUG: {
2372 		struct kvm_guest_debug dbg;
2373 
2374 		r = -EFAULT;
2375 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2376 			goto out;
2377 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2378 		break;
2379 	}
2380 	case KVM_SET_SIGNAL_MASK: {
2381 		struct kvm_signal_mask __user *sigmask_arg = argp;
2382 		struct kvm_signal_mask kvm_sigmask;
2383 		sigset_t sigset, *p;
2384 
2385 		p = NULL;
2386 		if (argp) {
2387 			r = -EFAULT;
2388 			if (copy_from_user(&kvm_sigmask, argp,
2389 					   sizeof(kvm_sigmask)))
2390 				goto out;
2391 			r = -EINVAL;
2392 			if (kvm_sigmask.len != sizeof(sigset))
2393 				goto out;
2394 			r = -EFAULT;
2395 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2396 					   sizeof(sigset)))
2397 				goto out;
2398 			p = &sigset;
2399 		}
2400 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2401 		break;
2402 	}
2403 	case KVM_GET_FPU: {
2404 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2405 		r = -ENOMEM;
2406 		if (!fpu)
2407 			goto out;
2408 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2409 		if (r)
2410 			goto out;
2411 		r = -EFAULT;
2412 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2413 			goto out;
2414 		r = 0;
2415 		break;
2416 	}
2417 	case KVM_SET_FPU: {
2418 		fpu = memdup_user(argp, sizeof(*fpu));
2419 		if (IS_ERR(fpu)) {
2420 			r = PTR_ERR(fpu);
2421 			fpu = NULL;
2422 			goto out;
2423 		}
2424 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2425 		break;
2426 	}
2427 	default:
2428 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2429 	}
2430 out:
2431 	vcpu_put(vcpu);
2432 	kfree(fpu);
2433 	kfree(kvm_sregs);
2434 	return r;
2435 }
2436 
2437 #ifdef CONFIG_KVM_COMPAT
2438 static long kvm_vcpu_compat_ioctl(struct file *filp,
2439 				  unsigned int ioctl, unsigned long arg)
2440 {
2441 	struct kvm_vcpu *vcpu = filp->private_data;
2442 	void __user *argp = compat_ptr(arg);
2443 	int r;
2444 
2445 	if (vcpu->kvm->mm != current->mm)
2446 		return -EIO;
2447 
2448 	switch (ioctl) {
2449 	case KVM_SET_SIGNAL_MASK: {
2450 		struct kvm_signal_mask __user *sigmask_arg = argp;
2451 		struct kvm_signal_mask kvm_sigmask;
2452 		compat_sigset_t csigset;
2453 		sigset_t sigset;
2454 
2455 		if (argp) {
2456 			r = -EFAULT;
2457 			if (copy_from_user(&kvm_sigmask, argp,
2458 					   sizeof(kvm_sigmask)))
2459 				goto out;
2460 			r = -EINVAL;
2461 			if (kvm_sigmask.len != sizeof(csigset))
2462 				goto out;
2463 			r = -EFAULT;
2464 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2465 					   sizeof(csigset)))
2466 				goto out;
2467 			sigset_from_compat(&sigset, &csigset);
2468 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2469 		} else
2470 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2471 		break;
2472 	}
2473 	default:
2474 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2475 	}
2476 
2477 out:
2478 	return r;
2479 }
2480 #endif
2481 
2482 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2483 				 int (*accessor)(struct kvm_device *dev,
2484 						 struct kvm_device_attr *attr),
2485 				 unsigned long arg)
2486 {
2487 	struct kvm_device_attr attr;
2488 
2489 	if (!accessor)
2490 		return -EPERM;
2491 
2492 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2493 		return -EFAULT;
2494 
2495 	return accessor(dev, &attr);
2496 }
2497 
2498 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2499 			     unsigned long arg)
2500 {
2501 	struct kvm_device *dev = filp->private_data;
2502 
2503 	switch (ioctl) {
2504 	case KVM_SET_DEVICE_ATTR:
2505 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2506 	case KVM_GET_DEVICE_ATTR:
2507 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2508 	case KVM_HAS_DEVICE_ATTR:
2509 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2510 	default:
2511 		if (dev->ops->ioctl)
2512 			return dev->ops->ioctl(dev, ioctl, arg);
2513 
2514 		return -ENOTTY;
2515 	}
2516 }
2517 
2518 static int kvm_device_release(struct inode *inode, struct file *filp)
2519 {
2520 	struct kvm_device *dev = filp->private_data;
2521 	struct kvm *kvm = dev->kvm;
2522 
2523 	kvm_put_kvm(kvm);
2524 	return 0;
2525 }
2526 
2527 static const struct file_operations kvm_device_fops = {
2528 	.unlocked_ioctl = kvm_device_ioctl,
2529 #ifdef CONFIG_KVM_COMPAT
2530 	.compat_ioctl = kvm_device_ioctl,
2531 #endif
2532 	.release = kvm_device_release,
2533 };
2534 
2535 struct kvm_device *kvm_device_from_filp(struct file *filp)
2536 {
2537 	if (filp->f_op != &kvm_device_fops)
2538 		return NULL;
2539 
2540 	return filp->private_data;
2541 }
2542 
2543 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2544 #ifdef CONFIG_KVM_MPIC
2545 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2546 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2547 #endif
2548 
2549 #ifdef CONFIG_KVM_XICS
2550 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2551 #endif
2552 };
2553 
2554 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2555 {
2556 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2557 		return -ENOSPC;
2558 
2559 	if (kvm_device_ops_table[type] != NULL)
2560 		return -EEXIST;
2561 
2562 	kvm_device_ops_table[type] = ops;
2563 	return 0;
2564 }
2565 
2566 void kvm_unregister_device_ops(u32 type)
2567 {
2568 	if (kvm_device_ops_table[type] != NULL)
2569 		kvm_device_ops_table[type] = NULL;
2570 }
2571 
2572 static int kvm_ioctl_create_device(struct kvm *kvm,
2573 				   struct kvm_create_device *cd)
2574 {
2575 	struct kvm_device_ops *ops = NULL;
2576 	struct kvm_device *dev;
2577 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2578 	int ret;
2579 
2580 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2581 		return -ENODEV;
2582 
2583 	ops = kvm_device_ops_table[cd->type];
2584 	if (ops == NULL)
2585 		return -ENODEV;
2586 
2587 	if (test)
2588 		return 0;
2589 
2590 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2591 	if (!dev)
2592 		return -ENOMEM;
2593 
2594 	dev->ops = ops;
2595 	dev->kvm = kvm;
2596 
2597 	ret = ops->create(dev, cd->type);
2598 	if (ret < 0) {
2599 		kfree(dev);
2600 		return ret;
2601 	}
2602 
2603 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2604 	if (ret < 0) {
2605 		ops->destroy(dev);
2606 		return ret;
2607 	}
2608 
2609 	list_add(&dev->vm_node, &kvm->devices);
2610 	kvm_get_kvm(kvm);
2611 	cd->fd = ret;
2612 	return 0;
2613 }
2614 
2615 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2616 {
2617 	switch (arg) {
2618 	case KVM_CAP_USER_MEMORY:
2619 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2620 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2621 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2622 	case KVM_CAP_SET_BOOT_CPU_ID:
2623 #endif
2624 	case KVM_CAP_INTERNAL_ERROR_DATA:
2625 #ifdef CONFIG_HAVE_KVM_MSI
2626 	case KVM_CAP_SIGNAL_MSI:
2627 #endif
2628 #ifdef CONFIG_HAVE_KVM_IRQFD
2629 	case KVM_CAP_IRQFD:
2630 	case KVM_CAP_IRQFD_RESAMPLE:
2631 #endif
2632 	case KVM_CAP_CHECK_EXTENSION_VM:
2633 		return 1;
2634 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2635 	case KVM_CAP_IRQ_ROUTING:
2636 		return KVM_MAX_IRQ_ROUTES;
2637 #endif
2638 #if KVM_ADDRESS_SPACE_NUM > 1
2639 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2640 		return KVM_ADDRESS_SPACE_NUM;
2641 #endif
2642 	default:
2643 		break;
2644 	}
2645 	return kvm_vm_ioctl_check_extension(kvm, arg);
2646 }
2647 
2648 static long kvm_vm_ioctl(struct file *filp,
2649 			   unsigned int ioctl, unsigned long arg)
2650 {
2651 	struct kvm *kvm = filp->private_data;
2652 	void __user *argp = (void __user *)arg;
2653 	int r;
2654 
2655 	if (kvm->mm != current->mm)
2656 		return -EIO;
2657 	switch (ioctl) {
2658 	case KVM_CREATE_VCPU:
2659 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2660 		break;
2661 	case KVM_SET_USER_MEMORY_REGION: {
2662 		struct kvm_userspace_memory_region kvm_userspace_mem;
2663 
2664 		r = -EFAULT;
2665 		if (copy_from_user(&kvm_userspace_mem, argp,
2666 						sizeof(kvm_userspace_mem)))
2667 			goto out;
2668 
2669 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2670 		break;
2671 	}
2672 	case KVM_GET_DIRTY_LOG: {
2673 		struct kvm_dirty_log log;
2674 
2675 		r = -EFAULT;
2676 		if (copy_from_user(&log, argp, sizeof(log)))
2677 			goto out;
2678 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2679 		break;
2680 	}
2681 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2682 	case KVM_REGISTER_COALESCED_MMIO: {
2683 		struct kvm_coalesced_mmio_zone zone;
2684 
2685 		r = -EFAULT;
2686 		if (copy_from_user(&zone, argp, sizeof(zone)))
2687 			goto out;
2688 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2689 		break;
2690 	}
2691 	case KVM_UNREGISTER_COALESCED_MMIO: {
2692 		struct kvm_coalesced_mmio_zone zone;
2693 
2694 		r = -EFAULT;
2695 		if (copy_from_user(&zone, argp, sizeof(zone)))
2696 			goto out;
2697 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2698 		break;
2699 	}
2700 #endif
2701 	case KVM_IRQFD: {
2702 		struct kvm_irqfd data;
2703 
2704 		r = -EFAULT;
2705 		if (copy_from_user(&data, argp, sizeof(data)))
2706 			goto out;
2707 		r = kvm_irqfd(kvm, &data);
2708 		break;
2709 	}
2710 	case KVM_IOEVENTFD: {
2711 		struct kvm_ioeventfd data;
2712 
2713 		r = -EFAULT;
2714 		if (copy_from_user(&data, argp, sizeof(data)))
2715 			goto out;
2716 		r = kvm_ioeventfd(kvm, &data);
2717 		break;
2718 	}
2719 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2720 	case KVM_SET_BOOT_CPU_ID:
2721 		r = 0;
2722 		mutex_lock(&kvm->lock);
2723 		if (atomic_read(&kvm->online_vcpus) != 0)
2724 			r = -EBUSY;
2725 		else
2726 			kvm->bsp_vcpu_id = arg;
2727 		mutex_unlock(&kvm->lock);
2728 		break;
2729 #endif
2730 #ifdef CONFIG_HAVE_KVM_MSI
2731 	case KVM_SIGNAL_MSI: {
2732 		struct kvm_msi msi;
2733 
2734 		r = -EFAULT;
2735 		if (copy_from_user(&msi, argp, sizeof(msi)))
2736 			goto out;
2737 		r = kvm_send_userspace_msi(kvm, &msi);
2738 		break;
2739 	}
2740 #endif
2741 #ifdef __KVM_HAVE_IRQ_LINE
2742 	case KVM_IRQ_LINE_STATUS:
2743 	case KVM_IRQ_LINE: {
2744 		struct kvm_irq_level irq_event;
2745 
2746 		r = -EFAULT;
2747 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2748 			goto out;
2749 
2750 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2751 					ioctl == KVM_IRQ_LINE_STATUS);
2752 		if (r)
2753 			goto out;
2754 
2755 		r = -EFAULT;
2756 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2757 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2758 				goto out;
2759 		}
2760 
2761 		r = 0;
2762 		break;
2763 	}
2764 #endif
2765 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2766 	case KVM_SET_GSI_ROUTING: {
2767 		struct kvm_irq_routing routing;
2768 		struct kvm_irq_routing __user *urouting;
2769 		struct kvm_irq_routing_entry *entries;
2770 
2771 		r = -EFAULT;
2772 		if (copy_from_user(&routing, argp, sizeof(routing)))
2773 			goto out;
2774 		r = -EINVAL;
2775 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2776 			goto out;
2777 		if (routing.flags)
2778 			goto out;
2779 		r = -ENOMEM;
2780 		entries = vmalloc(routing.nr * sizeof(*entries));
2781 		if (!entries)
2782 			goto out;
2783 		r = -EFAULT;
2784 		urouting = argp;
2785 		if (copy_from_user(entries, urouting->entries,
2786 				   routing.nr * sizeof(*entries)))
2787 			goto out_free_irq_routing;
2788 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2789 					routing.flags);
2790 out_free_irq_routing:
2791 		vfree(entries);
2792 		break;
2793 	}
2794 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2795 	case KVM_CREATE_DEVICE: {
2796 		struct kvm_create_device cd;
2797 
2798 		r = -EFAULT;
2799 		if (copy_from_user(&cd, argp, sizeof(cd)))
2800 			goto out;
2801 
2802 		r = kvm_ioctl_create_device(kvm, &cd);
2803 		if (r)
2804 			goto out;
2805 
2806 		r = -EFAULT;
2807 		if (copy_to_user(argp, &cd, sizeof(cd)))
2808 			goto out;
2809 
2810 		r = 0;
2811 		break;
2812 	}
2813 	case KVM_CHECK_EXTENSION:
2814 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2815 		break;
2816 	default:
2817 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2818 	}
2819 out:
2820 	return r;
2821 }
2822 
2823 #ifdef CONFIG_KVM_COMPAT
2824 struct compat_kvm_dirty_log {
2825 	__u32 slot;
2826 	__u32 padding1;
2827 	union {
2828 		compat_uptr_t dirty_bitmap; /* one bit per page */
2829 		__u64 padding2;
2830 	};
2831 };
2832 
2833 static long kvm_vm_compat_ioctl(struct file *filp,
2834 			   unsigned int ioctl, unsigned long arg)
2835 {
2836 	struct kvm *kvm = filp->private_data;
2837 	int r;
2838 
2839 	if (kvm->mm != current->mm)
2840 		return -EIO;
2841 	switch (ioctl) {
2842 	case KVM_GET_DIRTY_LOG: {
2843 		struct compat_kvm_dirty_log compat_log;
2844 		struct kvm_dirty_log log;
2845 
2846 		r = -EFAULT;
2847 		if (copy_from_user(&compat_log, (void __user *)arg,
2848 				   sizeof(compat_log)))
2849 			goto out;
2850 		log.slot	 = compat_log.slot;
2851 		log.padding1	 = compat_log.padding1;
2852 		log.padding2	 = compat_log.padding2;
2853 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2854 
2855 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2856 		break;
2857 	}
2858 	default:
2859 		r = kvm_vm_ioctl(filp, ioctl, arg);
2860 	}
2861 
2862 out:
2863 	return r;
2864 }
2865 #endif
2866 
2867 static struct file_operations kvm_vm_fops = {
2868 	.release        = kvm_vm_release,
2869 	.unlocked_ioctl = kvm_vm_ioctl,
2870 #ifdef CONFIG_KVM_COMPAT
2871 	.compat_ioctl   = kvm_vm_compat_ioctl,
2872 #endif
2873 	.llseek		= noop_llseek,
2874 };
2875 
2876 static int kvm_dev_ioctl_create_vm(unsigned long type)
2877 {
2878 	int r;
2879 	struct kvm *kvm;
2880 
2881 	kvm = kvm_create_vm(type);
2882 	if (IS_ERR(kvm))
2883 		return PTR_ERR(kvm);
2884 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2885 	r = kvm_coalesced_mmio_init(kvm);
2886 	if (r < 0) {
2887 		kvm_put_kvm(kvm);
2888 		return r;
2889 	}
2890 #endif
2891 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2892 	if (r < 0)
2893 		kvm_put_kvm(kvm);
2894 
2895 	return r;
2896 }
2897 
2898 static long kvm_dev_ioctl(struct file *filp,
2899 			  unsigned int ioctl, unsigned long arg)
2900 {
2901 	long r = -EINVAL;
2902 
2903 	switch (ioctl) {
2904 	case KVM_GET_API_VERSION:
2905 		if (arg)
2906 			goto out;
2907 		r = KVM_API_VERSION;
2908 		break;
2909 	case KVM_CREATE_VM:
2910 		r = kvm_dev_ioctl_create_vm(arg);
2911 		break;
2912 	case KVM_CHECK_EXTENSION:
2913 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2914 		break;
2915 	case KVM_GET_VCPU_MMAP_SIZE:
2916 		if (arg)
2917 			goto out;
2918 		r = PAGE_SIZE;     /* struct kvm_run */
2919 #ifdef CONFIG_X86
2920 		r += PAGE_SIZE;    /* pio data page */
2921 #endif
2922 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2923 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2924 #endif
2925 		break;
2926 	case KVM_TRACE_ENABLE:
2927 	case KVM_TRACE_PAUSE:
2928 	case KVM_TRACE_DISABLE:
2929 		r = -EOPNOTSUPP;
2930 		break;
2931 	default:
2932 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2933 	}
2934 out:
2935 	return r;
2936 }
2937 
2938 static struct file_operations kvm_chardev_ops = {
2939 	.unlocked_ioctl = kvm_dev_ioctl,
2940 	.compat_ioctl   = kvm_dev_ioctl,
2941 	.llseek		= noop_llseek,
2942 };
2943 
2944 static struct miscdevice kvm_dev = {
2945 	KVM_MINOR,
2946 	"kvm",
2947 	&kvm_chardev_ops,
2948 };
2949 
2950 static void hardware_enable_nolock(void *junk)
2951 {
2952 	int cpu = raw_smp_processor_id();
2953 	int r;
2954 
2955 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2956 		return;
2957 
2958 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2959 
2960 	r = kvm_arch_hardware_enable();
2961 
2962 	if (r) {
2963 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2964 		atomic_inc(&hardware_enable_failed);
2965 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2966 	}
2967 }
2968 
2969 static void hardware_enable(void)
2970 {
2971 	raw_spin_lock(&kvm_count_lock);
2972 	if (kvm_usage_count)
2973 		hardware_enable_nolock(NULL);
2974 	raw_spin_unlock(&kvm_count_lock);
2975 }
2976 
2977 static void hardware_disable_nolock(void *junk)
2978 {
2979 	int cpu = raw_smp_processor_id();
2980 
2981 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2982 		return;
2983 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2984 	kvm_arch_hardware_disable();
2985 }
2986 
2987 static void hardware_disable(void)
2988 {
2989 	raw_spin_lock(&kvm_count_lock);
2990 	if (kvm_usage_count)
2991 		hardware_disable_nolock(NULL);
2992 	raw_spin_unlock(&kvm_count_lock);
2993 }
2994 
2995 static void hardware_disable_all_nolock(void)
2996 {
2997 	BUG_ON(!kvm_usage_count);
2998 
2999 	kvm_usage_count--;
3000 	if (!kvm_usage_count)
3001 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3002 }
3003 
3004 static void hardware_disable_all(void)
3005 {
3006 	raw_spin_lock(&kvm_count_lock);
3007 	hardware_disable_all_nolock();
3008 	raw_spin_unlock(&kvm_count_lock);
3009 }
3010 
3011 static int hardware_enable_all(void)
3012 {
3013 	int r = 0;
3014 
3015 	raw_spin_lock(&kvm_count_lock);
3016 
3017 	kvm_usage_count++;
3018 	if (kvm_usage_count == 1) {
3019 		atomic_set(&hardware_enable_failed, 0);
3020 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3021 
3022 		if (atomic_read(&hardware_enable_failed)) {
3023 			hardware_disable_all_nolock();
3024 			r = -EBUSY;
3025 		}
3026 	}
3027 
3028 	raw_spin_unlock(&kvm_count_lock);
3029 
3030 	return r;
3031 }
3032 
3033 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3034 			   void *v)
3035 {
3036 	val &= ~CPU_TASKS_FROZEN;
3037 	switch (val) {
3038 	case CPU_DYING:
3039 		hardware_disable();
3040 		break;
3041 	case CPU_STARTING:
3042 		hardware_enable();
3043 		break;
3044 	}
3045 	return NOTIFY_OK;
3046 }
3047 
3048 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3049 		      void *v)
3050 {
3051 	/*
3052 	 * Some (well, at least mine) BIOSes hang on reboot if
3053 	 * in vmx root mode.
3054 	 *
3055 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3056 	 */
3057 	pr_info("kvm: exiting hardware virtualization\n");
3058 	kvm_rebooting = true;
3059 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3060 	return NOTIFY_OK;
3061 }
3062 
3063 static struct notifier_block kvm_reboot_notifier = {
3064 	.notifier_call = kvm_reboot,
3065 	.priority = 0,
3066 };
3067 
3068 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3069 {
3070 	int i;
3071 
3072 	for (i = 0; i < bus->dev_count; i++) {
3073 		struct kvm_io_device *pos = bus->range[i].dev;
3074 
3075 		kvm_iodevice_destructor(pos);
3076 	}
3077 	kfree(bus);
3078 }
3079 
3080 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3081 				 const struct kvm_io_range *r2)
3082 {
3083 	if (r1->addr < r2->addr)
3084 		return -1;
3085 	if (r1->addr + r1->len > r2->addr + r2->len)
3086 		return 1;
3087 	return 0;
3088 }
3089 
3090 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3091 {
3092 	return kvm_io_bus_cmp(p1, p2);
3093 }
3094 
3095 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3096 			  gpa_t addr, int len)
3097 {
3098 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
3099 		.addr = addr,
3100 		.len = len,
3101 		.dev = dev,
3102 	};
3103 
3104 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3105 		kvm_io_bus_sort_cmp, NULL);
3106 
3107 	return 0;
3108 }
3109 
3110 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3111 			     gpa_t addr, int len)
3112 {
3113 	struct kvm_io_range *range, key;
3114 	int off;
3115 
3116 	key = (struct kvm_io_range) {
3117 		.addr = addr,
3118 		.len = len,
3119 	};
3120 
3121 	range = bsearch(&key, bus->range, bus->dev_count,
3122 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3123 	if (range == NULL)
3124 		return -ENOENT;
3125 
3126 	off = range - bus->range;
3127 
3128 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3129 		off--;
3130 
3131 	return off;
3132 }
3133 
3134 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3135 			      struct kvm_io_range *range, const void *val)
3136 {
3137 	int idx;
3138 
3139 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3140 	if (idx < 0)
3141 		return -EOPNOTSUPP;
3142 
3143 	while (idx < bus->dev_count &&
3144 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3145 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3146 					range->len, val))
3147 			return idx;
3148 		idx++;
3149 	}
3150 
3151 	return -EOPNOTSUPP;
3152 }
3153 
3154 /* kvm_io_bus_write - called under kvm->slots_lock */
3155 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3156 		     int len, const void *val)
3157 {
3158 	struct kvm_io_bus *bus;
3159 	struct kvm_io_range range;
3160 	int r;
3161 
3162 	range = (struct kvm_io_range) {
3163 		.addr = addr,
3164 		.len = len,
3165 	};
3166 
3167 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3168 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3169 	return r < 0 ? r : 0;
3170 }
3171 
3172 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3173 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3174 			    gpa_t addr, int len, const void *val, long cookie)
3175 {
3176 	struct kvm_io_bus *bus;
3177 	struct kvm_io_range range;
3178 
3179 	range = (struct kvm_io_range) {
3180 		.addr = addr,
3181 		.len = len,
3182 	};
3183 
3184 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3185 
3186 	/* First try the device referenced by cookie. */
3187 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3188 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3189 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3190 					val))
3191 			return cookie;
3192 
3193 	/*
3194 	 * cookie contained garbage; fall back to search and return the
3195 	 * correct cookie value.
3196 	 */
3197 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3198 }
3199 
3200 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3201 			     struct kvm_io_range *range, void *val)
3202 {
3203 	int idx;
3204 
3205 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3206 	if (idx < 0)
3207 		return -EOPNOTSUPP;
3208 
3209 	while (idx < bus->dev_count &&
3210 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3211 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3212 				       range->len, val))
3213 			return idx;
3214 		idx++;
3215 	}
3216 
3217 	return -EOPNOTSUPP;
3218 }
3219 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3220 
3221 /* kvm_io_bus_read - called under kvm->slots_lock */
3222 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3223 		    int len, void *val)
3224 {
3225 	struct kvm_io_bus *bus;
3226 	struct kvm_io_range range;
3227 	int r;
3228 
3229 	range = (struct kvm_io_range) {
3230 		.addr = addr,
3231 		.len = len,
3232 	};
3233 
3234 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3235 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3236 	return r < 0 ? r : 0;
3237 }
3238 
3239 
3240 /* Caller must hold slots_lock. */
3241 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3242 			    int len, struct kvm_io_device *dev)
3243 {
3244 	struct kvm_io_bus *new_bus, *bus;
3245 
3246 	bus = kvm->buses[bus_idx];
3247 	/* exclude ioeventfd which is limited by maximum fd */
3248 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3249 		return -ENOSPC;
3250 
3251 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3252 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3253 	if (!new_bus)
3254 		return -ENOMEM;
3255 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3256 	       sizeof(struct kvm_io_range)));
3257 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3258 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3259 	synchronize_srcu_expedited(&kvm->srcu);
3260 	kfree(bus);
3261 
3262 	return 0;
3263 }
3264 
3265 /* Caller must hold slots_lock. */
3266 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3267 			      struct kvm_io_device *dev)
3268 {
3269 	int i, r;
3270 	struct kvm_io_bus *new_bus, *bus;
3271 
3272 	bus = kvm->buses[bus_idx];
3273 	r = -ENOENT;
3274 	for (i = 0; i < bus->dev_count; i++)
3275 		if (bus->range[i].dev == dev) {
3276 			r = 0;
3277 			break;
3278 		}
3279 
3280 	if (r)
3281 		return r;
3282 
3283 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3284 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3285 	if (!new_bus)
3286 		return -ENOMEM;
3287 
3288 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3289 	new_bus->dev_count--;
3290 	memcpy(new_bus->range + i, bus->range + i + 1,
3291 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3292 
3293 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3294 	synchronize_srcu_expedited(&kvm->srcu);
3295 	kfree(bus);
3296 	return r;
3297 }
3298 
3299 static struct notifier_block kvm_cpu_notifier = {
3300 	.notifier_call = kvm_cpu_hotplug,
3301 };
3302 
3303 static int vm_stat_get(void *_offset, u64 *val)
3304 {
3305 	unsigned offset = (long)_offset;
3306 	struct kvm *kvm;
3307 
3308 	*val = 0;
3309 	spin_lock(&kvm_lock);
3310 	list_for_each_entry(kvm, &vm_list, vm_list)
3311 		*val += *(u32 *)((void *)kvm + offset);
3312 	spin_unlock(&kvm_lock);
3313 	return 0;
3314 }
3315 
3316 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3317 
3318 static int vcpu_stat_get(void *_offset, u64 *val)
3319 {
3320 	unsigned offset = (long)_offset;
3321 	struct kvm *kvm;
3322 	struct kvm_vcpu *vcpu;
3323 	int i;
3324 
3325 	*val = 0;
3326 	spin_lock(&kvm_lock);
3327 	list_for_each_entry(kvm, &vm_list, vm_list)
3328 		kvm_for_each_vcpu(i, vcpu, kvm)
3329 			*val += *(u32 *)((void *)vcpu + offset);
3330 
3331 	spin_unlock(&kvm_lock);
3332 	return 0;
3333 }
3334 
3335 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3336 
3337 static const struct file_operations *stat_fops[] = {
3338 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3339 	[KVM_STAT_VM]   = &vm_stat_fops,
3340 };
3341 
3342 static int kvm_init_debug(void)
3343 {
3344 	int r = -EEXIST;
3345 	struct kvm_stats_debugfs_item *p;
3346 
3347 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3348 	if (kvm_debugfs_dir == NULL)
3349 		goto out;
3350 
3351 	for (p = debugfs_entries; p->name; ++p) {
3352 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3353 						(void *)(long)p->offset,
3354 						stat_fops[p->kind]);
3355 		if (p->dentry == NULL)
3356 			goto out_dir;
3357 	}
3358 
3359 	return 0;
3360 
3361 out_dir:
3362 	debugfs_remove_recursive(kvm_debugfs_dir);
3363 out:
3364 	return r;
3365 }
3366 
3367 static void kvm_exit_debug(void)
3368 {
3369 	struct kvm_stats_debugfs_item *p;
3370 
3371 	for (p = debugfs_entries; p->name; ++p)
3372 		debugfs_remove(p->dentry);
3373 	debugfs_remove(kvm_debugfs_dir);
3374 }
3375 
3376 static int kvm_suspend(void)
3377 {
3378 	if (kvm_usage_count)
3379 		hardware_disable_nolock(NULL);
3380 	return 0;
3381 }
3382 
3383 static void kvm_resume(void)
3384 {
3385 	if (kvm_usage_count) {
3386 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3387 		hardware_enable_nolock(NULL);
3388 	}
3389 }
3390 
3391 static struct syscore_ops kvm_syscore_ops = {
3392 	.suspend = kvm_suspend,
3393 	.resume = kvm_resume,
3394 };
3395 
3396 static inline
3397 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3398 {
3399 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3400 }
3401 
3402 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3403 {
3404 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3405 
3406 	if (vcpu->preempted)
3407 		vcpu->preempted = false;
3408 
3409 	kvm_arch_sched_in(vcpu, cpu);
3410 
3411 	kvm_arch_vcpu_load(vcpu, cpu);
3412 }
3413 
3414 static void kvm_sched_out(struct preempt_notifier *pn,
3415 			  struct task_struct *next)
3416 {
3417 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3418 
3419 	if (current->state == TASK_RUNNING)
3420 		vcpu->preempted = true;
3421 	kvm_arch_vcpu_put(vcpu);
3422 }
3423 
3424 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3425 		  struct module *module)
3426 {
3427 	int r;
3428 	int cpu;
3429 
3430 	r = kvm_arch_init(opaque);
3431 	if (r)
3432 		goto out_fail;
3433 
3434 	/*
3435 	 * kvm_arch_init makes sure there's at most one caller
3436 	 * for architectures that support multiple implementations,
3437 	 * like intel and amd on x86.
3438 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3439 	 * conflicts in case kvm is already setup for another implementation.
3440 	 */
3441 	r = kvm_irqfd_init();
3442 	if (r)
3443 		goto out_irqfd;
3444 
3445 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3446 		r = -ENOMEM;
3447 		goto out_free_0;
3448 	}
3449 
3450 	r = kvm_arch_hardware_setup();
3451 	if (r < 0)
3452 		goto out_free_0a;
3453 
3454 	for_each_online_cpu(cpu) {
3455 		smp_call_function_single(cpu,
3456 				kvm_arch_check_processor_compat,
3457 				&r, 1);
3458 		if (r < 0)
3459 			goto out_free_1;
3460 	}
3461 
3462 	r = register_cpu_notifier(&kvm_cpu_notifier);
3463 	if (r)
3464 		goto out_free_2;
3465 	register_reboot_notifier(&kvm_reboot_notifier);
3466 
3467 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3468 	if (!vcpu_align)
3469 		vcpu_align = __alignof__(struct kvm_vcpu);
3470 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3471 					   0, NULL);
3472 	if (!kvm_vcpu_cache) {
3473 		r = -ENOMEM;
3474 		goto out_free_3;
3475 	}
3476 
3477 	r = kvm_async_pf_init();
3478 	if (r)
3479 		goto out_free;
3480 
3481 	kvm_chardev_ops.owner = module;
3482 	kvm_vm_fops.owner = module;
3483 	kvm_vcpu_fops.owner = module;
3484 
3485 	r = misc_register(&kvm_dev);
3486 	if (r) {
3487 		pr_err("kvm: misc device register failed\n");
3488 		goto out_unreg;
3489 	}
3490 
3491 	register_syscore_ops(&kvm_syscore_ops);
3492 
3493 	kvm_preempt_ops.sched_in = kvm_sched_in;
3494 	kvm_preempt_ops.sched_out = kvm_sched_out;
3495 
3496 	r = kvm_init_debug();
3497 	if (r) {
3498 		pr_err("kvm: create debugfs files failed\n");
3499 		goto out_undebugfs;
3500 	}
3501 
3502 	r = kvm_vfio_ops_init();
3503 	WARN_ON(r);
3504 
3505 	return 0;
3506 
3507 out_undebugfs:
3508 	unregister_syscore_ops(&kvm_syscore_ops);
3509 	misc_deregister(&kvm_dev);
3510 out_unreg:
3511 	kvm_async_pf_deinit();
3512 out_free:
3513 	kmem_cache_destroy(kvm_vcpu_cache);
3514 out_free_3:
3515 	unregister_reboot_notifier(&kvm_reboot_notifier);
3516 	unregister_cpu_notifier(&kvm_cpu_notifier);
3517 out_free_2:
3518 out_free_1:
3519 	kvm_arch_hardware_unsetup();
3520 out_free_0a:
3521 	free_cpumask_var(cpus_hardware_enabled);
3522 out_free_0:
3523 	kvm_irqfd_exit();
3524 out_irqfd:
3525 	kvm_arch_exit();
3526 out_fail:
3527 	return r;
3528 }
3529 EXPORT_SYMBOL_GPL(kvm_init);
3530 
3531 void kvm_exit(void)
3532 {
3533 	kvm_exit_debug();
3534 	misc_deregister(&kvm_dev);
3535 	kmem_cache_destroy(kvm_vcpu_cache);
3536 	kvm_async_pf_deinit();
3537 	unregister_syscore_ops(&kvm_syscore_ops);
3538 	unregister_reboot_notifier(&kvm_reboot_notifier);
3539 	unregister_cpu_notifier(&kvm_cpu_notifier);
3540 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3541 	kvm_arch_hardware_unsetup();
3542 	kvm_arch_exit();
3543 	kvm_irqfd_exit();
3544 	free_cpumask_var(cpus_hardware_enabled);
3545 	kvm_vfio_ops_exit();
3546 }
3547 EXPORT_SYMBOL_GPL(kvm_exit);
3548