1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 55 #include <asm/processor.h> 56 #include <asm/ioctl.h> 57 #include <linux/uaccess.h> 58 #include <asm/pgtable.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "vfio.h" 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/kvm.h> 66 67 /* Worst case buffer size needed for holding an integer. */ 68 #define ITOA_MAX_LEN 12 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 /* Architectures should define their poll value according to the halt latency */ 74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 75 module_param(halt_poll_ns, uint, 0644); 76 EXPORT_SYMBOL_GPL(halt_poll_ns); 77 78 /* Default doubles per-vcpu halt_poll_ns. */ 79 unsigned int halt_poll_ns_grow = 2; 80 module_param(halt_poll_ns_grow, uint, 0644); 81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 82 83 /* The start value to grow halt_poll_ns from */ 84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 85 module_param(halt_poll_ns_grow_start, uint, 0644); 86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 87 88 /* Default resets per-vcpu halt_poll_ns . */ 89 unsigned int halt_poll_ns_shrink; 90 module_param(halt_poll_ns_shrink, uint, 0644); 91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 92 93 /* 94 * Ordering of locks: 95 * 96 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 97 */ 98 99 DEFINE_MUTEX(kvm_lock); 100 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 101 LIST_HEAD(vm_list); 102 103 static cpumask_var_t cpus_hardware_enabled; 104 static int kvm_usage_count; 105 static atomic_t hardware_enable_failed; 106 107 static struct kmem_cache *kvm_vcpu_cache; 108 109 static __read_mostly struct preempt_ops kvm_preempt_ops; 110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 111 112 struct dentry *kvm_debugfs_dir; 113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 114 115 static int kvm_debugfs_num_entries; 116 static const struct file_operations stat_fops_per_vm; 117 118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 119 unsigned long arg); 120 #ifdef CONFIG_KVM_COMPAT 121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 122 unsigned long arg); 123 #define KVM_COMPAT(c) .compat_ioctl = (c) 124 #else 125 /* 126 * For architectures that don't implement a compat infrastructure, 127 * adopt a double line of defense: 128 * - Prevent a compat task from opening /dev/kvm 129 * - If the open has been done by a 64bit task, and the KVM fd 130 * passed to a compat task, let the ioctls fail. 131 */ 132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 133 unsigned long arg) { return -EINVAL; } 134 135 static int kvm_no_compat_open(struct inode *inode, struct file *file) 136 { 137 return is_compat_task() ? -ENODEV : 0; 138 } 139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 140 .open = kvm_no_compat_open 141 #endif 142 static int hardware_enable_all(void); 143 static void hardware_disable_all(void); 144 145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 146 147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 148 149 __visible bool kvm_rebooting; 150 EXPORT_SYMBOL_GPL(kvm_rebooting); 151 152 #define KVM_EVENT_CREATE_VM 0 153 #define KVM_EVENT_DESTROY_VM 1 154 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 155 static unsigned long long kvm_createvm_count; 156 static unsigned long long kvm_active_vms; 157 158 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 159 unsigned long start, unsigned long end, bool blockable) 160 { 161 return 0; 162 } 163 164 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn) 165 { 166 /* 167 * The metadata used by is_zone_device_page() to determine whether or 168 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 169 * the device has been pinned, e.g. by get_user_pages(). WARN if the 170 * page_count() is zero to help detect bad usage of this helper. 171 */ 172 if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn)))) 173 return false; 174 175 return is_zone_device_page(pfn_to_page(pfn)); 176 } 177 178 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 179 { 180 /* 181 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 182 * perspective they are "normal" pages, albeit with slightly different 183 * usage rules. 184 */ 185 if (pfn_valid(pfn)) 186 return PageReserved(pfn_to_page(pfn)) && 187 !is_zero_pfn(pfn) && 188 !kvm_is_zone_device_pfn(pfn); 189 190 return true; 191 } 192 193 bool kvm_is_transparent_hugepage(kvm_pfn_t pfn) 194 { 195 struct page *page = pfn_to_page(pfn); 196 197 if (!PageTransCompoundMap(page)) 198 return false; 199 200 return is_transparent_hugepage(compound_head(page)); 201 } 202 203 /* 204 * Switches to specified vcpu, until a matching vcpu_put() 205 */ 206 void vcpu_load(struct kvm_vcpu *vcpu) 207 { 208 int cpu = get_cpu(); 209 210 __this_cpu_write(kvm_running_vcpu, vcpu); 211 preempt_notifier_register(&vcpu->preempt_notifier); 212 kvm_arch_vcpu_load(vcpu, cpu); 213 put_cpu(); 214 } 215 EXPORT_SYMBOL_GPL(vcpu_load); 216 217 void vcpu_put(struct kvm_vcpu *vcpu) 218 { 219 preempt_disable(); 220 kvm_arch_vcpu_put(vcpu); 221 preempt_notifier_unregister(&vcpu->preempt_notifier); 222 __this_cpu_write(kvm_running_vcpu, NULL); 223 preempt_enable(); 224 } 225 EXPORT_SYMBOL_GPL(vcpu_put); 226 227 /* TODO: merge with kvm_arch_vcpu_should_kick */ 228 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 229 { 230 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 231 232 /* 233 * We need to wait for the VCPU to reenable interrupts and get out of 234 * READING_SHADOW_PAGE_TABLES mode. 235 */ 236 if (req & KVM_REQUEST_WAIT) 237 return mode != OUTSIDE_GUEST_MODE; 238 239 /* 240 * Need to kick a running VCPU, but otherwise there is nothing to do. 241 */ 242 return mode == IN_GUEST_MODE; 243 } 244 245 static void ack_flush(void *_completed) 246 { 247 } 248 249 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 250 { 251 if (unlikely(!cpus)) 252 cpus = cpu_online_mask; 253 254 if (cpumask_empty(cpus)) 255 return false; 256 257 smp_call_function_many(cpus, ack_flush, NULL, wait); 258 return true; 259 } 260 261 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 262 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 263 { 264 int i, cpu, me; 265 struct kvm_vcpu *vcpu; 266 bool called; 267 268 me = get_cpu(); 269 270 kvm_for_each_vcpu(i, vcpu, kvm) { 271 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 272 continue; 273 274 kvm_make_request(req, vcpu); 275 cpu = vcpu->cpu; 276 277 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 278 continue; 279 280 if (tmp != NULL && cpu != -1 && cpu != me && 281 kvm_request_needs_ipi(vcpu, req)) 282 __cpumask_set_cpu(cpu, tmp); 283 } 284 285 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 286 put_cpu(); 287 288 return called; 289 } 290 291 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 292 { 293 cpumask_var_t cpus; 294 bool called; 295 296 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 297 298 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 299 300 free_cpumask_var(cpus); 301 return called; 302 } 303 304 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 305 void kvm_flush_remote_tlbs(struct kvm *kvm) 306 { 307 /* 308 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 309 * kvm_make_all_cpus_request. 310 */ 311 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 312 313 /* 314 * We want to publish modifications to the page tables before reading 315 * mode. Pairs with a memory barrier in arch-specific code. 316 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 317 * and smp_mb in walk_shadow_page_lockless_begin/end. 318 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 319 * 320 * There is already an smp_mb__after_atomic() before 321 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 322 * barrier here. 323 */ 324 if (!kvm_arch_flush_remote_tlb(kvm) 325 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 326 ++kvm->stat.remote_tlb_flush; 327 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 328 } 329 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 330 #endif 331 332 void kvm_reload_remote_mmus(struct kvm *kvm) 333 { 334 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 335 } 336 337 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 338 { 339 mutex_init(&vcpu->mutex); 340 vcpu->cpu = -1; 341 vcpu->kvm = kvm; 342 vcpu->vcpu_id = id; 343 vcpu->pid = NULL; 344 init_swait_queue_head(&vcpu->wq); 345 kvm_async_pf_vcpu_init(vcpu); 346 347 vcpu->pre_pcpu = -1; 348 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 349 350 kvm_vcpu_set_in_spin_loop(vcpu, false); 351 kvm_vcpu_set_dy_eligible(vcpu, false); 352 vcpu->preempted = false; 353 vcpu->ready = false; 354 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 355 } 356 357 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 358 { 359 kvm_arch_vcpu_destroy(vcpu); 360 361 /* 362 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 363 * the vcpu->pid pointer, and at destruction time all file descriptors 364 * are already gone. 365 */ 366 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 367 368 free_page((unsigned long)vcpu->run); 369 kmem_cache_free(kvm_vcpu_cache, vcpu); 370 } 371 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy); 372 373 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 374 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 375 { 376 return container_of(mn, struct kvm, mmu_notifier); 377 } 378 379 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 380 struct mm_struct *mm, 381 unsigned long address, 382 pte_t pte) 383 { 384 struct kvm *kvm = mmu_notifier_to_kvm(mn); 385 int idx; 386 387 idx = srcu_read_lock(&kvm->srcu); 388 spin_lock(&kvm->mmu_lock); 389 kvm->mmu_notifier_seq++; 390 391 if (kvm_set_spte_hva(kvm, address, pte)) 392 kvm_flush_remote_tlbs(kvm); 393 394 spin_unlock(&kvm->mmu_lock); 395 srcu_read_unlock(&kvm->srcu, idx); 396 } 397 398 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 399 const struct mmu_notifier_range *range) 400 { 401 struct kvm *kvm = mmu_notifier_to_kvm(mn); 402 int need_tlb_flush = 0, idx; 403 int ret; 404 405 idx = srcu_read_lock(&kvm->srcu); 406 spin_lock(&kvm->mmu_lock); 407 /* 408 * The count increase must become visible at unlock time as no 409 * spte can be established without taking the mmu_lock and 410 * count is also read inside the mmu_lock critical section. 411 */ 412 kvm->mmu_notifier_count++; 413 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 414 need_tlb_flush |= kvm->tlbs_dirty; 415 /* we've to flush the tlb before the pages can be freed */ 416 if (need_tlb_flush) 417 kvm_flush_remote_tlbs(kvm); 418 419 spin_unlock(&kvm->mmu_lock); 420 421 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 422 range->end, 423 mmu_notifier_range_blockable(range)); 424 425 srcu_read_unlock(&kvm->srcu, idx); 426 427 return ret; 428 } 429 430 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 431 const struct mmu_notifier_range *range) 432 { 433 struct kvm *kvm = mmu_notifier_to_kvm(mn); 434 435 spin_lock(&kvm->mmu_lock); 436 /* 437 * This sequence increase will notify the kvm page fault that 438 * the page that is going to be mapped in the spte could have 439 * been freed. 440 */ 441 kvm->mmu_notifier_seq++; 442 smp_wmb(); 443 /* 444 * The above sequence increase must be visible before the 445 * below count decrease, which is ensured by the smp_wmb above 446 * in conjunction with the smp_rmb in mmu_notifier_retry(). 447 */ 448 kvm->mmu_notifier_count--; 449 spin_unlock(&kvm->mmu_lock); 450 451 BUG_ON(kvm->mmu_notifier_count < 0); 452 } 453 454 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 455 struct mm_struct *mm, 456 unsigned long start, 457 unsigned long end) 458 { 459 struct kvm *kvm = mmu_notifier_to_kvm(mn); 460 int young, idx; 461 462 idx = srcu_read_lock(&kvm->srcu); 463 spin_lock(&kvm->mmu_lock); 464 465 young = kvm_age_hva(kvm, start, end); 466 if (young) 467 kvm_flush_remote_tlbs(kvm); 468 469 spin_unlock(&kvm->mmu_lock); 470 srcu_read_unlock(&kvm->srcu, idx); 471 472 return young; 473 } 474 475 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 476 struct mm_struct *mm, 477 unsigned long start, 478 unsigned long end) 479 { 480 struct kvm *kvm = mmu_notifier_to_kvm(mn); 481 int young, idx; 482 483 idx = srcu_read_lock(&kvm->srcu); 484 spin_lock(&kvm->mmu_lock); 485 /* 486 * Even though we do not flush TLB, this will still adversely 487 * affect performance on pre-Haswell Intel EPT, where there is 488 * no EPT Access Bit to clear so that we have to tear down EPT 489 * tables instead. If we find this unacceptable, we can always 490 * add a parameter to kvm_age_hva so that it effectively doesn't 491 * do anything on clear_young. 492 * 493 * Also note that currently we never issue secondary TLB flushes 494 * from clear_young, leaving this job up to the regular system 495 * cadence. If we find this inaccurate, we might come up with a 496 * more sophisticated heuristic later. 497 */ 498 young = kvm_age_hva(kvm, start, end); 499 spin_unlock(&kvm->mmu_lock); 500 srcu_read_unlock(&kvm->srcu, idx); 501 502 return young; 503 } 504 505 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 506 struct mm_struct *mm, 507 unsigned long address) 508 { 509 struct kvm *kvm = mmu_notifier_to_kvm(mn); 510 int young, idx; 511 512 idx = srcu_read_lock(&kvm->srcu); 513 spin_lock(&kvm->mmu_lock); 514 young = kvm_test_age_hva(kvm, address); 515 spin_unlock(&kvm->mmu_lock); 516 srcu_read_unlock(&kvm->srcu, idx); 517 518 return young; 519 } 520 521 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 522 struct mm_struct *mm) 523 { 524 struct kvm *kvm = mmu_notifier_to_kvm(mn); 525 int idx; 526 527 idx = srcu_read_lock(&kvm->srcu); 528 kvm_arch_flush_shadow_all(kvm); 529 srcu_read_unlock(&kvm->srcu, idx); 530 } 531 532 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 533 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 534 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 535 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 536 .clear_young = kvm_mmu_notifier_clear_young, 537 .test_young = kvm_mmu_notifier_test_young, 538 .change_pte = kvm_mmu_notifier_change_pte, 539 .release = kvm_mmu_notifier_release, 540 }; 541 542 static int kvm_init_mmu_notifier(struct kvm *kvm) 543 { 544 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 545 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 546 } 547 548 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 549 550 static int kvm_init_mmu_notifier(struct kvm *kvm) 551 { 552 return 0; 553 } 554 555 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 556 557 static struct kvm_memslots *kvm_alloc_memslots(void) 558 { 559 int i; 560 struct kvm_memslots *slots; 561 562 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 563 if (!slots) 564 return NULL; 565 566 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 567 slots->id_to_index[i] = -1; 568 569 return slots; 570 } 571 572 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 573 { 574 if (!memslot->dirty_bitmap) 575 return; 576 577 kvfree(memslot->dirty_bitmap); 578 memslot->dirty_bitmap = NULL; 579 } 580 581 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 582 { 583 kvm_destroy_dirty_bitmap(slot); 584 585 kvm_arch_free_memslot(kvm, slot); 586 587 slot->flags = 0; 588 slot->npages = 0; 589 } 590 591 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 592 { 593 struct kvm_memory_slot *memslot; 594 595 if (!slots) 596 return; 597 598 kvm_for_each_memslot(memslot, slots) 599 kvm_free_memslot(kvm, memslot); 600 601 kvfree(slots); 602 } 603 604 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 605 { 606 int i; 607 608 if (!kvm->debugfs_dentry) 609 return; 610 611 debugfs_remove_recursive(kvm->debugfs_dentry); 612 613 if (kvm->debugfs_stat_data) { 614 for (i = 0; i < kvm_debugfs_num_entries; i++) 615 kfree(kvm->debugfs_stat_data[i]); 616 kfree(kvm->debugfs_stat_data); 617 } 618 } 619 620 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 621 { 622 char dir_name[ITOA_MAX_LEN * 2]; 623 struct kvm_stat_data *stat_data; 624 struct kvm_stats_debugfs_item *p; 625 626 if (!debugfs_initialized()) 627 return 0; 628 629 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 630 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 631 632 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 633 sizeof(*kvm->debugfs_stat_data), 634 GFP_KERNEL_ACCOUNT); 635 if (!kvm->debugfs_stat_data) 636 return -ENOMEM; 637 638 for (p = debugfs_entries; p->name; p++) { 639 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 640 if (!stat_data) 641 return -ENOMEM; 642 643 stat_data->kvm = kvm; 644 stat_data->dbgfs_item = p; 645 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 646 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 647 kvm->debugfs_dentry, stat_data, 648 &stat_fops_per_vm); 649 } 650 return 0; 651 } 652 653 /* 654 * Called after the VM is otherwise initialized, but just before adding it to 655 * the vm_list. 656 */ 657 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 658 { 659 return 0; 660 } 661 662 /* 663 * Called just after removing the VM from the vm_list, but before doing any 664 * other destruction. 665 */ 666 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 667 { 668 } 669 670 static struct kvm *kvm_create_vm(unsigned long type) 671 { 672 struct kvm *kvm = kvm_arch_alloc_vm(); 673 int r = -ENOMEM; 674 int i; 675 676 if (!kvm) 677 return ERR_PTR(-ENOMEM); 678 679 spin_lock_init(&kvm->mmu_lock); 680 mmgrab(current->mm); 681 kvm->mm = current->mm; 682 kvm_eventfd_init(kvm); 683 mutex_init(&kvm->lock); 684 mutex_init(&kvm->irq_lock); 685 mutex_init(&kvm->slots_lock); 686 INIT_LIST_HEAD(&kvm->devices); 687 688 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 689 690 if (init_srcu_struct(&kvm->srcu)) 691 goto out_err_no_srcu; 692 if (init_srcu_struct(&kvm->irq_srcu)) 693 goto out_err_no_irq_srcu; 694 695 refcount_set(&kvm->users_count, 1); 696 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 697 struct kvm_memslots *slots = kvm_alloc_memslots(); 698 699 if (!slots) 700 goto out_err_no_arch_destroy_vm; 701 /* Generations must be different for each address space. */ 702 slots->generation = i; 703 rcu_assign_pointer(kvm->memslots[i], slots); 704 } 705 706 for (i = 0; i < KVM_NR_BUSES; i++) { 707 rcu_assign_pointer(kvm->buses[i], 708 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 709 if (!kvm->buses[i]) 710 goto out_err_no_arch_destroy_vm; 711 } 712 713 r = kvm_arch_init_vm(kvm, type); 714 if (r) 715 goto out_err_no_arch_destroy_vm; 716 717 r = hardware_enable_all(); 718 if (r) 719 goto out_err_no_disable; 720 721 #ifdef CONFIG_HAVE_KVM_IRQFD 722 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 723 #endif 724 725 r = kvm_init_mmu_notifier(kvm); 726 if (r) 727 goto out_err_no_mmu_notifier; 728 729 r = kvm_arch_post_init_vm(kvm); 730 if (r) 731 goto out_err; 732 733 mutex_lock(&kvm_lock); 734 list_add(&kvm->vm_list, &vm_list); 735 mutex_unlock(&kvm_lock); 736 737 preempt_notifier_inc(); 738 739 return kvm; 740 741 out_err: 742 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 743 if (kvm->mmu_notifier.ops) 744 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 745 #endif 746 out_err_no_mmu_notifier: 747 hardware_disable_all(); 748 out_err_no_disable: 749 kvm_arch_destroy_vm(kvm); 750 out_err_no_arch_destroy_vm: 751 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 752 for (i = 0; i < KVM_NR_BUSES; i++) 753 kfree(kvm_get_bus(kvm, i)); 754 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 755 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 756 cleanup_srcu_struct(&kvm->irq_srcu); 757 out_err_no_irq_srcu: 758 cleanup_srcu_struct(&kvm->srcu); 759 out_err_no_srcu: 760 kvm_arch_free_vm(kvm); 761 mmdrop(current->mm); 762 return ERR_PTR(r); 763 } 764 765 static void kvm_destroy_devices(struct kvm *kvm) 766 { 767 struct kvm_device *dev, *tmp; 768 769 /* 770 * We do not need to take the kvm->lock here, because nobody else 771 * has a reference to the struct kvm at this point and therefore 772 * cannot access the devices list anyhow. 773 */ 774 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 775 list_del(&dev->vm_node); 776 dev->ops->destroy(dev); 777 } 778 } 779 780 static void kvm_destroy_vm(struct kvm *kvm) 781 { 782 int i; 783 struct mm_struct *mm = kvm->mm; 784 785 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 786 kvm_destroy_vm_debugfs(kvm); 787 kvm_arch_sync_events(kvm); 788 mutex_lock(&kvm_lock); 789 list_del(&kvm->vm_list); 790 mutex_unlock(&kvm_lock); 791 kvm_arch_pre_destroy_vm(kvm); 792 793 kvm_free_irq_routing(kvm); 794 for (i = 0; i < KVM_NR_BUSES; i++) { 795 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 796 797 if (bus) 798 kvm_io_bus_destroy(bus); 799 kvm->buses[i] = NULL; 800 } 801 kvm_coalesced_mmio_free(kvm); 802 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 803 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 804 #else 805 kvm_arch_flush_shadow_all(kvm); 806 #endif 807 kvm_arch_destroy_vm(kvm); 808 kvm_destroy_devices(kvm); 809 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 810 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 811 cleanup_srcu_struct(&kvm->irq_srcu); 812 cleanup_srcu_struct(&kvm->srcu); 813 kvm_arch_free_vm(kvm); 814 preempt_notifier_dec(); 815 hardware_disable_all(); 816 mmdrop(mm); 817 } 818 819 void kvm_get_kvm(struct kvm *kvm) 820 { 821 refcount_inc(&kvm->users_count); 822 } 823 EXPORT_SYMBOL_GPL(kvm_get_kvm); 824 825 void kvm_put_kvm(struct kvm *kvm) 826 { 827 if (refcount_dec_and_test(&kvm->users_count)) 828 kvm_destroy_vm(kvm); 829 } 830 EXPORT_SYMBOL_GPL(kvm_put_kvm); 831 832 /* 833 * Used to put a reference that was taken on behalf of an object associated 834 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 835 * of the new file descriptor fails and the reference cannot be transferred to 836 * its final owner. In such cases, the caller is still actively using @kvm and 837 * will fail miserably if the refcount unexpectedly hits zero. 838 */ 839 void kvm_put_kvm_no_destroy(struct kvm *kvm) 840 { 841 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 842 } 843 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 844 845 static int kvm_vm_release(struct inode *inode, struct file *filp) 846 { 847 struct kvm *kvm = filp->private_data; 848 849 kvm_irqfd_release(kvm); 850 851 kvm_put_kvm(kvm); 852 return 0; 853 } 854 855 /* 856 * Allocation size is twice as large as the actual dirty bitmap size. 857 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 858 */ 859 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 860 { 861 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 862 863 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 864 if (!memslot->dirty_bitmap) 865 return -ENOMEM; 866 867 return 0; 868 } 869 870 /* 871 * Delete a memslot by decrementing the number of used slots and shifting all 872 * other entries in the array forward one spot. 873 */ 874 static inline void kvm_memslot_delete(struct kvm_memslots *slots, 875 struct kvm_memory_slot *memslot) 876 { 877 struct kvm_memory_slot *mslots = slots->memslots; 878 int i; 879 880 if (WARN_ON(slots->id_to_index[memslot->id] == -1)) 881 return; 882 883 slots->used_slots--; 884 885 if (atomic_read(&slots->lru_slot) >= slots->used_slots) 886 atomic_set(&slots->lru_slot, 0); 887 888 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots; i++) { 889 mslots[i] = mslots[i + 1]; 890 slots->id_to_index[mslots[i].id] = i; 891 } 892 mslots[i] = *memslot; 893 slots->id_to_index[memslot->id] = -1; 894 } 895 896 /* 897 * "Insert" a new memslot by incrementing the number of used slots. Returns 898 * the new slot's initial index into the memslots array. 899 */ 900 static inline int kvm_memslot_insert_back(struct kvm_memslots *slots) 901 { 902 return slots->used_slots++; 903 } 904 905 /* 906 * Move a changed memslot backwards in the array by shifting existing slots 907 * with a higher GFN toward the front of the array. Note, the changed memslot 908 * itself is not preserved in the array, i.e. not swapped at this time, only 909 * its new index into the array is tracked. Returns the changed memslot's 910 * current index into the memslots array. 911 */ 912 static inline int kvm_memslot_move_backward(struct kvm_memslots *slots, 913 struct kvm_memory_slot *memslot) 914 { 915 struct kvm_memory_slot *mslots = slots->memslots; 916 int i; 917 918 if (WARN_ON_ONCE(slots->id_to_index[memslot->id] == -1) || 919 WARN_ON_ONCE(!slots->used_slots)) 920 return -1; 921 922 /* 923 * Move the target memslot backward in the array by shifting existing 924 * memslots with a higher GFN (than the target memslot) towards the 925 * front of the array. 926 */ 927 for (i = slots->id_to_index[memslot->id]; i < slots->used_slots - 1; i++) { 928 if (memslot->base_gfn > mslots[i + 1].base_gfn) 929 break; 930 931 WARN_ON_ONCE(memslot->base_gfn == mslots[i + 1].base_gfn); 932 933 /* Shift the next memslot forward one and update its index. */ 934 mslots[i] = mslots[i + 1]; 935 slots->id_to_index[mslots[i].id] = i; 936 } 937 return i; 938 } 939 940 /* 941 * Move a changed memslot forwards in the array by shifting existing slots with 942 * a lower GFN toward the back of the array. Note, the changed memslot itself 943 * is not preserved in the array, i.e. not swapped at this time, only its new 944 * index into the array is tracked. Returns the changed memslot's final index 945 * into the memslots array. 946 */ 947 static inline int kvm_memslot_move_forward(struct kvm_memslots *slots, 948 struct kvm_memory_slot *memslot, 949 int start) 950 { 951 struct kvm_memory_slot *mslots = slots->memslots; 952 int i; 953 954 for (i = start; i > 0; i--) { 955 if (memslot->base_gfn < mslots[i - 1].base_gfn) 956 break; 957 958 WARN_ON_ONCE(memslot->base_gfn == mslots[i - 1].base_gfn); 959 960 /* Shift the next memslot back one and update its index. */ 961 mslots[i] = mslots[i - 1]; 962 slots->id_to_index[mslots[i].id] = i; 963 } 964 return i; 965 } 966 967 /* 968 * Re-sort memslots based on their GFN to account for an added, deleted, or 969 * moved memslot. Sorting memslots by GFN allows using a binary search during 970 * memslot lookup. 971 * 972 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! I.e. the entry 973 * at memslots[0] has the highest GFN. 974 * 975 * The sorting algorithm takes advantage of having initially sorted memslots 976 * and knowing the position of the changed memslot. Sorting is also optimized 977 * by not swapping the updated memslot and instead only shifting other memslots 978 * and tracking the new index for the update memslot. Only once its final 979 * index is known is the updated memslot copied into its position in the array. 980 * 981 * - When deleting a memslot, the deleted memslot simply needs to be moved to 982 * the end of the array. 983 * 984 * - When creating a memslot, the algorithm "inserts" the new memslot at the 985 * end of the array and then it forward to its correct location. 986 * 987 * - When moving a memslot, the algorithm first moves the updated memslot 988 * backward to handle the scenario where the memslot's GFN was changed to a 989 * lower value. update_memslots() then falls through and runs the same flow 990 * as creating a memslot to move the memslot forward to handle the scenario 991 * where its GFN was changed to a higher value. 992 * 993 * Note, slots are sorted from highest->lowest instead of lowest->highest for 994 * historical reasons. Originally, invalid memslots where denoted by having 995 * GFN=0, thus sorting from highest->lowest naturally sorted invalid memslots 996 * to the end of the array. The current algorithm uses dedicated logic to 997 * delete a memslot and thus does not rely on invalid memslots having GFN=0. 998 * 999 * The other historical motiviation for highest->lowest was to improve the 1000 * performance of memslot lookup. KVM originally used a linear search starting 1001 * at memslots[0]. On x86, the largest memslot usually has one of the highest, 1002 * if not *the* highest, GFN, as the bulk of the guest's RAM is located in a 1003 * single memslot above the 4gb boundary. As the largest memslot is also the 1004 * most likely to be referenced, sorting it to the front of the array was 1005 * advantageous. The current binary search starts from the middle of the array 1006 * and uses an LRU pointer to improve performance for all memslots and GFNs. 1007 */ 1008 static void update_memslots(struct kvm_memslots *slots, 1009 struct kvm_memory_slot *memslot, 1010 enum kvm_mr_change change) 1011 { 1012 int i; 1013 1014 if (change == KVM_MR_DELETE) { 1015 kvm_memslot_delete(slots, memslot); 1016 } else { 1017 if (change == KVM_MR_CREATE) 1018 i = kvm_memslot_insert_back(slots); 1019 else 1020 i = kvm_memslot_move_backward(slots, memslot); 1021 i = kvm_memslot_move_forward(slots, memslot, i); 1022 1023 /* 1024 * Copy the memslot to its new position in memslots and update 1025 * its index accordingly. 1026 */ 1027 slots->memslots[i] = *memslot; 1028 slots->id_to_index[memslot->id] = i; 1029 } 1030 } 1031 1032 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1033 { 1034 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1035 1036 #ifdef __KVM_HAVE_READONLY_MEM 1037 valid_flags |= KVM_MEM_READONLY; 1038 #endif 1039 1040 if (mem->flags & ~valid_flags) 1041 return -EINVAL; 1042 1043 return 0; 1044 } 1045 1046 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 1047 int as_id, struct kvm_memslots *slots) 1048 { 1049 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 1050 u64 gen = old_memslots->generation; 1051 1052 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1053 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1054 1055 rcu_assign_pointer(kvm->memslots[as_id], slots); 1056 synchronize_srcu_expedited(&kvm->srcu); 1057 1058 /* 1059 * Increment the new memslot generation a second time, dropping the 1060 * update in-progress flag and incrementing the generation based on 1061 * the number of address spaces. This provides a unique and easily 1062 * identifiable generation number while the memslots are in flux. 1063 */ 1064 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1065 1066 /* 1067 * Generations must be unique even across address spaces. We do not need 1068 * a global counter for that, instead the generation space is evenly split 1069 * across address spaces. For example, with two address spaces, address 1070 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1071 * use generations 1, 3, 5, ... 1072 */ 1073 gen += KVM_ADDRESS_SPACE_NUM; 1074 1075 kvm_arch_memslots_updated(kvm, gen); 1076 1077 slots->generation = gen; 1078 1079 return old_memslots; 1080 } 1081 1082 /* 1083 * Note, at a minimum, the current number of used slots must be allocated, even 1084 * when deleting a memslot, as we need a complete duplicate of the memslots for 1085 * use when invalidating a memslot prior to deleting/moving the memslot. 1086 */ 1087 static struct kvm_memslots *kvm_dup_memslots(struct kvm_memslots *old, 1088 enum kvm_mr_change change) 1089 { 1090 struct kvm_memslots *slots; 1091 size_t old_size, new_size; 1092 1093 old_size = sizeof(struct kvm_memslots) + 1094 (sizeof(struct kvm_memory_slot) * old->used_slots); 1095 1096 if (change == KVM_MR_CREATE) 1097 new_size = old_size + sizeof(struct kvm_memory_slot); 1098 else 1099 new_size = old_size; 1100 1101 slots = kvzalloc(new_size, GFP_KERNEL_ACCOUNT); 1102 if (likely(slots)) 1103 memcpy(slots, old, old_size); 1104 1105 return slots; 1106 } 1107 1108 static int kvm_set_memslot(struct kvm *kvm, 1109 const struct kvm_userspace_memory_region *mem, 1110 struct kvm_memory_slot *old, 1111 struct kvm_memory_slot *new, int as_id, 1112 enum kvm_mr_change change) 1113 { 1114 struct kvm_memory_slot *slot; 1115 struct kvm_memslots *slots; 1116 int r; 1117 1118 slots = kvm_dup_memslots(__kvm_memslots(kvm, as_id), change); 1119 if (!slots) 1120 return -ENOMEM; 1121 1122 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1123 /* 1124 * Note, the INVALID flag needs to be in the appropriate entry 1125 * in the freshly allocated memslots, not in @old or @new. 1126 */ 1127 slot = id_to_memslot(slots, old->id); 1128 slot->flags |= KVM_MEMSLOT_INVALID; 1129 1130 /* 1131 * We can re-use the old memslots, the only difference from the 1132 * newly installed memslots is the invalid flag, which will get 1133 * dropped by update_memslots anyway. We'll also revert to the 1134 * old memslots if preparing the new memory region fails. 1135 */ 1136 slots = install_new_memslots(kvm, as_id, slots); 1137 1138 /* From this point no new shadow pages pointing to a deleted, 1139 * or moved, memslot will be created. 1140 * 1141 * validation of sp->gfn happens in: 1142 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1143 * - kvm_is_visible_gfn (mmu_check_root) 1144 */ 1145 kvm_arch_flush_shadow_memslot(kvm, slot); 1146 } 1147 1148 r = kvm_arch_prepare_memory_region(kvm, new, mem, change); 1149 if (r) 1150 goto out_slots; 1151 1152 update_memslots(slots, new, change); 1153 slots = install_new_memslots(kvm, as_id, slots); 1154 1155 kvm_arch_commit_memory_region(kvm, mem, old, new, change); 1156 1157 kvfree(slots); 1158 return 0; 1159 1160 out_slots: 1161 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1162 slots = install_new_memslots(kvm, as_id, slots); 1163 kvfree(slots); 1164 return r; 1165 } 1166 1167 static int kvm_delete_memslot(struct kvm *kvm, 1168 const struct kvm_userspace_memory_region *mem, 1169 struct kvm_memory_slot *old, int as_id) 1170 { 1171 struct kvm_memory_slot new; 1172 int r; 1173 1174 if (!old->npages) 1175 return -EINVAL; 1176 1177 memset(&new, 0, sizeof(new)); 1178 new.id = old->id; 1179 1180 r = kvm_set_memslot(kvm, mem, old, &new, as_id, KVM_MR_DELETE); 1181 if (r) 1182 return r; 1183 1184 kvm_free_memslot(kvm, old); 1185 return 0; 1186 } 1187 1188 /* 1189 * Allocate some memory and give it an address in the guest physical address 1190 * space. 1191 * 1192 * Discontiguous memory is allowed, mostly for framebuffers. 1193 * 1194 * Must be called holding kvm->slots_lock for write. 1195 */ 1196 int __kvm_set_memory_region(struct kvm *kvm, 1197 const struct kvm_userspace_memory_region *mem) 1198 { 1199 struct kvm_memory_slot old, new; 1200 struct kvm_memory_slot *tmp; 1201 enum kvm_mr_change change; 1202 int as_id, id; 1203 int r; 1204 1205 r = check_memory_region_flags(mem); 1206 if (r) 1207 return r; 1208 1209 as_id = mem->slot >> 16; 1210 id = (u16)mem->slot; 1211 1212 /* General sanity checks */ 1213 if (mem->memory_size & (PAGE_SIZE - 1)) 1214 return -EINVAL; 1215 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1216 return -EINVAL; 1217 /* We can read the guest memory with __xxx_user() later on. */ 1218 if ((id < KVM_USER_MEM_SLOTS) && 1219 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1220 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1221 mem->memory_size))) 1222 return -EINVAL; 1223 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1224 return -EINVAL; 1225 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1226 return -EINVAL; 1227 1228 /* 1229 * Make a full copy of the old memslot, the pointer will become stale 1230 * when the memslots are re-sorted by update_memslots(), and the old 1231 * memslot needs to be referenced after calling update_memslots(), e.g. 1232 * to free its resources and for arch specific behavior. 1233 */ 1234 tmp = id_to_memslot(__kvm_memslots(kvm, as_id), id); 1235 if (tmp) { 1236 old = *tmp; 1237 tmp = NULL; 1238 } else { 1239 memset(&old, 0, sizeof(old)); 1240 old.id = id; 1241 } 1242 1243 if (!mem->memory_size) 1244 return kvm_delete_memslot(kvm, mem, &old, as_id); 1245 1246 new.id = id; 1247 new.base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 1248 new.npages = mem->memory_size >> PAGE_SHIFT; 1249 new.flags = mem->flags; 1250 new.userspace_addr = mem->userspace_addr; 1251 1252 if (new.npages > KVM_MEM_MAX_NR_PAGES) 1253 return -EINVAL; 1254 1255 if (!old.npages) { 1256 change = KVM_MR_CREATE; 1257 new.dirty_bitmap = NULL; 1258 memset(&new.arch, 0, sizeof(new.arch)); 1259 } else { /* Modify an existing slot. */ 1260 if ((new.userspace_addr != old.userspace_addr) || 1261 (new.npages != old.npages) || 1262 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 1263 return -EINVAL; 1264 1265 if (new.base_gfn != old.base_gfn) 1266 change = KVM_MR_MOVE; 1267 else if (new.flags != old.flags) 1268 change = KVM_MR_FLAGS_ONLY; 1269 else /* Nothing to change. */ 1270 return 0; 1271 1272 /* Copy dirty_bitmap and arch from the current memslot. */ 1273 new.dirty_bitmap = old.dirty_bitmap; 1274 memcpy(&new.arch, &old.arch, sizeof(new.arch)); 1275 } 1276 1277 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1278 /* Check for overlaps */ 1279 kvm_for_each_memslot(tmp, __kvm_memslots(kvm, as_id)) { 1280 if (tmp->id == id) 1281 continue; 1282 if (!((new.base_gfn + new.npages <= tmp->base_gfn) || 1283 (new.base_gfn >= tmp->base_gfn + tmp->npages))) 1284 return -EEXIST; 1285 } 1286 } 1287 1288 /* Allocate/free page dirty bitmap as needed */ 1289 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1290 new.dirty_bitmap = NULL; 1291 else if (!new.dirty_bitmap) { 1292 r = kvm_alloc_dirty_bitmap(&new); 1293 if (r) 1294 return r; 1295 1296 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1297 bitmap_set(new.dirty_bitmap, 0, new.npages); 1298 } 1299 1300 r = kvm_set_memslot(kvm, mem, &old, &new, as_id, change); 1301 if (r) 1302 goto out_bitmap; 1303 1304 if (old.dirty_bitmap && !new.dirty_bitmap) 1305 kvm_destroy_dirty_bitmap(&old); 1306 return 0; 1307 1308 out_bitmap: 1309 if (new.dirty_bitmap && !old.dirty_bitmap) 1310 kvm_destroy_dirty_bitmap(&new); 1311 return r; 1312 } 1313 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1314 1315 int kvm_set_memory_region(struct kvm *kvm, 1316 const struct kvm_userspace_memory_region *mem) 1317 { 1318 int r; 1319 1320 mutex_lock(&kvm->slots_lock); 1321 r = __kvm_set_memory_region(kvm, mem); 1322 mutex_unlock(&kvm->slots_lock); 1323 return r; 1324 } 1325 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1326 1327 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1328 struct kvm_userspace_memory_region *mem) 1329 { 1330 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1331 return -EINVAL; 1332 1333 return kvm_set_memory_region(kvm, mem); 1334 } 1335 1336 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1337 /** 1338 * kvm_get_dirty_log - get a snapshot of dirty pages 1339 * @kvm: pointer to kvm instance 1340 * @log: slot id and address to which we copy the log 1341 * @is_dirty: set to '1' if any dirty pages were found 1342 * @memslot: set to the associated memslot, always valid on success 1343 */ 1344 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1345 int *is_dirty, struct kvm_memory_slot **memslot) 1346 { 1347 struct kvm_memslots *slots; 1348 int i, as_id, id; 1349 unsigned long n; 1350 unsigned long any = 0; 1351 1352 *memslot = NULL; 1353 *is_dirty = 0; 1354 1355 as_id = log->slot >> 16; 1356 id = (u16)log->slot; 1357 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1358 return -EINVAL; 1359 1360 slots = __kvm_memslots(kvm, as_id); 1361 *memslot = id_to_memslot(slots, id); 1362 if (!(*memslot) || !(*memslot)->dirty_bitmap) 1363 return -ENOENT; 1364 1365 kvm_arch_sync_dirty_log(kvm, *memslot); 1366 1367 n = kvm_dirty_bitmap_bytes(*memslot); 1368 1369 for (i = 0; !any && i < n/sizeof(long); ++i) 1370 any = (*memslot)->dirty_bitmap[i]; 1371 1372 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 1373 return -EFAULT; 1374 1375 if (any) 1376 *is_dirty = 1; 1377 return 0; 1378 } 1379 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1380 1381 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1382 /** 1383 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1384 * and reenable dirty page tracking for the corresponding pages. 1385 * @kvm: pointer to kvm instance 1386 * @log: slot id and address to which we copy the log 1387 * 1388 * We need to keep it in mind that VCPU threads can write to the bitmap 1389 * concurrently. So, to avoid losing track of dirty pages we keep the 1390 * following order: 1391 * 1392 * 1. Take a snapshot of the bit and clear it if needed. 1393 * 2. Write protect the corresponding page. 1394 * 3. Copy the snapshot to the userspace. 1395 * 4. Upon return caller flushes TLB's if needed. 1396 * 1397 * Between 2 and 4, the guest may write to the page using the remaining TLB 1398 * entry. This is not a problem because the page is reported dirty using 1399 * the snapshot taken before and step 4 ensures that writes done after 1400 * exiting to userspace will be logged for the next call. 1401 * 1402 */ 1403 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 1404 { 1405 struct kvm_memslots *slots; 1406 struct kvm_memory_slot *memslot; 1407 int i, as_id, id; 1408 unsigned long n; 1409 unsigned long *dirty_bitmap; 1410 unsigned long *dirty_bitmap_buffer; 1411 bool flush; 1412 1413 as_id = log->slot >> 16; 1414 id = (u16)log->slot; 1415 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1416 return -EINVAL; 1417 1418 slots = __kvm_memslots(kvm, as_id); 1419 memslot = id_to_memslot(slots, id); 1420 if (!memslot || !memslot->dirty_bitmap) 1421 return -ENOENT; 1422 1423 dirty_bitmap = memslot->dirty_bitmap; 1424 1425 kvm_arch_sync_dirty_log(kvm, memslot); 1426 1427 n = kvm_dirty_bitmap_bytes(memslot); 1428 flush = false; 1429 if (kvm->manual_dirty_log_protect) { 1430 /* 1431 * Unlike kvm_get_dirty_log, we always return false in *flush, 1432 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1433 * is some code duplication between this function and 1434 * kvm_get_dirty_log, but hopefully all architecture 1435 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1436 * can be eliminated. 1437 */ 1438 dirty_bitmap_buffer = dirty_bitmap; 1439 } else { 1440 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1441 memset(dirty_bitmap_buffer, 0, n); 1442 1443 spin_lock(&kvm->mmu_lock); 1444 for (i = 0; i < n / sizeof(long); i++) { 1445 unsigned long mask; 1446 gfn_t offset; 1447 1448 if (!dirty_bitmap[i]) 1449 continue; 1450 1451 flush = true; 1452 mask = xchg(&dirty_bitmap[i], 0); 1453 dirty_bitmap_buffer[i] = mask; 1454 1455 offset = i * BITS_PER_LONG; 1456 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1457 offset, mask); 1458 } 1459 spin_unlock(&kvm->mmu_lock); 1460 } 1461 1462 if (flush) 1463 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1464 1465 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1466 return -EFAULT; 1467 return 0; 1468 } 1469 1470 1471 /** 1472 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 1473 * @kvm: kvm instance 1474 * @log: slot id and address to which we copy the log 1475 * 1476 * Steps 1-4 below provide general overview of dirty page logging. See 1477 * kvm_get_dirty_log_protect() function description for additional details. 1478 * 1479 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 1480 * always flush the TLB (step 4) even if previous step failed and the dirty 1481 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 1482 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 1483 * writes will be marked dirty for next log read. 1484 * 1485 * 1. Take a snapshot of the bit and clear it if needed. 1486 * 2. Write protect the corresponding page. 1487 * 3. Copy the snapshot to the userspace. 1488 * 4. Flush TLB's if needed. 1489 */ 1490 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 1491 struct kvm_dirty_log *log) 1492 { 1493 int r; 1494 1495 mutex_lock(&kvm->slots_lock); 1496 1497 r = kvm_get_dirty_log_protect(kvm, log); 1498 1499 mutex_unlock(&kvm->slots_lock); 1500 return r; 1501 } 1502 1503 /** 1504 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1505 * and reenable dirty page tracking for the corresponding pages. 1506 * @kvm: pointer to kvm instance 1507 * @log: slot id and address from which to fetch the bitmap of dirty pages 1508 */ 1509 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 1510 struct kvm_clear_dirty_log *log) 1511 { 1512 struct kvm_memslots *slots; 1513 struct kvm_memory_slot *memslot; 1514 int as_id, id; 1515 gfn_t offset; 1516 unsigned long i, n; 1517 unsigned long *dirty_bitmap; 1518 unsigned long *dirty_bitmap_buffer; 1519 bool flush; 1520 1521 as_id = log->slot >> 16; 1522 id = (u16)log->slot; 1523 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1524 return -EINVAL; 1525 1526 if (log->first_page & 63) 1527 return -EINVAL; 1528 1529 slots = __kvm_memslots(kvm, as_id); 1530 memslot = id_to_memslot(slots, id); 1531 if (!memslot || !memslot->dirty_bitmap) 1532 return -ENOENT; 1533 1534 dirty_bitmap = memslot->dirty_bitmap; 1535 1536 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1537 1538 if (log->first_page > memslot->npages || 1539 log->num_pages > memslot->npages - log->first_page || 1540 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1541 return -EINVAL; 1542 1543 kvm_arch_sync_dirty_log(kvm, memslot); 1544 1545 flush = false; 1546 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1547 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1548 return -EFAULT; 1549 1550 spin_lock(&kvm->mmu_lock); 1551 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1552 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1553 i++, offset += BITS_PER_LONG) { 1554 unsigned long mask = *dirty_bitmap_buffer++; 1555 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1556 if (!mask) 1557 continue; 1558 1559 mask &= atomic_long_fetch_andnot(mask, p); 1560 1561 /* 1562 * mask contains the bits that really have been cleared. This 1563 * never includes any bits beyond the length of the memslot (if 1564 * the length is not aligned to 64 pages), therefore it is not 1565 * a problem if userspace sets them in log->dirty_bitmap. 1566 */ 1567 if (mask) { 1568 flush = true; 1569 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1570 offset, mask); 1571 } 1572 } 1573 spin_unlock(&kvm->mmu_lock); 1574 1575 if (flush) 1576 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 1577 1578 return 0; 1579 } 1580 1581 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 1582 struct kvm_clear_dirty_log *log) 1583 { 1584 int r; 1585 1586 mutex_lock(&kvm->slots_lock); 1587 1588 r = kvm_clear_dirty_log_protect(kvm, log); 1589 1590 mutex_unlock(&kvm->slots_lock); 1591 return r; 1592 } 1593 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1594 1595 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1596 { 1597 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1598 } 1599 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1600 1601 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1602 { 1603 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1604 } 1605 1606 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1607 { 1608 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1609 1610 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1611 memslot->flags & KVM_MEMSLOT_INVALID) 1612 return false; 1613 1614 return true; 1615 } 1616 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1617 1618 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 1619 { 1620 struct vm_area_struct *vma; 1621 unsigned long addr, size; 1622 1623 size = PAGE_SIZE; 1624 1625 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 1626 if (kvm_is_error_hva(addr)) 1627 return PAGE_SIZE; 1628 1629 down_read(¤t->mm->mmap_sem); 1630 vma = find_vma(current->mm, addr); 1631 if (!vma) 1632 goto out; 1633 1634 size = vma_kernel_pagesize(vma); 1635 1636 out: 1637 up_read(¤t->mm->mmap_sem); 1638 1639 return size; 1640 } 1641 1642 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1643 { 1644 return slot->flags & KVM_MEM_READONLY; 1645 } 1646 1647 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1648 gfn_t *nr_pages, bool write) 1649 { 1650 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1651 return KVM_HVA_ERR_BAD; 1652 1653 if (memslot_is_readonly(slot) && write) 1654 return KVM_HVA_ERR_RO_BAD; 1655 1656 if (nr_pages) 1657 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1658 1659 return __gfn_to_hva_memslot(slot, gfn); 1660 } 1661 1662 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1663 gfn_t *nr_pages) 1664 { 1665 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1666 } 1667 1668 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1669 gfn_t gfn) 1670 { 1671 return gfn_to_hva_many(slot, gfn, NULL); 1672 } 1673 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1674 1675 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1676 { 1677 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1678 } 1679 EXPORT_SYMBOL_GPL(gfn_to_hva); 1680 1681 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1682 { 1683 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1684 } 1685 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1686 1687 /* 1688 * Return the hva of a @gfn and the R/W attribute if possible. 1689 * 1690 * @slot: the kvm_memory_slot which contains @gfn 1691 * @gfn: the gfn to be translated 1692 * @writable: used to return the read/write attribute of the @slot if the hva 1693 * is valid and @writable is not NULL 1694 */ 1695 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1696 gfn_t gfn, bool *writable) 1697 { 1698 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1699 1700 if (!kvm_is_error_hva(hva) && writable) 1701 *writable = !memslot_is_readonly(slot); 1702 1703 return hva; 1704 } 1705 1706 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1707 { 1708 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1709 1710 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1711 } 1712 1713 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1714 { 1715 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1716 1717 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1718 } 1719 1720 static inline int check_user_page_hwpoison(unsigned long addr) 1721 { 1722 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1723 1724 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1725 return rc == -EHWPOISON; 1726 } 1727 1728 /* 1729 * The fast path to get the writable pfn which will be stored in @pfn, 1730 * true indicates success, otherwise false is returned. It's also the 1731 * only part that runs if we can in atomic context. 1732 */ 1733 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1734 bool *writable, kvm_pfn_t *pfn) 1735 { 1736 struct page *page[1]; 1737 int npages; 1738 1739 /* 1740 * Fast pin a writable pfn only if it is a write fault request 1741 * or the caller allows to map a writable pfn for a read fault 1742 * request. 1743 */ 1744 if (!(write_fault || writable)) 1745 return false; 1746 1747 npages = __get_user_pages_fast(addr, 1, 1, page); 1748 if (npages == 1) { 1749 *pfn = page_to_pfn(page[0]); 1750 1751 if (writable) 1752 *writable = true; 1753 return true; 1754 } 1755 1756 return false; 1757 } 1758 1759 /* 1760 * The slow path to get the pfn of the specified host virtual address, 1761 * 1 indicates success, -errno is returned if error is detected. 1762 */ 1763 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1764 bool *writable, kvm_pfn_t *pfn) 1765 { 1766 unsigned int flags = FOLL_HWPOISON; 1767 struct page *page; 1768 int npages = 0; 1769 1770 might_sleep(); 1771 1772 if (writable) 1773 *writable = write_fault; 1774 1775 if (write_fault) 1776 flags |= FOLL_WRITE; 1777 if (async) 1778 flags |= FOLL_NOWAIT; 1779 1780 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1781 if (npages != 1) 1782 return npages; 1783 1784 /* map read fault as writable if possible */ 1785 if (unlikely(!write_fault) && writable) { 1786 struct page *wpage; 1787 1788 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1789 *writable = true; 1790 put_page(page); 1791 page = wpage; 1792 } 1793 } 1794 *pfn = page_to_pfn(page); 1795 return npages; 1796 } 1797 1798 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1799 { 1800 if (unlikely(!(vma->vm_flags & VM_READ))) 1801 return false; 1802 1803 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1804 return false; 1805 1806 return true; 1807 } 1808 1809 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1810 unsigned long addr, bool *async, 1811 bool write_fault, bool *writable, 1812 kvm_pfn_t *p_pfn) 1813 { 1814 unsigned long pfn; 1815 int r; 1816 1817 r = follow_pfn(vma, addr, &pfn); 1818 if (r) { 1819 /* 1820 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1821 * not call the fault handler, so do it here. 1822 */ 1823 bool unlocked = false; 1824 r = fixup_user_fault(current, current->mm, addr, 1825 (write_fault ? FAULT_FLAG_WRITE : 0), 1826 &unlocked); 1827 if (unlocked) 1828 return -EAGAIN; 1829 if (r) 1830 return r; 1831 1832 r = follow_pfn(vma, addr, &pfn); 1833 if (r) 1834 return r; 1835 1836 } 1837 1838 if (writable) 1839 *writable = true; 1840 1841 /* 1842 * Get a reference here because callers of *hva_to_pfn* and 1843 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1844 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1845 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1846 * simply do nothing for reserved pfns. 1847 * 1848 * Whoever called remap_pfn_range is also going to call e.g. 1849 * unmap_mapping_range before the underlying pages are freed, 1850 * causing a call to our MMU notifier. 1851 */ 1852 kvm_get_pfn(pfn); 1853 1854 *p_pfn = pfn; 1855 return 0; 1856 } 1857 1858 /* 1859 * Pin guest page in memory and return its pfn. 1860 * @addr: host virtual address which maps memory to the guest 1861 * @atomic: whether this function can sleep 1862 * @async: whether this function need to wait IO complete if the 1863 * host page is not in the memory 1864 * @write_fault: whether we should get a writable host page 1865 * @writable: whether it allows to map a writable host page for !@write_fault 1866 * 1867 * The function will map a writable host page for these two cases: 1868 * 1): @write_fault = true 1869 * 2): @write_fault = false && @writable, @writable will tell the caller 1870 * whether the mapping is writable. 1871 */ 1872 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1873 bool write_fault, bool *writable) 1874 { 1875 struct vm_area_struct *vma; 1876 kvm_pfn_t pfn = 0; 1877 int npages, r; 1878 1879 /* we can do it either atomically or asynchronously, not both */ 1880 BUG_ON(atomic && async); 1881 1882 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1883 return pfn; 1884 1885 if (atomic) 1886 return KVM_PFN_ERR_FAULT; 1887 1888 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1889 if (npages == 1) 1890 return pfn; 1891 1892 down_read(¤t->mm->mmap_sem); 1893 if (npages == -EHWPOISON || 1894 (!async && check_user_page_hwpoison(addr))) { 1895 pfn = KVM_PFN_ERR_HWPOISON; 1896 goto exit; 1897 } 1898 1899 retry: 1900 vma = find_vma_intersection(current->mm, addr, addr + 1); 1901 1902 if (vma == NULL) 1903 pfn = KVM_PFN_ERR_FAULT; 1904 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1905 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1906 if (r == -EAGAIN) 1907 goto retry; 1908 if (r < 0) 1909 pfn = KVM_PFN_ERR_FAULT; 1910 } else { 1911 if (async && vma_is_valid(vma, write_fault)) 1912 *async = true; 1913 pfn = KVM_PFN_ERR_FAULT; 1914 } 1915 exit: 1916 up_read(¤t->mm->mmap_sem); 1917 return pfn; 1918 } 1919 1920 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1921 bool atomic, bool *async, bool write_fault, 1922 bool *writable) 1923 { 1924 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1925 1926 if (addr == KVM_HVA_ERR_RO_BAD) { 1927 if (writable) 1928 *writable = false; 1929 return KVM_PFN_ERR_RO_FAULT; 1930 } 1931 1932 if (kvm_is_error_hva(addr)) { 1933 if (writable) 1934 *writable = false; 1935 return KVM_PFN_NOSLOT; 1936 } 1937 1938 /* Do not map writable pfn in the readonly memslot. */ 1939 if (writable && memslot_is_readonly(slot)) { 1940 *writable = false; 1941 writable = NULL; 1942 } 1943 1944 return hva_to_pfn(addr, atomic, async, write_fault, 1945 writable); 1946 } 1947 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1948 1949 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1950 bool *writable) 1951 { 1952 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1953 write_fault, writable); 1954 } 1955 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1956 1957 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1958 { 1959 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1960 } 1961 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1962 1963 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1964 { 1965 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1966 } 1967 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1968 1969 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1970 { 1971 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1972 } 1973 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1974 1975 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1976 { 1977 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1978 } 1979 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1980 1981 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1982 { 1983 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1984 } 1985 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1986 1987 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1988 struct page **pages, int nr_pages) 1989 { 1990 unsigned long addr; 1991 gfn_t entry = 0; 1992 1993 addr = gfn_to_hva_many(slot, gfn, &entry); 1994 if (kvm_is_error_hva(addr)) 1995 return -1; 1996 1997 if (entry < nr_pages) 1998 return 0; 1999 2000 return __get_user_pages_fast(addr, nr_pages, 1, pages); 2001 } 2002 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2003 2004 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 2005 { 2006 if (is_error_noslot_pfn(pfn)) 2007 return KVM_ERR_PTR_BAD_PAGE; 2008 2009 if (kvm_is_reserved_pfn(pfn)) { 2010 WARN_ON(1); 2011 return KVM_ERR_PTR_BAD_PAGE; 2012 } 2013 2014 return pfn_to_page(pfn); 2015 } 2016 2017 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2018 { 2019 kvm_pfn_t pfn; 2020 2021 pfn = gfn_to_pfn(kvm, gfn); 2022 2023 return kvm_pfn_to_page(pfn); 2024 } 2025 EXPORT_SYMBOL_GPL(gfn_to_page); 2026 2027 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache) 2028 { 2029 if (pfn == 0) 2030 return; 2031 2032 if (cache) 2033 cache->pfn = cache->gfn = 0; 2034 2035 if (dirty) 2036 kvm_release_pfn_dirty(pfn); 2037 else 2038 kvm_release_pfn_clean(pfn); 2039 } 2040 2041 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn, 2042 struct gfn_to_pfn_cache *cache, u64 gen) 2043 { 2044 kvm_release_pfn(cache->pfn, cache->dirty, cache); 2045 2046 cache->pfn = gfn_to_pfn_memslot(slot, gfn); 2047 cache->gfn = gfn; 2048 cache->dirty = false; 2049 cache->generation = gen; 2050 } 2051 2052 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn, 2053 struct kvm_host_map *map, 2054 struct gfn_to_pfn_cache *cache, 2055 bool atomic) 2056 { 2057 kvm_pfn_t pfn; 2058 void *hva = NULL; 2059 struct page *page = KVM_UNMAPPED_PAGE; 2060 struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn); 2061 u64 gen = slots->generation; 2062 2063 if (!map) 2064 return -EINVAL; 2065 2066 if (cache) { 2067 if (!cache->pfn || cache->gfn != gfn || 2068 cache->generation != gen) { 2069 if (atomic) 2070 return -EAGAIN; 2071 kvm_cache_gfn_to_pfn(slot, gfn, cache, gen); 2072 } 2073 pfn = cache->pfn; 2074 } else { 2075 if (atomic) 2076 return -EAGAIN; 2077 pfn = gfn_to_pfn_memslot(slot, gfn); 2078 } 2079 if (is_error_noslot_pfn(pfn)) 2080 return -EINVAL; 2081 2082 if (pfn_valid(pfn)) { 2083 page = pfn_to_page(pfn); 2084 if (atomic) 2085 hva = kmap_atomic(page); 2086 else 2087 hva = kmap(page); 2088 #ifdef CONFIG_HAS_IOMEM 2089 } else if (!atomic) { 2090 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2091 } else { 2092 return -EINVAL; 2093 #endif 2094 } 2095 2096 if (!hva) 2097 return -EFAULT; 2098 2099 map->page = page; 2100 map->hva = hva; 2101 map->pfn = pfn; 2102 map->gfn = gfn; 2103 2104 return 0; 2105 } 2106 2107 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 2108 struct gfn_to_pfn_cache *cache, bool atomic) 2109 { 2110 return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map, 2111 cache, atomic); 2112 } 2113 EXPORT_SYMBOL_GPL(kvm_map_gfn); 2114 2115 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2116 { 2117 return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map, 2118 NULL, false); 2119 } 2120 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2121 2122 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot, 2123 struct kvm_host_map *map, 2124 struct gfn_to_pfn_cache *cache, 2125 bool dirty, bool atomic) 2126 { 2127 if (!map) 2128 return; 2129 2130 if (!map->hva) 2131 return; 2132 2133 if (map->page != KVM_UNMAPPED_PAGE) { 2134 if (atomic) 2135 kunmap_atomic(map->hva); 2136 else 2137 kunmap(map->page); 2138 } 2139 #ifdef CONFIG_HAS_IOMEM 2140 else if (!atomic) 2141 memunmap(map->hva); 2142 else 2143 WARN_ONCE(1, "Unexpected unmapping in atomic context"); 2144 #endif 2145 2146 if (dirty) 2147 mark_page_dirty_in_slot(memslot, map->gfn); 2148 2149 if (cache) 2150 cache->dirty |= dirty; 2151 else 2152 kvm_release_pfn(map->pfn, dirty, NULL); 2153 2154 map->hva = NULL; 2155 map->page = NULL; 2156 } 2157 2158 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 2159 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic) 2160 { 2161 __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map, 2162 cache, dirty, atomic); 2163 return 0; 2164 } 2165 EXPORT_SYMBOL_GPL(kvm_unmap_gfn); 2166 2167 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2168 { 2169 __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL, 2170 dirty, false); 2171 } 2172 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2173 2174 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 2175 { 2176 kvm_pfn_t pfn; 2177 2178 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 2179 2180 return kvm_pfn_to_page(pfn); 2181 } 2182 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 2183 2184 void kvm_release_page_clean(struct page *page) 2185 { 2186 WARN_ON(is_error_page(page)); 2187 2188 kvm_release_pfn_clean(page_to_pfn(page)); 2189 } 2190 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2191 2192 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2193 { 2194 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 2195 put_page(pfn_to_page(pfn)); 2196 } 2197 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2198 2199 void kvm_release_page_dirty(struct page *page) 2200 { 2201 WARN_ON(is_error_page(page)); 2202 2203 kvm_release_pfn_dirty(page_to_pfn(page)); 2204 } 2205 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2206 2207 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2208 { 2209 kvm_set_pfn_dirty(pfn); 2210 kvm_release_pfn_clean(pfn); 2211 } 2212 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2213 2214 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2215 { 2216 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2217 SetPageDirty(pfn_to_page(pfn)); 2218 } 2219 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2220 2221 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2222 { 2223 if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) 2224 mark_page_accessed(pfn_to_page(pfn)); 2225 } 2226 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2227 2228 void kvm_get_pfn(kvm_pfn_t pfn) 2229 { 2230 if (!kvm_is_reserved_pfn(pfn)) 2231 get_page(pfn_to_page(pfn)); 2232 } 2233 EXPORT_SYMBOL_GPL(kvm_get_pfn); 2234 2235 static int next_segment(unsigned long len, int offset) 2236 { 2237 if (len > PAGE_SIZE - offset) 2238 return PAGE_SIZE - offset; 2239 else 2240 return len; 2241 } 2242 2243 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2244 void *data, int offset, int len) 2245 { 2246 int r; 2247 unsigned long addr; 2248 2249 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2250 if (kvm_is_error_hva(addr)) 2251 return -EFAULT; 2252 r = __copy_from_user(data, (void __user *)addr + offset, len); 2253 if (r) 2254 return -EFAULT; 2255 return 0; 2256 } 2257 2258 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 2259 int len) 2260 { 2261 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2262 2263 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2264 } 2265 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 2266 2267 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 2268 int offset, int len) 2269 { 2270 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2271 2272 return __kvm_read_guest_page(slot, gfn, data, offset, len); 2273 } 2274 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 2275 2276 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 2277 { 2278 gfn_t gfn = gpa >> PAGE_SHIFT; 2279 int seg; 2280 int offset = offset_in_page(gpa); 2281 int ret; 2282 2283 while ((seg = next_segment(len, offset)) != 0) { 2284 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 2285 if (ret < 0) 2286 return ret; 2287 offset = 0; 2288 len -= seg; 2289 data += seg; 2290 ++gfn; 2291 } 2292 return 0; 2293 } 2294 EXPORT_SYMBOL_GPL(kvm_read_guest); 2295 2296 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 2297 { 2298 gfn_t gfn = gpa >> PAGE_SHIFT; 2299 int seg; 2300 int offset = offset_in_page(gpa); 2301 int ret; 2302 2303 while ((seg = next_segment(len, offset)) != 0) { 2304 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 2305 if (ret < 0) 2306 return ret; 2307 offset = 0; 2308 len -= seg; 2309 data += seg; 2310 ++gfn; 2311 } 2312 return 0; 2313 } 2314 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 2315 2316 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2317 void *data, int offset, unsigned long len) 2318 { 2319 int r; 2320 unsigned long addr; 2321 2322 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2323 if (kvm_is_error_hva(addr)) 2324 return -EFAULT; 2325 pagefault_disable(); 2326 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 2327 pagefault_enable(); 2328 if (r) 2329 return -EFAULT; 2330 return 0; 2331 } 2332 2333 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 2334 void *data, unsigned long len) 2335 { 2336 gfn_t gfn = gpa >> PAGE_SHIFT; 2337 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2338 int offset = offset_in_page(gpa); 2339 2340 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 2341 } 2342 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2343 2344 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 2345 const void *data, int offset, int len) 2346 { 2347 int r; 2348 unsigned long addr; 2349 2350 addr = gfn_to_hva_memslot(memslot, gfn); 2351 if (kvm_is_error_hva(addr)) 2352 return -EFAULT; 2353 r = __copy_to_user((void __user *)addr + offset, data, len); 2354 if (r) 2355 return -EFAULT; 2356 mark_page_dirty_in_slot(memslot, gfn); 2357 return 0; 2358 } 2359 2360 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2361 const void *data, int offset, int len) 2362 { 2363 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2364 2365 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2366 } 2367 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2368 2369 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2370 const void *data, int offset, int len) 2371 { 2372 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2373 2374 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2375 } 2376 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2377 2378 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2379 unsigned long len) 2380 { 2381 gfn_t gfn = gpa >> PAGE_SHIFT; 2382 int seg; 2383 int offset = offset_in_page(gpa); 2384 int ret; 2385 2386 while ((seg = next_segment(len, offset)) != 0) { 2387 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2388 if (ret < 0) 2389 return ret; 2390 offset = 0; 2391 len -= seg; 2392 data += seg; 2393 ++gfn; 2394 } 2395 return 0; 2396 } 2397 EXPORT_SYMBOL_GPL(kvm_write_guest); 2398 2399 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2400 unsigned long len) 2401 { 2402 gfn_t gfn = gpa >> PAGE_SHIFT; 2403 int seg; 2404 int offset = offset_in_page(gpa); 2405 int ret; 2406 2407 while ((seg = next_segment(len, offset)) != 0) { 2408 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2409 if (ret < 0) 2410 return ret; 2411 offset = 0; 2412 len -= seg; 2413 data += seg; 2414 ++gfn; 2415 } 2416 return 0; 2417 } 2418 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2419 2420 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2421 struct gfn_to_hva_cache *ghc, 2422 gpa_t gpa, unsigned long len) 2423 { 2424 int offset = offset_in_page(gpa); 2425 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2426 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2427 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2428 gfn_t nr_pages_avail; 2429 2430 /* Update ghc->generation before performing any error checks. */ 2431 ghc->generation = slots->generation; 2432 2433 if (start_gfn > end_gfn) { 2434 ghc->hva = KVM_HVA_ERR_BAD; 2435 return -EINVAL; 2436 } 2437 2438 /* 2439 * If the requested region crosses two memslots, we still 2440 * verify that the entire region is valid here. 2441 */ 2442 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 2443 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2444 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2445 &nr_pages_avail); 2446 if (kvm_is_error_hva(ghc->hva)) 2447 return -EFAULT; 2448 } 2449 2450 /* Use the slow path for cross page reads and writes. */ 2451 if (nr_pages_needed == 1) 2452 ghc->hva += offset; 2453 else 2454 ghc->memslot = NULL; 2455 2456 ghc->gpa = gpa; 2457 ghc->len = len; 2458 return 0; 2459 } 2460 2461 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2462 gpa_t gpa, unsigned long len) 2463 { 2464 struct kvm_memslots *slots = kvm_memslots(kvm); 2465 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2466 } 2467 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2468 2469 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2470 void *data, unsigned int offset, 2471 unsigned long len) 2472 { 2473 struct kvm_memslots *slots = kvm_memslots(kvm); 2474 int r; 2475 gpa_t gpa = ghc->gpa + offset; 2476 2477 BUG_ON(len + offset > ghc->len); 2478 2479 if (slots->generation != ghc->generation) { 2480 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2481 return -EFAULT; 2482 } 2483 2484 if (kvm_is_error_hva(ghc->hva)) 2485 return -EFAULT; 2486 2487 if (unlikely(!ghc->memslot)) 2488 return kvm_write_guest(kvm, gpa, data, len); 2489 2490 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2491 if (r) 2492 return -EFAULT; 2493 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2494 2495 return 0; 2496 } 2497 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2498 2499 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2500 void *data, unsigned long len) 2501 { 2502 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2503 } 2504 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2505 2506 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2507 void *data, unsigned long len) 2508 { 2509 struct kvm_memslots *slots = kvm_memslots(kvm); 2510 int r; 2511 2512 BUG_ON(len > ghc->len); 2513 2514 if (slots->generation != ghc->generation) { 2515 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 2516 return -EFAULT; 2517 } 2518 2519 if (kvm_is_error_hva(ghc->hva)) 2520 return -EFAULT; 2521 2522 if (unlikely(!ghc->memslot)) 2523 return kvm_read_guest(kvm, ghc->gpa, data, len); 2524 2525 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2526 if (r) 2527 return -EFAULT; 2528 2529 return 0; 2530 } 2531 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2532 2533 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2534 { 2535 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2536 2537 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2538 } 2539 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2540 2541 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2542 { 2543 gfn_t gfn = gpa >> PAGE_SHIFT; 2544 int seg; 2545 int offset = offset_in_page(gpa); 2546 int ret; 2547 2548 while ((seg = next_segment(len, offset)) != 0) { 2549 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2550 if (ret < 0) 2551 return ret; 2552 offset = 0; 2553 len -= seg; 2554 ++gfn; 2555 } 2556 return 0; 2557 } 2558 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2559 2560 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2561 gfn_t gfn) 2562 { 2563 if (memslot && memslot->dirty_bitmap) { 2564 unsigned long rel_gfn = gfn - memslot->base_gfn; 2565 2566 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2567 } 2568 } 2569 2570 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2571 { 2572 struct kvm_memory_slot *memslot; 2573 2574 memslot = gfn_to_memslot(kvm, gfn); 2575 mark_page_dirty_in_slot(memslot, gfn); 2576 } 2577 EXPORT_SYMBOL_GPL(mark_page_dirty); 2578 2579 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2580 { 2581 struct kvm_memory_slot *memslot; 2582 2583 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2584 mark_page_dirty_in_slot(memslot, gfn); 2585 } 2586 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2587 2588 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2589 { 2590 if (!vcpu->sigset_active) 2591 return; 2592 2593 /* 2594 * This does a lockless modification of ->real_blocked, which is fine 2595 * because, only current can change ->real_blocked and all readers of 2596 * ->real_blocked don't care as long ->real_blocked is always a subset 2597 * of ->blocked. 2598 */ 2599 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2600 } 2601 2602 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2603 { 2604 if (!vcpu->sigset_active) 2605 return; 2606 2607 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2608 sigemptyset(¤t->real_blocked); 2609 } 2610 2611 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2612 { 2613 unsigned int old, val, grow, grow_start; 2614 2615 old = val = vcpu->halt_poll_ns; 2616 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2617 grow = READ_ONCE(halt_poll_ns_grow); 2618 if (!grow) 2619 goto out; 2620 2621 val *= grow; 2622 if (val < grow_start) 2623 val = grow_start; 2624 2625 if (val > halt_poll_ns) 2626 val = halt_poll_ns; 2627 2628 vcpu->halt_poll_ns = val; 2629 out: 2630 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2631 } 2632 2633 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2634 { 2635 unsigned int old, val, shrink; 2636 2637 old = val = vcpu->halt_poll_ns; 2638 shrink = READ_ONCE(halt_poll_ns_shrink); 2639 if (shrink == 0) 2640 val = 0; 2641 else 2642 val /= shrink; 2643 2644 vcpu->halt_poll_ns = val; 2645 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2646 } 2647 2648 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2649 { 2650 int ret = -EINTR; 2651 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2652 2653 if (kvm_arch_vcpu_runnable(vcpu)) { 2654 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2655 goto out; 2656 } 2657 if (kvm_cpu_has_pending_timer(vcpu)) 2658 goto out; 2659 if (signal_pending(current)) 2660 goto out; 2661 2662 ret = 0; 2663 out: 2664 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2665 return ret; 2666 } 2667 2668 /* 2669 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2670 */ 2671 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2672 { 2673 ktime_t start, cur; 2674 DECLARE_SWAITQUEUE(wait); 2675 bool waited = false; 2676 u64 block_ns; 2677 2678 kvm_arch_vcpu_blocking(vcpu); 2679 2680 start = cur = ktime_get(); 2681 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2682 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2683 2684 ++vcpu->stat.halt_attempted_poll; 2685 do { 2686 /* 2687 * This sets KVM_REQ_UNHALT if an interrupt 2688 * arrives. 2689 */ 2690 if (kvm_vcpu_check_block(vcpu) < 0) { 2691 ++vcpu->stat.halt_successful_poll; 2692 if (!vcpu_valid_wakeup(vcpu)) 2693 ++vcpu->stat.halt_poll_invalid; 2694 goto out; 2695 } 2696 cur = ktime_get(); 2697 } while (single_task_running() && ktime_before(cur, stop)); 2698 } 2699 2700 for (;;) { 2701 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2702 2703 if (kvm_vcpu_check_block(vcpu) < 0) 2704 break; 2705 2706 waited = true; 2707 schedule(); 2708 } 2709 2710 finish_swait(&vcpu->wq, &wait); 2711 cur = ktime_get(); 2712 out: 2713 kvm_arch_vcpu_unblocking(vcpu); 2714 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2715 2716 if (!kvm_arch_no_poll(vcpu)) { 2717 if (!vcpu_valid_wakeup(vcpu)) { 2718 shrink_halt_poll_ns(vcpu); 2719 } else if (halt_poll_ns) { 2720 if (block_ns <= vcpu->halt_poll_ns) 2721 ; 2722 /* we had a long block, shrink polling */ 2723 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2724 shrink_halt_poll_ns(vcpu); 2725 /* we had a short halt and our poll time is too small */ 2726 else if (vcpu->halt_poll_ns < halt_poll_ns && 2727 block_ns < halt_poll_ns) 2728 grow_halt_poll_ns(vcpu); 2729 } else { 2730 vcpu->halt_poll_ns = 0; 2731 } 2732 } 2733 2734 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2735 kvm_arch_vcpu_block_finish(vcpu); 2736 } 2737 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2738 2739 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2740 { 2741 struct swait_queue_head *wqp; 2742 2743 wqp = kvm_arch_vcpu_wq(vcpu); 2744 if (swq_has_sleeper(wqp)) { 2745 swake_up_one(wqp); 2746 WRITE_ONCE(vcpu->ready, true); 2747 ++vcpu->stat.halt_wakeup; 2748 return true; 2749 } 2750 2751 return false; 2752 } 2753 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2754 2755 #ifndef CONFIG_S390 2756 /* 2757 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2758 */ 2759 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2760 { 2761 int me; 2762 int cpu = vcpu->cpu; 2763 2764 if (kvm_vcpu_wake_up(vcpu)) 2765 return; 2766 2767 me = get_cpu(); 2768 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2769 if (kvm_arch_vcpu_should_kick(vcpu)) 2770 smp_send_reschedule(cpu); 2771 put_cpu(); 2772 } 2773 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2774 #endif /* !CONFIG_S390 */ 2775 2776 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2777 { 2778 struct pid *pid; 2779 struct task_struct *task = NULL; 2780 int ret = 0; 2781 2782 rcu_read_lock(); 2783 pid = rcu_dereference(target->pid); 2784 if (pid) 2785 task = get_pid_task(pid, PIDTYPE_PID); 2786 rcu_read_unlock(); 2787 if (!task) 2788 return ret; 2789 ret = yield_to(task, 1); 2790 put_task_struct(task); 2791 2792 return ret; 2793 } 2794 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2795 2796 /* 2797 * Helper that checks whether a VCPU is eligible for directed yield. 2798 * Most eligible candidate to yield is decided by following heuristics: 2799 * 2800 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2801 * (preempted lock holder), indicated by @in_spin_loop. 2802 * Set at the beiginning and cleared at the end of interception/PLE handler. 2803 * 2804 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2805 * chance last time (mostly it has become eligible now since we have probably 2806 * yielded to lockholder in last iteration. This is done by toggling 2807 * @dy_eligible each time a VCPU checked for eligibility.) 2808 * 2809 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2810 * to preempted lock-holder could result in wrong VCPU selection and CPU 2811 * burning. Giving priority for a potential lock-holder increases lock 2812 * progress. 2813 * 2814 * Since algorithm is based on heuristics, accessing another VCPU data without 2815 * locking does not harm. It may result in trying to yield to same VCPU, fail 2816 * and continue with next VCPU and so on. 2817 */ 2818 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2819 { 2820 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2821 bool eligible; 2822 2823 eligible = !vcpu->spin_loop.in_spin_loop || 2824 vcpu->spin_loop.dy_eligible; 2825 2826 if (vcpu->spin_loop.in_spin_loop) 2827 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2828 2829 return eligible; 2830 #else 2831 return true; 2832 #endif 2833 } 2834 2835 /* 2836 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2837 * a vcpu_load/vcpu_put pair. However, for most architectures 2838 * kvm_arch_vcpu_runnable does not require vcpu_load. 2839 */ 2840 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2841 { 2842 return kvm_arch_vcpu_runnable(vcpu); 2843 } 2844 2845 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2846 { 2847 if (kvm_arch_dy_runnable(vcpu)) 2848 return true; 2849 2850 #ifdef CONFIG_KVM_ASYNC_PF 2851 if (!list_empty_careful(&vcpu->async_pf.done)) 2852 return true; 2853 #endif 2854 2855 return false; 2856 } 2857 2858 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2859 { 2860 struct kvm *kvm = me->kvm; 2861 struct kvm_vcpu *vcpu; 2862 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2863 int yielded = 0; 2864 int try = 3; 2865 int pass; 2866 int i; 2867 2868 kvm_vcpu_set_in_spin_loop(me, true); 2869 /* 2870 * We boost the priority of a VCPU that is runnable but not 2871 * currently running, because it got preempted by something 2872 * else and called schedule in __vcpu_run. Hopefully that 2873 * VCPU is holding the lock that we need and will release it. 2874 * We approximate round-robin by starting at the last boosted VCPU. 2875 */ 2876 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2877 kvm_for_each_vcpu(i, vcpu, kvm) { 2878 if (!pass && i <= last_boosted_vcpu) { 2879 i = last_boosted_vcpu; 2880 continue; 2881 } else if (pass && i > last_boosted_vcpu) 2882 break; 2883 if (!READ_ONCE(vcpu->ready)) 2884 continue; 2885 if (vcpu == me) 2886 continue; 2887 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu)) 2888 continue; 2889 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2890 !kvm_arch_vcpu_in_kernel(vcpu)) 2891 continue; 2892 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2893 continue; 2894 2895 yielded = kvm_vcpu_yield_to(vcpu); 2896 if (yielded > 0) { 2897 kvm->last_boosted_vcpu = i; 2898 break; 2899 } else if (yielded < 0) { 2900 try--; 2901 if (!try) 2902 break; 2903 } 2904 } 2905 } 2906 kvm_vcpu_set_in_spin_loop(me, false); 2907 2908 /* Ensure vcpu is not eligible during next spinloop */ 2909 kvm_vcpu_set_dy_eligible(me, false); 2910 } 2911 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2912 2913 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2914 { 2915 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2916 struct page *page; 2917 2918 if (vmf->pgoff == 0) 2919 page = virt_to_page(vcpu->run); 2920 #ifdef CONFIG_X86 2921 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2922 page = virt_to_page(vcpu->arch.pio_data); 2923 #endif 2924 #ifdef CONFIG_KVM_MMIO 2925 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2926 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2927 #endif 2928 else 2929 return kvm_arch_vcpu_fault(vcpu, vmf); 2930 get_page(page); 2931 vmf->page = page; 2932 return 0; 2933 } 2934 2935 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2936 .fault = kvm_vcpu_fault, 2937 }; 2938 2939 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2940 { 2941 vma->vm_ops = &kvm_vcpu_vm_ops; 2942 return 0; 2943 } 2944 2945 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2946 { 2947 struct kvm_vcpu *vcpu = filp->private_data; 2948 2949 debugfs_remove_recursive(vcpu->debugfs_dentry); 2950 kvm_put_kvm(vcpu->kvm); 2951 return 0; 2952 } 2953 2954 static struct file_operations kvm_vcpu_fops = { 2955 .release = kvm_vcpu_release, 2956 .unlocked_ioctl = kvm_vcpu_ioctl, 2957 .mmap = kvm_vcpu_mmap, 2958 .llseek = noop_llseek, 2959 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2960 }; 2961 2962 /* 2963 * Allocates an inode for the vcpu. 2964 */ 2965 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2966 { 2967 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2968 2969 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2970 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2971 } 2972 2973 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2974 { 2975 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 2976 char dir_name[ITOA_MAX_LEN * 2]; 2977 2978 if (!debugfs_initialized()) 2979 return; 2980 2981 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2982 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2983 vcpu->kvm->debugfs_dentry); 2984 2985 kvm_arch_create_vcpu_debugfs(vcpu); 2986 #endif 2987 } 2988 2989 /* 2990 * Creates some virtual cpus. Good luck creating more than one. 2991 */ 2992 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2993 { 2994 int r; 2995 struct kvm_vcpu *vcpu; 2996 struct page *page; 2997 2998 if (id >= KVM_MAX_VCPU_ID) 2999 return -EINVAL; 3000 3001 mutex_lock(&kvm->lock); 3002 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 3003 mutex_unlock(&kvm->lock); 3004 return -EINVAL; 3005 } 3006 3007 kvm->created_vcpus++; 3008 mutex_unlock(&kvm->lock); 3009 3010 r = kvm_arch_vcpu_precreate(kvm, id); 3011 if (r) 3012 goto vcpu_decrement; 3013 3014 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 3015 if (!vcpu) { 3016 r = -ENOMEM; 3017 goto vcpu_decrement; 3018 } 3019 3020 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3021 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 3022 if (!page) { 3023 r = -ENOMEM; 3024 goto vcpu_free; 3025 } 3026 vcpu->run = page_address(page); 3027 3028 kvm_vcpu_init(vcpu, kvm, id); 3029 3030 r = kvm_arch_vcpu_create(vcpu); 3031 if (r) 3032 goto vcpu_free_run_page; 3033 3034 kvm_create_vcpu_debugfs(vcpu); 3035 3036 mutex_lock(&kvm->lock); 3037 if (kvm_get_vcpu_by_id(kvm, id)) { 3038 r = -EEXIST; 3039 goto unlock_vcpu_destroy; 3040 } 3041 3042 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3043 BUG_ON(kvm->vcpus[vcpu->vcpu_idx]); 3044 3045 /* Now it's all set up, let userspace reach it */ 3046 kvm_get_kvm(kvm); 3047 r = create_vcpu_fd(vcpu); 3048 if (r < 0) { 3049 kvm_put_kvm_no_destroy(kvm); 3050 goto unlock_vcpu_destroy; 3051 } 3052 3053 kvm->vcpus[vcpu->vcpu_idx] = vcpu; 3054 3055 /* 3056 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 3057 * before kvm->online_vcpu's incremented value. 3058 */ 3059 smp_wmb(); 3060 atomic_inc(&kvm->online_vcpus); 3061 3062 mutex_unlock(&kvm->lock); 3063 kvm_arch_vcpu_postcreate(vcpu); 3064 return r; 3065 3066 unlock_vcpu_destroy: 3067 mutex_unlock(&kvm->lock); 3068 debugfs_remove_recursive(vcpu->debugfs_dentry); 3069 kvm_arch_vcpu_destroy(vcpu); 3070 vcpu_free_run_page: 3071 free_page((unsigned long)vcpu->run); 3072 vcpu_free: 3073 kmem_cache_free(kvm_vcpu_cache, vcpu); 3074 vcpu_decrement: 3075 mutex_lock(&kvm->lock); 3076 kvm->created_vcpus--; 3077 mutex_unlock(&kvm->lock); 3078 return r; 3079 } 3080 3081 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 3082 { 3083 if (sigset) { 3084 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 3085 vcpu->sigset_active = 1; 3086 vcpu->sigset = *sigset; 3087 } else 3088 vcpu->sigset_active = 0; 3089 return 0; 3090 } 3091 3092 static long kvm_vcpu_ioctl(struct file *filp, 3093 unsigned int ioctl, unsigned long arg) 3094 { 3095 struct kvm_vcpu *vcpu = filp->private_data; 3096 void __user *argp = (void __user *)arg; 3097 int r; 3098 struct kvm_fpu *fpu = NULL; 3099 struct kvm_sregs *kvm_sregs = NULL; 3100 3101 if (vcpu->kvm->mm != current->mm) 3102 return -EIO; 3103 3104 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 3105 return -EINVAL; 3106 3107 /* 3108 * Some architectures have vcpu ioctls that are asynchronous to vcpu 3109 * execution; mutex_lock() would break them. 3110 */ 3111 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 3112 if (r != -ENOIOCTLCMD) 3113 return r; 3114 3115 if (mutex_lock_killable(&vcpu->mutex)) 3116 return -EINTR; 3117 switch (ioctl) { 3118 case KVM_RUN: { 3119 struct pid *oldpid; 3120 r = -EINVAL; 3121 if (arg) 3122 goto out; 3123 oldpid = rcu_access_pointer(vcpu->pid); 3124 if (unlikely(oldpid != task_pid(current))) { 3125 /* The thread running this VCPU changed. */ 3126 struct pid *newpid; 3127 3128 r = kvm_arch_vcpu_run_pid_change(vcpu); 3129 if (r) 3130 break; 3131 3132 newpid = get_task_pid(current, PIDTYPE_PID); 3133 rcu_assign_pointer(vcpu->pid, newpid); 3134 if (oldpid) 3135 synchronize_rcu(); 3136 put_pid(oldpid); 3137 } 3138 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 3139 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 3140 break; 3141 } 3142 case KVM_GET_REGS: { 3143 struct kvm_regs *kvm_regs; 3144 3145 r = -ENOMEM; 3146 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 3147 if (!kvm_regs) 3148 goto out; 3149 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 3150 if (r) 3151 goto out_free1; 3152 r = -EFAULT; 3153 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 3154 goto out_free1; 3155 r = 0; 3156 out_free1: 3157 kfree(kvm_regs); 3158 break; 3159 } 3160 case KVM_SET_REGS: { 3161 struct kvm_regs *kvm_regs; 3162 3163 r = -ENOMEM; 3164 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 3165 if (IS_ERR(kvm_regs)) { 3166 r = PTR_ERR(kvm_regs); 3167 goto out; 3168 } 3169 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 3170 kfree(kvm_regs); 3171 break; 3172 } 3173 case KVM_GET_SREGS: { 3174 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 3175 GFP_KERNEL_ACCOUNT); 3176 r = -ENOMEM; 3177 if (!kvm_sregs) 3178 goto out; 3179 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 3180 if (r) 3181 goto out; 3182 r = -EFAULT; 3183 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 3184 goto out; 3185 r = 0; 3186 break; 3187 } 3188 case KVM_SET_SREGS: { 3189 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 3190 if (IS_ERR(kvm_sregs)) { 3191 r = PTR_ERR(kvm_sregs); 3192 kvm_sregs = NULL; 3193 goto out; 3194 } 3195 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 3196 break; 3197 } 3198 case KVM_GET_MP_STATE: { 3199 struct kvm_mp_state mp_state; 3200 3201 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 3202 if (r) 3203 goto out; 3204 r = -EFAULT; 3205 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 3206 goto out; 3207 r = 0; 3208 break; 3209 } 3210 case KVM_SET_MP_STATE: { 3211 struct kvm_mp_state mp_state; 3212 3213 r = -EFAULT; 3214 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 3215 goto out; 3216 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 3217 break; 3218 } 3219 case KVM_TRANSLATE: { 3220 struct kvm_translation tr; 3221 3222 r = -EFAULT; 3223 if (copy_from_user(&tr, argp, sizeof(tr))) 3224 goto out; 3225 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 3226 if (r) 3227 goto out; 3228 r = -EFAULT; 3229 if (copy_to_user(argp, &tr, sizeof(tr))) 3230 goto out; 3231 r = 0; 3232 break; 3233 } 3234 case KVM_SET_GUEST_DEBUG: { 3235 struct kvm_guest_debug dbg; 3236 3237 r = -EFAULT; 3238 if (copy_from_user(&dbg, argp, sizeof(dbg))) 3239 goto out; 3240 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 3241 break; 3242 } 3243 case KVM_SET_SIGNAL_MASK: { 3244 struct kvm_signal_mask __user *sigmask_arg = argp; 3245 struct kvm_signal_mask kvm_sigmask; 3246 sigset_t sigset, *p; 3247 3248 p = NULL; 3249 if (argp) { 3250 r = -EFAULT; 3251 if (copy_from_user(&kvm_sigmask, argp, 3252 sizeof(kvm_sigmask))) 3253 goto out; 3254 r = -EINVAL; 3255 if (kvm_sigmask.len != sizeof(sigset)) 3256 goto out; 3257 r = -EFAULT; 3258 if (copy_from_user(&sigset, sigmask_arg->sigset, 3259 sizeof(sigset))) 3260 goto out; 3261 p = &sigset; 3262 } 3263 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 3264 break; 3265 } 3266 case KVM_GET_FPU: { 3267 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 3268 r = -ENOMEM; 3269 if (!fpu) 3270 goto out; 3271 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 3272 if (r) 3273 goto out; 3274 r = -EFAULT; 3275 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 3276 goto out; 3277 r = 0; 3278 break; 3279 } 3280 case KVM_SET_FPU: { 3281 fpu = memdup_user(argp, sizeof(*fpu)); 3282 if (IS_ERR(fpu)) { 3283 r = PTR_ERR(fpu); 3284 fpu = NULL; 3285 goto out; 3286 } 3287 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 3288 break; 3289 } 3290 default: 3291 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 3292 } 3293 out: 3294 mutex_unlock(&vcpu->mutex); 3295 kfree(fpu); 3296 kfree(kvm_sregs); 3297 return r; 3298 } 3299 3300 #ifdef CONFIG_KVM_COMPAT 3301 static long kvm_vcpu_compat_ioctl(struct file *filp, 3302 unsigned int ioctl, unsigned long arg) 3303 { 3304 struct kvm_vcpu *vcpu = filp->private_data; 3305 void __user *argp = compat_ptr(arg); 3306 int r; 3307 3308 if (vcpu->kvm->mm != current->mm) 3309 return -EIO; 3310 3311 switch (ioctl) { 3312 case KVM_SET_SIGNAL_MASK: { 3313 struct kvm_signal_mask __user *sigmask_arg = argp; 3314 struct kvm_signal_mask kvm_sigmask; 3315 sigset_t sigset; 3316 3317 if (argp) { 3318 r = -EFAULT; 3319 if (copy_from_user(&kvm_sigmask, argp, 3320 sizeof(kvm_sigmask))) 3321 goto out; 3322 r = -EINVAL; 3323 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 3324 goto out; 3325 r = -EFAULT; 3326 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 3327 goto out; 3328 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 3329 } else 3330 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 3331 break; 3332 } 3333 default: 3334 r = kvm_vcpu_ioctl(filp, ioctl, arg); 3335 } 3336 3337 out: 3338 return r; 3339 } 3340 #endif 3341 3342 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 3343 { 3344 struct kvm_device *dev = filp->private_data; 3345 3346 if (dev->ops->mmap) 3347 return dev->ops->mmap(dev, vma); 3348 3349 return -ENODEV; 3350 } 3351 3352 static int kvm_device_ioctl_attr(struct kvm_device *dev, 3353 int (*accessor)(struct kvm_device *dev, 3354 struct kvm_device_attr *attr), 3355 unsigned long arg) 3356 { 3357 struct kvm_device_attr attr; 3358 3359 if (!accessor) 3360 return -EPERM; 3361 3362 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3363 return -EFAULT; 3364 3365 return accessor(dev, &attr); 3366 } 3367 3368 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3369 unsigned long arg) 3370 { 3371 struct kvm_device *dev = filp->private_data; 3372 3373 if (dev->kvm->mm != current->mm) 3374 return -EIO; 3375 3376 switch (ioctl) { 3377 case KVM_SET_DEVICE_ATTR: 3378 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3379 case KVM_GET_DEVICE_ATTR: 3380 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3381 case KVM_HAS_DEVICE_ATTR: 3382 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3383 default: 3384 if (dev->ops->ioctl) 3385 return dev->ops->ioctl(dev, ioctl, arg); 3386 3387 return -ENOTTY; 3388 } 3389 } 3390 3391 static int kvm_device_release(struct inode *inode, struct file *filp) 3392 { 3393 struct kvm_device *dev = filp->private_data; 3394 struct kvm *kvm = dev->kvm; 3395 3396 if (dev->ops->release) { 3397 mutex_lock(&kvm->lock); 3398 list_del(&dev->vm_node); 3399 dev->ops->release(dev); 3400 mutex_unlock(&kvm->lock); 3401 } 3402 3403 kvm_put_kvm(kvm); 3404 return 0; 3405 } 3406 3407 static const struct file_operations kvm_device_fops = { 3408 .unlocked_ioctl = kvm_device_ioctl, 3409 .release = kvm_device_release, 3410 KVM_COMPAT(kvm_device_ioctl), 3411 .mmap = kvm_device_mmap, 3412 }; 3413 3414 struct kvm_device *kvm_device_from_filp(struct file *filp) 3415 { 3416 if (filp->f_op != &kvm_device_fops) 3417 return NULL; 3418 3419 return filp->private_data; 3420 } 3421 3422 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3423 #ifdef CONFIG_KVM_MPIC 3424 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3425 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3426 #endif 3427 }; 3428 3429 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 3430 { 3431 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3432 return -ENOSPC; 3433 3434 if (kvm_device_ops_table[type] != NULL) 3435 return -EEXIST; 3436 3437 kvm_device_ops_table[type] = ops; 3438 return 0; 3439 } 3440 3441 void kvm_unregister_device_ops(u32 type) 3442 { 3443 if (kvm_device_ops_table[type] != NULL) 3444 kvm_device_ops_table[type] = NULL; 3445 } 3446 3447 static int kvm_ioctl_create_device(struct kvm *kvm, 3448 struct kvm_create_device *cd) 3449 { 3450 const struct kvm_device_ops *ops = NULL; 3451 struct kvm_device *dev; 3452 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3453 int type; 3454 int ret; 3455 3456 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3457 return -ENODEV; 3458 3459 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3460 ops = kvm_device_ops_table[type]; 3461 if (ops == NULL) 3462 return -ENODEV; 3463 3464 if (test) 3465 return 0; 3466 3467 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3468 if (!dev) 3469 return -ENOMEM; 3470 3471 dev->ops = ops; 3472 dev->kvm = kvm; 3473 3474 mutex_lock(&kvm->lock); 3475 ret = ops->create(dev, type); 3476 if (ret < 0) { 3477 mutex_unlock(&kvm->lock); 3478 kfree(dev); 3479 return ret; 3480 } 3481 list_add(&dev->vm_node, &kvm->devices); 3482 mutex_unlock(&kvm->lock); 3483 3484 if (ops->init) 3485 ops->init(dev); 3486 3487 kvm_get_kvm(kvm); 3488 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3489 if (ret < 0) { 3490 kvm_put_kvm_no_destroy(kvm); 3491 mutex_lock(&kvm->lock); 3492 list_del(&dev->vm_node); 3493 mutex_unlock(&kvm->lock); 3494 ops->destroy(dev); 3495 return ret; 3496 } 3497 3498 cd->fd = ret; 3499 return 0; 3500 } 3501 3502 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3503 { 3504 switch (arg) { 3505 case KVM_CAP_USER_MEMORY: 3506 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3507 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3508 case KVM_CAP_INTERNAL_ERROR_DATA: 3509 #ifdef CONFIG_HAVE_KVM_MSI 3510 case KVM_CAP_SIGNAL_MSI: 3511 #endif 3512 #ifdef CONFIG_HAVE_KVM_IRQFD 3513 case KVM_CAP_IRQFD: 3514 case KVM_CAP_IRQFD_RESAMPLE: 3515 #endif 3516 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3517 case KVM_CAP_CHECK_EXTENSION_VM: 3518 case KVM_CAP_ENABLE_CAP_VM: 3519 return 1; 3520 #ifdef CONFIG_KVM_MMIO 3521 case KVM_CAP_COALESCED_MMIO: 3522 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3523 case KVM_CAP_COALESCED_PIO: 3524 return 1; 3525 #endif 3526 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3527 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3528 return KVM_DIRTY_LOG_MANUAL_CAPS; 3529 #endif 3530 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3531 case KVM_CAP_IRQ_ROUTING: 3532 return KVM_MAX_IRQ_ROUTES; 3533 #endif 3534 #if KVM_ADDRESS_SPACE_NUM > 1 3535 case KVM_CAP_MULTI_ADDRESS_SPACE: 3536 return KVM_ADDRESS_SPACE_NUM; 3537 #endif 3538 case KVM_CAP_NR_MEMSLOTS: 3539 return KVM_USER_MEM_SLOTS; 3540 default: 3541 break; 3542 } 3543 return kvm_vm_ioctl_check_extension(kvm, arg); 3544 } 3545 3546 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3547 struct kvm_enable_cap *cap) 3548 { 3549 return -EINVAL; 3550 } 3551 3552 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3553 struct kvm_enable_cap *cap) 3554 { 3555 switch (cap->cap) { 3556 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3557 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 3558 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 3559 3560 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 3561 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 3562 3563 if (cap->flags || (cap->args[0] & ~allowed_options)) 3564 return -EINVAL; 3565 kvm->manual_dirty_log_protect = cap->args[0]; 3566 return 0; 3567 } 3568 #endif 3569 default: 3570 return kvm_vm_ioctl_enable_cap(kvm, cap); 3571 } 3572 } 3573 3574 static long kvm_vm_ioctl(struct file *filp, 3575 unsigned int ioctl, unsigned long arg) 3576 { 3577 struct kvm *kvm = filp->private_data; 3578 void __user *argp = (void __user *)arg; 3579 int r; 3580 3581 if (kvm->mm != current->mm) 3582 return -EIO; 3583 switch (ioctl) { 3584 case KVM_CREATE_VCPU: 3585 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3586 break; 3587 case KVM_ENABLE_CAP: { 3588 struct kvm_enable_cap cap; 3589 3590 r = -EFAULT; 3591 if (copy_from_user(&cap, argp, sizeof(cap))) 3592 goto out; 3593 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3594 break; 3595 } 3596 case KVM_SET_USER_MEMORY_REGION: { 3597 struct kvm_userspace_memory_region kvm_userspace_mem; 3598 3599 r = -EFAULT; 3600 if (copy_from_user(&kvm_userspace_mem, argp, 3601 sizeof(kvm_userspace_mem))) 3602 goto out; 3603 3604 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3605 break; 3606 } 3607 case KVM_GET_DIRTY_LOG: { 3608 struct kvm_dirty_log log; 3609 3610 r = -EFAULT; 3611 if (copy_from_user(&log, argp, sizeof(log))) 3612 goto out; 3613 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3614 break; 3615 } 3616 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3617 case KVM_CLEAR_DIRTY_LOG: { 3618 struct kvm_clear_dirty_log log; 3619 3620 r = -EFAULT; 3621 if (copy_from_user(&log, argp, sizeof(log))) 3622 goto out; 3623 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3624 break; 3625 } 3626 #endif 3627 #ifdef CONFIG_KVM_MMIO 3628 case KVM_REGISTER_COALESCED_MMIO: { 3629 struct kvm_coalesced_mmio_zone zone; 3630 3631 r = -EFAULT; 3632 if (copy_from_user(&zone, argp, sizeof(zone))) 3633 goto out; 3634 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3635 break; 3636 } 3637 case KVM_UNREGISTER_COALESCED_MMIO: { 3638 struct kvm_coalesced_mmio_zone zone; 3639 3640 r = -EFAULT; 3641 if (copy_from_user(&zone, argp, sizeof(zone))) 3642 goto out; 3643 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3644 break; 3645 } 3646 #endif 3647 case KVM_IRQFD: { 3648 struct kvm_irqfd data; 3649 3650 r = -EFAULT; 3651 if (copy_from_user(&data, argp, sizeof(data))) 3652 goto out; 3653 r = kvm_irqfd(kvm, &data); 3654 break; 3655 } 3656 case KVM_IOEVENTFD: { 3657 struct kvm_ioeventfd data; 3658 3659 r = -EFAULT; 3660 if (copy_from_user(&data, argp, sizeof(data))) 3661 goto out; 3662 r = kvm_ioeventfd(kvm, &data); 3663 break; 3664 } 3665 #ifdef CONFIG_HAVE_KVM_MSI 3666 case KVM_SIGNAL_MSI: { 3667 struct kvm_msi msi; 3668 3669 r = -EFAULT; 3670 if (copy_from_user(&msi, argp, sizeof(msi))) 3671 goto out; 3672 r = kvm_send_userspace_msi(kvm, &msi); 3673 break; 3674 } 3675 #endif 3676 #ifdef __KVM_HAVE_IRQ_LINE 3677 case KVM_IRQ_LINE_STATUS: 3678 case KVM_IRQ_LINE: { 3679 struct kvm_irq_level irq_event; 3680 3681 r = -EFAULT; 3682 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3683 goto out; 3684 3685 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3686 ioctl == KVM_IRQ_LINE_STATUS); 3687 if (r) 3688 goto out; 3689 3690 r = -EFAULT; 3691 if (ioctl == KVM_IRQ_LINE_STATUS) { 3692 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3693 goto out; 3694 } 3695 3696 r = 0; 3697 break; 3698 } 3699 #endif 3700 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3701 case KVM_SET_GSI_ROUTING: { 3702 struct kvm_irq_routing routing; 3703 struct kvm_irq_routing __user *urouting; 3704 struct kvm_irq_routing_entry *entries = NULL; 3705 3706 r = -EFAULT; 3707 if (copy_from_user(&routing, argp, sizeof(routing))) 3708 goto out; 3709 r = -EINVAL; 3710 if (!kvm_arch_can_set_irq_routing(kvm)) 3711 goto out; 3712 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3713 goto out; 3714 if (routing.flags) 3715 goto out; 3716 if (routing.nr) { 3717 r = -ENOMEM; 3718 entries = vmalloc(array_size(sizeof(*entries), 3719 routing.nr)); 3720 if (!entries) 3721 goto out; 3722 r = -EFAULT; 3723 urouting = argp; 3724 if (copy_from_user(entries, urouting->entries, 3725 routing.nr * sizeof(*entries))) 3726 goto out_free_irq_routing; 3727 } 3728 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3729 routing.flags); 3730 out_free_irq_routing: 3731 vfree(entries); 3732 break; 3733 } 3734 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3735 case KVM_CREATE_DEVICE: { 3736 struct kvm_create_device cd; 3737 3738 r = -EFAULT; 3739 if (copy_from_user(&cd, argp, sizeof(cd))) 3740 goto out; 3741 3742 r = kvm_ioctl_create_device(kvm, &cd); 3743 if (r) 3744 goto out; 3745 3746 r = -EFAULT; 3747 if (copy_to_user(argp, &cd, sizeof(cd))) 3748 goto out; 3749 3750 r = 0; 3751 break; 3752 } 3753 case KVM_CHECK_EXTENSION: 3754 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3755 break; 3756 default: 3757 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3758 } 3759 out: 3760 return r; 3761 } 3762 3763 #ifdef CONFIG_KVM_COMPAT 3764 struct compat_kvm_dirty_log { 3765 __u32 slot; 3766 __u32 padding1; 3767 union { 3768 compat_uptr_t dirty_bitmap; /* one bit per page */ 3769 __u64 padding2; 3770 }; 3771 }; 3772 3773 static long kvm_vm_compat_ioctl(struct file *filp, 3774 unsigned int ioctl, unsigned long arg) 3775 { 3776 struct kvm *kvm = filp->private_data; 3777 int r; 3778 3779 if (kvm->mm != current->mm) 3780 return -EIO; 3781 switch (ioctl) { 3782 case KVM_GET_DIRTY_LOG: { 3783 struct compat_kvm_dirty_log compat_log; 3784 struct kvm_dirty_log log; 3785 3786 if (copy_from_user(&compat_log, (void __user *)arg, 3787 sizeof(compat_log))) 3788 return -EFAULT; 3789 log.slot = compat_log.slot; 3790 log.padding1 = compat_log.padding1; 3791 log.padding2 = compat_log.padding2; 3792 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3793 3794 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3795 break; 3796 } 3797 default: 3798 r = kvm_vm_ioctl(filp, ioctl, arg); 3799 } 3800 return r; 3801 } 3802 #endif 3803 3804 static struct file_operations kvm_vm_fops = { 3805 .release = kvm_vm_release, 3806 .unlocked_ioctl = kvm_vm_ioctl, 3807 .llseek = noop_llseek, 3808 KVM_COMPAT(kvm_vm_compat_ioctl), 3809 }; 3810 3811 static int kvm_dev_ioctl_create_vm(unsigned long type) 3812 { 3813 int r; 3814 struct kvm *kvm; 3815 struct file *file; 3816 3817 kvm = kvm_create_vm(type); 3818 if (IS_ERR(kvm)) 3819 return PTR_ERR(kvm); 3820 #ifdef CONFIG_KVM_MMIO 3821 r = kvm_coalesced_mmio_init(kvm); 3822 if (r < 0) 3823 goto put_kvm; 3824 #endif 3825 r = get_unused_fd_flags(O_CLOEXEC); 3826 if (r < 0) 3827 goto put_kvm; 3828 3829 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3830 if (IS_ERR(file)) { 3831 put_unused_fd(r); 3832 r = PTR_ERR(file); 3833 goto put_kvm; 3834 } 3835 3836 /* 3837 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3838 * already set, with ->release() being kvm_vm_release(). In error 3839 * cases it will be called by the final fput(file) and will take 3840 * care of doing kvm_put_kvm(kvm). 3841 */ 3842 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3843 put_unused_fd(r); 3844 fput(file); 3845 return -ENOMEM; 3846 } 3847 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3848 3849 fd_install(r, file); 3850 return r; 3851 3852 put_kvm: 3853 kvm_put_kvm(kvm); 3854 return r; 3855 } 3856 3857 static long kvm_dev_ioctl(struct file *filp, 3858 unsigned int ioctl, unsigned long arg) 3859 { 3860 long r = -EINVAL; 3861 3862 switch (ioctl) { 3863 case KVM_GET_API_VERSION: 3864 if (arg) 3865 goto out; 3866 r = KVM_API_VERSION; 3867 break; 3868 case KVM_CREATE_VM: 3869 r = kvm_dev_ioctl_create_vm(arg); 3870 break; 3871 case KVM_CHECK_EXTENSION: 3872 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3873 break; 3874 case KVM_GET_VCPU_MMAP_SIZE: 3875 if (arg) 3876 goto out; 3877 r = PAGE_SIZE; /* struct kvm_run */ 3878 #ifdef CONFIG_X86 3879 r += PAGE_SIZE; /* pio data page */ 3880 #endif 3881 #ifdef CONFIG_KVM_MMIO 3882 r += PAGE_SIZE; /* coalesced mmio ring page */ 3883 #endif 3884 break; 3885 case KVM_TRACE_ENABLE: 3886 case KVM_TRACE_PAUSE: 3887 case KVM_TRACE_DISABLE: 3888 r = -EOPNOTSUPP; 3889 break; 3890 default: 3891 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3892 } 3893 out: 3894 return r; 3895 } 3896 3897 static struct file_operations kvm_chardev_ops = { 3898 .unlocked_ioctl = kvm_dev_ioctl, 3899 .llseek = noop_llseek, 3900 KVM_COMPAT(kvm_dev_ioctl), 3901 }; 3902 3903 static struct miscdevice kvm_dev = { 3904 KVM_MINOR, 3905 "kvm", 3906 &kvm_chardev_ops, 3907 }; 3908 3909 static void hardware_enable_nolock(void *junk) 3910 { 3911 int cpu = raw_smp_processor_id(); 3912 int r; 3913 3914 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3915 return; 3916 3917 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3918 3919 r = kvm_arch_hardware_enable(); 3920 3921 if (r) { 3922 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3923 atomic_inc(&hardware_enable_failed); 3924 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3925 } 3926 } 3927 3928 static int kvm_starting_cpu(unsigned int cpu) 3929 { 3930 raw_spin_lock(&kvm_count_lock); 3931 if (kvm_usage_count) 3932 hardware_enable_nolock(NULL); 3933 raw_spin_unlock(&kvm_count_lock); 3934 return 0; 3935 } 3936 3937 static void hardware_disable_nolock(void *junk) 3938 { 3939 int cpu = raw_smp_processor_id(); 3940 3941 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3942 return; 3943 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3944 kvm_arch_hardware_disable(); 3945 } 3946 3947 static int kvm_dying_cpu(unsigned int cpu) 3948 { 3949 raw_spin_lock(&kvm_count_lock); 3950 if (kvm_usage_count) 3951 hardware_disable_nolock(NULL); 3952 raw_spin_unlock(&kvm_count_lock); 3953 return 0; 3954 } 3955 3956 static void hardware_disable_all_nolock(void) 3957 { 3958 BUG_ON(!kvm_usage_count); 3959 3960 kvm_usage_count--; 3961 if (!kvm_usage_count) 3962 on_each_cpu(hardware_disable_nolock, NULL, 1); 3963 } 3964 3965 static void hardware_disable_all(void) 3966 { 3967 raw_spin_lock(&kvm_count_lock); 3968 hardware_disable_all_nolock(); 3969 raw_spin_unlock(&kvm_count_lock); 3970 } 3971 3972 static int hardware_enable_all(void) 3973 { 3974 int r = 0; 3975 3976 raw_spin_lock(&kvm_count_lock); 3977 3978 kvm_usage_count++; 3979 if (kvm_usage_count == 1) { 3980 atomic_set(&hardware_enable_failed, 0); 3981 on_each_cpu(hardware_enable_nolock, NULL, 1); 3982 3983 if (atomic_read(&hardware_enable_failed)) { 3984 hardware_disable_all_nolock(); 3985 r = -EBUSY; 3986 } 3987 } 3988 3989 raw_spin_unlock(&kvm_count_lock); 3990 3991 return r; 3992 } 3993 3994 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3995 void *v) 3996 { 3997 /* 3998 * Some (well, at least mine) BIOSes hang on reboot if 3999 * in vmx root mode. 4000 * 4001 * And Intel TXT required VMX off for all cpu when system shutdown. 4002 */ 4003 pr_info("kvm: exiting hardware virtualization\n"); 4004 kvm_rebooting = true; 4005 on_each_cpu(hardware_disable_nolock, NULL, 1); 4006 return NOTIFY_OK; 4007 } 4008 4009 static struct notifier_block kvm_reboot_notifier = { 4010 .notifier_call = kvm_reboot, 4011 .priority = 0, 4012 }; 4013 4014 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 4015 { 4016 int i; 4017 4018 for (i = 0; i < bus->dev_count; i++) { 4019 struct kvm_io_device *pos = bus->range[i].dev; 4020 4021 kvm_iodevice_destructor(pos); 4022 } 4023 kfree(bus); 4024 } 4025 4026 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 4027 const struct kvm_io_range *r2) 4028 { 4029 gpa_t addr1 = r1->addr; 4030 gpa_t addr2 = r2->addr; 4031 4032 if (addr1 < addr2) 4033 return -1; 4034 4035 /* If r2->len == 0, match the exact address. If r2->len != 0, 4036 * accept any overlapping write. Any order is acceptable for 4037 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 4038 * we process all of them. 4039 */ 4040 if (r2->len) { 4041 addr1 += r1->len; 4042 addr2 += r2->len; 4043 } 4044 4045 if (addr1 > addr2) 4046 return 1; 4047 4048 return 0; 4049 } 4050 4051 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 4052 { 4053 return kvm_io_bus_cmp(p1, p2); 4054 } 4055 4056 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 4057 gpa_t addr, int len) 4058 { 4059 struct kvm_io_range *range, key; 4060 int off; 4061 4062 key = (struct kvm_io_range) { 4063 .addr = addr, 4064 .len = len, 4065 }; 4066 4067 range = bsearch(&key, bus->range, bus->dev_count, 4068 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 4069 if (range == NULL) 4070 return -ENOENT; 4071 4072 off = range - bus->range; 4073 4074 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 4075 off--; 4076 4077 return off; 4078 } 4079 4080 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4081 struct kvm_io_range *range, const void *val) 4082 { 4083 int idx; 4084 4085 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4086 if (idx < 0) 4087 return -EOPNOTSUPP; 4088 4089 while (idx < bus->dev_count && 4090 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4091 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 4092 range->len, val)) 4093 return idx; 4094 idx++; 4095 } 4096 4097 return -EOPNOTSUPP; 4098 } 4099 4100 /* kvm_io_bus_write - called under kvm->slots_lock */ 4101 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4102 int len, const void *val) 4103 { 4104 struct kvm_io_bus *bus; 4105 struct kvm_io_range range; 4106 int r; 4107 4108 range = (struct kvm_io_range) { 4109 .addr = addr, 4110 .len = len, 4111 }; 4112 4113 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4114 if (!bus) 4115 return -ENOMEM; 4116 r = __kvm_io_bus_write(vcpu, bus, &range, val); 4117 return r < 0 ? r : 0; 4118 } 4119 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 4120 4121 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 4122 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 4123 gpa_t addr, int len, const void *val, long cookie) 4124 { 4125 struct kvm_io_bus *bus; 4126 struct kvm_io_range range; 4127 4128 range = (struct kvm_io_range) { 4129 .addr = addr, 4130 .len = len, 4131 }; 4132 4133 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4134 if (!bus) 4135 return -ENOMEM; 4136 4137 /* First try the device referenced by cookie. */ 4138 if ((cookie >= 0) && (cookie < bus->dev_count) && 4139 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 4140 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 4141 val)) 4142 return cookie; 4143 4144 /* 4145 * cookie contained garbage; fall back to search and return the 4146 * correct cookie value. 4147 */ 4148 return __kvm_io_bus_write(vcpu, bus, &range, val); 4149 } 4150 4151 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 4152 struct kvm_io_range *range, void *val) 4153 { 4154 int idx; 4155 4156 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 4157 if (idx < 0) 4158 return -EOPNOTSUPP; 4159 4160 while (idx < bus->dev_count && 4161 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 4162 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 4163 range->len, val)) 4164 return idx; 4165 idx++; 4166 } 4167 4168 return -EOPNOTSUPP; 4169 } 4170 4171 /* kvm_io_bus_read - called under kvm->slots_lock */ 4172 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 4173 int len, void *val) 4174 { 4175 struct kvm_io_bus *bus; 4176 struct kvm_io_range range; 4177 int r; 4178 4179 range = (struct kvm_io_range) { 4180 .addr = addr, 4181 .len = len, 4182 }; 4183 4184 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 4185 if (!bus) 4186 return -ENOMEM; 4187 r = __kvm_io_bus_read(vcpu, bus, &range, val); 4188 return r < 0 ? r : 0; 4189 } 4190 4191 /* Caller must hold slots_lock. */ 4192 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 4193 int len, struct kvm_io_device *dev) 4194 { 4195 int i; 4196 struct kvm_io_bus *new_bus, *bus; 4197 struct kvm_io_range range; 4198 4199 bus = kvm_get_bus(kvm, bus_idx); 4200 if (!bus) 4201 return -ENOMEM; 4202 4203 /* exclude ioeventfd which is limited by maximum fd */ 4204 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 4205 return -ENOSPC; 4206 4207 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 4208 GFP_KERNEL_ACCOUNT); 4209 if (!new_bus) 4210 return -ENOMEM; 4211 4212 range = (struct kvm_io_range) { 4213 .addr = addr, 4214 .len = len, 4215 .dev = dev, 4216 }; 4217 4218 for (i = 0; i < bus->dev_count; i++) 4219 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 4220 break; 4221 4222 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4223 new_bus->dev_count++; 4224 new_bus->range[i] = range; 4225 memcpy(new_bus->range + i + 1, bus->range + i, 4226 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 4227 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4228 synchronize_srcu_expedited(&kvm->srcu); 4229 kfree(bus); 4230 4231 return 0; 4232 } 4233 4234 /* Caller must hold slots_lock. */ 4235 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4236 struct kvm_io_device *dev) 4237 { 4238 int i; 4239 struct kvm_io_bus *new_bus, *bus; 4240 4241 bus = kvm_get_bus(kvm, bus_idx); 4242 if (!bus) 4243 return; 4244 4245 for (i = 0; i < bus->dev_count; i++) 4246 if (bus->range[i].dev == dev) { 4247 break; 4248 } 4249 4250 if (i == bus->dev_count) 4251 return; 4252 4253 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 4254 GFP_KERNEL_ACCOUNT); 4255 if (!new_bus) { 4256 pr_err("kvm: failed to shrink bus, removing it completely\n"); 4257 goto broken; 4258 } 4259 4260 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 4261 new_bus->dev_count--; 4262 memcpy(new_bus->range + i, bus->range + i + 1, 4263 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 4264 4265 broken: 4266 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 4267 synchronize_srcu_expedited(&kvm->srcu); 4268 kfree(bus); 4269 return; 4270 } 4271 4272 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 4273 gpa_t addr) 4274 { 4275 struct kvm_io_bus *bus; 4276 int dev_idx, srcu_idx; 4277 struct kvm_io_device *iodev = NULL; 4278 4279 srcu_idx = srcu_read_lock(&kvm->srcu); 4280 4281 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 4282 if (!bus) 4283 goto out_unlock; 4284 4285 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 4286 if (dev_idx < 0) 4287 goto out_unlock; 4288 4289 iodev = bus->range[dev_idx].dev; 4290 4291 out_unlock: 4292 srcu_read_unlock(&kvm->srcu, srcu_idx); 4293 4294 return iodev; 4295 } 4296 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 4297 4298 static int kvm_debugfs_open(struct inode *inode, struct file *file, 4299 int (*get)(void *, u64 *), int (*set)(void *, u64), 4300 const char *fmt) 4301 { 4302 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4303 inode->i_private; 4304 4305 /* The debugfs files are a reference to the kvm struct which 4306 * is still valid when kvm_destroy_vm is called. 4307 * To avoid the race between open and the removal of the debugfs 4308 * directory we test against the users count. 4309 */ 4310 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 4311 return -ENOENT; 4312 4313 if (simple_attr_open(inode, file, get, 4314 KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222 4315 ? set : NULL, 4316 fmt)) { 4317 kvm_put_kvm(stat_data->kvm); 4318 return -ENOMEM; 4319 } 4320 4321 return 0; 4322 } 4323 4324 static int kvm_debugfs_release(struct inode *inode, struct file *file) 4325 { 4326 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 4327 inode->i_private; 4328 4329 simple_attr_release(inode, file); 4330 kvm_put_kvm(stat_data->kvm); 4331 4332 return 0; 4333 } 4334 4335 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 4336 { 4337 *val = *(ulong *)((void *)kvm + offset); 4338 4339 return 0; 4340 } 4341 4342 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 4343 { 4344 *(ulong *)((void *)kvm + offset) = 0; 4345 4346 return 0; 4347 } 4348 4349 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 4350 { 4351 int i; 4352 struct kvm_vcpu *vcpu; 4353 4354 *val = 0; 4355 4356 kvm_for_each_vcpu(i, vcpu, kvm) 4357 *val += *(u64 *)((void *)vcpu + offset); 4358 4359 return 0; 4360 } 4361 4362 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 4363 { 4364 int i; 4365 struct kvm_vcpu *vcpu; 4366 4367 kvm_for_each_vcpu(i, vcpu, kvm) 4368 *(u64 *)((void *)vcpu + offset) = 0; 4369 4370 return 0; 4371 } 4372 4373 static int kvm_stat_data_get(void *data, u64 *val) 4374 { 4375 int r = -EFAULT; 4376 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4377 4378 switch (stat_data->dbgfs_item->kind) { 4379 case KVM_STAT_VM: 4380 r = kvm_get_stat_per_vm(stat_data->kvm, 4381 stat_data->dbgfs_item->offset, val); 4382 break; 4383 case KVM_STAT_VCPU: 4384 r = kvm_get_stat_per_vcpu(stat_data->kvm, 4385 stat_data->dbgfs_item->offset, val); 4386 break; 4387 } 4388 4389 return r; 4390 } 4391 4392 static int kvm_stat_data_clear(void *data, u64 val) 4393 { 4394 int r = -EFAULT; 4395 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4396 4397 if (val) 4398 return -EINVAL; 4399 4400 switch (stat_data->dbgfs_item->kind) { 4401 case KVM_STAT_VM: 4402 r = kvm_clear_stat_per_vm(stat_data->kvm, 4403 stat_data->dbgfs_item->offset); 4404 break; 4405 case KVM_STAT_VCPU: 4406 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 4407 stat_data->dbgfs_item->offset); 4408 break; 4409 } 4410 4411 return r; 4412 } 4413 4414 static int kvm_stat_data_open(struct inode *inode, struct file *file) 4415 { 4416 __simple_attr_check_format("%llu\n", 0ull); 4417 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 4418 kvm_stat_data_clear, "%llu\n"); 4419 } 4420 4421 static const struct file_operations stat_fops_per_vm = { 4422 .owner = THIS_MODULE, 4423 .open = kvm_stat_data_open, 4424 .release = kvm_debugfs_release, 4425 .read = simple_attr_read, 4426 .write = simple_attr_write, 4427 .llseek = no_llseek, 4428 }; 4429 4430 static int vm_stat_get(void *_offset, u64 *val) 4431 { 4432 unsigned offset = (long)_offset; 4433 struct kvm *kvm; 4434 u64 tmp_val; 4435 4436 *val = 0; 4437 mutex_lock(&kvm_lock); 4438 list_for_each_entry(kvm, &vm_list, vm_list) { 4439 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 4440 *val += tmp_val; 4441 } 4442 mutex_unlock(&kvm_lock); 4443 return 0; 4444 } 4445 4446 static int vm_stat_clear(void *_offset, u64 val) 4447 { 4448 unsigned offset = (long)_offset; 4449 struct kvm *kvm; 4450 4451 if (val) 4452 return -EINVAL; 4453 4454 mutex_lock(&kvm_lock); 4455 list_for_each_entry(kvm, &vm_list, vm_list) { 4456 kvm_clear_stat_per_vm(kvm, offset); 4457 } 4458 mutex_unlock(&kvm_lock); 4459 4460 return 0; 4461 } 4462 4463 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4464 4465 static int vcpu_stat_get(void *_offset, u64 *val) 4466 { 4467 unsigned offset = (long)_offset; 4468 struct kvm *kvm; 4469 u64 tmp_val; 4470 4471 *val = 0; 4472 mutex_lock(&kvm_lock); 4473 list_for_each_entry(kvm, &vm_list, vm_list) { 4474 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 4475 *val += tmp_val; 4476 } 4477 mutex_unlock(&kvm_lock); 4478 return 0; 4479 } 4480 4481 static int vcpu_stat_clear(void *_offset, u64 val) 4482 { 4483 unsigned offset = (long)_offset; 4484 struct kvm *kvm; 4485 4486 if (val) 4487 return -EINVAL; 4488 4489 mutex_lock(&kvm_lock); 4490 list_for_each_entry(kvm, &vm_list, vm_list) { 4491 kvm_clear_stat_per_vcpu(kvm, offset); 4492 } 4493 mutex_unlock(&kvm_lock); 4494 4495 return 0; 4496 } 4497 4498 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4499 "%llu\n"); 4500 4501 static const struct file_operations *stat_fops[] = { 4502 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4503 [KVM_STAT_VM] = &vm_stat_fops, 4504 }; 4505 4506 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4507 { 4508 struct kobj_uevent_env *env; 4509 unsigned long long created, active; 4510 4511 if (!kvm_dev.this_device || !kvm) 4512 return; 4513 4514 mutex_lock(&kvm_lock); 4515 if (type == KVM_EVENT_CREATE_VM) { 4516 kvm_createvm_count++; 4517 kvm_active_vms++; 4518 } else if (type == KVM_EVENT_DESTROY_VM) { 4519 kvm_active_vms--; 4520 } 4521 created = kvm_createvm_count; 4522 active = kvm_active_vms; 4523 mutex_unlock(&kvm_lock); 4524 4525 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4526 if (!env) 4527 return; 4528 4529 add_uevent_var(env, "CREATED=%llu", created); 4530 add_uevent_var(env, "COUNT=%llu", active); 4531 4532 if (type == KVM_EVENT_CREATE_VM) { 4533 add_uevent_var(env, "EVENT=create"); 4534 kvm->userspace_pid = task_pid_nr(current); 4535 } else if (type == KVM_EVENT_DESTROY_VM) { 4536 add_uevent_var(env, "EVENT=destroy"); 4537 } 4538 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4539 4540 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4541 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4542 4543 if (p) { 4544 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4545 if (!IS_ERR(tmp)) 4546 add_uevent_var(env, "STATS_PATH=%s", tmp); 4547 kfree(p); 4548 } 4549 } 4550 /* no need for checks, since we are adding at most only 5 keys */ 4551 env->envp[env->envp_idx++] = NULL; 4552 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4553 kfree(env); 4554 } 4555 4556 static void kvm_init_debug(void) 4557 { 4558 struct kvm_stats_debugfs_item *p; 4559 4560 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4561 4562 kvm_debugfs_num_entries = 0; 4563 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4564 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p), 4565 kvm_debugfs_dir, (void *)(long)p->offset, 4566 stat_fops[p->kind]); 4567 } 4568 } 4569 4570 static int kvm_suspend(void) 4571 { 4572 if (kvm_usage_count) 4573 hardware_disable_nolock(NULL); 4574 return 0; 4575 } 4576 4577 static void kvm_resume(void) 4578 { 4579 if (kvm_usage_count) { 4580 #ifdef CONFIG_LOCKDEP 4581 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4582 #endif 4583 hardware_enable_nolock(NULL); 4584 } 4585 } 4586 4587 static struct syscore_ops kvm_syscore_ops = { 4588 .suspend = kvm_suspend, 4589 .resume = kvm_resume, 4590 }; 4591 4592 static inline 4593 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4594 { 4595 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4596 } 4597 4598 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4599 { 4600 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4601 4602 WRITE_ONCE(vcpu->preempted, false); 4603 WRITE_ONCE(vcpu->ready, false); 4604 4605 __this_cpu_write(kvm_running_vcpu, vcpu); 4606 kvm_arch_sched_in(vcpu, cpu); 4607 kvm_arch_vcpu_load(vcpu, cpu); 4608 } 4609 4610 static void kvm_sched_out(struct preempt_notifier *pn, 4611 struct task_struct *next) 4612 { 4613 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4614 4615 if (current->state == TASK_RUNNING) { 4616 WRITE_ONCE(vcpu->preempted, true); 4617 WRITE_ONCE(vcpu->ready, true); 4618 } 4619 kvm_arch_vcpu_put(vcpu); 4620 __this_cpu_write(kvm_running_vcpu, NULL); 4621 } 4622 4623 /** 4624 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 4625 * 4626 * We can disable preemption locally around accessing the per-CPU variable, 4627 * and use the resolved vcpu pointer after enabling preemption again, 4628 * because even if the current thread is migrated to another CPU, reading 4629 * the per-CPU value later will give us the same value as we update the 4630 * per-CPU variable in the preempt notifier handlers. 4631 */ 4632 struct kvm_vcpu *kvm_get_running_vcpu(void) 4633 { 4634 struct kvm_vcpu *vcpu; 4635 4636 preempt_disable(); 4637 vcpu = __this_cpu_read(kvm_running_vcpu); 4638 preempt_enable(); 4639 4640 return vcpu; 4641 } 4642 4643 /** 4644 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 4645 */ 4646 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 4647 { 4648 return &kvm_running_vcpu; 4649 } 4650 4651 struct kvm_cpu_compat_check { 4652 void *opaque; 4653 int *ret; 4654 }; 4655 4656 static void check_processor_compat(void *data) 4657 { 4658 struct kvm_cpu_compat_check *c = data; 4659 4660 *c->ret = kvm_arch_check_processor_compat(c->opaque); 4661 } 4662 4663 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4664 struct module *module) 4665 { 4666 struct kvm_cpu_compat_check c; 4667 int r; 4668 int cpu; 4669 4670 r = kvm_arch_init(opaque); 4671 if (r) 4672 goto out_fail; 4673 4674 /* 4675 * kvm_arch_init makes sure there's at most one caller 4676 * for architectures that support multiple implementations, 4677 * like intel and amd on x86. 4678 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4679 * conflicts in case kvm is already setup for another implementation. 4680 */ 4681 r = kvm_irqfd_init(); 4682 if (r) 4683 goto out_irqfd; 4684 4685 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4686 r = -ENOMEM; 4687 goto out_free_0; 4688 } 4689 4690 r = kvm_arch_hardware_setup(opaque); 4691 if (r < 0) 4692 goto out_free_1; 4693 4694 c.ret = &r; 4695 c.opaque = opaque; 4696 for_each_online_cpu(cpu) { 4697 smp_call_function_single(cpu, check_processor_compat, &c, 1); 4698 if (r < 0) 4699 goto out_free_2; 4700 } 4701 4702 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4703 kvm_starting_cpu, kvm_dying_cpu); 4704 if (r) 4705 goto out_free_2; 4706 register_reboot_notifier(&kvm_reboot_notifier); 4707 4708 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4709 if (!vcpu_align) 4710 vcpu_align = __alignof__(struct kvm_vcpu); 4711 kvm_vcpu_cache = 4712 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4713 SLAB_ACCOUNT, 4714 offsetof(struct kvm_vcpu, arch), 4715 sizeof_field(struct kvm_vcpu, arch), 4716 NULL); 4717 if (!kvm_vcpu_cache) { 4718 r = -ENOMEM; 4719 goto out_free_3; 4720 } 4721 4722 r = kvm_async_pf_init(); 4723 if (r) 4724 goto out_free; 4725 4726 kvm_chardev_ops.owner = module; 4727 kvm_vm_fops.owner = module; 4728 kvm_vcpu_fops.owner = module; 4729 4730 r = misc_register(&kvm_dev); 4731 if (r) { 4732 pr_err("kvm: misc device register failed\n"); 4733 goto out_unreg; 4734 } 4735 4736 register_syscore_ops(&kvm_syscore_ops); 4737 4738 kvm_preempt_ops.sched_in = kvm_sched_in; 4739 kvm_preempt_ops.sched_out = kvm_sched_out; 4740 4741 kvm_init_debug(); 4742 4743 r = kvm_vfio_ops_init(); 4744 WARN_ON(r); 4745 4746 return 0; 4747 4748 out_unreg: 4749 kvm_async_pf_deinit(); 4750 out_free: 4751 kmem_cache_destroy(kvm_vcpu_cache); 4752 out_free_3: 4753 unregister_reboot_notifier(&kvm_reboot_notifier); 4754 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4755 out_free_2: 4756 kvm_arch_hardware_unsetup(); 4757 out_free_1: 4758 free_cpumask_var(cpus_hardware_enabled); 4759 out_free_0: 4760 kvm_irqfd_exit(); 4761 out_irqfd: 4762 kvm_arch_exit(); 4763 out_fail: 4764 return r; 4765 } 4766 EXPORT_SYMBOL_GPL(kvm_init); 4767 4768 void kvm_exit(void) 4769 { 4770 debugfs_remove_recursive(kvm_debugfs_dir); 4771 misc_deregister(&kvm_dev); 4772 kmem_cache_destroy(kvm_vcpu_cache); 4773 kvm_async_pf_deinit(); 4774 unregister_syscore_ops(&kvm_syscore_ops); 4775 unregister_reboot_notifier(&kvm_reboot_notifier); 4776 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4777 on_each_cpu(hardware_disable_nolock, NULL, 1); 4778 kvm_arch_hardware_unsetup(); 4779 kvm_arch_exit(); 4780 kvm_irqfd_exit(); 4781 free_cpumask_var(cpus_hardware_enabled); 4782 kvm_vfio_ops_exit(); 4783 } 4784 EXPORT_SYMBOL_GPL(kvm_exit); 4785 4786 struct kvm_vm_worker_thread_context { 4787 struct kvm *kvm; 4788 struct task_struct *parent; 4789 struct completion init_done; 4790 kvm_vm_thread_fn_t thread_fn; 4791 uintptr_t data; 4792 int err; 4793 }; 4794 4795 static int kvm_vm_worker_thread(void *context) 4796 { 4797 /* 4798 * The init_context is allocated on the stack of the parent thread, so 4799 * we have to locally copy anything that is needed beyond initialization 4800 */ 4801 struct kvm_vm_worker_thread_context *init_context = context; 4802 struct kvm *kvm = init_context->kvm; 4803 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 4804 uintptr_t data = init_context->data; 4805 int err; 4806 4807 err = kthread_park(current); 4808 /* kthread_park(current) is never supposed to return an error */ 4809 WARN_ON(err != 0); 4810 if (err) 4811 goto init_complete; 4812 4813 err = cgroup_attach_task_all(init_context->parent, current); 4814 if (err) { 4815 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 4816 __func__, err); 4817 goto init_complete; 4818 } 4819 4820 set_user_nice(current, task_nice(init_context->parent)); 4821 4822 init_complete: 4823 init_context->err = err; 4824 complete(&init_context->init_done); 4825 init_context = NULL; 4826 4827 if (err) 4828 return err; 4829 4830 /* Wait to be woken up by the spawner before proceeding. */ 4831 kthread_parkme(); 4832 4833 if (!kthread_should_stop()) 4834 err = thread_fn(kvm, data); 4835 4836 return err; 4837 } 4838 4839 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 4840 uintptr_t data, const char *name, 4841 struct task_struct **thread_ptr) 4842 { 4843 struct kvm_vm_worker_thread_context init_context = {}; 4844 struct task_struct *thread; 4845 4846 *thread_ptr = NULL; 4847 init_context.kvm = kvm; 4848 init_context.parent = current; 4849 init_context.thread_fn = thread_fn; 4850 init_context.data = data; 4851 init_completion(&init_context.init_done); 4852 4853 thread = kthread_run(kvm_vm_worker_thread, &init_context, 4854 "%s-%d", name, task_pid_nr(current)); 4855 if (IS_ERR(thread)) 4856 return PTR_ERR(thread); 4857 4858 /* kthread_run is never supposed to return NULL */ 4859 WARN_ON(thread == NULL); 4860 4861 wait_for_completion(&init_context.init_done); 4862 4863 if (!init_context.err) 4864 *thread_ptr = thread; 4865 4866 return init_context.err; 4867 } 4868