xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 0da85d1e)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
71 
72 /*
73  * Ordering of locks:
74  *
75  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
76  */
77 
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
81 
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
85 
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
88 
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
90 
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
93 
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 			   unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 				  unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
102 
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
104 
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm *kvm,
107 				    struct kvm_memory_slot *memslot, gfn_t gfn);
108 
109 __visible bool kvm_rebooting;
110 EXPORT_SYMBOL_GPL(kvm_rebooting);
111 
112 static bool largepages_enabled = true;
113 
114 bool kvm_is_reserved_pfn(pfn_t pfn)
115 {
116 	if (pfn_valid(pfn))
117 		return PageReserved(pfn_to_page(pfn));
118 
119 	return true;
120 }
121 
122 /*
123  * Switches to specified vcpu, until a matching vcpu_put()
124  */
125 int vcpu_load(struct kvm_vcpu *vcpu)
126 {
127 	int cpu;
128 
129 	if (mutex_lock_killable(&vcpu->mutex))
130 		return -EINTR;
131 	cpu = get_cpu();
132 	preempt_notifier_register(&vcpu->preempt_notifier);
133 	kvm_arch_vcpu_load(vcpu, cpu);
134 	put_cpu();
135 	return 0;
136 }
137 
138 void vcpu_put(struct kvm_vcpu *vcpu)
139 {
140 	preempt_disable();
141 	kvm_arch_vcpu_put(vcpu);
142 	preempt_notifier_unregister(&vcpu->preempt_notifier);
143 	preempt_enable();
144 	mutex_unlock(&vcpu->mutex);
145 }
146 
147 static void ack_flush(void *_completed)
148 {
149 }
150 
151 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
152 {
153 	int i, cpu, me;
154 	cpumask_var_t cpus;
155 	bool called = true;
156 	struct kvm_vcpu *vcpu;
157 
158 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
159 
160 	me = get_cpu();
161 	kvm_for_each_vcpu(i, vcpu, kvm) {
162 		kvm_make_request(req, vcpu);
163 		cpu = vcpu->cpu;
164 
165 		/* Set ->requests bit before we read ->mode */
166 		smp_mb();
167 
168 		if (cpus != NULL && cpu != -1 && cpu != me &&
169 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
170 			cpumask_set_cpu(cpu, cpus);
171 	}
172 	if (unlikely(cpus == NULL))
173 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
174 	else if (!cpumask_empty(cpus))
175 		smp_call_function_many(cpus, ack_flush, NULL, 1);
176 	else
177 		called = false;
178 	put_cpu();
179 	free_cpumask_var(cpus);
180 	return called;
181 }
182 
183 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
184 void kvm_flush_remote_tlbs(struct kvm *kvm)
185 {
186 	long dirty_count = kvm->tlbs_dirty;
187 
188 	smp_mb();
189 	if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
190 		++kvm->stat.remote_tlb_flush;
191 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
192 }
193 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
194 #endif
195 
196 void kvm_reload_remote_mmus(struct kvm *kvm)
197 {
198 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
199 }
200 
201 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
202 {
203 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
204 }
205 
206 void kvm_make_scan_ioapic_request(struct kvm *kvm)
207 {
208 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
209 }
210 
211 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
212 {
213 	struct page *page;
214 	int r;
215 
216 	mutex_init(&vcpu->mutex);
217 	vcpu->cpu = -1;
218 	vcpu->kvm = kvm;
219 	vcpu->vcpu_id = id;
220 	vcpu->pid = NULL;
221 	init_waitqueue_head(&vcpu->wq);
222 	kvm_async_pf_vcpu_init(vcpu);
223 
224 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
225 	if (!page) {
226 		r = -ENOMEM;
227 		goto fail;
228 	}
229 	vcpu->run = page_address(page);
230 
231 	kvm_vcpu_set_in_spin_loop(vcpu, false);
232 	kvm_vcpu_set_dy_eligible(vcpu, false);
233 	vcpu->preempted = false;
234 
235 	r = kvm_arch_vcpu_init(vcpu);
236 	if (r < 0)
237 		goto fail_free_run;
238 	return 0;
239 
240 fail_free_run:
241 	free_page((unsigned long)vcpu->run);
242 fail:
243 	return r;
244 }
245 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
246 
247 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
248 {
249 	put_pid(vcpu->pid);
250 	kvm_arch_vcpu_uninit(vcpu);
251 	free_page((unsigned long)vcpu->run);
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
254 
255 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
256 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
257 {
258 	return container_of(mn, struct kvm, mmu_notifier);
259 }
260 
261 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
262 					     struct mm_struct *mm,
263 					     unsigned long address)
264 {
265 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
266 	int need_tlb_flush, idx;
267 
268 	/*
269 	 * When ->invalidate_page runs, the linux pte has been zapped
270 	 * already but the page is still allocated until
271 	 * ->invalidate_page returns. So if we increase the sequence
272 	 * here the kvm page fault will notice if the spte can't be
273 	 * established because the page is going to be freed. If
274 	 * instead the kvm page fault establishes the spte before
275 	 * ->invalidate_page runs, kvm_unmap_hva will release it
276 	 * before returning.
277 	 *
278 	 * The sequence increase only need to be seen at spin_unlock
279 	 * time, and not at spin_lock time.
280 	 *
281 	 * Increasing the sequence after the spin_unlock would be
282 	 * unsafe because the kvm page fault could then establish the
283 	 * pte after kvm_unmap_hva returned, without noticing the page
284 	 * is going to be freed.
285 	 */
286 	idx = srcu_read_lock(&kvm->srcu);
287 	spin_lock(&kvm->mmu_lock);
288 
289 	kvm->mmu_notifier_seq++;
290 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
291 	/* we've to flush the tlb before the pages can be freed */
292 	if (need_tlb_flush)
293 		kvm_flush_remote_tlbs(kvm);
294 
295 	spin_unlock(&kvm->mmu_lock);
296 
297 	kvm_arch_mmu_notifier_invalidate_page(kvm, address);
298 
299 	srcu_read_unlock(&kvm->srcu, idx);
300 }
301 
302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
303 					struct mm_struct *mm,
304 					unsigned long address,
305 					pte_t pte)
306 {
307 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
308 	int idx;
309 
310 	idx = srcu_read_lock(&kvm->srcu);
311 	spin_lock(&kvm->mmu_lock);
312 	kvm->mmu_notifier_seq++;
313 	kvm_set_spte_hva(kvm, address, pte);
314 	spin_unlock(&kvm->mmu_lock);
315 	srcu_read_unlock(&kvm->srcu, idx);
316 }
317 
318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
319 						    struct mm_struct *mm,
320 						    unsigned long start,
321 						    unsigned long end)
322 {
323 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
324 	int need_tlb_flush = 0, idx;
325 
326 	idx = srcu_read_lock(&kvm->srcu);
327 	spin_lock(&kvm->mmu_lock);
328 	/*
329 	 * The count increase must become visible at unlock time as no
330 	 * spte can be established without taking the mmu_lock and
331 	 * count is also read inside the mmu_lock critical section.
332 	 */
333 	kvm->mmu_notifier_count++;
334 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
335 	need_tlb_flush |= kvm->tlbs_dirty;
336 	/* we've to flush the tlb before the pages can be freed */
337 	if (need_tlb_flush)
338 		kvm_flush_remote_tlbs(kvm);
339 
340 	spin_unlock(&kvm->mmu_lock);
341 	srcu_read_unlock(&kvm->srcu, idx);
342 }
343 
344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
345 						  struct mm_struct *mm,
346 						  unsigned long start,
347 						  unsigned long end)
348 {
349 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
350 
351 	spin_lock(&kvm->mmu_lock);
352 	/*
353 	 * This sequence increase will notify the kvm page fault that
354 	 * the page that is going to be mapped in the spte could have
355 	 * been freed.
356 	 */
357 	kvm->mmu_notifier_seq++;
358 	smp_wmb();
359 	/*
360 	 * The above sequence increase must be visible before the
361 	 * below count decrease, which is ensured by the smp_wmb above
362 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
363 	 */
364 	kvm->mmu_notifier_count--;
365 	spin_unlock(&kvm->mmu_lock);
366 
367 	BUG_ON(kvm->mmu_notifier_count < 0);
368 }
369 
370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
371 					      struct mm_struct *mm,
372 					      unsigned long start,
373 					      unsigned long end)
374 {
375 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
376 	int young, idx;
377 
378 	idx = srcu_read_lock(&kvm->srcu);
379 	spin_lock(&kvm->mmu_lock);
380 
381 	young = kvm_age_hva(kvm, start, end);
382 	if (young)
383 		kvm_flush_remote_tlbs(kvm);
384 
385 	spin_unlock(&kvm->mmu_lock);
386 	srcu_read_unlock(&kvm->srcu, idx);
387 
388 	return young;
389 }
390 
391 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
392 				       struct mm_struct *mm,
393 				       unsigned long address)
394 {
395 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
396 	int young, idx;
397 
398 	idx = srcu_read_lock(&kvm->srcu);
399 	spin_lock(&kvm->mmu_lock);
400 	young = kvm_test_age_hva(kvm, address);
401 	spin_unlock(&kvm->mmu_lock);
402 	srcu_read_unlock(&kvm->srcu, idx);
403 
404 	return young;
405 }
406 
407 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
408 				     struct mm_struct *mm)
409 {
410 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
411 	int idx;
412 
413 	idx = srcu_read_lock(&kvm->srcu);
414 	kvm_arch_flush_shadow_all(kvm);
415 	srcu_read_unlock(&kvm->srcu, idx);
416 }
417 
418 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
419 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
420 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
421 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
422 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
423 	.test_young		= kvm_mmu_notifier_test_young,
424 	.change_pte		= kvm_mmu_notifier_change_pte,
425 	.release		= kvm_mmu_notifier_release,
426 };
427 
428 static int kvm_init_mmu_notifier(struct kvm *kvm)
429 {
430 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
431 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
432 }
433 
434 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
435 
436 static int kvm_init_mmu_notifier(struct kvm *kvm)
437 {
438 	return 0;
439 }
440 
441 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
442 
443 static void kvm_init_memslots_id(struct kvm *kvm)
444 {
445 	int i;
446 	struct kvm_memslots *slots = kvm->memslots;
447 
448 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
449 		slots->id_to_index[i] = slots->memslots[i].id = i;
450 }
451 
452 static struct kvm *kvm_create_vm(unsigned long type)
453 {
454 	int r, i;
455 	struct kvm *kvm = kvm_arch_alloc_vm();
456 
457 	if (!kvm)
458 		return ERR_PTR(-ENOMEM);
459 
460 	r = kvm_arch_init_vm(kvm, type);
461 	if (r)
462 		goto out_err_no_disable;
463 
464 	r = hardware_enable_all();
465 	if (r)
466 		goto out_err_no_disable;
467 
468 #ifdef CONFIG_HAVE_KVM_IRQFD
469 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
470 #endif
471 
472 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
473 
474 	r = -ENOMEM;
475 	kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
476 	if (!kvm->memslots)
477 		goto out_err_no_srcu;
478 
479 	/*
480 	 * Init kvm generation close to the maximum to easily test the
481 	 * code of handling generation number wrap-around.
482 	 */
483 	kvm->memslots->generation = -150;
484 
485 	kvm_init_memslots_id(kvm);
486 	if (init_srcu_struct(&kvm->srcu))
487 		goto out_err_no_srcu;
488 	if (init_srcu_struct(&kvm->irq_srcu))
489 		goto out_err_no_irq_srcu;
490 	for (i = 0; i < KVM_NR_BUSES; i++) {
491 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
492 					GFP_KERNEL);
493 		if (!kvm->buses[i])
494 			goto out_err;
495 	}
496 
497 	spin_lock_init(&kvm->mmu_lock);
498 	kvm->mm = current->mm;
499 	atomic_inc(&kvm->mm->mm_count);
500 	kvm_eventfd_init(kvm);
501 	mutex_init(&kvm->lock);
502 	mutex_init(&kvm->irq_lock);
503 	mutex_init(&kvm->slots_lock);
504 	atomic_set(&kvm->users_count, 1);
505 	INIT_LIST_HEAD(&kvm->devices);
506 
507 	r = kvm_init_mmu_notifier(kvm);
508 	if (r)
509 		goto out_err;
510 
511 	spin_lock(&kvm_lock);
512 	list_add(&kvm->vm_list, &vm_list);
513 	spin_unlock(&kvm_lock);
514 
515 	return kvm;
516 
517 out_err:
518 	cleanup_srcu_struct(&kvm->irq_srcu);
519 out_err_no_irq_srcu:
520 	cleanup_srcu_struct(&kvm->srcu);
521 out_err_no_srcu:
522 	hardware_disable_all();
523 out_err_no_disable:
524 	for (i = 0; i < KVM_NR_BUSES; i++)
525 		kfree(kvm->buses[i]);
526 	kvfree(kvm->memslots);
527 	kvm_arch_free_vm(kvm);
528 	return ERR_PTR(r);
529 }
530 
531 /*
532  * Avoid using vmalloc for a small buffer.
533  * Should not be used when the size is statically known.
534  */
535 void *kvm_kvzalloc(unsigned long size)
536 {
537 	if (size > PAGE_SIZE)
538 		return vzalloc(size);
539 	else
540 		return kzalloc(size, GFP_KERNEL);
541 }
542 
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545 	if (!memslot->dirty_bitmap)
546 		return;
547 
548 	kvfree(memslot->dirty_bitmap);
549 	memslot->dirty_bitmap = NULL;
550 }
551 
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
556 				  struct kvm_memory_slot *dont)
557 {
558 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 		kvm_destroy_dirty_bitmap(free);
560 
561 	kvm_arch_free_memslot(kvm, free, dont);
562 
563 	free->npages = 0;
564 }
565 
566 static void kvm_free_physmem(struct kvm *kvm)
567 {
568 	struct kvm_memslots *slots = kvm->memslots;
569 	struct kvm_memory_slot *memslot;
570 
571 	kvm_for_each_memslot(memslot, slots)
572 		kvm_free_physmem_slot(kvm, memslot, NULL);
573 
574 	kvfree(kvm->memslots);
575 }
576 
577 static void kvm_destroy_devices(struct kvm *kvm)
578 {
579 	struct list_head *node, *tmp;
580 
581 	list_for_each_safe(node, tmp, &kvm->devices) {
582 		struct kvm_device *dev =
583 			list_entry(node, struct kvm_device, vm_node);
584 
585 		list_del(node);
586 		dev->ops->destroy(dev);
587 	}
588 }
589 
590 static void kvm_destroy_vm(struct kvm *kvm)
591 {
592 	int i;
593 	struct mm_struct *mm = kvm->mm;
594 
595 	kvm_arch_sync_events(kvm);
596 	spin_lock(&kvm_lock);
597 	list_del(&kvm->vm_list);
598 	spin_unlock(&kvm_lock);
599 	kvm_free_irq_routing(kvm);
600 	for (i = 0; i < KVM_NR_BUSES; i++)
601 		kvm_io_bus_destroy(kvm->buses[i]);
602 	kvm_coalesced_mmio_free(kvm);
603 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
604 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
605 #else
606 	kvm_arch_flush_shadow_all(kvm);
607 #endif
608 	kvm_arch_destroy_vm(kvm);
609 	kvm_destroy_devices(kvm);
610 	kvm_free_physmem(kvm);
611 	cleanup_srcu_struct(&kvm->irq_srcu);
612 	cleanup_srcu_struct(&kvm->srcu);
613 	kvm_arch_free_vm(kvm);
614 	hardware_disable_all();
615 	mmdrop(mm);
616 }
617 
618 void kvm_get_kvm(struct kvm *kvm)
619 {
620 	atomic_inc(&kvm->users_count);
621 }
622 EXPORT_SYMBOL_GPL(kvm_get_kvm);
623 
624 void kvm_put_kvm(struct kvm *kvm)
625 {
626 	if (atomic_dec_and_test(&kvm->users_count))
627 		kvm_destroy_vm(kvm);
628 }
629 EXPORT_SYMBOL_GPL(kvm_put_kvm);
630 
631 
632 static int kvm_vm_release(struct inode *inode, struct file *filp)
633 {
634 	struct kvm *kvm = filp->private_data;
635 
636 	kvm_irqfd_release(kvm);
637 
638 	kvm_put_kvm(kvm);
639 	return 0;
640 }
641 
642 /*
643  * Allocation size is twice as large as the actual dirty bitmap size.
644  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
645  */
646 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
647 {
648 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
649 
650 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
651 	if (!memslot->dirty_bitmap)
652 		return -ENOMEM;
653 
654 	return 0;
655 }
656 
657 /*
658  * Insert memslot and re-sort memslots based on their GFN,
659  * so binary search could be used to lookup GFN.
660  * Sorting algorithm takes advantage of having initially
661  * sorted array and known changed memslot position.
662  */
663 static void update_memslots(struct kvm_memslots *slots,
664 			    struct kvm_memory_slot *new)
665 {
666 	int id = new->id;
667 	int i = slots->id_to_index[id];
668 	struct kvm_memory_slot *mslots = slots->memslots;
669 
670 	WARN_ON(mslots[i].id != id);
671 	if (!new->npages) {
672 		WARN_ON(!mslots[i].npages);
673 		new->base_gfn = 0;
674 		new->flags = 0;
675 		if (mslots[i].npages)
676 			slots->used_slots--;
677 	} else {
678 		if (!mslots[i].npages)
679 			slots->used_slots++;
680 	}
681 
682 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
683 	       new->base_gfn <= mslots[i + 1].base_gfn) {
684 		if (!mslots[i + 1].npages)
685 			break;
686 		mslots[i] = mslots[i + 1];
687 		slots->id_to_index[mslots[i].id] = i;
688 		i++;
689 	}
690 
691 	/*
692 	 * The ">=" is needed when creating a slot with base_gfn == 0,
693 	 * so that it moves before all those with base_gfn == npages == 0.
694 	 *
695 	 * On the other hand, if new->npages is zero, the above loop has
696 	 * already left i pointing to the beginning of the empty part of
697 	 * mslots, and the ">=" would move the hole backwards in this
698 	 * case---which is wrong.  So skip the loop when deleting a slot.
699 	 */
700 	if (new->npages) {
701 		while (i > 0 &&
702 		       new->base_gfn >= mslots[i - 1].base_gfn) {
703 			mslots[i] = mslots[i - 1];
704 			slots->id_to_index[mslots[i].id] = i;
705 			i--;
706 		}
707 	} else
708 		WARN_ON_ONCE(i != slots->used_slots);
709 
710 	mslots[i] = *new;
711 	slots->id_to_index[mslots[i].id] = i;
712 }
713 
714 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
715 {
716 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
717 
718 #ifdef __KVM_HAVE_READONLY_MEM
719 	valid_flags |= KVM_MEM_READONLY;
720 #endif
721 
722 	if (mem->flags & ~valid_flags)
723 		return -EINVAL;
724 
725 	return 0;
726 }
727 
728 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
729 		struct kvm_memslots *slots)
730 {
731 	struct kvm_memslots *old_memslots = kvm->memslots;
732 
733 	/*
734 	 * Set the low bit in the generation, which disables SPTE caching
735 	 * until the end of synchronize_srcu_expedited.
736 	 */
737 	WARN_ON(old_memslots->generation & 1);
738 	slots->generation = old_memslots->generation + 1;
739 
740 	rcu_assign_pointer(kvm->memslots, slots);
741 	synchronize_srcu_expedited(&kvm->srcu);
742 
743 	/*
744 	 * Increment the new memslot generation a second time. This prevents
745 	 * vm exits that race with memslot updates from caching a memslot
746 	 * generation that will (potentially) be valid forever.
747 	 */
748 	slots->generation++;
749 
750 	kvm_arch_memslots_updated(kvm);
751 
752 	return old_memslots;
753 }
754 
755 /*
756  * Allocate some memory and give it an address in the guest physical address
757  * space.
758  *
759  * Discontiguous memory is allowed, mostly for framebuffers.
760  *
761  * Must be called holding kvm->slots_lock for write.
762  */
763 int __kvm_set_memory_region(struct kvm *kvm,
764 			    struct kvm_userspace_memory_region *mem)
765 {
766 	int r;
767 	gfn_t base_gfn;
768 	unsigned long npages;
769 	struct kvm_memory_slot *slot;
770 	struct kvm_memory_slot old, new;
771 	struct kvm_memslots *slots = NULL, *old_memslots;
772 	enum kvm_mr_change change;
773 
774 	r = check_memory_region_flags(mem);
775 	if (r)
776 		goto out;
777 
778 	r = -EINVAL;
779 	/* General sanity checks */
780 	if (mem->memory_size & (PAGE_SIZE - 1))
781 		goto out;
782 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
783 		goto out;
784 	/* We can read the guest memory with __xxx_user() later on. */
785 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
786 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
787 	     !access_ok(VERIFY_WRITE,
788 			(void __user *)(unsigned long)mem->userspace_addr,
789 			mem->memory_size)))
790 		goto out;
791 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
792 		goto out;
793 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
794 		goto out;
795 
796 	slot = id_to_memslot(kvm->memslots, mem->slot);
797 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
798 	npages = mem->memory_size >> PAGE_SHIFT;
799 
800 	if (npages > KVM_MEM_MAX_NR_PAGES)
801 		goto out;
802 
803 	if (!npages)
804 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
805 
806 	new = old = *slot;
807 
808 	new.id = mem->slot;
809 	new.base_gfn = base_gfn;
810 	new.npages = npages;
811 	new.flags = mem->flags;
812 
813 	if (npages) {
814 		if (!old.npages)
815 			change = KVM_MR_CREATE;
816 		else { /* Modify an existing slot. */
817 			if ((mem->userspace_addr != old.userspace_addr) ||
818 			    (npages != old.npages) ||
819 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
820 				goto out;
821 
822 			if (base_gfn != old.base_gfn)
823 				change = KVM_MR_MOVE;
824 			else if (new.flags != old.flags)
825 				change = KVM_MR_FLAGS_ONLY;
826 			else { /* Nothing to change. */
827 				r = 0;
828 				goto out;
829 			}
830 		}
831 	} else if (old.npages) {
832 		change = KVM_MR_DELETE;
833 	} else /* Modify a non-existent slot: disallowed. */
834 		goto out;
835 
836 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
837 		/* Check for overlaps */
838 		r = -EEXIST;
839 		kvm_for_each_memslot(slot, kvm->memslots) {
840 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
841 			    (slot->id == mem->slot))
842 				continue;
843 			if (!((base_gfn + npages <= slot->base_gfn) ||
844 			      (base_gfn >= slot->base_gfn + slot->npages)))
845 				goto out;
846 		}
847 	}
848 
849 	/* Free page dirty bitmap if unneeded */
850 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
851 		new.dirty_bitmap = NULL;
852 
853 	r = -ENOMEM;
854 	if (change == KVM_MR_CREATE) {
855 		new.userspace_addr = mem->userspace_addr;
856 
857 		if (kvm_arch_create_memslot(kvm, &new, npages))
858 			goto out_free;
859 	}
860 
861 	/* Allocate page dirty bitmap if needed */
862 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
863 		if (kvm_create_dirty_bitmap(&new) < 0)
864 			goto out_free;
865 	}
866 
867 	slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
868 	if (!slots)
869 		goto out_free;
870 	memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
871 
872 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
873 		slot = id_to_memslot(slots, mem->slot);
874 		slot->flags |= KVM_MEMSLOT_INVALID;
875 
876 		old_memslots = install_new_memslots(kvm, slots);
877 
878 		/* slot was deleted or moved, clear iommu mapping */
879 		kvm_iommu_unmap_pages(kvm, &old);
880 		/* From this point no new shadow pages pointing to a deleted,
881 		 * or moved, memslot will be created.
882 		 *
883 		 * validation of sp->gfn happens in:
884 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
885 		 *	- kvm_is_visible_gfn (mmu_check_roots)
886 		 */
887 		kvm_arch_flush_shadow_memslot(kvm, slot);
888 
889 		/*
890 		 * We can re-use the old_memslots from above, the only difference
891 		 * from the currently installed memslots is the invalid flag.  This
892 		 * will get overwritten by update_memslots anyway.
893 		 */
894 		slots = old_memslots;
895 	}
896 
897 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
898 	if (r)
899 		goto out_slots;
900 
901 	/* actual memory is freed via old in kvm_free_physmem_slot below */
902 	if (change == KVM_MR_DELETE) {
903 		new.dirty_bitmap = NULL;
904 		memset(&new.arch, 0, sizeof(new.arch));
905 	}
906 
907 	update_memslots(slots, &new);
908 	old_memslots = install_new_memslots(kvm, slots);
909 
910 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
911 
912 	kvm_free_physmem_slot(kvm, &old, &new);
913 	kvfree(old_memslots);
914 
915 	/*
916 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
917 	 * un-mapped and re-mapped if their base changes.  Since base change
918 	 * unmapping is handled above with slot deletion, mapping alone is
919 	 * needed here.  Anything else the iommu might care about for existing
920 	 * slots (size changes, userspace addr changes and read-only flag
921 	 * changes) is disallowed above, so any other attribute changes getting
922 	 * here can be skipped.
923 	 */
924 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
925 		r = kvm_iommu_map_pages(kvm, &new);
926 		return r;
927 	}
928 
929 	return 0;
930 
931 out_slots:
932 	kvfree(slots);
933 out_free:
934 	kvm_free_physmem_slot(kvm, &new, &old);
935 out:
936 	return r;
937 }
938 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
939 
940 int kvm_set_memory_region(struct kvm *kvm,
941 			  struct kvm_userspace_memory_region *mem)
942 {
943 	int r;
944 
945 	mutex_lock(&kvm->slots_lock);
946 	r = __kvm_set_memory_region(kvm, mem);
947 	mutex_unlock(&kvm->slots_lock);
948 	return r;
949 }
950 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
951 
952 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
953 					  struct kvm_userspace_memory_region *mem)
954 {
955 	if (mem->slot >= KVM_USER_MEM_SLOTS)
956 		return -EINVAL;
957 	return kvm_set_memory_region(kvm, mem);
958 }
959 
960 int kvm_get_dirty_log(struct kvm *kvm,
961 			struct kvm_dirty_log *log, int *is_dirty)
962 {
963 	struct kvm_memory_slot *memslot;
964 	int r, i;
965 	unsigned long n;
966 	unsigned long any = 0;
967 
968 	r = -EINVAL;
969 	if (log->slot >= KVM_USER_MEM_SLOTS)
970 		goto out;
971 
972 	memslot = id_to_memslot(kvm->memslots, log->slot);
973 	r = -ENOENT;
974 	if (!memslot->dirty_bitmap)
975 		goto out;
976 
977 	n = kvm_dirty_bitmap_bytes(memslot);
978 
979 	for (i = 0; !any && i < n/sizeof(long); ++i)
980 		any = memslot->dirty_bitmap[i];
981 
982 	r = -EFAULT;
983 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
984 		goto out;
985 
986 	if (any)
987 		*is_dirty = 1;
988 
989 	r = 0;
990 out:
991 	return r;
992 }
993 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
994 
995 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
996 /**
997  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
998  *	are dirty write protect them for next write.
999  * @kvm:	pointer to kvm instance
1000  * @log:	slot id and address to which we copy the log
1001  * @is_dirty:	flag set if any page is dirty
1002  *
1003  * We need to keep it in mind that VCPU threads can write to the bitmap
1004  * concurrently. So, to avoid losing track of dirty pages we keep the
1005  * following order:
1006  *
1007  *    1. Take a snapshot of the bit and clear it if needed.
1008  *    2. Write protect the corresponding page.
1009  *    3. Copy the snapshot to the userspace.
1010  *    4. Upon return caller flushes TLB's if needed.
1011  *
1012  * Between 2 and 4, the guest may write to the page using the remaining TLB
1013  * entry.  This is not a problem because the page is reported dirty using
1014  * the snapshot taken before and step 4 ensures that writes done after
1015  * exiting to userspace will be logged for the next call.
1016  *
1017  */
1018 int kvm_get_dirty_log_protect(struct kvm *kvm,
1019 			struct kvm_dirty_log *log, bool *is_dirty)
1020 {
1021 	struct kvm_memory_slot *memslot;
1022 	int r, i;
1023 	unsigned long n;
1024 	unsigned long *dirty_bitmap;
1025 	unsigned long *dirty_bitmap_buffer;
1026 
1027 	r = -EINVAL;
1028 	if (log->slot >= KVM_USER_MEM_SLOTS)
1029 		goto out;
1030 
1031 	memslot = id_to_memslot(kvm->memslots, log->slot);
1032 
1033 	dirty_bitmap = memslot->dirty_bitmap;
1034 	r = -ENOENT;
1035 	if (!dirty_bitmap)
1036 		goto out;
1037 
1038 	n = kvm_dirty_bitmap_bytes(memslot);
1039 
1040 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1041 	memset(dirty_bitmap_buffer, 0, n);
1042 
1043 	spin_lock(&kvm->mmu_lock);
1044 	*is_dirty = false;
1045 	for (i = 0; i < n / sizeof(long); i++) {
1046 		unsigned long mask;
1047 		gfn_t offset;
1048 
1049 		if (!dirty_bitmap[i])
1050 			continue;
1051 
1052 		*is_dirty = true;
1053 
1054 		mask = xchg(&dirty_bitmap[i], 0);
1055 		dirty_bitmap_buffer[i] = mask;
1056 
1057 		if (mask) {
1058 			offset = i * BITS_PER_LONG;
1059 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1060 								offset, mask);
1061 		}
1062 	}
1063 
1064 	spin_unlock(&kvm->mmu_lock);
1065 
1066 	r = -EFAULT;
1067 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1068 		goto out;
1069 
1070 	r = 0;
1071 out:
1072 	return r;
1073 }
1074 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1075 #endif
1076 
1077 bool kvm_largepages_enabled(void)
1078 {
1079 	return largepages_enabled;
1080 }
1081 
1082 void kvm_disable_largepages(void)
1083 {
1084 	largepages_enabled = false;
1085 }
1086 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1087 
1088 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1089 {
1090 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1091 }
1092 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1093 
1094 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1095 {
1096 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1097 
1098 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1099 	      memslot->flags & KVM_MEMSLOT_INVALID)
1100 		return 0;
1101 
1102 	return 1;
1103 }
1104 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1105 
1106 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1107 {
1108 	struct vm_area_struct *vma;
1109 	unsigned long addr, size;
1110 
1111 	size = PAGE_SIZE;
1112 
1113 	addr = gfn_to_hva(kvm, gfn);
1114 	if (kvm_is_error_hva(addr))
1115 		return PAGE_SIZE;
1116 
1117 	down_read(&current->mm->mmap_sem);
1118 	vma = find_vma(current->mm, addr);
1119 	if (!vma)
1120 		goto out;
1121 
1122 	size = vma_kernel_pagesize(vma);
1123 
1124 out:
1125 	up_read(&current->mm->mmap_sem);
1126 
1127 	return size;
1128 }
1129 
1130 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1131 {
1132 	return slot->flags & KVM_MEM_READONLY;
1133 }
1134 
1135 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1136 				       gfn_t *nr_pages, bool write)
1137 {
1138 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1139 		return KVM_HVA_ERR_BAD;
1140 
1141 	if (memslot_is_readonly(slot) && write)
1142 		return KVM_HVA_ERR_RO_BAD;
1143 
1144 	if (nr_pages)
1145 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1146 
1147 	return __gfn_to_hva_memslot(slot, gfn);
1148 }
1149 
1150 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1151 				     gfn_t *nr_pages)
1152 {
1153 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1154 }
1155 
1156 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1157 					gfn_t gfn)
1158 {
1159 	return gfn_to_hva_many(slot, gfn, NULL);
1160 }
1161 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1162 
1163 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1164 {
1165 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1166 }
1167 EXPORT_SYMBOL_GPL(gfn_to_hva);
1168 
1169 /*
1170  * If writable is set to false, the hva returned by this function is only
1171  * allowed to be read.
1172  */
1173 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1174 				      gfn_t gfn, bool *writable)
1175 {
1176 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1177 
1178 	if (!kvm_is_error_hva(hva) && writable)
1179 		*writable = !memslot_is_readonly(slot);
1180 
1181 	return hva;
1182 }
1183 
1184 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1185 {
1186 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1187 
1188 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1189 }
1190 
1191 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1192 	unsigned long start, int write, struct page **page)
1193 {
1194 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1195 
1196 	if (write)
1197 		flags |= FOLL_WRITE;
1198 
1199 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1200 }
1201 
1202 static inline int check_user_page_hwpoison(unsigned long addr)
1203 {
1204 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1205 
1206 	rc = __get_user_pages(current, current->mm, addr, 1,
1207 			      flags, NULL, NULL, NULL);
1208 	return rc == -EHWPOISON;
1209 }
1210 
1211 /*
1212  * The atomic path to get the writable pfn which will be stored in @pfn,
1213  * true indicates success, otherwise false is returned.
1214  */
1215 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1216 			    bool write_fault, bool *writable, pfn_t *pfn)
1217 {
1218 	struct page *page[1];
1219 	int npages;
1220 
1221 	if (!(async || atomic))
1222 		return false;
1223 
1224 	/*
1225 	 * Fast pin a writable pfn only if it is a write fault request
1226 	 * or the caller allows to map a writable pfn for a read fault
1227 	 * request.
1228 	 */
1229 	if (!(write_fault || writable))
1230 		return false;
1231 
1232 	npages = __get_user_pages_fast(addr, 1, 1, page);
1233 	if (npages == 1) {
1234 		*pfn = page_to_pfn(page[0]);
1235 
1236 		if (writable)
1237 			*writable = true;
1238 		return true;
1239 	}
1240 
1241 	return false;
1242 }
1243 
1244 /*
1245  * The slow path to get the pfn of the specified host virtual address,
1246  * 1 indicates success, -errno is returned if error is detected.
1247  */
1248 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1249 			   bool *writable, pfn_t *pfn)
1250 {
1251 	struct page *page[1];
1252 	int npages = 0;
1253 
1254 	might_sleep();
1255 
1256 	if (writable)
1257 		*writable = write_fault;
1258 
1259 	if (async) {
1260 		down_read(&current->mm->mmap_sem);
1261 		npages = get_user_page_nowait(current, current->mm,
1262 					      addr, write_fault, page);
1263 		up_read(&current->mm->mmap_sem);
1264 	} else
1265 		npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1266 						   write_fault, 0, page,
1267 						   FOLL_TOUCH|FOLL_HWPOISON);
1268 	if (npages != 1)
1269 		return npages;
1270 
1271 	/* map read fault as writable if possible */
1272 	if (unlikely(!write_fault) && writable) {
1273 		struct page *wpage[1];
1274 
1275 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1276 		if (npages == 1) {
1277 			*writable = true;
1278 			put_page(page[0]);
1279 			page[0] = wpage[0];
1280 		}
1281 
1282 		npages = 1;
1283 	}
1284 	*pfn = page_to_pfn(page[0]);
1285 	return npages;
1286 }
1287 
1288 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1289 {
1290 	if (unlikely(!(vma->vm_flags & VM_READ)))
1291 		return false;
1292 
1293 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1294 		return false;
1295 
1296 	return true;
1297 }
1298 
1299 /*
1300  * Pin guest page in memory and return its pfn.
1301  * @addr: host virtual address which maps memory to the guest
1302  * @atomic: whether this function can sleep
1303  * @async: whether this function need to wait IO complete if the
1304  *         host page is not in the memory
1305  * @write_fault: whether we should get a writable host page
1306  * @writable: whether it allows to map a writable host page for !@write_fault
1307  *
1308  * The function will map a writable host page for these two cases:
1309  * 1): @write_fault = true
1310  * 2): @write_fault = false && @writable, @writable will tell the caller
1311  *     whether the mapping is writable.
1312  */
1313 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1314 			bool write_fault, bool *writable)
1315 {
1316 	struct vm_area_struct *vma;
1317 	pfn_t pfn = 0;
1318 	int npages;
1319 
1320 	/* we can do it either atomically or asynchronously, not both */
1321 	BUG_ON(atomic && async);
1322 
1323 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1324 		return pfn;
1325 
1326 	if (atomic)
1327 		return KVM_PFN_ERR_FAULT;
1328 
1329 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1330 	if (npages == 1)
1331 		return pfn;
1332 
1333 	down_read(&current->mm->mmap_sem);
1334 	if (npages == -EHWPOISON ||
1335 	      (!async && check_user_page_hwpoison(addr))) {
1336 		pfn = KVM_PFN_ERR_HWPOISON;
1337 		goto exit;
1338 	}
1339 
1340 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1341 
1342 	if (vma == NULL)
1343 		pfn = KVM_PFN_ERR_FAULT;
1344 	else if ((vma->vm_flags & VM_PFNMAP)) {
1345 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1346 			vma->vm_pgoff;
1347 		BUG_ON(!kvm_is_reserved_pfn(pfn));
1348 	} else {
1349 		if (async && vma_is_valid(vma, write_fault))
1350 			*async = true;
1351 		pfn = KVM_PFN_ERR_FAULT;
1352 	}
1353 exit:
1354 	up_read(&current->mm->mmap_sem);
1355 	return pfn;
1356 }
1357 
1358 static pfn_t
1359 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1360 		     bool *async, bool write_fault, bool *writable)
1361 {
1362 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1363 
1364 	if (addr == KVM_HVA_ERR_RO_BAD)
1365 		return KVM_PFN_ERR_RO_FAULT;
1366 
1367 	if (kvm_is_error_hva(addr))
1368 		return KVM_PFN_NOSLOT;
1369 
1370 	/* Do not map writable pfn in the readonly memslot. */
1371 	if (writable && memslot_is_readonly(slot)) {
1372 		*writable = false;
1373 		writable = NULL;
1374 	}
1375 
1376 	return hva_to_pfn(addr, atomic, async, write_fault,
1377 			  writable);
1378 }
1379 
1380 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1381 			  bool write_fault, bool *writable)
1382 {
1383 	struct kvm_memory_slot *slot;
1384 
1385 	if (async)
1386 		*async = false;
1387 
1388 	slot = gfn_to_memslot(kvm, gfn);
1389 
1390 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1391 				    writable);
1392 }
1393 
1394 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1395 {
1396 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1397 }
1398 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1399 
1400 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1401 		       bool write_fault, bool *writable)
1402 {
1403 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1404 }
1405 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1406 
1407 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1408 {
1409 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1410 }
1411 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1412 
1413 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1414 		      bool *writable)
1415 {
1416 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1417 }
1418 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1419 
1420 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1421 {
1422 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1423 }
1424 
1425 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1426 {
1427 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1428 }
1429 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1430 
1431 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1432 								  int nr_pages)
1433 {
1434 	unsigned long addr;
1435 	gfn_t entry;
1436 
1437 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1438 	if (kvm_is_error_hva(addr))
1439 		return -1;
1440 
1441 	if (entry < nr_pages)
1442 		return 0;
1443 
1444 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1445 }
1446 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1447 
1448 static struct page *kvm_pfn_to_page(pfn_t pfn)
1449 {
1450 	if (is_error_noslot_pfn(pfn))
1451 		return KVM_ERR_PTR_BAD_PAGE;
1452 
1453 	if (kvm_is_reserved_pfn(pfn)) {
1454 		WARN_ON(1);
1455 		return KVM_ERR_PTR_BAD_PAGE;
1456 	}
1457 
1458 	return pfn_to_page(pfn);
1459 }
1460 
1461 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1462 {
1463 	pfn_t pfn;
1464 
1465 	pfn = gfn_to_pfn(kvm, gfn);
1466 
1467 	return kvm_pfn_to_page(pfn);
1468 }
1469 EXPORT_SYMBOL_GPL(gfn_to_page);
1470 
1471 void kvm_release_page_clean(struct page *page)
1472 {
1473 	WARN_ON(is_error_page(page));
1474 
1475 	kvm_release_pfn_clean(page_to_pfn(page));
1476 }
1477 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1478 
1479 void kvm_release_pfn_clean(pfn_t pfn)
1480 {
1481 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1482 		put_page(pfn_to_page(pfn));
1483 }
1484 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1485 
1486 void kvm_release_page_dirty(struct page *page)
1487 {
1488 	WARN_ON(is_error_page(page));
1489 
1490 	kvm_release_pfn_dirty(page_to_pfn(page));
1491 }
1492 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1493 
1494 static void kvm_release_pfn_dirty(pfn_t pfn)
1495 {
1496 	kvm_set_pfn_dirty(pfn);
1497 	kvm_release_pfn_clean(pfn);
1498 }
1499 
1500 void kvm_set_pfn_dirty(pfn_t pfn)
1501 {
1502 	if (!kvm_is_reserved_pfn(pfn)) {
1503 		struct page *page = pfn_to_page(pfn);
1504 
1505 		if (!PageReserved(page))
1506 			SetPageDirty(page);
1507 	}
1508 }
1509 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1510 
1511 void kvm_set_pfn_accessed(pfn_t pfn)
1512 {
1513 	if (!kvm_is_reserved_pfn(pfn))
1514 		mark_page_accessed(pfn_to_page(pfn));
1515 }
1516 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1517 
1518 void kvm_get_pfn(pfn_t pfn)
1519 {
1520 	if (!kvm_is_reserved_pfn(pfn))
1521 		get_page(pfn_to_page(pfn));
1522 }
1523 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1524 
1525 static int next_segment(unsigned long len, int offset)
1526 {
1527 	if (len > PAGE_SIZE - offset)
1528 		return PAGE_SIZE - offset;
1529 	else
1530 		return len;
1531 }
1532 
1533 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1534 			int len)
1535 {
1536 	int r;
1537 	unsigned long addr;
1538 
1539 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1540 	if (kvm_is_error_hva(addr))
1541 		return -EFAULT;
1542 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1543 	if (r)
1544 		return -EFAULT;
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1548 
1549 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1550 {
1551 	gfn_t gfn = gpa >> PAGE_SHIFT;
1552 	int seg;
1553 	int offset = offset_in_page(gpa);
1554 	int ret;
1555 
1556 	while ((seg = next_segment(len, offset)) != 0) {
1557 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1558 		if (ret < 0)
1559 			return ret;
1560 		offset = 0;
1561 		len -= seg;
1562 		data += seg;
1563 		++gfn;
1564 	}
1565 	return 0;
1566 }
1567 EXPORT_SYMBOL_GPL(kvm_read_guest);
1568 
1569 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1570 			  unsigned long len)
1571 {
1572 	int r;
1573 	unsigned long addr;
1574 	gfn_t gfn = gpa >> PAGE_SHIFT;
1575 	int offset = offset_in_page(gpa);
1576 
1577 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1578 	if (kvm_is_error_hva(addr))
1579 		return -EFAULT;
1580 	pagefault_disable();
1581 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1582 	pagefault_enable();
1583 	if (r)
1584 		return -EFAULT;
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL(kvm_read_guest_atomic);
1588 
1589 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1590 			 int offset, int len)
1591 {
1592 	int r;
1593 	unsigned long addr;
1594 
1595 	addr = gfn_to_hva(kvm, gfn);
1596 	if (kvm_is_error_hva(addr))
1597 		return -EFAULT;
1598 	r = __copy_to_user((void __user *)addr + offset, data, len);
1599 	if (r)
1600 		return -EFAULT;
1601 	mark_page_dirty(kvm, gfn);
1602 	return 0;
1603 }
1604 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1605 
1606 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1607 		    unsigned long len)
1608 {
1609 	gfn_t gfn = gpa >> PAGE_SHIFT;
1610 	int seg;
1611 	int offset = offset_in_page(gpa);
1612 	int ret;
1613 
1614 	while ((seg = next_segment(len, offset)) != 0) {
1615 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1616 		if (ret < 0)
1617 			return ret;
1618 		offset = 0;
1619 		len -= seg;
1620 		data += seg;
1621 		++gfn;
1622 	}
1623 	return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(kvm_write_guest);
1626 
1627 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1628 			      gpa_t gpa, unsigned long len)
1629 {
1630 	struct kvm_memslots *slots = kvm_memslots(kvm);
1631 	int offset = offset_in_page(gpa);
1632 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1633 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1634 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1635 	gfn_t nr_pages_avail;
1636 
1637 	ghc->gpa = gpa;
1638 	ghc->generation = slots->generation;
1639 	ghc->len = len;
1640 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1641 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1642 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1643 		ghc->hva += offset;
1644 	} else {
1645 		/*
1646 		 * If the requested region crosses two memslots, we still
1647 		 * verify that the entire region is valid here.
1648 		 */
1649 		while (start_gfn <= end_gfn) {
1650 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1651 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1652 						   &nr_pages_avail);
1653 			if (kvm_is_error_hva(ghc->hva))
1654 				return -EFAULT;
1655 			start_gfn += nr_pages_avail;
1656 		}
1657 		/* Use the slow path for cross page reads and writes. */
1658 		ghc->memslot = NULL;
1659 	}
1660 	return 0;
1661 }
1662 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1663 
1664 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1665 			   void *data, unsigned long len)
1666 {
1667 	struct kvm_memslots *slots = kvm_memslots(kvm);
1668 	int r;
1669 
1670 	BUG_ON(len > ghc->len);
1671 
1672 	if (slots->generation != ghc->generation)
1673 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1674 
1675 	if (unlikely(!ghc->memslot))
1676 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1677 
1678 	if (kvm_is_error_hva(ghc->hva))
1679 		return -EFAULT;
1680 
1681 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1682 	if (r)
1683 		return -EFAULT;
1684 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1685 
1686 	return 0;
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1689 
1690 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1691 			   void *data, unsigned long len)
1692 {
1693 	struct kvm_memslots *slots = kvm_memslots(kvm);
1694 	int r;
1695 
1696 	BUG_ON(len > ghc->len);
1697 
1698 	if (slots->generation != ghc->generation)
1699 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1700 
1701 	if (unlikely(!ghc->memslot))
1702 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1703 
1704 	if (kvm_is_error_hva(ghc->hva))
1705 		return -EFAULT;
1706 
1707 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1708 	if (r)
1709 		return -EFAULT;
1710 
1711 	return 0;
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1714 
1715 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1716 {
1717 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1718 
1719 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1720 }
1721 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1722 
1723 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1724 {
1725 	gfn_t gfn = gpa >> PAGE_SHIFT;
1726 	int seg;
1727 	int offset = offset_in_page(gpa);
1728 	int ret;
1729 
1730 	while ((seg = next_segment(len, offset)) != 0) {
1731 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1732 		if (ret < 0)
1733 			return ret;
1734 		offset = 0;
1735 		len -= seg;
1736 		++gfn;
1737 	}
1738 	return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1741 
1742 static void mark_page_dirty_in_slot(struct kvm *kvm,
1743 				    struct kvm_memory_slot *memslot,
1744 				    gfn_t gfn)
1745 {
1746 	if (memslot && memslot->dirty_bitmap) {
1747 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1748 
1749 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1750 	}
1751 }
1752 
1753 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1754 {
1755 	struct kvm_memory_slot *memslot;
1756 
1757 	memslot = gfn_to_memslot(kvm, gfn);
1758 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1759 }
1760 EXPORT_SYMBOL_GPL(mark_page_dirty);
1761 
1762 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1763 {
1764 	if (kvm_arch_vcpu_runnable(vcpu)) {
1765 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
1766 		return -EINTR;
1767 	}
1768 	if (kvm_cpu_has_pending_timer(vcpu))
1769 		return -EINTR;
1770 	if (signal_pending(current))
1771 		return -EINTR;
1772 
1773 	return 0;
1774 }
1775 
1776 /*
1777  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1778  */
1779 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1780 {
1781 	ktime_t start, cur;
1782 	DEFINE_WAIT(wait);
1783 	bool waited = false;
1784 
1785 	start = cur = ktime_get();
1786 	if (halt_poll_ns) {
1787 		ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1788 
1789 		do {
1790 			/*
1791 			 * This sets KVM_REQ_UNHALT if an interrupt
1792 			 * arrives.
1793 			 */
1794 			if (kvm_vcpu_check_block(vcpu) < 0) {
1795 				++vcpu->stat.halt_successful_poll;
1796 				goto out;
1797 			}
1798 			cur = ktime_get();
1799 		} while (single_task_running() && ktime_before(cur, stop));
1800 	}
1801 
1802 	for (;;) {
1803 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1804 
1805 		if (kvm_vcpu_check_block(vcpu) < 0)
1806 			break;
1807 
1808 		waited = true;
1809 		schedule();
1810 	}
1811 
1812 	finish_wait(&vcpu->wq, &wait);
1813 	cur = ktime_get();
1814 
1815 out:
1816 	trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1817 }
1818 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1819 
1820 #ifndef CONFIG_S390
1821 /*
1822  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1823  */
1824 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1825 {
1826 	int me;
1827 	int cpu = vcpu->cpu;
1828 	wait_queue_head_t *wqp;
1829 
1830 	wqp = kvm_arch_vcpu_wq(vcpu);
1831 	if (waitqueue_active(wqp)) {
1832 		wake_up_interruptible(wqp);
1833 		++vcpu->stat.halt_wakeup;
1834 	}
1835 
1836 	me = get_cpu();
1837 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1838 		if (kvm_arch_vcpu_should_kick(vcpu))
1839 			smp_send_reschedule(cpu);
1840 	put_cpu();
1841 }
1842 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1843 #endif /* !CONFIG_S390 */
1844 
1845 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1846 {
1847 	struct pid *pid;
1848 	struct task_struct *task = NULL;
1849 	int ret = 0;
1850 
1851 	rcu_read_lock();
1852 	pid = rcu_dereference(target->pid);
1853 	if (pid)
1854 		task = get_pid_task(pid, PIDTYPE_PID);
1855 	rcu_read_unlock();
1856 	if (!task)
1857 		return ret;
1858 	ret = yield_to(task, 1);
1859 	put_task_struct(task);
1860 
1861 	return ret;
1862 }
1863 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1864 
1865 /*
1866  * Helper that checks whether a VCPU is eligible for directed yield.
1867  * Most eligible candidate to yield is decided by following heuristics:
1868  *
1869  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1870  *  (preempted lock holder), indicated by @in_spin_loop.
1871  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1872  *
1873  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1874  *  chance last time (mostly it has become eligible now since we have probably
1875  *  yielded to lockholder in last iteration. This is done by toggling
1876  *  @dy_eligible each time a VCPU checked for eligibility.)
1877  *
1878  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1879  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1880  *  burning. Giving priority for a potential lock-holder increases lock
1881  *  progress.
1882  *
1883  *  Since algorithm is based on heuristics, accessing another VCPU data without
1884  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1885  *  and continue with next VCPU and so on.
1886  */
1887 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1888 {
1889 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1890 	bool eligible;
1891 
1892 	eligible = !vcpu->spin_loop.in_spin_loop ||
1893 		    vcpu->spin_loop.dy_eligible;
1894 
1895 	if (vcpu->spin_loop.in_spin_loop)
1896 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1897 
1898 	return eligible;
1899 #else
1900 	return true;
1901 #endif
1902 }
1903 
1904 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1905 {
1906 	struct kvm *kvm = me->kvm;
1907 	struct kvm_vcpu *vcpu;
1908 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1909 	int yielded = 0;
1910 	int try = 3;
1911 	int pass;
1912 	int i;
1913 
1914 	kvm_vcpu_set_in_spin_loop(me, true);
1915 	/*
1916 	 * We boost the priority of a VCPU that is runnable but not
1917 	 * currently running, because it got preempted by something
1918 	 * else and called schedule in __vcpu_run.  Hopefully that
1919 	 * VCPU is holding the lock that we need and will release it.
1920 	 * We approximate round-robin by starting at the last boosted VCPU.
1921 	 */
1922 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1923 		kvm_for_each_vcpu(i, vcpu, kvm) {
1924 			if (!pass && i <= last_boosted_vcpu) {
1925 				i = last_boosted_vcpu;
1926 				continue;
1927 			} else if (pass && i > last_boosted_vcpu)
1928 				break;
1929 			if (!ACCESS_ONCE(vcpu->preempted))
1930 				continue;
1931 			if (vcpu == me)
1932 				continue;
1933 			if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1934 				continue;
1935 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1936 				continue;
1937 
1938 			yielded = kvm_vcpu_yield_to(vcpu);
1939 			if (yielded > 0) {
1940 				kvm->last_boosted_vcpu = i;
1941 				break;
1942 			} else if (yielded < 0) {
1943 				try--;
1944 				if (!try)
1945 					break;
1946 			}
1947 		}
1948 	}
1949 	kvm_vcpu_set_in_spin_loop(me, false);
1950 
1951 	/* Ensure vcpu is not eligible during next spinloop */
1952 	kvm_vcpu_set_dy_eligible(me, false);
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1955 
1956 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1957 {
1958 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1959 	struct page *page;
1960 
1961 	if (vmf->pgoff == 0)
1962 		page = virt_to_page(vcpu->run);
1963 #ifdef CONFIG_X86
1964 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1965 		page = virt_to_page(vcpu->arch.pio_data);
1966 #endif
1967 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1968 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1969 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1970 #endif
1971 	else
1972 		return kvm_arch_vcpu_fault(vcpu, vmf);
1973 	get_page(page);
1974 	vmf->page = page;
1975 	return 0;
1976 }
1977 
1978 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1979 	.fault = kvm_vcpu_fault,
1980 };
1981 
1982 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1983 {
1984 	vma->vm_ops = &kvm_vcpu_vm_ops;
1985 	return 0;
1986 }
1987 
1988 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1989 {
1990 	struct kvm_vcpu *vcpu = filp->private_data;
1991 
1992 	kvm_put_kvm(vcpu->kvm);
1993 	return 0;
1994 }
1995 
1996 static struct file_operations kvm_vcpu_fops = {
1997 	.release        = kvm_vcpu_release,
1998 	.unlocked_ioctl = kvm_vcpu_ioctl,
1999 #ifdef CONFIG_KVM_COMPAT
2000 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
2001 #endif
2002 	.mmap           = kvm_vcpu_mmap,
2003 	.llseek		= noop_llseek,
2004 };
2005 
2006 /*
2007  * Allocates an inode for the vcpu.
2008  */
2009 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2010 {
2011 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2012 }
2013 
2014 /*
2015  * Creates some virtual cpus.  Good luck creating more than one.
2016  */
2017 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2018 {
2019 	int r;
2020 	struct kvm_vcpu *vcpu, *v;
2021 
2022 	if (id >= KVM_MAX_VCPUS)
2023 		return -EINVAL;
2024 
2025 	vcpu = kvm_arch_vcpu_create(kvm, id);
2026 	if (IS_ERR(vcpu))
2027 		return PTR_ERR(vcpu);
2028 
2029 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2030 
2031 	r = kvm_arch_vcpu_setup(vcpu);
2032 	if (r)
2033 		goto vcpu_destroy;
2034 
2035 	mutex_lock(&kvm->lock);
2036 	if (!kvm_vcpu_compatible(vcpu)) {
2037 		r = -EINVAL;
2038 		goto unlock_vcpu_destroy;
2039 	}
2040 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2041 		r = -EINVAL;
2042 		goto unlock_vcpu_destroy;
2043 	}
2044 
2045 	kvm_for_each_vcpu(r, v, kvm)
2046 		if (v->vcpu_id == id) {
2047 			r = -EEXIST;
2048 			goto unlock_vcpu_destroy;
2049 		}
2050 
2051 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2052 
2053 	/* Now it's all set up, let userspace reach it */
2054 	kvm_get_kvm(kvm);
2055 	r = create_vcpu_fd(vcpu);
2056 	if (r < 0) {
2057 		kvm_put_kvm(kvm);
2058 		goto unlock_vcpu_destroy;
2059 	}
2060 
2061 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2062 	smp_wmb();
2063 	atomic_inc(&kvm->online_vcpus);
2064 
2065 	mutex_unlock(&kvm->lock);
2066 	kvm_arch_vcpu_postcreate(vcpu);
2067 	return r;
2068 
2069 unlock_vcpu_destroy:
2070 	mutex_unlock(&kvm->lock);
2071 vcpu_destroy:
2072 	kvm_arch_vcpu_destroy(vcpu);
2073 	return r;
2074 }
2075 
2076 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2077 {
2078 	if (sigset) {
2079 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2080 		vcpu->sigset_active = 1;
2081 		vcpu->sigset = *sigset;
2082 	} else
2083 		vcpu->sigset_active = 0;
2084 	return 0;
2085 }
2086 
2087 static long kvm_vcpu_ioctl(struct file *filp,
2088 			   unsigned int ioctl, unsigned long arg)
2089 {
2090 	struct kvm_vcpu *vcpu = filp->private_data;
2091 	void __user *argp = (void __user *)arg;
2092 	int r;
2093 	struct kvm_fpu *fpu = NULL;
2094 	struct kvm_sregs *kvm_sregs = NULL;
2095 
2096 	if (vcpu->kvm->mm != current->mm)
2097 		return -EIO;
2098 
2099 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2100 		return -EINVAL;
2101 
2102 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2103 	/*
2104 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2105 	 * so vcpu_load() would break it.
2106 	 */
2107 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2108 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2109 #endif
2110 
2111 
2112 	r = vcpu_load(vcpu);
2113 	if (r)
2114 		return r;
2115 	switch (ioctl) {
2116 	case KVM_RUN:
2117 		r = -EINVAL;
2118 		if (arg)
2119 			goto out;
2120 		if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2121 			/* The thread running this VCPU changed. */
2122 			struct pid *oldpid = vcpu->pid;
2123 			struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2124 
2125 			rcu_assign_pointer(vcpu->pid, newpid);
2126 			if (oldpid)
2127 				synchronize_rcu();
2128 			put_pid(oldpid);
2129 		}
2130 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2131 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2132 		break;
2133 	case KVM_GET_REGS: {
2134 		struct kvm_regs *kvm_regs;
2135 
2136 		r = -ENOMEM;
2137 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2138 		if (!kvm_regs)
2139 			goto out;
2140 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2141 		if (r)
2142 			goto out_free1;
2143 		r = -EFAULT;
2144 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2145 			goto out_free1;
2146 		r = 0;
2147 out_free1:
2148 		kfree(kvm_regs);
2149 		break;
2150 	}
2151 	case KVM_SET_REGS: {
2152 		struct kvm_regs *kvm_regs;
2153 
2154 		r = -ENOMEM;
2155 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2156 		if (IS_ERR(kvm_regs)) {
2157 			r = PTR_ERR(kvm_regs);
2158 			goto out;
2159 		}
2160 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2161 		kfree(kvm_regs);
2162 		break;
2163 	}
2164 	case KVM_GET_SREGS: {
2165 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2166 		r = -ENOMEM;
2167 		if (!kvm_sregs)
2168 			goto out;
2169 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2170 		if (r)
2171 			goto out;
2172 		r = -EFAULT;
2173 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2174 			goto out;
2175 		r = 0;
2176 		break;
2177 	}
2178 	case KVM_SET_SREGS: {
2179 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2180 		if (IS_ERR(kvm_sregs)) {
2181 			r = PTR_ERR(kvm_sregs);
2182 			kvm_sregs = NULL;
2183 			goto out;
2184 		}
2185 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2186 		break;
2187 	}
2188 	case KVM_GET_MP_STATE: {
2189 		struct kvm_mp_state mp_state;
2190 
2191 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2192 		if (r)
2193 			goto out;
2194 		r = -EFAULT;
2195 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2196 			goto out;
2197 		r = 0;
2198 		break;
2199 	}
2200 	case KVM_SET_MP_STATE: {
2201 		struct kvm_mp_state mp_state;
2202 
2203 		r = -EFAULT;
2204 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2205 			goto out;
2206 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2207 		break;
2208 	}
2209 	case KVM_TRANSLATE: {
2210 		struct kvm_translation tr;
2211 
2212 		r = -EFAULT;
2213 		if (copy_from_user(&tr, argp, sizeof(tr)))
2214 			goto out;
2215 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2216 		if (r)
2217 			goto out;
2218 		r = -EFAULT;
2219 		if (copy_to_user(argp, &tr, sizeof(tr)))
2220 			goto out;
2221 		r = 0;
2222 		break;
2223 	}
2224 	case KVM_SET_GUEST_DEBUG: {
2225 		struct kvm_guest_debug dbg;
2226 
2227 		r = -EFAULT;
2228 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2229 			goto out;
2230 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2231 		break;
2232 	}
2233 	case KVM_SET_SIGNAL_MASK: {
2234 		struct kvm_signal_mask __user *sigmask_arg = argp;
2235 		struct kvm_signal_mask kvm_sigmask;
2236 		sigset_t sigset, *p;
2237 
2238 		p = NULL;
2239 		if (argp) {
2240 			r = -EFAULT;
2241 			if (copy_from_user(&kvm_sigmask, argp,
2242 					   sizeof(kvm_sigmask)))
2243 				goto out;
2244 			r = -EINVAL;
2245 			if (kvm_sigmask.len != sizeof(sigset))
2246 				goto out;
2247 			r = -EFAULT;
2248 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2249 					   sizeof(sigset)))
2250 				goto out;
2251 			p = &sigset;
2252 		}
2253 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2254 		break;
2255 	}
2256 	case KVM_GET_FPU: {
2257 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2258 		r = -ENOMEM;
2259 		if (!fpu)
2260 			goto out;
2261 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2262 		if (r)
2263 			goto out;
2264 		r = -EFAULT;
2265 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2266 			goto out;
2267 		r = 0;
2268 		break;
2269 	}
2270 	case KVM_SET_FPU: {
2271 		fpu = memdup_user(argp, sizeof(*fpu));
2272 		if (IS_ERR(fpu)) {
2273 			r = PTR_ERR(fpu);
2274 			fpu = NULL;
2275 			goto out;
2276 		}
2277 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2278 		break;
2279 	}
2280 	default:
2281 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2282 	}
2283 out:
2284 	vcpu_put(vcpu);
2285 	kfree(fpu);
2286 	kfree(kvm_sregs);
2287 	return r;
2288 }
2289 
2290 #ifdef CONFIG_KVM_COMPAT
2291 static long kvm_vcpu_compat_ioctl(struct file *filp,
2292 				  unsigned int ioctl, unsigned long arg)
2293 {
2294 	struct kvm_vcpu *vcpu = filp->private_data;
2295 	void __user *argp = compat_ptr(arg);
2296 	int r;
2297 
2298 	if (vcpu->kvm->mm != current->mm)
2299 		return -EIO;
2300 
2301 	switch (ioctl) {
2302 	case KVM_SET_SIGNAL_MASK: {
2303 		struct kvm_signal_mask __user *sigmask_arg = argp;
2304 		struct kvm_signal_mask kvm_sigmask;
2305 		compat_sigset_t csigset;
2306 		sigset_t sigset;
2307 
2308 		if (argp) {
2309 			r = -EFAULT;
2310 			if (copy_from_user(&kvm_sigmask, argp,
2311 					   sizeof(kvm_sigmask)))
2312 				goto out;
2313 			r = -EINVAL;
2314 			if (kvm_sigmask.len != sizeof(csigset))
2315 				goto out;
2316 			r = -EFAULT;
2317 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2318 					   sizeof(csigset)))
2319 				goto out;
2320 			sigset_from_compat(&sigset, &csigset);
2321 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2322 		} else
2323 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2324 		break;
2325 	}
2326 	default:
2327 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2328 	}
2329 
2330 out:
2331 	return r;
2332 }
2333 #endif
2334 
2335 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2336 				 int (*accessor)(struct kvm_device *dev,
2337 						 struct kvm_device_attr *attr),
2338 				 unsigned long arg)
2339 {
2340 	struct kvm_device_attr attr;
2341 
2342 	if (!accessor)
2343 		return -EPERM;
2344 
2345 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2346 		return -EFAULT;
2347 
2348 	return accessor(dev, &attr);
2349 }
2350 
2351 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2352 			     unsigned long arg)
2353 {
2354 	struct kvm_device *dev = filp->private_data;
2355 
2356 	switch (ioctl) {
2357 	case KVM_SET_DEVICE_ATTR:
2358 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2359 	case KVM_GET_DEVICE_ATTR:
2360 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2361 	case KVM_HAS_DEVICE_ATTR:
2362 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2363 	default:
2364 		if (dev->ops->ioctl)
2365 			return dev->ops->ioctl(dev, ioctl, arg);
2366 
2367 		return -ENOTTY;
2368 	}
2369 }
2370 
2371 static int kvm_device_release(struct inode *inode, struct file *filp)
2372 {
2373 	struct kvm_device *dev = filp->private_data;
2374 	struct kvm *kvm = dev->kvm;
2375 
2376 	kvm_put_kvm(kvm);
2377 	return 0;
2378 }
2379 
2380 static const struct file_operations kvm_device_fops = {
2381 	.unlocked_ioctl = kvm_device_ioctl,
2382 #ifdef CONFIG_KVM_COMPAT
2383 	.compat_ioctl = kvm_device_ioctl,
2384 #endif
2385 	.release = kvm_device_release,
2386 };
2387 
2388 struct kvm_device *kvm_device_from_filp(struct file *filp)
2389 {
2390 	if (filp->f_op != &kvm_device_fops)
2391 		return NULL;
2392 
2393 	return filp->private_data;
2394 }
2395 
2396 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2397 #ifdef CONFIG_KVM_MPIC
2398 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2399 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2400 #endif
2401 
2402 #ifdef CONFIG_KVM_XICS
2403 	[KVM_DEV_TYPE_XICS]		= &kvm_xics_ops,
2404 #endif
2405 };
2406 
2407 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2408 {
2409 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2410 		return -ENOSPC;
2411 
2412 	if (kvm_device_ops_table[type] != NULL)
2413 		return -EEXIST;
2414 
2415 	kvm_device_ops_table[type] = ops;
2416 	return 0;
2417 }
2418 
2419 void kvm_unregister_device_ops(u32 type)
2420 {
2421 	if (kvm_device_ops_table[type] != NULL)
2422 		kvm_device_ops_table[type] = NULL;
2423 }
2424 
2425 static int kvm_ioctl_create_device(struct kvm *kvm,
2426 				   struct kvm_create_device *cd)
2427 {
2428 	struct kvm_device_ops *ops = NULL;
2429 	struct kvm_device *dev;
2430 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2431 	int ret;
2432 
2433 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2434 		return -ENODEV;
2435 
2436 	ops = kvm_device_ops_table[cd->type];
2437 	if (ops == NULL)
2438 		return -ENODEV;
2439 
2440 	if (test)
2441 		return 0;
2442 
2443 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2444 	if (!dev)
2445 		return -ENOMEM;
2446 
2447 	dev->ops = ops;
2448 	dev->kvm = kvm;
2449 
2450 	ret = ops->create(dev, cd->type);
2451 	if (ret < 0) {
2452 		kfree(dev);
2453 		return ret;
2454 	}
2455 
2456 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2457 	if (ret < 0) {
2458 		ops->destroy(dev);
2459 		return ret;
2460 	}
2461 
2462 	list_add(&dev->vm_node, &kvm->devices);
2463 	kvm_get_kvm(kvm);
2464 	cd->fd = ret;
2465 	return 0;
2466 }
2467 
2468 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2469 {
2470 	switch (arg) {
2471 	case KVM_CAP_USER_MEMORY:
2472 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2473 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2474 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2475 	case KVM_CAP_SET_BOOT_CPU_ID:
2476 #endif
2477 	case KVM_CAP_INTERNAL_ERROR_DATA:
2478 #ifdef CONFIG_HAVE_KVM_MSI
2479 	case KVM_CAP_SIGNAL_MSI:
2480 #endif
2481 #ifdef CONFIG_HAVE_KVM_IRQFD
2482 	case KVM_CAP_IRQFD:
2483 	case KVM_CAP_IRQFD_RESAMPLE:
2484 #endif
2485 	case KVM_CAP_CHECK_EXTENSION_VM:
2486 		return 1;
2487 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2488 	case KVM_CAP_IRQ_ROUTING:
2489 		return KVM_MAX_IRQ_ROUTES;
2490 #endif
2491 	default:
2492 		break;
2493 	}
2494 	return kvm_vm_ioctl_check_extension(kvm, arg);
2495 }
2496 
2497 static long kvm_vm_ioctl(struct file *filp,
2498 			   unsigned int ioctl, unsigned long arg)
2499 {
2500 	struct kvm *kvm = filp->private_data;
2501 	void __user *argp = (void __user *)arg;
2502 	int r;
2503 
2504 	if (kvm->mm != current->mm)
2505 		return -EIO;
2506 	switch (ioctl) {
2507 	case KVM_CREATE_VCPU:
2508 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2509 		break;
2510 	case KVM_SET_USER_MEMORY_REGION: {
2511 		struct kvm_userspace_memory_region kvm_userspace_mem;
2512 
2513 		r = -EFAULT;
2514 		if (copy_from_user(&kvm_userspace_mem, argp,
2515 						sizeof(kvm_userspace_mem)))
2516 			goto out;
2517 
2518 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2519 		break;
2520 	}
2521 	case KVM_GET_DIRTY_LOG: {
2522 		struct kvm_dirty_log log;
2523 
2524 		r = -EFAULT;
2525 		if (copy_from_user(&log, argp, sizeof(log)))
2526 			goto out;
2527 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2528 		break;
2529 	}
2530 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2531 	case KVM_REGISTER_COALESCED_MMIO: {
2532 		struct kvm_coalesced_mmio_zone zone;
2533 
2534 		r = -EFAULT;
2535 		if (copy_from_user(&zone, argp, sizeof(zone)))
2536 			goto out;
2537 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2538 		break;
2539 	}
2540 	case KVM_UNREGISTER_COALESCED_MMIO: {
2541 		struct kvm_coalesced_mmio_zone zone;
2542 
2543 		r = -EFAULT;
2544 		if (copy_from_user(&zone, argp, sizeof(zone)))
2545 			goto out;
2546 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2547 		break;
2548 	}
2549 #endif
2550 	case KVM_IRQFD: {
2551 		struct kvm_irqfd data;
2552 
2553 		r = -EFAULT;
2554 		if (copy_from_user(&data, argp, sizeof(data)))
2555 			goto out;
2556 		r = kvm_irqfd(kvm, &data);
2557 		break;
2558 	}
2559 	case KVM_IOEVENTFD: {
2560 		struct kvm_ioeventfd data;
2561 
2562 		r = -EFAULT;
2563 		if (copy_from_user(&data, argp, sizeof(data)))
2564 			goto out;
2565 		r = kvm_ioeventfd(kvm, &data);
2566 		break;
2567 	}
2568 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2569 	case KVM_SET_BOOT_CPU_ID:
2570 		r = 0;
2571 		mutex_lock(&kvm->lock);
2572 		if (atomic_read(&kvm->online_vcpus) != 0)
2573 			r = -EBUSY;
2574 		else
2575 			kvm->bsp_vcpu_id = arg;
2576 		mutex_unlock(&kvm->lock);
2577 		break;
2578 #endif
2579 #ifdef CONFIG_HAVE_KVM_MSI
2580 	case KVM_SIGNAL_MSI: {
2581 		struct kvm_msi msi;
2582 
2583 		r = -EFAULT;
2584 		if (copy_from_user(&msi, argp, sizeof(msi)))
2585 			goto out;
2586 		r = kvm_send_userspace_msi(kvm, &msi);
2587 		break;
2588 	}
2589 #endif
2590 #ifdef __KVM_HAVE_IRQ_LINE
2591 	case KVM_IRQ_LINE_STATUS:
2592 	case KVM_IRQ_LINE: {
2593 		struct kvm_irq_level irq_event;
2594 
2595 		r = -EFAULT;
2596 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2597 			goto out;
2598 
2599 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2600 					ioctl == KVM_IRQ_LINE_STATUS);
2601 		if (r)
2602 			goto out;
2603 
2604 		r = -EFAULT;
2605 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2606 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2607 				goto out;
2608 		}
2609 
2610 		r = 0;
2611 		break;
2612 	}
2613 #endif
2614 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2615 	case KVM_SET_GSI_ROUTING: {
2616 		struct kvm_irq_routing routing;
2617 		struct kvm_irq_routing __user *urouting;
2618 		struct kvm_irq_routing_entry *entries;
2619 
2620 		r = -EFAULT;
2621 		if (copy_from_user(&routing, argp, sizeof(routing)))
2622 			goto out;
2623 		r = -EINVAL;
2624 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2625 			goto out;
2626 		if (routing.flags)
2627 			goto out;
2628 		r = -ENOMEM;
2629 		entries = vmalloc(routing.nr * sizeof(*entries));
2630 		if (!entries)
2631 			goto out;
2632 		r = -EFAULT;
2633 		urouting = argp;
2634 		if (copy_from_user(entries, urouting->entries,
2635 				   routing.nr * sizeof(*entries)))
2636 			goto out_free_irq_routing;
2637 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2638 					routing.flags);
2639 out_free_irq_routing:
2640 		vfree(entries);
2641 		break;
2642 	}
2643 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2644 	case KVM_CREATE_DEVICE: {
2645 		struct kvm_create_device cd;
2646 
2647 		r = -EFAULT;
2648 		if (copy_from_user(&cd, argp, sizeof(cd)))
2649 			goto out;
2650 
2651 		r = kvm_ioctl_create_device(kvm, &cd);
2652 		if (r)
2653 			goto out;
2654 
2655 		r = -EFAULT;
2656 		if (copy_to_user(argp, &cd, sizeof(cd)))
2657 			goto out;
2658 
2659 		r = 0;
2660 		break;
2661 	}
2662 	case KVM_CHECK_EXTENSION:
2663 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2664 		break;
2665 	default:
2666 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2667 	}
2668 out:
2669 	return r;
2670 }
2671 
2672 #ifdef CONFIG_KVM_COMPAT
2673 struct compat_kvm_dirty_log {
2674 	__u32 slot;
2675 	__u32 padding1;
2676 	union {
2677 		compat_uptr_t dirty_bitmap; /* one bit per page */
2678 		__u64 padding2;
2679 	};
2680 };
2681 
2682 static long kvm_vm_compat_ioctl(struct file *filp,
2683 			   unsigned int ioctl, unsigned long arg)
2684 {
2685 	struct kvm *kvm = filp->private_data;
2686 	int r;
2687 
2688 	if (kvm->mm != current->mm)
2689 		return -EIO;
2690 	switch (ioctl) {
2691 	case KVM_GET_DIRTY_LOG: {
2692 		struct compat_kvm_dirty_log compat_log;
2693 		struct kvm_dirty_log log;
2694 
2695 		r = -EFAULT;
2696 		if (copy_from_user(&compat_log, (void __user *)arg,
2697 				   sizeof(compat_log)))
2698 			goto out;
2699 		log.slot	 = compat_log.slot;
2700 		log.padding1	 = compat_log.padding1;
2701 		log.padding2	 = compat_log.padding2;
2702 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2703 
2704 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2705 		break;
2706 	}
2707 	default:
2708 		r = kvm_vm_ioctl(filp, ioctl, arg);
2709 	}
2710 
2711 out:
2712 	return r;
2713 }
2714 #endif
2715 
2716 static struct file_operations kvm_vm_fops = {
2717 	.release        = kvm_vm_release,
2718 	.unlocked_ioctl = kvm_vm_ioctl,
2719 #ifdef CONFIG_KVM_COMPAT
2720 	.compat_ioctl   = kvm_vm_compat_ioctl,
2721 #endif
2722 	.llseek		= noop_llseek,
2723 };
2724 
2725 static int kvm_dev_ioctl_create_vm(unsigned long type)
2726 {
2727 	int r;
2728 	struct kvm *kvm;
2729 
2730 	kvm = kvm_create_vm(type);
2731 	if (IS_ERR(kvm))
2732 		return PTR_ERR(kvm);
2733 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2734 	r = kvm_coalesced_mmio_init(kvm);
2735 	if (r < 0) {
2736 		kvm_put_kvm(kvm);
2737 		return r;
2738 	}
2739 #endif
2740 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2741 	if (r < 0)
2742 		kvm_put_kvm(kvm);
2743 
2744 	return r;
2745 }
2746 
2747 static long kvm_dev_ioctl(struct file *filp,
2748 			  unsigned int ioctl, unsigned long arg)
2749 {
2750 	long r = -EINVAL;
2751 
2752 	switch (ioctl) {
2753 	case KVM_GET_API_VERSION:
2754 		if (arg)
2755 			goto out;
2756 		r = KVM_API_VERSION;
2757 		break;
2758 	case KVM_CREATE_VM:
2759 		r = kvm_dev_ioctl_create_vm(arg);
2760 		break;
2761 	case KVM_CHECK_EXTENSION:
2762 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2763 		break;
2764 	case KVM_GET_VCPU_MMAP_SIZE:
2765 		if (arg)
2766 			goto out;
2767 		r = PAGE_SIZE;     /* struct kvm_run */
2768 #ifdef CONFIG_X86
2769 		r += PAGE_SIZE;    /* pio data page */
2770 #endif
2771 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2772 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2773 #endif
2774 		break;
2775 	case KVM_TRACE_ENABLE:
2776 	case KVM_TRACE_PAUSE:
2777 	case KVM_TRACE_DISABLE:
2778 		r = -EOPNOTSUPP;
2779 		break;
2780 	default:
2781 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2782 	}
2783 out:
2784 	return r;
2785 }
2786 
2787 static struct file_operations kvm_chardev_ops = {
2788 	.unlocked_ioctl = kvm_dev_ioctl,
2789 	.compat_ioctl   = kvm_dev_ioctl,
2790 	.llseek		= noop_llseek,
2791 };
2792 
2793 static struct miscdevice kvm_dev = {
2794 	KVM_MINOR,
2795 	"kvm",
2796 	&kvm_chardev_ops,
2797 };
2798 
2799 static void hardware_enable_nolock(void *junk)
2800 {
2801 	int cpu = raw_smp_processor_id();
2802 	int r;
2803 
2804 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2805 		return;
2806 
2807 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2808 
2809 	r = kvm_arch_hardware_enable();
2810 
2811 	if (r) {
2812 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2813 		atomic_inc(&hardware_enable_failed);
2814 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2815 	}
2816 }
2817 
2818 static void hardware_enable(void)
2819 {
2820 	raw_spin_lock(&kvm_count_lock);
2821 	if (kvm_usage_count)
2822 		hardware_enable_nolock(NULL);
2823 	raw_spin_unlock(&kvm_count_lock);
2824 }
2825 
2826 static void hardware_disable_nolock(void *junk)
2827 {
2828 	int cpu = raw_smp_processor_id();
2829 
2830 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2831 		return;
2832 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2833 	kvm_arch_hardware_disable();
2834 }
2835 
2836 static void hardware_disable(void)
2837 {
2838 	raw_spin_lock(&kvm_count_lock);
2839 	if (kvm_usage_count)
2840 		hardware_disable_nolock(NULL);
2841 	raw_spin_unlock(&kvm_count_lock);
2842 }
2843 
2844 static void hardware_disable_all_nolock(void)
2845 {
2846 	BUG_ON(!kvm_usage_count);
2847 
2848 	kvm_usage_count--;
2849 	if (!kvm_usage_count)
2850 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2851 }
2852 
2853 static void hardware_disable_all(void)
2854 {
2855 	raw_spin_lock(&kvm_count_lock);
2856 	hardware_disable_all_nolock();
2857 	raw_spin_unlock(&kvm_count_lock);
2858 }
2859 
2860 static int hardware_enable_all(void)
2861 {
2862 	int r = 0;
2863 
2864 	raw_spin_lock(&kvm_count_lock);
2865 
2866 	kvm_usage_count++;
2867 	if (kvm_usage_count == 1) {
2868 		atomic_set(&hardware_enable_failed, 0);
2869 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2870 
2871 		if (atomic_read(&hardware_enable_failed)) {
2872 			hardware_disable_all_nolock();
2873 			r = -EBUSY;
2874 		}
2875 	}
2876 
2877 	raw_spin_unlock(&kvm_count_lock);
2878 
2879 	return r;
2880 }
2881 
2882 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2883 			   void *v)
2884 {
2885 	int cpu = (long)v;
2886 
2887 	val &= ~CPU_TASKS_FROZEN;
2888 	switch (val) {
2889 	case CPU_DYING:
2890 		pr_info("kvm: disabling virtualization on CPU%d\n",
2891 		       cpu);
2892 		hardware_disable();
2893 		break;
2894 	case CPU_STARTING:
2895 		pr_info("kvm: enabling virtualization on CPU%d\n",
2896 		       cpu);
2897 		hardware_enable();
2898 		break;
2899 	}
2900 	return NOTIFY_OK;
2901 }
2902 
2903 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2904 		      void *v)
2905 {
2906 	/*
2907 	 * Some (well, at least mine) BIOSes hang on reboot if
2908 	 * in vmx root mode.
2909 	 *
2910 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2911 	 */
2912 	pr_info("kvm: exiting hardware virtualization\n");
2913 	kvm_rebooting = true;
2914 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2915 	return NOTIFY_OK;
2916 }
2917 
2918 static struct notifier_block kvm_reboot_notifier = {
2919 	.notifier_call = kvm_reboot,
2920 	.priority = 0,
2921 };
2922 
2923 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2924 {
2925 	int i;
2926 
2927 	for (i = 0; i < bus->dev_count; i++) {
2928 		struct kvm_io_device *pos = bus->range[i].dev;
2929 
2930 		kvm_iodevice_destructor(pos);
2931 	}
2932 	kfree(bus);
2933 }
2934 
2935 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2936 				 const struct kvm_io_range *r2)
2937 {
2938 	if (r1->addr < r2->addr)
2939 		return -1;
2940 	if (r1->addr + r1->len > r2->addr + r2->len)
2941 		return 1;
2942 	return 0;
2943 }
2944 
2945 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2946 {
2947 	return kvm_io_bus_cmp(p1, p2);
2948 }
2949 
2950 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2951 			  gpa_t addr, int len)
2952 {
2953 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2954 		.addr = addr,
2955 		.len = len,
2956 		.dev = dev,
2957 	};
2958 
2959 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2960 		kvm_io_bus_sort_cmp, NULL);
2961 
2962 	return 0;
2963 }
2964 
2965 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2966 			     gpa_t addr, int len)
2967 {
2968 	struct kvm_io_range *range, key;
2969 	int off;
2970 
2971 	key = (struct kvm_io_range) {
2972 		.addr = addr,
2973 		.len = len,
2974 	};
2975 
2976 	range = bsearch(&key, bus->range, bus->dev_count,
2977 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2978 	if (range == NULL)
2979 		return -ENOENT;
2980 
2981 	off = range - bus->range;
2982 
2983 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2984 		off--;
2985 
2986 	return off;
2987 }
2988 
2989 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
2990 			      struct kvm_io_range *range, const void *val)
2991 {
2992 	int idx;
2993 
2994 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2995 	if (idx < 0)
2996 		return -EOPNOTSUPP;
2997 
2998 	while (idx < bus->dev_count &&
2999 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3000 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3001 					range->len, val))
3002 			return idx;
3003 		idx++;
3004 	}
3005 
3006 	return -EOPNOTSUPP;
3007 }
3008 
3009 /* kvm_io_bus_write - called under kvm->slots_lock */
3010 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3011 		     int len, const void *val)
3012 {
3013 	struct kvm_io_bus *bus;
3014 	struct kvm_io_range range;
3015 	int r;
3016 
3017 	range = (struct kvm_io_range) {
3018 		.addr = addr,
3019 		.len = len,
3020 	};
3021 
3022 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3023 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3024 	return r < 0 ? r : 0;
3025 }
3026 
3027 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3028 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3029 			    gpa_t addr, int len, const void *val, long cookie)
3030 {
3031 	struct kvm_io_bus *bus;
3032 	struct kvm_io_range range;
3033 
3034 	range = (struct kvm_io_range) {
3035 		.addr = addr,
3036 		.len = len,
3037 	};
3038 
3039 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3040 
3041 	/* First try the device referenced by cookie. */
3042 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3043 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3044 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3045 					val))
3046 			return cookie;
3047 
3048 	/*
3049 	 * cookie contained garbage; fall back to search and return the
3050 	 * correct cookie value.
3051 	 */
3052 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3053 }
3054 
3055 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3056 			     struct kvm_io_range *range, void *val)
3057 {
3058 	int idx;
3059 
3060 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3061 	if (idx < 0)
3062 		return -EOPNOTSUPP;
3063 
3064 	while (idx < bus->dev_count &&
3065 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3066 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3067 				       range->len, val))
3068 			return idx;
3069 		idx++;
3070 	}
3071 
3072 	return -EOPNOTSUPP;
3073 }
3074 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3075 
3076 /* kvm_io_bus_read - called under kvm->slots_lock */
3077 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3078 		    int len, void *val)
3079 {
3080 	struct kvm_io_bus *bus;
3081 	struct kvm_io_range range;
3082 	int r;
3083 
3084 	range = (struct kvm_io_range) {
3085 		.addr = addr,
3086 		.len = len,
3087 	};
3088 
3089 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3090 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3091 	return r < 0 ? r : 0;
3092 }
3093 
3094 
3095 /* Caller must hold slots_lock. */
3096 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3097 			    int len, struct kvm_io_device *dev)
3098 {
3099 	struct kvm_io_bus *new_bus, *bus;
3100 
3101 	bus = kvm->buses[bus_idx];
3102 	/* exclude ioeventfd which is limited by maximum fd */
3103 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3104 		return -ENOSPC;
3105 
3106 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3107 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3108 	if (!new_bus)
3109 		return -ENOMEM;
3110 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3111 	       sizeof(struct kvm_io_range)));
3112 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3113 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3114 	synchronize_srcu_expedited(&kvm->srcu);
3115 	kfree(bus);
3116 
3117 	return 0;
3118 }
3119 
3120 /* Caller must hold slots_lock. */
3121 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3122 			      struct kvm_io_device *dev)
3123 {
3124 	int i, r;
3125 	struct kvm_io_bus *new_bus, *bus;
3126 
3127 	bus = kvm->buses[bus_idx];
3128 	r = -ENOENT;
3129 	for (i = 0; i < bus->dev_count; i++)
3130 		if (bus->range[i].dev == dev) {
3131 			r = 0;
3132 			break;
3133 		}
3134 
3135 	if (r)
3136 		return r;
3137 
3138 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3139 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3140 	if (!new_bus)
3141 		return -ENOMEM;
3142 
3143 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3144 	new_bus->dev_count--;
3145 	memcpy(new_bus->range + i, bus->range + i + 1,
3146 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3147 
3148 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3149 	synchronize_srcu_expedited(&kvm->srcu);
3150 	kfree(bus);
3151 	return r;
3152 }
3153 
3154 static struct notifier_block kvm_cpu_notifier = {
3155 	.notifier_call = kvm_cpu_hotplug,
3156 };
3157 
3158 static int vm_stat_get(void *_offset, u64 *val)
3159 {
3160 	unsigned offset = (long)_offset;
3161 	struct kvm *kvm;
3162 
3163 	*val = 0;
3164 	spin_lock(&kvm_lock);
3165 	list_for_each_entry(kvm, &vm_list, vm_list)
3166 		*val += *(u32 *)((void *)kvm + offset);
3167 	spin_unlock(&kvm_lock);
3168 	return 0;
3169 }
3170 
3171 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3172 
3173 static int vcpu_stat_get(void *_offset, u64 *val)
3174 {
3175 	unsigned offset = (long)_offset;
3176 	struct kvm *kvm;
3177 	struct kvm_vcpu *vcpu;
3178 	int i;
3179 
3180 	*val = 0;
3181 	spin_lock(&kvm_lock);
3182 	list_for_each_entry(kvm, &vm_list, vm_list)
3183 		kvm_for_each_vcpu(i, vcpu, kvm)
3184 			*val += *(u32 *)((void *)vcpu + offset);
3185 
3186 	spin_unlock(&kvm_lock);
3187 	return 0;
3188 }
3189 
3190 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3191 
3192 static const struct file_operations *stat_fops[] = {
3193 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3194 	[KVM_STAT_VM]   = &vm_stat_fops,
3195 };
3196 
3197 static int kvm_init_debug(void)
3198 {
3199 	int r = -EEXIST;
3200 	struct kvm_stats_debugfs_item *p;
3201 
3202 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3203 	if (kvm_debugfs_dir == NULL)
3204 		goto out;
3205 
3206 	for (p = debugfs_entries; p->name; ++p) {
3207 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3208 						(void *)(long)p->offset,
3209 						stat_fops[p->kind]);
3210 		if (p->dentry == NULL)
3211 			goto out_dir;
3212 	}
3213 
3214 	return 0;
3215 
3216 out_dir:
3217 	debugfs_remove_recursive(kvm_debugfs_dir);
3218 out:
3219 	return r;
3220 }
3221 
3222 static void kvm_exit_debug(void)
3223 {
3224 	struct kvm_stats_debugfs_item *p;
3225 
3226 	for (p = debugfs_entries; p->name; ++p)
3227 		debugfs_remove(p->dentry);
3228 	debugfs_remove(kvm_debugfs_dir);
3229 }
3230 
3231 static int kvm_suspend(void)
3232 {
3233 	if (kvm_usage_count)
3234 		hardware_disable_nolock(NULL);
3235 	return 0;
3236 }
3237 
3238 static void kvm_resume(void)
3239 {
3240 	if (kvm_usage_count) {
3241 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3242 		hardware_enable_nolock(NULL);
3243 	}
3244 }
3245 
3246 static struct syscore_ops kvm_syscore_ops = {
3247 	.suspend = kvm_suspend,
3248 	.resume = kvm_resume,
3249 };
3250 
3251 static inline
3252 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3253 {
3254 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3255 }
3256 
3257 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3258 {
3259 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3260 
3261 	if (vcpu->preempted)
3262 		vcpu->preempted = false;
3263 
3264 	kvm_arch_sched_in(vcpu, cpu);
3265 
3266 	kvm_arch_vcpu_load(vcpu, cpu);
3267 }
3268 
3269 static void kvm_sched_out(struct preempt_notifier *pn,
3270 			  struct task_struct *next)
3271 {
3272 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3273 
3274 	if (current->state == TASK_RUNNING)
3275 		vcpu->preempted = true;
3276 	kvm_arch_vcpu_put(vcpu);
3277 }
3278 
3279 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3280 		  struct module *module)
3281 {
3282 	int r;
3283 	int cpu;
3284 
3285 	r = kvm_arch_init(opaque);
3286 	if (r)
3287 		goto out_fail;
3288 
3289 	/*
3290 	 * kvm_arch_init makes sure there's at most one caller
3291 	 * for architectures that support multiple implementations,
3292 	 * like intel and amd on x86.
3293 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3294 	 * conflicts in case kvm is already setup for another implementation.
3295 	 */
3296 	r = kvm_irqfd_init();
3297 	if (r)
3298 		goto out_irqfd;
3299 
3300 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3301 		r = -ENOMEM;
3302 		goto out_free_0;
3303 	}
3304 
3305 	r = kvm_arch_hardware_setup();
3306 	if (r < 0)
3307 		goto out_free_0a;
3308 
3309 	for_each_online_cpu(cpu) {
3310 		smp_call_function_single(cpu,
3311 				kvm_arch_check_processor_compat,
3312 				&r, 1);
3313 		if (r < 0)
3314 			goto out_free_1;
3315 	}
3316 
3317 	r = register_cpu_notifier(&kvm_cpu_notifier);
3318 	if (r)
3319 		goto out_free_2;
3320 	register_reboot_notifier(&kvm_reboot_notifier);
3321 
3322 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3323 	if (!vcpu_align)
3324 		vcpu_align = __alignof__(struct kvm_vcpu);
3325 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3326 					   0, NULL);
3327 	if (!kvm_vcpu_cache) {
3328 		r = -ENOMEM;
3329 		goto out_free_3;
3330 	}
3331 
3332 	r = kvm_async_pf_init();
3333 	if (r)
3334 		goto out_free;
3335 
3336 	kvm_chardev_ops.owner = module;
3337 	kvm_vm_fops.owner = module;
3338 	kvm_vcpu_fops.owner = module;
3339 
3340 	r = misc_register(&kvm_dev);
3341 	if (r) {
3342 		pr_err("kvm: misc device register failed\n");
3343 		goto out_unreg;
3344 	}
3345 
3346 	register_syscore_ops(&kvm_syscore_ops);
3347 
3348 	kvm_preempt_ops.sched_in = kvm_sched_in;
3349 	kvm_preempt_ops.sched_out = kvm_sched_out;
3350 
3351 	r = kvm_init_debug();
3352 	if (r) {
3353 		pr_err("kvm: create debugfs files failed\n");
3354 		goto out_undebugfs;
3355 	}
3356 
3357 	r = kvm_vfio_ops_init();
3358 	WARN_ON(r);
3359 
3360 	return 0;
3361 
3362 out_undebugfs:
3363 	unregister_syscore_ops(&kvm_syscore_ops);
3364 	misc_deregister(&kvm_dev);
3365 out_unreg:
3366 	kvm_async_pf_deinit();
3367 out_free:
3368 	kmem_cache_destroy(kvm_vcpu_cache);
3369 out_free_3:
3370 	unregister_reboot_notifier(&kvm_reboot_notifier);
3371 	unregister_cpu_notifier(&kvm_cpu_notifier);
3372 out_free_2:
3373 out_free_1:
3374 	kvm_arch_hardware_unsetup();
3375 out_free_0a:
3376 	free_cpumask_var(cpus_hardware_enabled);
3377 out_free_0:
3378 	kvm_irqfd_exit();
3379 out_irqfd:
3380 	kvm_arch_exit();
3381 out_fail:
3382 	return r;
3383 }
3384 EXPORT_SYMBOL_GPL(kvm_init);
3385 
3386 void kvm_exit(void)
3387 {
3388 	kvm_exit_debug();
3389 	misc_deregister(&kvm_dev);
3390 	kmem_cache_destroy(kvm_vcpu_cache);
3391 	kvm_async_pf_deinit();
3392 	unregister_syscore_ops(&kvm_syscore_ops);
3393 	unregister_reboot_notifier(&kvm_reboot_notifier);
3394 	unregister_cpu_notifier(&kvm_cpu_notifier);
3395 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3396 	kvm_arch_hardware_unsetup();
3397 	kvm_arch_exit();
3398 	kvm_irqfd_exit();
3399 	free_cpumask_var(cpus_hardware_enabled);
3400 	kvm_vfio_ops_exit();
3401 }
3402 EXPORT_SYMBOL_GPL(kvm_exit);
3403