xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 0d456bad)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn)) {
106 		int reserved;
107 		struct page *tail = pfn_to_page(pfn);
108 		struct page *head = compound_trans_head(tail);
109 		reserved = PageReserved(head);
110 		if (head != tail) {
111 			/*
112 			 * "head" is not a dangling pointer
113 			 * (compound_trans_head takes care of that)
114 			 * but the hugepage may have been splitted
115 			 * from under us (and we may not hold a
116 			 * reference count on the head page so it can
117 			 * be reused before we run PageReferenced), so
118 			 * we've to check PageTail before returning
119 			 * what we just read.
120 			 */
121 			smp_rmb();
122 			if (PageTail(tail))
123 				return reserved;
124 		}
125 		return PageReserved(tail);
126 	}
127 
128 	return true;
129 }
130 
131 /*
132  * Switches to specified vcpu, until a matching vcpu_put()
133  */
134 int vcpu_load(struct kvm_vcpu *vcpu)
135 {
136 	int cpu;
137 
138 	if (mutex_lock_killable(&vcpu->mutex))
139 		return -EINTR;
140 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
141 		/* The thread running this VCPU changed. */
142 		struct pid *oldpid = vcpu->pid;
143 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
144 		rcu_assign_pointer(vcpu->pid, newpid);
145 		synchronize_rcu();
146 		put_pid(oldpid);
147 	}
148 	cpu = get_cpu();
149 	preempt_notifier_register(&vcpu->preempt_notifier);
150 	kvm_arch_vcpu_load(vcpu, cpu);
151 	put_cpu();
152 	return 0;
153 }
154 
155 void vcpu_put(struct kvm_vcpu *vcpu)
156 {
157 	preempt_disable();
158 	kvm_arch_vcpu_put(vcpu);
159 	preempt_notifier_unregister(&vcpu->preempt_notifier);
160 	preempt_enable();
161 	mutex_unlock(&vcpu->mutex);
162 }
163 
164 static void ack_flush(void *_completed)
165 {
166 }
167 
168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
169 {
170 	int i, cpu, me;
171 	cpumask_var_t cpus;
172 	bool called = true;
173 	struct kvm_vcpu *vcpu;
174 
175 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
176 
177 	me = get_cpu();
178 	kvm_for_each_vcpu(i, vcpu, kvm) {
179 		kvm_make_request(req, vcpu);
180 		cpu = vcpu->cpu;
181 
182 		/* Set ->requests bit before we read ->mode */
183 		smp_mb();
184 
185 		if (cpus != NULL && cpu != -1 && cpu != me &&
186 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
187 			cpumask_set_cpu(cpu, cpus);
188 	}
189 	if (unlikely(cpus == NULL))
190 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
191 	else if (!cpumask_empty(cpus))
192 		smp_call_function_many(cpus, ack_flush, NULL, 1);
193 	else
194 		called = false;
195 	put_cpu();
196 	free_cpumask_var(cpus);
197 	return called;
198 }
199 
200 void kvm_flush_remote_tlbs(struct kvm *kvm)
201 {
202 	long dirty_count = kvm->tlbs_dirty;
203 
204 	smp_mb();
205 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
206 		++kvm->stat.remote_tlb_flush;
207 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
208 }
209 
210 void kvm_reload_remote_mmus(struct kvm *kvm)
211 {
212 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
213 }
214 
215 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
216 {
217 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
218 }
219 
220 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
221 {
222 	struct page *page;
223 	int r;
224 
225 	mutex_init(&vcpu->mutex);
226 	vcpu->cpu = -1;
227 	vcpu->kvm = kvm;
228 	vcpu->vcpu_id = id;
229 	vcpu->pid = NULL;
230 	init_waitqueue_head(&vcpu->wq);
231 	kvm_async_pf_vcpu_init(vcpu);
232 
233 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234 	if (!page) {
235 		r = -ENOMEM;
236 		goto fail;
237 	}
238 	vcpu->run = page_address(page);
239 
240 	kvm_vcpu_set_in_spin_loop(vcpu, false);
241 	kvm_vcpu_set_dy_eligible(vcpu, false);
242 
243 	r = kvm_arch_vcpu_init(vcpu);
244 	if (r < 0)
245 		goto fail_free_run;
246 	return 0;
247 
248 fail_free_run:
249 	free_page((unsigned long)vcpu->run);
250 fail:
251 	return r;
252 }
253 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
254 
255 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
256 {
257 	put_pid(vcpu->pid);
258 	kvm_arch_vcpu_uninit(vcpu);
259 	free_page((unsigned long)vcpu->run);
260 }
261 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
262 
263 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
264 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
265 {
266 	return container_of(mn, struct kvm, mmu_notifier);
267 }
268 
269 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
270 					     struct mm_struct *mm,
271 					     unsigned long address)
272 {
273 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
274 	int need_tlb_flush, idx;
275 
276 	/*
277 	 * When ->invalidate_page runs, the linux pte has been zapped
278 	 * already but the page is still allocated until
279 	 * ->invalidate_page returns. So if we increase the sequence
280 	 * here the kvm page fault will notice if the spte can't be
281 	 * established because the page is going to be freed. If
282 	 * instead the kvm page fault establishes the spte before
283 	 * ->invalidate_page runs, kvm_unmap_hva will release it
284 	 * before returning.
285 	 *
286 	 * The sequence increase only need to be seen at spin_unlock
287 	 * time, and not at spin_lock time.
288 	 *
289 	 * Increasing the sequence after the spin_unlock would be
290 	 * unsafe because the kvm page fault could then establish the
291 	 * pte after kvm_unmap_hva returned, without noticing the page
292 	 * is going to be freed.
293 	 */
294 	idx = srcu_read_lock(&kvm->srcu);
295 	spin_lock(&kvm->mmu_lock);
296 
297 	kvm->mmu_notifier_seq++;
298 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
299 	/* we've to flush the tlb before the pages can be freed */
300 	if (need_tlb_flush)
301 		kvm_flush_remote_tlbs(kvm);
302 
303 	spin_unlock(&kvm->mmu_lock);
304 	srcu_read_unlock(&kvm->srcu, idx);
305 }
306 
307 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
308 					struct mm_struct *mm,
309 					unsigned long address,
310 					pte_t pte)
311 {
312 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
313 	int idx;
314 
315 	idx = srcu_read_lock(&kvm->srcu);
316 	spin_lock(&kvm->mmu_lock);
317 	kvm->mmu_notifier_seq++;
318 	kvm_set_spte_hva(kvm, address, pte);
319 	spin_unlock(&kvm->mmu_lock);
320 	srcu_read_unlock(&kvm->srcu, idx);
321 }
322 
323 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
324 						    struct mm_struct *mm,
325 						    unsigned long start,
326 						    unsigned long end)
327 {
328 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
329 	int need_tlb_flush = 0, idx;
330 
331 	idx = srcu_read_lock(&kvm->srcu);
332 	spin_lock(&kvm->mmu_lock);
333 	/*
334 	 * The count increase must become visible at unlock time as no
335 	 * spte can be established without taking the mmu_lock and
336 	 * count is also read inside the mmu_lock critical section.
337 	 */
338 	kvm->mmu_notifier_count++;
339 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
340 	need_tlb_flush |= kvm->tlbs_dirty;
341 	/* we've to flush the tlb before the pages can be freed */
342 	if (need_tlb_flush)
343 		kvm_flush_remote_tlbs(kvm);
344 
345 	spin_unlock(&kvm->mmu_lock);
346 	srcu_read_unlock(&kvm->srcu, idx);
347 }
348 
349 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
350 						  struct mm_struct *mm,
351 						  unsigned long start,
352 						  unsigned long end)
353 {
354 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
355 
356 	spin_lock(&kvm->mmu_lock);
357 	/*
358 	 * This sequence increase will notify the kvm page fault that
359 	 * the page that is going to be mapped in the spte could have
360 	 * been freed.
361 	 */
362 	kvm->mmu_notifier_seq++;
363 	smp_wmb();
364 	/*
365 	 * The above sequence increase must be visible before the
366 	 * below count decrease, which is ensured by the smp_wmb above
367 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
368 	 */
369 	kvm->mmu_notifier_count--;
370 	spin_unlock(&kvm->mmu_lock);
371 
372 	BUG_ON(kvm->mmu_notifier_count < 0);
373 }
374 
375 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
376 					      struct mm_struct *mm,
377 					      unsigned long address)
378 {
379 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
380 	int young, idx;
381 
382 	idx = srcu_read_lock(&kvm->srcu);
383 	spin_lock(&kvm->mmu_lock);
384 
385 	young = kvm_age_hva(kvm, address);
386 	if (young)
387 		kvm_flush_remote_tlbs(kvm);
388 
389 	spin_unlock(&kvm->mmu_lock);
390 	srcu_read_unlock(&kvm->srcu, idx);
391 
392 	return young;
393 }
394 
395 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
396 				       struct mm_struct *mm,
397 				       unsigned long address)
398 {
399 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
400 	int young, idx;
401 
402 	idx = srcu_read_lock(&kvm->srcu);
403 	spin_lock(&kvm->mmu_lock);
404 	young = kvm_test_age_hva(kvm, address);
405 	spin_unlock(&kvm->mmu_lock);
406 	srcu_read_unlock(&kvm->srcu, idx);
407 
408 	return young;
409 }
410 
411 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
412 				     struct mm_struct *mm)
413 {
414 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
415 	int idx;
416 
417 	idx = srcu_read_lock(&kvm->srcu);
418 	kvm_arch_flush_shadow_all(kvm);
419 	srcu_read_unlock(&kvm->srcu, idx);
420 }
421 
422 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
423 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
424 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
425 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
426 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
427 	.test_young		= kvm_mmu_notifier_test_young,
428 	.change_pte		= kvm_mmu_notifier_change_pte,
429 	.release		= kvm_mmu_notifier_release,
430 };
431 
432 static int kvm_init_mmu_notifier(struct kvm *kvm)
433 {
434 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
435 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
436 }
437 
438 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
439 
440 static int kvm_init_mmu_notifier(struct kvm *kvm)
441 {
442 	return 0;
443 }
444 
445 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
446 
447 static void kvm_init_memslots_id(struct kvm *kvm)
448 {
449 	int i;
450 	struct kvm_memslots *slots = kvm->memslots;
451 
452 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
453 		slots->id_to_index[i] = slots->memslots[i].id = i;
454 }
455 
456 static struct kvm *kvm_create_vm(unsigned long type)
457 {
458 	int r, i;
459 	struct kvm *kvm = kvm_arch_alloc_vm();
460 
461 	if (!kvm)
462 		return ERR_PTR(-ENOMEM);
463 
464 	r = kvm_arch_init_vm(kvm, type);
465 	if (r)
466 		goto out_err_nodisable;
467 
468 	r = hardware_enable_all();
469 	if (r)
470 		goto out_err_nodisable;
471 
472 #ifdef CONFIG_HAVE_KVM_IRQCHIP
473 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
474 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
475 #endif
476 
477 	r = -ENOMEM;
478 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
479 	if (!kvm->memslots)
480 		goto out_err_nosrcu;
481 	kvm_init_memslots_id(kvm);
482 	if (init_srcu_struct(&kvm->srcu))
483 		goto out_err_nosrcu;
484 	for (i = 0; i < KVM_NR_BUSES; i++) {
485 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
486 					GFP_KERNEL);
487 		if (!kvm->buses[i])
488 			goto out_err;
489 	}
490 
491 	spin_lock_init(&kvm->mmu_lock);
492 	kvm->mm = current->mm;
493 	atomic_inc(&kvm->mm->mm_count);
494 	kvm_eventfd_init(kvm);
495 	mutex_init(&kvm->lock);
496 	mutex_init(&kvm->irq_lock);
497 	mutex_init(&kvm->slots_lock);
498 	atomic_set(&kvm->users_count, 1);
499 
500 	r = kvm_init_mmu_notifier(kvm);
501 	if (r)
502 		goto out_err;
503 
504 	raw_spin_lock(&kvm_lock);
505 	list_add(&kvm->vm_list, &vm_list);
506 	raw_spin_unlock(&kvm_lock);
507 
508 	return kvm;
509 
510 out_err:
511 	cleanup_srcu_struct(&kvm->srcu);
512 out_err_nosrcu:
513 	hardware_disable_all();
514 out_err_nodisable:
515 	for (i = 0; i < KVM_NR_BUSES; i++)
516 		kfree(kvm->buses[i]);
517 	kfree(kvm->memslots);
518 	kvm_arch_free_vm(kvm);
519 	return ERR_PTR(r);
520 }
521 
522 /*
523  * Avoid using vmalloc for a small buffer.
524  * Should not be used when the size is statically known.
525  */
526 void *kvm_kvzalloc(unsigned long size)
527 {
528 	if (size > PAGE_SIZE)
529 		return vzalloc(size);
530 	else
531 		return kzalloc(size, GFP_KERNEL);
532 }
533 
534 void kvm_kvfree(const void *addr)
535 {
536 	if (is_vmalloc_addr(addr))
537 		vfree(addr);
538 	else
539 		kfree(addr);
540 }
541 
542 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
543 {
544 	if (!memslot->dirty_bitmap)
545 		return;
546 
547 	kvm_kvfree(memslot->dirty_bitmap);
548 	memslot->dirty_bitmap = NULL;
549 }
550 
551 /*
552  * Free any memory in @free but not in @dont.
553  */
554 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
555 				  struct kvm_memory_slot *dont)
556 {
557 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
558 		kvm_destroy_dirty_bitmap(free);
559 
560 	kvm_arch_free_memslot(free, dont);
561 
562 	free->npages = 0;
563 }
564 
565 void kvm_free_physmem(struct kvm *kvm)
566 {
567 	struct kvm_memslots *slots = kvm->memslots;
568 	struct kvm_memory_slot *memslot;
569 
570 	kvm_for_each_memslot(memslot, slots)
571 		kvm_free_physmem_slot(memslot, NULL);
572 
573 	kfree(kvm->memslots);
574 }
575 
576 static void kvm_destroy_vm(struct kvm *kvm)
577 {
578 	int i;
579 	struct mm_struct *mm = kvm->mm;
580 
581 	kvm_arch_sync_events(kvm);
582 	raw_spin_lock(&kvm_lock);
583 	list_del(&kvm->vm_list);
584 	raw_spin_unlock(&kvm_lock);
585 	kvm_free_irq_routing(kvm);
586 	for (i = 0; i < KVM_NR_BUSES; i++)
587 		kvm_io_bus_destroy(kvm->buses[i]);
588 	kvm_coalesced_mmio_free(kvm);
589 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
590 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
591 #else
592 	kvm_arch_flush_shadow_all(kvm);
593 #endif
594 	kvm_arch_destroy_vm(kvm);
595 	kvm_free_physmem(kvm);
596 	cleanup_srcu_struct(&kvm->srcu);
597 	kvm_arch_free_vm(kvm);
598 	hardware_disable_all();
599 	mmdrop(mm);
600 }
601 
602 void kvm_get_kvm(struct kvm *kvm)
603 {
604 	atomic_inc(&kvm->users_count);
605 }
606 EXPORT_SYMBOL_GPL(kvm_get_kvm);
607 
608 void kvm_put_kvm(struct kvm *kvm)
609 {
610 	if (atomic_dec_and_test(&kvm->users_count))
611 		kvm_destroy_vm(kvm);
612 }
613 EXPORT_SYMBOL_GPL(kvm_put_kvm);
614 
615 
616 static int kvm_vm_release(struct inode *inode, struct file *filp)
617 {
618 	struct kvm *kvm = filp->private_data;
619 
620 	kvm_irqfd_release(kvm);
621 
622 	kvm_put_kvm(kvm);
623 	return 0;
624 }
625 
626 /*
627  * Allocation size is twice as large as the actual dirty bitmap size.
628  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
629  */
630 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
631 {
632 #ifndef CONFIG_S390
633 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
634 
635 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
636 	if (!memslot->dirty_bitmap)
637 		return -ENOMEM;
638 
639 #endif /* !CONFIG_S390 */
640 	return 0;
641 }
642 
643 static int cmp_memslot(const void *slot1, const void *slot2)
644 {
645 	struct kvm_memory_slot *s1, *s2;
646 
647 	s1 = (struct kvm_memory_slot *)slot1;
648 	s2 = (struct kvm_memory_slot *)slot2;
649 
650 	if (s1->npages < s2->npages)
651 		return 1;
652 	if (s1->npages > s2->npages)
653 		return -1;
654 
655 	return 0;
656 }
657 
658 /*
659  * Sort the memslots base on its size, so the larger slots
660  * will get better fit.
661  */
662 static void sort_memslots(struct kvm_memslots *slots)
663 {
664 	int i;
665 
666 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
667 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
668 
669 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
670 		slots->id_to_index[slots->memslots[i].id] = i;
671 }
672 
673 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new)
674 {
675 	if (new) {
676 		int id = new->id;
677 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
678 		unsigned long npages = old->npages;
679 
680 		*old = *new;
681 		if (new->npages != npages)
682 			sort_memslots(slots);
683 	}
684 
685 	slots->generation++;
686 }
687 
688 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
689 {
690 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
691 
692 #ifdef KVM_CAP_READONLY_MEM
693 	valid_flags |= KVM_MEM_READONLY;
694 #endif
695 
696 	if (mem->flags & ~valid_flags)
697 		return -EINVAL;
698 
699 	return 0;
700 }
701 
702 /*
703  * Allocate some memory and give it an address in the guest physical address
704  * space.
705  *
706  * Discontiguous memory is allowed, mostly for framebuffers.
707  *
708  * Must be called holding mmap_sem for write.
709  */
710 int __kvm_set_memory_region(struct kvm *kvm,
711 			    struct kvm_userspace_memory_region *mem,
712 			    int user_alloc)
713 {
714 	int r;
715 	gfn_t base_gfn;
716 	unsigned long npages;
717 	struct kvm_memory_slot *memslot, *slot;
718 	struct kvm_memory_slot old, new;
719 	struct kvm_memslots *slots, *old_memslots;
720 
721 	r = check_memory_region_flags(mem);
722 	if (r)
723 		goto out;
724 
725 	r = -EINVAL;
726 	/* General sanity checks */
727 	if (mem->memory_size & (PAGE_SIZE - 1))
728 		goto out;
729 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
730 		goto out;
731 	/* We can read the guest memory with __xxx_user() later on. */
732 	if (user_alloc &&
733 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
734 	     !access_ok(VERIFY_WRITE,
735 			(void __user *)(unsigned long)mem->userspace_addr,
736 			mem->memory_size)))
737 		goto out;
738 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
739 		goto out;
740 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
741 		goto out;
742 
743 	memslot = id_to_memslot(kvm->memslots, mem->slot);
744 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
745 	npages = mem->memory_size >> PAGE_SHIFT;
746 
747 	r = -EINVAL;
748 	if (npages > KVM_MEM_MAX_NR_PAGES)
749 		goto out;
750 
751 	if (!npages)
752 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
753 
754 	new = old = *memslot;
755 
756 	new.id = mem->slot;
757 	new.base_gfn = base_gfn;
758 	new.npages = npages;
759 	new.flags = mem->flags;
760 
761 	/* Disallow changing a memory slot's size. */
762 	r = -EINVAL;
763 	if (npages && old.npages && npages != old.npages)
764 		goto out_free;
765 
766 	/* Check for overlaps */
767 	r = -EEXIST;
768 	kvm_for_each_memslot(slot, kvm->memslots) {
769 		if (slot->id >= KVM_MEMORY_SLOTS || slot == memslot)
770 			continue;
771 		if (!((base_gfn + npages <= slot->base_gfn) ||
772 		      (base_gfn >= slot->base_gfn + slot->npages)))
773 			goto out_free;
774 	}
775 
776 	/* Free page dirty bitmap if unneeded */
777 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
778 		new.dirty_bitmap = NULL;
779 
780 	r = -ENOMEM;
781 
782 	/* Allocate if a slot is being created */
783 	if (npages && !old.npages) {
784 		new.user_alloc = user_alloc;
785 		new.userspace_addr = mem->userspace_addr;
786 
787 		if (kvm_arch_create_memslot(&new, npages))
788 			goto out_free;
789 	}
790 
791 	/* Allocate page dirty bitmap if needed */
792 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
793 		if (kvm_create_dirty_bitmap(&new) < 0)
794 			goto out_free;
795 		/* destroy any largepage mappings for dirty tracking */
796 	}
797 
798 	if (!npages || base_gfn != old.base_gfn) {
799 		struct kvm_memory_slot *slot;
800 
801 		r = -ENOMEM;
802 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
803 				GFP_KERNEL);
804 		if (!slots)
805 			goto out_free;
806 		slot = id_to_memslot(slots, mem->slot);
807 		slot->flags |= KVM_MEMSLOT_INVALID;
808 
809 		update_memslots(slots, NULL);
810 
811 		old_memslots = kvm->memslots;
812 		rcu_assign_pointer(kvm->memslots, slots);
813 		synchronize_srcu_expedited(&kvm->srcu);
814 		/* From this point no new shadow pages pointing to a deleted,
815 		 * or moved, memslot will be created.
816 		 *
817 		 * validation of sp->gfn happens in:
818 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
819 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
820 		 */
821 		kvm_arch_flush_shadow_memslot(kvm, slot);
822 		kfree(old_memslots);
823 	}
824 
825 	r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
826 	if (r)
827 		goto out_free;
828 
829 	/* map/unmap the pages in iommu page table */
830 	if (npages) {
831 		r = kvm_iommu_map_pages(kvm, &new);
832 		if (r)
833 			goto out_free;
834 	} else
835 		kvm_iommu_unmap_pages(kvm, &old);
836 
837 	r = -ENOMEM;
838 	slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
839 			GFP_KERNEL);
840 	if (!slots)
841 		goto out_free;
842 
843 	/* actual memory is freed via old in kvm_free_physmem_slot below */
844 	if (!npages) {
845 		new.dirty_bitmap = NULL;
846 		memset(&new.arch, 0, sizeof(new.arch));
847 	}
848 
849 	update_memslots(slots, &new);
850 	old_memslots = kvm->memslots;
851 	rcu_assign_pointer(kvm->memslots, slots);
852 	synchronize_srcu_expedited(&kvm->srcu);
853 
854 	kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
855 
856 	kvm_free_physmem_slot(&old, &new);
857 	kfree(old_memslots);
858 
859 	return 0;
860 
861 out_free:
862 	kvm_free_physmem_slot(&new, &old);
863 out:
864 	return r;
865 
866 }
867 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
868 
869 int kvm_set_memory_region(struct kvm *kvm,
870 			  struct kvm_userspace_memory_region *mem,
871 			  int user_alloc)
872 {
873 	int r;
874 
875 	mutex_lock(&kvm->slots_lock);
876 	r = __kvm_set_memory_region(kvm, mem, user_alloc);
877 	mutex_unlock(&kvm->slots_lock);
878 	return r;
879 }
880 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
881 
882 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
883 				   struct
884 				   kvm_userspace_memory_region *mem,
885 				   int user_alloc)
886 {
887 	if (mem->slot >= KVM_MEMORY_SLOTS)
888 		return -EINVAL;
889 	return kvm_set_memory_region(kvm, mem, user_alloc);
890 }
891 
892 int kvm_get_dirty_log(struct kvm *kvm,
893 			struct kvm_dirty_log *log, int *is_dirty)
894 {
895 	struct kvm_memory_slot *memslot;
896 	int r, i;
897 	unsigned long n;
898 	unsigned long any = 0;
899 
900 	r = -EINVAL;
901 	if (log->slot >= KVM_MEMORY_SLOTS)
902 		goto out;
903 
904 	memslot = id_to_memslot(kvm->memslots, log->slot);
905 	r = -ENOENT;
906 	if (!memslot->dirty_bitmap)
907 		goto out;
908 
909 	n = kvm_dirty_bitmap_bytes(memslot);
910 
911 	for (i = 0; !any && i < n/sizeof(long); ++i)
912 		any = memslot->dirty_bitmap[i];
913 
914 	r = -EFAULT;
915 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
916 		goto out;
917 
918 	if (any)
919 		*is_dirty = 1;
920 
921 	r = 0;
922 out:
923 	return r;
924 }
925 
926 bool kvm_largepages_enabled(void)
927 {
928 	return largepages_enabled;
929 }
930 
931 void kvm_disable_largepages(void)
932 {
933 	largepages_enabled = false;
934 }
935 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
936 
937 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
938 {
939 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
940 }
941 EXPORT_SYMBOL_GPL(gfn_to_memslot);
942 
943 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
944 {
945 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
946 
947 	if (!memslot || memslot->id >= KVM_MEMORY_SLOTS ||
948 	      memslot->flags & KVM_MEMSLOT_INVALID)
949 		return 0;
950 
951 	return 1;
952 }
953 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
954 
955 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
956 {
957 	struct vm_area_struct *vma;
958 	unsigned long addr, size;
959 
960 	size = PAGE_SIZE;
961 
962 	addr = gfn_to_hva(kvm, gfn);
963 	if (kvm_is_error_hva(addr))
964 		return PAGE_SIZE;
965 
966 	down_read(&current->mm->mmap_sem);
967 	vma = find_vma(current->mm, addr);
968 	if (!vma)
969 		goto out;
970 
971 	size = vma_kernel_pagesize(vma);
972 
973 out:
974 	up_read(&current->mm->mmap_sem);
975 
976 	return size;
977 }
978 
979 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
980 {
981 	return slot->flags & KVM_MEM_READONLY;
982 }
983 
984 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
985 				       gfn_t *nr_pages, bool write)
986 {
987 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
988 		return KVM_HVA_ERR_BAD;
989 
990 	if (memslot_is_readonly(slot) && write)
991 		return KVM_HVA_ERR_RO_BAD;
992 
993 	if (nr_pages)
994 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
995 
996 	return __gfn_to_hva_memslot(slot, gfn);
997 }
998 
999 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1000 				     gfn_t *nr_pages)
1001 {
1002 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1003 }
1004 
1005 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1006 				 gfn_t gfn)
1007 {
1008 	return gfn_to_hva_many(slot, gfn, NULL);
1009 }
1010 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1011 
1012 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1013 {
1014 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1015 }
1016 EXPORT_SYMBOL_GPL(gfn_to_hva);
1017 
1018 /*
1019  * The hva returned by this function is only allowed to be read.
1020  * It should pair with kvm_read_hva() or kvm_read_hva_atomic().
1021  */
1022 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn)
1023 {
1024 	return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1025 }
1026 
1027 static int kvm_read_hva(void *data, void __user *hva, int len)
1028 {
1029 	return __copy_from_user(data, hva, len);
1030 }
1031 
1032 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1033 {
1034 	return __copy_from_user_inatomic(data, hva, len);
1035 }
1036 
1037 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1038 	unsigned long start, int write, struct page **page)
1039 {
1040 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1041 
1042 	if (write)
1043 		flags |= FOLL_WRITE;
1044 
1045 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1046 }
1047 
1048 static inline int check_user_page_hwpoison(unsigned long addr)
1049 {
1050 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1051 
1052 	rc = __get_user_pages(current, current->mm, addr, 1,
1053 			      flags, NULL, NULL, NULL);
1054 	return rc == -EHWPOISON;
1055 }
1056 
1057 /*
1058  * The atomic path to get the writable pfn which will be stored in @pfn,
1059  * true indicates success, otherwise false is returned.
1060  */
1061 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1062 			    bool write_fault, bool *writable, pfn_t *pfn)
1063 {
1064 	struct page *page[1];
1065 	int npages;
1066 
1067 	if (!(async || atomic))
1068 		return false;
1069 
1070 	/*
1071 	 * Fast pin a writable pfn only if it is a write fault request
1072 	 * or the caller allows to map a writable pfn for a read fault
1073 	 * request.
1074 	 */
1075 	if (!(write_fault || writable))
1076 		return false;
1077 
1078 	npages = __get_user_pages_fast(addr, 1, 1, page);
1079 	if (npages == 1) {
1080 		*pfn = page_to_pfn(page[0]);
1081 
1082 		if (writable)
1083 			*writable = true;
1084 		return true;
1085 	}
1086 
1087 	return false;
1088 }
1089 
1090 /*
1091  * The slow path to get the pfn of the specified host virtual address,
1092  * 1 indicates success, -errno is returned if error is detected.
1093  */
1094 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1095 			   bool *writable, pfn_t *pfn)
1096 {
1097 	struct page *page[1];
1098 	int npages = 0;
1099 
1100 	might_sleep();
1101 
1102 	if (writable)
1103 		*writable = write_fault;
1104 
1105 	if (async) {
1106 		down_read(&current->mm->mmap_sem);
1107 		npages = get_user_page_nowait(current, current->mm,
1108 					      addr, write_fault, page);
1109 		up_read(&current->mm->mmap_sem);
1110 	} else
1111 		npages = get_user_pages_fast(addr, 1, write_fault,
1112 					     page);
1113 	if (npages != 1)
1114 		return npages;
1115 
1116 	/* map read fault as writable if possible */
1117 	if (unlikely(!write_fault) && writable) {
1118 		struct page *wpage[1];
1119 
1120 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1121 		if (npages == 1) {
1122 			*writable = true;
1123 			put_page(page[0]);
1124 			page[0] = wpage[0];
1125 		}
1126 
1127 		npages = 1;
1128 	}
1129 	*pfn = page_to_pfn(page[0]);
1130 	return npages;
1131 }
1132 
1133 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1134 {
1135 	if (unlikely(!(vma->vm_flags & VM_READ)))
1136 		return false;
1137 
1138 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1139 		return false;
1140 
1141 	return true;
1142 }
1143 
1144 /*
1145  * Pin guest page in memory and return its pfn.
1146  * @addr: host virtual address which maps memory to the guest
1147  * @atomic: whether this function can sleep
1148  * @async: whether this function need to wait IO complete if the
1149  *         host page is not in the memory
1150  * @write_fault: whether we should get a writable host page
1151  * @writable: whether it allows to map a writable host page for !@write_fault
1152  *
1153  * The function will map a writable host page for these two cases:
1154  * 1): @write_fault = true
1155  * 2): @write_fault = false && @writable, @writable will tell the caller
1156  *     whether the mapping is writable.
1157  */
1158 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1159 			bool write_fault, bool *writable)
1160 {
1161 	struct vm_area_struct *vma;
1162 	pfn_t pfn = 0;
1163 	int npages;
1164 
1165 	/* we can do it either atomically or asynchronously, not both */
1166 	BUG_ON(atomic && async);
1167 
1168 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1169 		return pfn;
1170 
1171 	if (atomic)
1172 		return KVM_PFN_ERR_FAULT;
1173 
1174 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1175 	if (npages == 1)
1176 		return pfn;
1177 
1178 	down_read(&current->mm->mmap_sem);
1179 	if (npages == -EHWPOISON ||
1180 	      (!async && check_user_page_hwpoison(addr))) {
1181 		pfn = KVM_PFN_ERR_HWPOISON;
1182 		goto exit;
1183 	}
1184 
1185 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1186 
1187 	if (vma == NULL)
1188 		pfn = KVM_PFN_ERR_FAULT;
1189 	else if ((vma->vm_flags & VM_PFNMAP)) {
1190 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1191 			vma->vm_pgoff;
1192 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1193 	} else {
1194 		if (async && vma_is_valid(vma, write_fault))
1195 			*async = true;
1196 		pfn = KVM_PFN_ERR_FAULT;
1197 	}
1198 exit:
1199 	up_read(&current->mm->mmap_sem);
1200 	return pfn;
1201 }
1202 
1203 static pfn_t
1204 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1205 		     bool *async, bool write_fault, bool *writable)
1206 {
1207 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1208 
1209 	if (addr == KVM_HVA_ERR_RO_BAD)
1210 		return KVM_PFN_ERR_RO_FAULT;
1211 
1212 	if (kvm_is_error_hva(addr))
1213 		return KVM_PFN_NOSLOT;
1214 
1215 	/* Do not map writable pfn in the readonly memslot. */
1216 	if (writable && memslot_is_readonly(slot)) {
1217 		*writable = false;
1218 		writable = NULL;
1219 	}
1220 
1221 	return hva_to_pfn(addr, atomic, async, write_fault,
1222 			  writable);
1223 }
1224 
1225 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1226 			  bool write_fault, bool *writable)
1227 {
1228 	struct kvm_memory_slot *slot;
1229 
1230 	if (async)
1231 		*async = false;
1232 
1233 	slot = gfn_to_memslot(kvm, gfn);
1234 
1235 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1236 				    writable);
1237 }
1238 
1239 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1240 {
1241 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1242 }
1243 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1244 
1245 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1246 		       bool write_fault, bool *writable)
1247 {
1248 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1249 }
1250 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1251 
1252 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1253 {
1254 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1255 }
1256 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1257 
1258 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1259 		      bool *writable)
1260 {
1261 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1262 }
1263 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1264 
1265 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1266 {
1267 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1268 }
1269 
1270 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1271 {
1272 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1273 }
1274 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1275 
1276 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1277 								  int nr_pages)
1278 {
1279 	unsigned long addr;
1280 	gfn_t entry;
1281 
1282 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1283 	if (kvm_is_error_hva(addr))
1284 		return -1;
1285 
1286 	if (entry < nr_pages)
1287 		return 0;
1288 
1289 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1290 }
1291 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1292 
1293 static struct page *kvm_pfn_to_page(pfn_t pfn)
1294 {
1295 	if (is_error_noslot_pfn(pfn))
1296 		return KVM_ERR_PTR_BAD_PAGE;
1297 
1298 	if (kvm_is_mmio_pfn(pfn)) {
1299 		WARN_ON(1);
1300 		return KVM_ERR_PTR_BAD_PAGE;
1301 	}
1302 
1303 	return pfn_to_page(pfn);
1304 }
1305 
1306 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1307 {
1308 	pfn_t pfn;
1309 
1310 	pfn = gfn_to_pfn(kvm, gfn);
1311 
1312 	return kvm_pfn_to_page(pfn);
1313 }
1314 
1315 EXPORT_SYMBOL_GPL(gfn_to_page);
1316 
1317 void kvm_release_page_clean(struct page *page)
1318 {
1319 	WARN_ON(is_error_page(page));
1320 
1321 	kvm_release_pfn_clean(page_to_pfn(page));
1322 }
1323 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1324 
1325 void kvm_release_pfn_clean(pfn_t pfn)
1326 {
1327 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1328 		put_page(pfn_to_page(pfn));
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1331 
1332 void kvm_release_page_dirty(struct page *page)
1333 {
1334 	WARN_ON(is_error_page(page));
1335 
1336 	kvm_release_pfn_dirty(page_to_pfn(page));
1337 }
1338 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1339 
1340 void kvm_release_pfn_dirty(pfn_t pfn)
1341 {
1342 	kvm_set_pfn_dirty(pfn);
1343 	kvm_release_pfn_clean(pfn);
1344 }
1345 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1346 
1347 void kvm_set_page_dirty(struct page *page)
1348 {
1349 	kvm_set_pfn_dirty(page_to_pfn(page));
1350 }
1351 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1352 
1353 void kvm_set_pfn_dirty(pfn_t pfn)
1354 {
1355 	if (!kvm_is_mmio_pfn(pfn)) {
1356 		struct page *page = pfn_to_page(pfn);
1357 		if (!PageReserved(page))
1358 			SetPageDirty(page);
1359 	}
1360 }
1361 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1362 
1363 void kvm_set_pfn_accessed(pfn_t pfn)
1364 {
1365 	if (!kvm_is_mmio_pfn(pfn))
1366 		mark_page_accessed(pfn_to_page(pfn));
1367 }
1368 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1369 
1370 void kvm_get_pfn(pfn_t pfn)
1371 {
1372 	if (!kvm_is_mmio_pfn(pfn))
1373 		get_page(pfn_to_page(pfn));
1374 }
1375 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1376 
1377 static int next_segment(unsigned long len, int offset)
1378 {
1379 	if (len > PAGE_SIZE - offset)
1380 		return PAGE_SIZE - offset;
1381 	else
1382 		return len;
1383 }
1384 
1385 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1386 			int len)
1387 {
1388 	int r;
1389 	unsigned long addr;
1390 
1391 	addr = gfn_to_hva_read(kvm, gfn);
1392 	if (kvm_is_error_hva(addr))
1393 		return -EFAULT;
1394 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1395 	if (r)
1396 		return -EFAULT;
1397 	return 0;
1398 }
1399 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1400 
1401 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1402 {
1403 	gfn_t gfn = gpa >> PAGE_SHIFT;
1404 	int seg;
1405 	int offset = offset_in_page(gpa);
1406 	int ret;
1407 
1408 	while ((seg = next_segment(len, offset)) != 0) {
1409 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1410 		if (ret < 0)
1411 			return ret;
1412 		offset = 0;
1413 		len -= seg;
1414 		data += seg;
1415 		++gfn;
1416 	}
1417 	return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(kvm_read_guest);
1420 
1421 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1422 			  unsigned long len)
1423 {
1424 	int r;
1425 	unsigned long addr;
1426 	gfn_t gfn = gpa >> PAGE_SHIFT;
1427 	int offset = offset_in_page(gpa);
1428 
1429 	addr = gfn_to_hva_read(kvm, gfn);
1430 	if (kvm_is_error_hva(addr))
1431 		return -EFAULT;
1432 	pagefault_disable();
1433 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1434 	pagefault_enable();
1435 	if (r)
1436 		return -EFAULT;
1437 	return 0;
1438 }
1439 EXPORT_SYMBOL(kvm_read_guest_atomic);
1440 
1441 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1442 			 int offset, int len)
1443 {
1444 	int r;
1445 	unsigned long addr;
1446 
1447 	addr = gfn_to_hva(kvm, gfn);
1448 	if (kvm_is_error_hva(addr))
1449 		return -EFAULT;
1450 	r = __copy_to_user((void __user *)addr + offset, data, len);
1451 	if (r)
1452 		return -EFAULT;
1453 	mark_page_dirty(kvm, gfn);
1454 	return 0;
1455 }
1456 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1457 
1458 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1459 		    unsigned long len)
1460 {
1461 	gfn_t gfn = gpa >> PAGE_SHIFT;
1462 	int seg;
1463 	int offset = offset_in_page(gpa);
1464 	int ret;
1465 
1466 	while ((seg = next_segment(len, offset)) != 0) {
1467 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1468 		if (ret < 0)
1469 			return ret;
1470 		offset = 0;
1471 		len -= seg;
1472 		data += seg;
1473 		++gfn;
1474 	}
1475 	return 0;
1476 }
1477 
1478 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1479 			      gpa_t gpa)
1480 {
1481 	struct kvm_memslots *slots = kvm_memslots(kvm);
1482 	int offset = offset_in_page(gpa);
1483 	gfn_t gfn = gpa >> PAGE_SHIFT;
1484 
1485 	ghc->gpa = gpa;
1486 	ghc->generation = slots->generation;
1487 	ghc->memslot = gfn_to_memslot(kvm, gfn);
1488 	ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1489 	if (!kvm_is_error_hva(ghc->hva))
1490 		ghc->hva += offset;
1491 	else
1492 		return -EFAULT;
1493 
1494 	return 0;
1495 }
1496 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1497 
1498 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1499 			   void *data, unsigned long len)
1500 {
1501 	struct kvm_memslots *slots = kvm_memslots(kvm);
1502 	int r;
1503 
1504 	if (slots->generation != ghc->generation)
1505 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1506 
1507 	if (kvm_is_error_hva(ghc->hva))
1508 		return -EFAULT;
1509 
1510 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1511 	if (r)
1512 		return -EFAULT;
1513 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1518 
1519 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1520 			   void *data, unsigned long len)
1521 {
1522 	struct kvm_memslots *slots = kvm_memslots(kvm);
1523 	int r;
1524 
1525 	if (slots->generation != ghc->generation)
1526 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1527 
1528 	if (kvm_is_error_hva(ghc->hva))
1529 		return -EFAULT;
1530 
1531 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1532 	if (r)
1533 		return -EFAULT;
1534 
1535 	return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1538 
1539 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1540 {
1541 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1542 				    offset, len);
1543 }
1544 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1545 
1546 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1547 {
1548 	gfn_t gfn = gpa >> PAGE_SHIFT;
1549 	int seg;
1550 	int offset = offset_in_page(gpa);
1551 	int ret;
1552 
1553         while ((seg = next_segment(len, offset)) != 0) {
1554 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1555 		if (ret < 0)
1556 			return ret;
1557 		offset = 0;
1558 		len -= seg;
1559 		++gfn;
1560 	}
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1564 
1565 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1566 			     gfn_t gfn)
1567 {
1568 	if (memslot && memslot->dirty_bitmap) {
1569 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1570 
1571 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1572 	}
1573 }
1574 
1575 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1576 {
1577 	struct kvm_memory_slot *memslot;
1578 
1579 	memslot = gfn_to_memslot(kvm, gfn);
1580 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1581 }
1582 
1583 /*
1584  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1585  */
1586 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1587 {
1588 	DEFINE_WAIT(wait);
1589 
1590 	for (;;) {
1591 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1592 
1593 		if (kvm_arch_vcpu_runnable(vcpu)) {
1594 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1595 			break;
1596 		}
1597 		if (kvm_cpu_has_pending_timer(vcpu))
1598 			break;
1599 		if (signal_pending(current))
1600 			break;
1601 
1602 		schedule();
1603 	}
1604 
1605 	finish_wait(&vcpu->wq, &wait);
1606 }
1607 
1608 #ifndef CONFIG_S390
1609 /*
1610  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1611  */
1612 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1613 {
1614 	int me;
1615 	int cpu = vcpu->cpu;
1616 	wait_queue_head_t *wqp;
1617 
1618 	wqp = kvm_arch_vcpu_wq(vcpu);
1619 	if (waitqueue_active(wqp)) {
1620 		wake_up_interruptible(wqp);
1621 		++vcpu->stat.halt_wakeup;
1622 	}
1623 
1624 	me = get_cpu();
1625 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1626 		if (kvm_arch_vcpu_should_kick(vcpu))
1627 			smp_send_reschedule(cpu);
1628 	put_cpu();
1629 }
1630 #endif /* !CONFIG_S390 */
1631 
1632 void kvm_resched(struct kvm_vcpu *vcpu)
1633 {
1634 	if (!need_resched())
1635 		return;
1636 	cond_resched();
1637 }
1638 EXPORT_SYMBOL_GPL(kvm_resched);
1639 
1640 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1641 {
1642 	struct pid *pid;
1643 	struct task_struct *task = NULL;
1644 
1645 	rcu_read_lock();
1646 	pid = rcu_dereference(target->pid);
1647 	if (pid)
1648 		task = get_pid_task(target->pid, PIDTYPE_PID);
1649 	rcu_read_unlock();
1650 	if (!task)
1651 		return false;
1652 	if (task->flags & PF_VCPU) {
1653 		put_task_struct(task);
1654 		return false;
1655 	}
1656 	if (yield_to(task, 1)) {
1657 		put_task_struct(task);
1658 		return true;
1659 	}
1660 	put_task_struct(task);
1661 	return false;
1662 }
1663 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1664 
1665 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1666 /*
1667  * Helper that checks whether a VCPU is eligible for directed yield.
1668  * Most eligible candidate to yield is decided by following heuristics:
1669  *
1670  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1671  *  (preempted lock holder), indicated by @in_spin_loop.
1672  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1673  *
1674  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1675  *  chance last time (mostly it has become eligible now since we have probably
1676  *  yielded to lockholder in last iteration. This is done by toggling
1677  *  @dy_eligible each time a VCPU checked for eligibility.)
1678  *
1679  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1680  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1681  *  burning. Giving priority for a potential lock-holder increases lock
1682  *  progress.
1683  *
1684  *  Since algorithm is based on heuristics, accessing another VCPU data without
1685  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1686  *  and continue with next VCPU and so on.
1687  */
1688 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1689 {
1690 	bool eligible;
1691 
1692 	eligible = !vcpu->spin_loop.in_spin_loop ||
1693 			(vcpu->spin_loop.in_spin_loop &&
1694 			 vcpu->spin_loop.dy_eligible);
1695 
1696 	if (vcpu->spin_loop.in_spin_loop)
1697 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1698 
1699 	return eligible;
1700 }
1701 #endif
1702 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1703 {
1704 	struct kvm *kvm = me->kvm;
1705 	struct kvm_vcpu *vcpu;
1706 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1707 	int yielded = 0;
1708 	int pass;
1709 	int i;
1710 
1711 	kvm_vcpu_set_in_spin_loop(me, true);
1712 	/*
1713 	 * We boost the priority of a VCPU that is runnable but not
1714 	 * currently running, because it got preempted by something
1715 	 * else and called schedule in __vcpu_run.  Hopefully that
1716 	 * VCPU is holding the lock that we need and will release it.
1717 	 * We approximate round-robin by starting at the last boosted VCPU.
1718 	 */
1719 	for (pass = 0; pass < 2 && !yielded; pass++) {
1720 		kvm_for_each_vcpu(i, vcpu, kvm) {
1721 			if (!pass && i <= last_boosted_vcpu) {
1722 				i = last_boosted_vcpu;
1723 				continue;
1724 			} else if (pass && i > last_boosted_vcpu)
1725 				break;
1726 			if (vcpu == me)
1727 				continue;
1728 			if (waitqueue_active(&vcpu->wq))
1729 				continue;
1730 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1731 				continue;
1732 			if (kvm_vcpu_yield_to(vcpu)) {
1733 				kvm->last_boosted_vcpu = i;
1734 				yielded = 1;
1735 				break;
1736 			}
1737 		}
1738 	}
1739 	kvm_vcpu_set_in_spin_loop(me, false);
1740 
1741 	/* Ensure vcpu is not eligible during next spinloop */
1742 	kvm_vcpu_set_dy_eligible(me, false);
1743 }
1744 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1745 
1746 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1747 {
1748 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1749 	struct page *page;
1750 
1751 	if (vmf->pgoff == 0)
1752 		page = virt_to_page(vcpu->run);
1753 #ifdef CONFIG_X86
1754 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1755 		page = virt_to_page(vcpu->arch.pio_data);
1756 #endif
1757 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1758 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1759 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1760 #endif
1761 	else
1762 		return kvm_arch_vcpu_fault(vcpu, vmf);
1763 	get_page(page);
1764 	vmf->page = page;
1765 	return 0;
1766 }
1767 
1768 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1769 	.fault = kvm_vcpu_fault,
1770 };
1771 
1772 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1773 {
1774 	vma->vm_ops = &kvm_vcpu_vm_ops;
1775 	return 0;
1776 }
1777 
1778 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1779 {
1780 	struct kvm_vcpu *vcpu = filp->private_data;
1781 
1782 	kvm_put_kvm(vcpu->kvm);
1783 	return 0;
1784 }
1785 
1786 static struct file_operations kvm_vcpu_fops = {
1787 	.release        = kvm_vcpu_release,
1788 	.unlocked_ioctl = kvm_vcpu_ioctl,
1789 #ifdef CONFIG_COMPAT
1790 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1791 #endif
1792 	.mmap           = kvm_vcpu_mmap,
1793 	.llseek		= noop_llseek,
1794 };
1795 
1796 /*
1797  * Allocates an inode for the vcpu.
1798  */
1799 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1800 {
1801 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1802 }
1803 
1804 /*
1805  * Creates some virtual cpus.  Good luck creating more than one.
1806  */
1807 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1808 {
1809 	int r;
1810 	struct kvm_vcpu *vcpu, *v;
1811 
1812 	vcpu = kvm_arch_vcpu_create(kvm, id);
1813 	if (IS_ERR(vcpu))
1814 		return PTR_ERR(vcpu);
1815 
1816 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1817 
1818 	r = kvm_arch_vcpu_setup(vcpu);
1819 	if (r)
1820 		goto vcpu_destroy;
1821 
1822 	mutex_lock(&kvm->lock);
1823 	if (!kvm_vcpu_compatible(vcpu)) {
1824 		r = -EINVAL;
1825 		goto unlock_vcpu_destroy;
1826 	}
1827 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1828 		r = -EINVAL;
1829 		goto unlock_vcpu_destroy;
1830 	}
1831 
1832 	kvm_for_each_vcpu(r, v, kvm)
1833 		if (v->vcpu_id == id) {
1834 			r = -EEXIST;
1835 			goto unlock_vcpu_destroy;
1836 		}
1837 
1838 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1839 
1840 	/* Now it's all set up, let userspace reach it */
1841 	kvm_get_kvm(kvm);
1842 	r = create_vcpu_fd(vcpu);
1843 	if (r < 0) {
1844 		kvm_put_kvm(kvm);
1845 		goto unlock_vcpu_destroy;
1846 	}
1847 
1848 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1849 	smp_wmb();
1850 	atomic_inc(&kvm->online_vcpus);
1851 
1852 	mutex_unlock(&kvm->lock);
1853 	kvm_arch_vcpu_postcreate(vcpu);
1854 	return r;
1855 
1856 unlock_vcpu_destroy:
1857 	mutex_unlock(&kvm->lock);
1858 vcpu_destroy:
1859 	kvm_arch_vcpu_destroy(vcpu);
1860 	return r;
1861 }
1862 
1863 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1864 {
1865 	if (sigset) {
1866 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1867 		vcpu->sigset_active = 1;
1868 		vcpu->sigset = *sigset;
1869 	} else
1870 		vcpu->sigset_active = 0;
1871 	return 0;
1872 }
1873 
1874 static long kvm_vcpu_ioctl(struct file *filp,
1875 			   unsigned int ioctl, unsigned long arg)
1876 {
1877 	struct kvm_vcpu *vcpu = filp->private_data;
1878 	void __user *argp = (void __user *)arg;
1879 	int r;
1880 	struct kvm_fpu *fpu = NULL;
1881 	struct kvm_sregs *kvm_sregs = NULL;
1882 
1883 	if (vcpu->kvm->mm != current->mm)
1884 		return -EIO;
1885 
1886 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1887 	/*
1888 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1889 	 * so vcpu_load() would break it.
1890 	 */
1891 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1892 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1893 #endif
1894 
1895 
1896 	r = vcpu_load(vcpu);
1897 	if (r)
1898 		return r;
1899 	switch (ioctl) {
1900 	case KVM_RUN:
1901 		r = -EINVAL;
1902 		if (arg)
1903 			goto out;
1904 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1905 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1906 		break;
1907 	case KVM_GET_REGS: {
1908 		struct kvm_regs *kvm_regs;
1909 
1910 		r = -ENOMEM;
1911 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1912 		if (!kvm_regs)
1913 			goto out;
1914 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1915 		if (r)
1916 			goto out_free1;
1917 		r = -EFAULT;
1918 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1919 			goto out_free1;
1920 		r = 0;
1921 out_free1:
1922 		kfree(kvm_regs);
1923 		break;
1924 	}
1925 	case KVM_SET_REGS: {
1926 		struct kvm_regs *kvm_regs;
1927 
1928 		r = -ENOMEM;
1929 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
1930 		if (IS_ERR(kvm_regs)) {
1931 			r = PTR_ERR(kvm_regs);
1932 			goto out;
1933 		}
1934 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1935 		kfree(kvm_regs);
1936 		break;
1937 	}
1938 	case KVM_GET_SREGS: {
1939 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1940 		r = -ENOMEM;
1941 		if (!kvm_sregs)
1942 			goto out;
1943 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1944 		if (r)
1945 			goto out;
1946 		r = -EFAULT;
1947 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1948 			goto out;
1949 		r = 0;
1950 		break;
1951 	}
1952 	case KVM_SET_SREGS: {
1953 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
1954 		if (IS_ERR(kvm_sregs)) {
1955 			r = PTR_ERR(kvm_sregs);
1956 			kvm_sregs = NULL;
1957 			goto out;
1958 		}
1959 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1960 		break;
1961 	}
1962 	case KVM_GET_MP_STATE: {
1963 		struct kvm_mp_state mp_state;
1964 
1965 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1966 		if (r)
1967 			goto out;
1968 		r = -EFAULT;
1969 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
1970 			goto out;
1971 		r = 0;
1972 		break;
1973 	}
1974 	case KVM_SET_MP_STATE: {
1975 		struct kvm_mp_state mp_state;
1976 
1977 		r = -EFAULT;
1978 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
1979 			goto out;
1980 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1981 		break;
1982 	}
1983 	case KVM_TRANSLATE: {
1984 		struct kvm_translation tr;
1985 
1986 		r = -EFAULT;
1987 		if (copy_from_user(&tr, argp, sizeof tr))
1988 			goto out;
1989 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1990 		if (r)
1991 			goto out;
1992 		r = -EFAULT;
1993 		if (copy_to_user(argp, &tr, sizeof tr))
1994 			goto out;
1995 		r = 0;
1996 		break;
1997 	}
1998 	case KVM_SET_GUEST_DEBUG: {
1999 		struct kvm_guest_debug dbg;
2000 
2001 		r = -EFAULT;
2002 		if (copy_from_user(&dbg, argp, sizeof dbg))
2003 			goto out;
2004 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2005 		break;
2006 	}
2007 	case KVM_SET_SIGNAL_MASK: {
2008 		struct kvm_signal_mask __user *sigmask_arg = argp;
2009 		struct kvm_signal_mask kvm_sigmask;
2010 		sigset_t sigset, *p;
2011 
2012 		p = NULL;
2013 		if (argp) {
2014 			r = -EFAULT;
2015 			if (copy_from_user(&kvm_sigmask, argp,
2016 					   sizeof kvm_sigmask))
2017 				goto out;
2018 			r = -EINVAL;
2019 			if (kvm_sigmask.len != sizeof sigset)
2020 				goto out;
2021 			r = -EFAULT;
2022 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2023 					   sizeof sigset))
2024 				goto out;
2025 			p = &sigset;
2026 		}
2027 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2028 		break;
2029 	}
2030 	case KVM_GET_FPU: {
2031 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2032 		r = -ENOMEM;
2033 		if (!fpu)
2034 			goto out;
2035 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2036 		if (r)
2037 			goto out;
2038 		r = -EFAULT;
2039 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2040 			goto out;
2041 		r = 0;
2042 		break;
2043 	}
2044 	case KVM_SET_FPU: {
2045 		fpu = memdup_user(argp, sizeof(*fpu));
2046 		if (IS_ERR(fpu)) {
2047 			r = PTR_ERR(fpu);
2048 			fpu = NULL;
2049 			goto out;
2050 		}
2051 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2052 		break;
2053 	}
2054 	default:
2055 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2056 	}
2057 out:
2058 	vcpu_put(vcpu);
2059 	kfree(fpu);
2060 	kfree(kvm_sregs);
2061 	return r;
2062 }
2063 
2064 #ifdef CONFIG_COMPAT
2065 static long kvm_vcpu_compat_ioctl(struct file *filp,
2066 				  unsigned int ioctl, unsigned long arg)
2067 {
2068 	struct kvm_vcpu *vcpu = filp->private_data;
2069 	void __user *argp = compat_ptr(arg);
2070 	int r;
2071 
2072 	if (vcpu->kvm->mm != current->mm)
2073 		return -EIO;
2074 
2075 	switch (ioctl) {
2076 	case KVM_SET_SIGNAL_MASK: {
2077 		struct kvm_signal_mask __user *sigmask_arg = argp;
2078 		struct kvm_signal_mask kvm_sigmask;
2079 		compat_sigset_t csigset;
2080 		sigset_t sigset;
2081 
2082 		if (argp) {
2083 			r = -EFAULT;
2084 			if (copy_from_user(&kvm_sigmask, argp,
2085 					   sizeof kvm_sigmask))
2086 				goto out;
2087 			r = -EINVAL;
2088 			if (kvm_sigmask.len != sizeof csigset)
2089 				goto out;
2090 			r = -EFAULT;
2091 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2092 					   sizeof csigset))
2093 				goto out;
2094 			sigset_from_compat(&sigset, &csigset);
2095 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2096 		} else
2097 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2098 		break;
2099 	}
2100 	default:
2101 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2102 	}
2103 
2104 out:
2105 	return r;
2106 }
2107 #endif
2108 
2109 static long kvm_vm_ioctl(struct file *filp,
2110 			   unsigned int ioctl, unsigned long arg)
2111 {
2112 	struct kvm *kvm = filp->private_data;
2113 	void __user *argp = (void __user *)arg;
2114 	int r;
2115 
2116 	if (kvm->mm != current->mm)
2117 		return -EIO;
2118 	switch (ioctl) {
2119 	case KVM_CREATE_VCPU:
2120 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2121 		break;
2122 	case KVM_SET_USER_MEMORY_REGION: {
2123 		struct kvm_userspace_memory_region kvm_userspace_mem;
2124 
2125 		r = -EFAULT;
2126 		if (copy_from_user(&kvm_userspace_mem, argp,
2127 						sizeof kvm_userspace_mem))
2128 			goto out;
2129 
2130 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2131 		break;
2132 	}
2133 	case KVM_GET_DIRTY_LOG: {
2134 		struct kvm_dirty_log log;
2135 
2136 		r = -EFAULT;
2137 		if (copy_from_user(&log, argp, sizeof log))
2138 			goto out;
2139 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2140 		break;
2141 	}
2142 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2143 	case KVM_REGISTER_COALESCED_MMIO: {
2144 		struct kvm_coalesced_mmio_zone zone;
2145 		r = -EFAULT;
2146 		if (copy_from_user(&zone, argp, sizeof zone))
2147 			goto out;
2148 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2149 		break;
2150 	}
2151 	case KVM_UNREGISTER_COALESCED_MMIO: {
2152 		struct kvm_coalesced_mmio_zone zone;
2153 		r = -EFAULT;
2154 		if (copy_from_user(&zone, argp, sizeof zone))
2155 			goto out;
2156 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2157 		break;
2158 	}
2159 #endif
2160 	case KVM_IRQFD: {
2161 		struct kvm_irqfd data;
2162 
2163 		r = -EFAULT;
2164 		if (copy_from_user(&data, argp, sizeof data))
2165 			goto out;
2166 		r = kvm_irqfd(kvm, &data);
2167 		break;
2168 	}
2169 	case KVM_IOEVENTFD: {
2170 		struct kvm_ioeventfd data;
2171 
2172 		r = -EFAULT;
2173 		if (copy_from_user(&data, argp, sizeof data))
2174 			goto out;
2175 		r = kvm_ioeventfd(kvm, &data);
2176 		break;
2177 	}
2178 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2179 	case KVM_SET_BOOT_CPU_ID:
2180 		r = 0;
2181 		mutex_lock(&kvm->lock);
2182 		if (atomic_read(&kvm->online_vcpus) != 0)
2183 			r = -EBUSY;
2184 		else
2185 			kvm->bsp_vcpu_id = arg;
2186 		mutex_unlock(&kvm->lock);
2187 		break;
2188 #endif
2189 #ifdef CONFIG_HAVE_KVM_MSI
2190 	case KVM_SIGNAL_MSI: {
2191 		struct kvm_msi msi;
2192 
2193 		r = -EFAULT;
2194 		if (copy_from_user(&msi, argp, sizeof msi))
2195 			goto out;
2196 		r = kvm_send_userspace_msi(kvm, &msi);
2197 		break;
2198 	}
2199 #endif
2200 #ifdef __KVM_HAVE_IRQ_LINE
2201 	case KVM_IRQ_LINE_STATUS:
2202 	case KVM_IRQ_LINE: {
2203 		struct kvm_irq_level irq_event;
2204 
2205 		r = -EFAULT;
2206 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2207 			goto out;
2208 
2209 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event);
2210 		if (r)
2211 			goto out;
2212 
2213 		r = -EFAULT;
2214 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2215 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2216 				goto out;
2217 		}
2218 
2219 		r = 0;
2220 		break;
2221 	}
2222 #endif
2223 	default:
2224 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2225 		if (r == -ENOTTY)
2226 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2227 	}
2228 out:
2229 	return r;
2230 }
2231 
2232 #ifdef CONFIG_COMPAT
2233 struct compat_kvm_dirty_log {
2234 	__u32 slot;
2235 	__u32 padding1;
2236 	union {
2237 		compat_uptr_t dirty_bitmap; /* one bit per page */
2238 		__u64 padding2;
2239 	};
2240 };
2241 
2242 static long kvm_vm_compat_ioctl(struct file *filp,
2243 			   unsigned int ioctl, unsigned long arg)
2244 {
2245 	struct kvm *kvm = filp->private_data;
2246 	int r;
2247 
2248 	if (kvm->mm != current->mm)
2249 		return -EIO;
2250 	switch (ioctl) {
2251 	case KVM_GET_DIRTY_LOG: {
2252 		struct compat_kvm_dirty_log compat_log;
2253 		struct kvm_dirty_log log;
2254 
2255 		r = -EFAULT;
2256 		if (copy_from_user(&compat_log, (void __user *)arg,
2257 				   sizeof(compat_log)))
2258 			goto out;
2259 		log.slot	 = compat_log.slot;
2260 		log.padding1	 = compat_log.padding1;
2261 		log.padding2	 = compat_log.padding2;
2262 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2263 
2264 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2265 		break;
2266 	}
2267 	default:
2268 		r = kvm_vm_ioctl(filp, ioctl, arg);
2269 	}
2270 
2271 out:
2272 	return r;
2273 }
2274 #endif
2275 
2276 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2277 {
2278 	struct page *page[1];
2279 	unsigned long addr;
2280 	int npages;
2281 	gfn_t gfn = vmf->pgoff;
2282 	struct kvm *kvm = vma->vm_file->private_data;
2283 
2284 	addr = gfn_to_hva(kvm, gfn);
2285 	if (kvm_is_error_hva(addr))
2286 		return VM_FAULT_SIGBUS;
2287 
2288 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2289 				NULL);
2290 	if (unlikely(npages != 1))
2291 		return VM_FAULT_SIGBUS;
2292 
2293 	vmf->page = page[0];
2294 	return 0;
2295 }
2296 
2297 static const struct vm_operations_struct kvm_vm_vm_ops = {
2298 	.fault = kvm_vm_fault,
2299 };
2300 
2301 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2302 {
2303 	vma->vm_ops = &kvm_vm_vm_ops;
2304 	return 0;
2305 }
2306 
2307 static struct file_operations kvm_vm_fops = {
2308 	.release        = kvm_vm_release,
2309 	.unlocked_ioctl = kvm_vm_ioctl,
2310 #ifdef CONFIG_COMPAT
2311 	.compat_ioctl   = kvm_vm_compat_ioctl,
2312 #endif
2313 	.mmap           = kvm_vm_mmap,
2314 	.llseek		= noop_llseek,
2315 };
2316 
2317 static int kvm_dev_ioctl_create_vm(unsigned long type)
2318 {
2319 	int r;
2320 	struct kvm *kvm;
2321 
2322 	kvm = kvm_create_vm(type);
2323 	if (IS_ERR(kvm))
2324 		return PTR_ERR(kvm);
2325 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2326 	r = kvm_coalesced_mmio_init(kvm);
2327 	if (r < 0) {
2328 		kvm_put_kvm(kvm);
2329 		return r;
2330 	}
2331 #endif
2332 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2333 	if (r < 0)
2334 		kvm_put_kvm(kvm);
2335 
2336 	return r;
2337 }
2338 
2339 static long kvm_dev_ioctl_check_extension_generic(long arg)
2340 {
2341 	switch (arg) {
2342 	case KVM_CAP_USER_MEMORY:
2343 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2344 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2345 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2346 	case KVM_CAP_SET_BOOT_CPU_ID:
2347 #endif
2348 	case KVM_CAP_INTERNAL_ERROR_DATA:
2349 #ifdef CONFIG_HAVE_KVM_MSI
2350 	case KVM_CAP_SIGNAL_MSI:
2351 #endif
2352 		return 1;
2353 #ifdef KVM_CAP_IRQ_ROUTING
2354 	case KVM_CAP_IRQ_ROUTING:
2355 		return KVM_MAX_IRQ_ROUTES;
2356 #endif
2357 	default:
2358 		break;
2359 	}
2360 	return kvm_dev_ioctl_check_extension(arg);
2361 }
2362 
2363 static long kvm_dev_ioctl(struct file *filp,
2364 			  unsigned int ioctl, unsigned long arg)
2365 {
2366 	long r = -EINVAL;
2367 
2368 	switch (ioctl) {
2369 	case KVM_GET_API_VERSION:
2370 		r = -EINVAL;
2371 		if (arg)
2372 			goto out;
2373 		r = KVM_API_VERSION;
2374 		break;
2375 	case KVM_CREATE_VM:
2376 		r = kvm_dev_ioctl_create_vm(arg);
2377 		break;
2378 	case KVM_CHECK_EXTENSION:
2379 		r = kvm_dev_ioctl_check_extension_generic(arg);
2380 		break;
2381 	case KVM_GET_VCPU_MMAP_SIZE:
2382 		r = -EINVAL;
2383 		if (arg)
2384 			goto out;
2385 		r = PAGE_SIZE;     /* struct kvm_run */
2386 #ifdef CONFIG_X86
2387 		r += PAGE_SIZE;    /* pio data page */
2388 #endif
2389 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2390 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2391 #endif
2392 		break;
2393 	case KVM_TRACE_ENABLE:
2394 	case KVM_TRACE_PAUSE:
2395 	case KVM_TRACE_DISABLE:
2396 		r = -EOPNOTSUPP;
2397 		break;
2398 	default:
2399 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2400 	}
2401 out:
2402 	return r;
2403 }
2404 
2405 static struct file_operations kvm_chardev_ops = {
2406 	.unlocked_ioctl = kvm_dev_ioctl,
2407 	.compat_ioctl   = kvm_dev_ioctl,
2408 	.llseek		= noop_llseek,
2409 };
2410 
2411 static struct miscdevice kvm_dev = {
2412 	KVM_MINOR,
2413 	"kvm",
2414 	&kvm_chardev_ops,
2415 };
2416 
2417 static void hardware_enable_nolock(void *junk)
2418 {
2419 	int cpu = raw_smp_processor_id();
2420 	int r;
2421 
2422 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2423 		return;
2424 
2425 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2426 
2427 	r = kvm_arch_hardware_enable(NULL);
2428 
2429 	if (r) {
2430 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2431 		atomic_inc(&hardware_enable_failed);
2432 		printk(KERN_INFO "kvm: enabling virtualization on "
2433 				 "CPU%d failed\n", cpu);
2434 	}
2435 }
2436 
2437 static void hardware_enable(void *junk)
2438 {
2439 	raw_spin_lock(&kvm_lock);
2440 	hardware_enable_nolock(junk);
2441 	raw_spin_unlock(&kvm_lock);
2442 }
2443 
2444 static void hardware_disable_nolock(void *junk)
2445 {
2446 	int cpu = raw_smp_processor_id();
2447 
2448 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2449 		return;
2450 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2451 	kvm_arch_hardware_disable(NULL);
2452 }
2453 
2454 static void hardware_disable(void *junk)
2455 {
2456 	raw_spin_lock(&kvm_lock);
2457 	hardware_disable_nolock(junk);
2458 	raw_spin_unlock(&kvm_lock);
2459 }
2460 
2461 static void hardware_disable_all_nolock(void)
2462 {
2463 	BUG_ON(!kvm_usage_count);
2464 
2465 	kvm_usage_count--;
2466 	if (!kvm_usage_count)
2467 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2468 }
2469 
2470 static void hardware_disable_all(void)
2471 {
2472 	raw_spin_lock(&kvm_lock);
2473 	hardware_disable_all_nolock();
2474 	raw_spin_unlock(&kvm_lock);
2475 }
2476 
2477 static int hardware_enable_all(void)
2478 {
2479 	int r = 0;
2480 
2481 	raw_spin_lock(&kvm_lock);
2482 
2483 	kvm_usage_count++;
2484 	if (kvm_usage_count == 1) {
2485 		atomic_set(&hardware_enable_failed, 0);
2486 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2487 
2488 		if (atomic_read(&hardware_enable_failed)) {
2489 			hardware_disable_all_nolock();
2490 			r = -EBUSY;
2491 		}
2492 	}
2493 
2494 	raw_spin_unlock(&kvm_lock);
2495 
2496 	return r;
2497 }
2498 
2499 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2500 			   void *v)
2501 {
2502 	int cpu = (long)v;
2503 
2504 	if (!kvm_usage_count)
2505 		return NOTIFY_OK;
2506 
2507 	val &= ~CPU_TASKS_FROZEN;
2508 	switch (val) {
2509 	case CPU_DYING:
2510 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2511 		       cpu);
2512 		hardware_disable(NULL);
2513 		break;
2514 	case CPU_STARTING:
2515 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2516 		       cpu);
2517 		hardware_enable(NULL);
2518 		break;
2519 	}
2520 	return NOTIFY_OK;
2521 }
2522 
2523 
2524 asmlinkage void kvm_spurious_fault(void)
2525 {
2526 	/* Fault while not rebooting.  We want the trace. */
2527 	BUG();
2528 }
2529 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2530 
2531 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2532 		      void *v)
2533 {
2534 	/*
2535 	 * Some (well, at least mine) BIOSes hang on reboot if
2536 	 * in vmx root mode.
2537 	 *
2538 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2539 	 */
2540 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2541 	kvm_rebooting = true;
2542 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2543 	return NOTIFY_OK;
2544 }
2545 
2546 static struct notifier_block kvm_reboot_notifier = {
2547 	.notifier_call = kvm_reboot,
2548 	.priority = 0,
2549 };
2550 
2551 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2552 {
2553 	int i;
2554 
2555 	for (i = 0; i < bus->dev_count; i++) {
2556 		struct kvm_io_device *pos = bus->range[i].dev;
2557 
2558 		kvm_iodevice_destructor(pos);
2559 	}
2560 	kfree(bus);
2561 }
2562 
2563 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2564 {
2565 	const struct kvm_io_range *r1 = p1;
2566 	const struct kvm_io_range *r2 = p2;
2567 
2568 	if (r1->addr < r2->addr)
2569 		return -1;
2570 	if (r1->addr + r1->len > r2->addr + r2->len)
2571 		return 1;
2572 	return 0;
2573 }
2574 
2575 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2576 			  gpa_t addr, int len)
2577 {
2578 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2579 		.addr = addr,
2580 		.len = len,
2581 		.dev = dev,
2582 	};
2583 
2584 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2585 		kvm_io_bus_sort_cmp, NULL);
2586 
2587 	return 0;
2588 }
2589 
2590 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2591 			     gpa_t addr, int len)
2592 {
2593 	struct kvm_io_range *range, key;
2594 	int off;
2595 
2596 	key = (struct kvm_io_range) {
2597 		.addr = addr,
2598 		.len = len,
2599 	};
2600 
2601 	range = bsearch(&key, bus->range, bus->dev_count,
2602 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2603 	if (range == NULL)
2604 		return -ENOENT;
2605 
2606 	off = range - bus->range;
2607 
2608 	while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2609 		off--;
2610 
2611 	return off;
2612 }
2613 
2614 /* kvm_io_bus_write - called under kvm->slots_lock */
2615 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2616 		     int len, const void *val)
2617 {
2618 	int idx;
2619 	struct kvm_io_bus *bus;
2620 	struct kvm_io_range range;
2621 
2622 	range = (struct kvm_io_range) {
2623 		.addr = addr,
2624 		.len = len,
2625 	};
2626 
2627 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2628 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2629 	if (idx < 0)
2630 		return -EOPNOTSUPP;
2631 
2632 	while (idx < bus->dev_count &&
2633 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2634 		if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2635 			return 0;
2636 		idx++;
2637 	}
2638 
2639 	return -EOPNOTSUPP;
2640 }
2641 
2642 /* kvm_io_bus_read - called under kvm->slots_lock */
2643 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2644 		    int len, void *val)
2645 {
2646 	int idx;
2647 	struct kvm_io_bus *bus;
2648 	struct kvm_io_range range;
2649 
2650 	range = (struct kvm_io_range) {
2651 		.addr = addr,
2652 		.len = len,
2653 	};
2654 
2655 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2656 	idx = kvm_io_bus_get_first_dev(bus, addr, len);
2657 	if (idx < 0)
2658 		return -EOPNOTSUPP;
2659 
2660 	while (idx < bus->dev_count &&
2661 		kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2662 		if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2663 			return 0;
2664 		idx++;
2665 	}
2666 
2667 	return -EOPNOTSUPP;
2668 }
2669 
2670 /* Caller must hold slots_lock. */
2671 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2672 			    int len, struct kvm_io_device *dev)
2673 {
2674 	struct kvm_io_bus *new_bus, *bus;
2675 
2676 	bus = kvm->buses[bus_idx];
2677 	if (bus->dev_count > NR_IOBUS_DEVS - 1)
2678 		return -ENOSPC;
2679 
2680 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
2681 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2682 	if (!new_bus)
2683 		return -ENOMEM;
2684 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
2685 	       sizeof(struct kvm_io_range)));
2686 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2687 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2688 	synchronize_srcu_expedited(&kvm->srcu);
2689 	kfree(bus);
2690 
2691 	return 0;
2692 }
2693 
2694 /* Caller must hold slots_lock. */
2695 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2696 			      struct kvm_io_device *dev)
2697 {
2698 	int i, r;
2699 	struct kvm_io_bus *new_bus, *bus;
2700 
2701 	bus = kvm->buses[bus_idx];
2702 	r = -ENOENT;
2703 	for (i = 0; i < bus->dev_count; i++)
2704 		if (bus->range[i].dev == dev) {
2705 			r = 0;
2706 			break;
2707 		}
2708 
2709 	if (r)
2710 		return r;
2711 
2712 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
2713 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
2714 	if (!new_bus)
2715 		return -ENOMEM;
2716 
2717 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
2718 	new_bus->dev_count--;
2719 	memcpy(new_bus->range + i, bus->range + i + 1,
2720 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
2721 
2722 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2723 	synchronize_srcu_expedited(&kvm->srcu);
2724 	kfree(bus);
2725 	return r;
2726 }
2727 
2728 static struct notifier_block kvm_cpu_notifier = {
2729 	.notifier_call = kvm_cpu_hotplug,
2730 };
2731 
2732 static int vm_stat_get(void *_offset, u64 *val)
2733 {
2734 	unsigned offset = (long)_offset;
2735 	struct kvm *kvm;
2736 
2737 	*val = 0;
2738 	raw_spin_lock(&kvm_lock);
2739 	list_for_each_entry(kvm, &vm_list, vm_list)
2740 		*val += *(u32 *)((void *)kvm + offset);
2741 	raw_spin_unlock(&kvm_lock);
2742 	return 0;
2743 }
2744 
2745 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2746 
2747 static int vcpu_stat_get(void *_offset, u64 *val)
2748 {
2749 	unsigned offset = (long)_offset;
2750 	struct kvm *kvm;
2751 	struct kvm_vcpu *vcpu;
2752 	int i;
2753 
2754 	*val = 0;
2755 	raw_spin_lock(&kvm_lock);
2756 	list_for_each_entry(kvm, &vm_list, vm_list)
2757 		kvm_for_each_vcpu(i, vcpu, kvm)
2758 			*val += *(u32 *)((void *)vcpu + offset);
2759 
2760 	raw_spin_unlock(&kvm_lock);
2761 	return 0;
2762 }
2763 
2764 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2765 
2766 static const struct file_operations *stat_fops[] = {
2767 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
2768 	[KVM_STAT_VM]   = &vm_stat_fops,
2769 };
2770 
2771 static int kvm_init_debug(void)
2772 {
2773 	int r = -EFAULT;
2774 	struct kvm_stats_debugfs_item *p;
2775 
2776 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2777 	if (kvm_debugfs_dir == NULL)
2778 		goto out;
2779 
2780 	for (p = debugfs_entries; p->name; ++p) {
2781 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2782 						(void *)(long)p->offset,
2783 						stat_fops[p->kind]);
2784 		if (p->dentry == NULL)
2785 			goto out_dir;
2786 	}
2787 
2788 	return 0;
2789 
2790 out_dir:
2791 	debugfs_remove_recursive(kvm_debugfs_dir);
2792 out:
2793 	return r;
2794 }
2795 
2796 static void kvm_exit_debug(void)
2797 {
2798 	struct kvm_stats_debugfs_item *p;
2799 
2800 	for (p = debugfs_entries; p->name; ++p)
2801 		debugfs_remove(p->dentry);
2802 	debugfs_remove(kvm_debugfs_dir);
2803 }
2804 
2805 static int kvm_suspend(void)
2806 {
2807 	if (kvm_usage_count)
2808 		hardware_disable_nolock(NULL);
2809 	return 0;
2810 }
2811 
2812 static void kvm_resume(void)
2813 {
2814 	if (kvm_usage_count) {
2815 		WARN_ON(raw_spin_is_locked(&kvm_lock));
2816 		hardware_enable_nolock(NULL);
2817 	}
2818 }
2819 
2820 static struct syscore_ops kvm_syscore_ops = {
2821 	.suspend = kvm_suspend,
2822 	.resume = kvm_resume,
2823 };
2824 
2825 static inline
2826 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2827 {
2828 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
2829 }
2830 
2831 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2832 {
2833 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2834 
2835 	kvm_arch_vcpu_load(vcpu, cpu);
2836 }
2837 
2838 static void kvm_sched_out(struct preempt_notifier *pn,
2839 			  struct task_struct *next)
2840 {
2841 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2842 
2843 	kvm_arch_vcpu_put(vcpu);
2844 }
2845 
2846 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2847 		  struct module *module)
2848 {
2849 	int r;
2850 	int cpu;
2851 
2852 	r = kvm_arch_init(opaque);
2853 	if (r)
2854 		goto out_fail;
2855 
2856 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2857 		r = -ENOMEM;
2858 		goto out_free_0;
2859 	}
2860 
2861 	r = kvm_arch_hardware_setup();
2862 	if (r < 0)
2863 		goto out_free_0a;
2864 
2865 	for_each_online_cpu(cpu) {
2866 		smp_call_function_single(cpu,
2867 				kvm_arch_check_processor_compat,
2868 				&r, 1);
2869 		if (r < 0)
2870 			goto out_free_1;
2871 	}
2872 
2873 	r = register_cpu_notifier(&kvm_cpu_notifier);
2874 	if (r)
2875 		goto out_free_2;
2876 	register_reboot_notifier(&kvm_reboot_notifier);
2877 
2878 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
2879 	if (!vcpu_align)
2880 		vcpu_align = __alignof__(struct kvm_vcpu);
2881 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2882 					   0, NULL);
2883 	if (!kvm_vcpu_cache) {
2884 		r = -ENOMEM;
2885 		goto out_free_3;
2886 	}
2887 
2888 	r = kvm_async_pf_init();
2889 	if (r)
2890 		goto out_free;
2891 
2892 	kvm_chardev_ops.owner = module;
2893 	kvm_vm_fops.owner = module;
2894 	kvm_vcpu_fops.owner = module;
2895 
2896 	r = misc_register(&kvm_dev);
2897 	if (r) {
2898 		printk(KERN_ERR "kvm: misc device register failed\n");
2899 		goto out_unreg;
2900 	}
2901 
2902 	register_syscore_ops(&kvm_syscore_ops);
2903 
2904 	kvm_preempt_ops.sched_in = kvm_sched_in;
2905 	kvm_preempt_ops.sched_out = kvm_sched_out;
2906 
2907 	r = kvm_init_debug();
2908 	if (r) {
2909 		printk(KERN_ERR "kvm: create debugfs files failed\n");
2910 		goto out_undebugfs;
2911 	}
2912 
2913 	return 0;
2914 
2915 out_undebugfs:
2916 	unregister_syscore_ops(&kvm_syscore_ops);
2917 out_unreg:
2918 	kvm_async_pf_deinit();
2919 out_free:
2920 	kmem_cache_destroy(kvm_vcpu_cache);
2921 out_free_3:
2922 	unregister_reboot_notifier(&kvm_reboot_notifier);
2923 	unregister_cpu_notifier(&kvm_cpu_notifier);
2924 out_free_2:
2925 out_free_1:
2926 	kvm_arch_hardware_unsetup();
2927 out_free_0a:
2928 	free_cpumask_var(cpus_hardware_enabled);
2929 out_free_0:
2930 	kvm_arch_exit();
2931 out_fail:
2932 	return r;
2933 }
2934 EXPORT_SYMBOL_GPL(kvm_init);
2935 
2936 void kvm_exit(void)
2937 {
2938 	kvm_exit_debug();
2939 	misc_deregister(&kvm_dev);
2940 	kmem_cache_destroy(kvm_vcpu_cache);
2941 	kvm_async_pf_deinit();
2942 	unregister_syscore_ops(&kvm_syscore_ops);
2943 	unregister_reboot_notifier(&kvm_reboot_notifier);
2944 	unregister_cpu_notifier(&kvm_cpu_notifier);
2945 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2946 	kvm_arch_hardware_unsetup();
2947 	kvm_arch_exit();
2948 	free_cpumask_var(cpus_hardware_enabled);
2949 }
2950 EXPORT_SYMBOL_GPL(kvm_exit);
2951