xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 089a49b6)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "iodev.h"
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52 
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
57 
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 /*
68  * Ordering of locks:
69  *
70  * 		kvm->lock --> kvm->slots_lock --> kvm->irq_lock
71  */
72 
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
75 
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
79 
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
82 
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
84 
85 struct dentry *kvm_debugfs_dir;
86 
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 			   unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 				  unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
95 
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
97 
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
100 
101 static bool largepages_enabled = true;
102 
103 bool kvm_is_mmio_pfn(pfn_t pfn)
104 {
105 	if (pfn_valid(pfn))
106 		return PageReserved(pfn_to_page(pfn));
107 
108 	return true;
109 }
110 
111 /*
112  * Switches to specified vcpu, until a matching vcpu_put()
113  */
114 int vcpu_load(struct kvm_vcpu *vcpu)
115 {
116 	int cpu;
117 
118 	if (mutex_lock_killable(&vcpu->mutex))
119 		return -EINTR;
120 	if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
121 		/* The thread running this VCPU changed. */
122 		struct pid *oldpid = vcpu->pid;
123 		struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
124 		rcu_assign_pointer(vcpu->pid, newpid);
125 		synchronize_rcu();
126 		put_pid(oldpid);
127 	}
128 	cpu = get_cpu();
129 	preempt_notifier_register(&vcpu->preempt_notifier);
130 	kvm_arch_vcpu_load(vcpu, cpu);
131 	put_cpu();
132 	return 0;
133 }
134 
135 void vcpu_put(struct kvm_vcpu *vcpu)
136 {
137 	preempt_disable();
138 	kvm_arch_vcpu_put(vcpu);
139 	preempt_notifier_unregister(&vcpu->preempt_notifier);
140 	preempt_enable();
141 	mutex_unlock(&vcpu->mutex);
142 }
143 
144 static void ack_flush(void *_completed)
145 {
146 }
147 
148 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
149 {
150 	int i, cpu, me;
151 	cpumask_var_t cpus;
152 	bool called = true;
153 	struct kvm_vcpu *vcpu;
154 
155 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
156 
157 	me = get_cpu();
158 	kvm_for_each_vcpu(i, vcpu, kvm) {
159 		kvm_make_request(req, vcpu);
160 		cpu = vcpu->cpu;
161 
162 		/* Set ->requests bit before we read ->mode */
163 		smp_mb();
164 
165 		if (cpus != NULL && cpu != -1 && cpu != me &&
166 		      kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
167 			cpumask_set_cpu(cpu, cpus);
168 	}
169 	if (unlikely(cpus == NULL))
170 		smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
171 	else if (!cpumask_empty(cpus))
172 		smp_call_function_many(cpus, ack_flush, NULL, 1);
173 	else
174 		called = false;
175 	put_cpu();
176 	free_cpumask_var(cpus);
177 	return called;
178 }
179 
180 void kvm_flush_remote_tlbs(struct kvm *kvm)
181 {
182 	long dirty_count = kvm->tlbs_dirty;
183 
184 	smp_mb();
185 	if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
186 		++kvm->stat.remote_tlb_flush;
187 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
188 }
189 
190 void kvm_reload_remote_mmus(struct kvm *kvm)
191 {
192 	make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
193 }
194 
195 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
196 {
197 	make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
198 }
199 
200 void kvm_make_scan_ioapic_request(struct kvm *kvm)
201 {
202 	make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
203 }
204 
205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
206 {
207 	struct page *page;
208 	int r;
209 
210 	mutex_init(&vcpu->mutex);
211 	vcpu->cpu = -1;
212 	vcpu->kvm = kvm;
213 	vcpu->vcpu_id = id;
214 	vcpu->pid = NULL;
215 	init_waitqueue_head(&vcpu->wq);
216 	kvm_async_pf_vcpu_init(vcpu);
217 
218 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
219 	if (!page) {
220 		r = -ENOMEM;
221 		goto fail;
222 	}
223 	vcpu->run = page_address(page);
224 
225 	kvm_vcpu_set_in_spin_loop(vcpu, false);
226 	kvm_vcpu_set_dy_eligible(vcpu, false);
227 	vcpu->preempted = false;
228 
229 	r = kvm_arch_vcpu_init(vcpu);
230 	if (r < 0)
231 		goto fail_free_run;
232 	return 0;
233 
234 fail_free_run:
235 	free_page((unsigned long)vcpu->run);
236 fail:
237 	return r;
238 }
239 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
240 
241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
242 {
243 	put_pid(vcpu->pid);
244 	kvm_arch_vcpu_uninit(vcpu);
245 	free_page((unsigned long)vcpu->run);
246 }
247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
248 
249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
251 {
252 	return container_of(mn, struct kvm, mmu_notifier);
253 }
254 
255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
256 					     struct mm_struct *mm,
257 					     unsigned long address)
258 {
259 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
260 	int need_tlb_flush, idx;
261 
262 	/*
263 	 * When ->invalidate_page runs, the linux pte has been zapped
264 	 * already but the page is still allocated until
265 	 * ->invalidate_page returns. So if we increase the sequence
266 	 * here the kvm page fault will notice if the spte can't be
267 	 * established because the page is going to be freed. If
268 	 * instead the kvm page fault establishes the spte before
269 	 * ->invalidate_page runs, kvm_unmap_hva will release it
270 	 * before returning.
271 	 *
272 	 * The sequence increase only need to be seen at spin_unlock
273 	 * time, and not at spin_lock time.
274 	 *
275 	 * Increasing the sequence after the spin_unlock would be
276 	 * unsafe because the kvm page fault could then establish the
277 	 * pte after kvm_unmap_hva returned, without noticing the page
278 	 * is going to be freed.
279 	 */
280 	idx = srcu_read_lock(&kvm->srcu);
281 	spin_lock(&kvm->mmu_lock);
282 
283 	kvm->mmu_notifier_seq++;
284 	need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
285 	/* we've to flush the tlb before the pages can be freed */
286 	if (need_tlb_flush)
287 		kvm_flush_remote_tlbs(kvm);
288 
289 	spin_unlock(&kvm->mmu_lock);
290 	srcu_read_unlock(&kvm->srcu, idx);
291 }
292 
293 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
294 					struct mm_struct *mm,
295 					unsigned long address,
296 					pte_t pte)
297 {
298 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
299 	int idx;
300 
301 	idx = srcu_read_lock(&kvm->srcu);
302 	spin_lock(&kvm->mmu_lock);
303 	kvm->mmu_notifier_seq++;
304 	kvm_set_spte_hva(kvm, address, pte);
305 	spin_unlock(&kvm->mmu_lock);
306 	srcu_read_unlock(&kvm->srcu, idx);
307 }
308 
309 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
310 						    struct mm_struct *mm,
311 						    unsigned long start,
312 						    unsigned long end)
313 {
314 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
315 	int need_tlb_flush = 0, idx;
316 
317 	idx = srcu_read_lock(&kvm->srcu);
318 	spin_lock(&kvm->mmu_lock);
319 	/*
320 	 * The count increase must become visible at unlock time as no
321 	 * spte can be established without taking the mmu_lock and
322 	 * count is also read inside the mmu_lock critical section.
323 	 */
324 	kvm->mmu_notifier_count++;
325 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
326 	need_tlb_flush |= kvm->tlbs_dirty;
327 	/* we've to flush the tlb before the pages can be freed */
328 	if (need_tlb_flush)
329 		kvm_flush_remote_tlbs(kvm);
330 
331 	spin_unlock(&kvm->mmu_lock);
332 	srcu_read_unlock(&kvm->srcu, idx);
333 }
334 
335 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
336 						  struct mm_struct *mm,
337 						  unsigned long start,
338 						  unsigned long end)
339 {
340 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
341 
342 	spin_lock(&kvm->mmu_lock);
343 	/*
344 	 * This sequence increase will notify the kvm page fault that
345 	 * the page that is going to be mapped in the spte could have
346 	 * been freed.
347 	 */
348 	kvm->mmu_notifier_seq++;
349 	smp_wmb();
350 	/*
351 	 * The above sequence increase must be visible before the
352 	 * below count decrease, which is ensured by the smp_wmb above
353 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
354 	 */
355 	kvm->mmu_notifier_count--;
356 	spin_unlock(&kvm->mmu_lock);
357 
358 	BUG_ON(kvm->mmu_notifier_count < 0);
359 }
360 
361 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
362 					      struct mm_struct *mm,
363 					      unsigned long address)
364 {
365 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
366 	int young, idx;
367 
368 	idx = srcu_read_lock(&kvm->srcu);
369 	spin_lock(&kvm->mmu_lock);
370 
371 	young = kvm_age_hva(kvm, address);
372 	if (young)
373 		kvm_flush_remote_tlbs(kvm);
374 
375 	spin_unlock(&kvm->mmu_lock);
376 	srcu_read_unlock(&kvm->srcu, idx);
377 
378 	return young;
379 }
380 
381 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
382 				       struct mm_struct *mm,
383 				       unsigned long address)
384 {
385 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
386 	int young, idx;
387 
388 	idx = srcu_read_lock(&kvm->srcu);
389 	spin_lock(&kvm->mmu_lock);
390 	young = kvm_test_age_hva(kvm, address);
391 	spin_unlock(&kvm->mmu_lock);
392 	srcu_read_unlock(&kvm->srcu, idx);
393 
394 	return young;
395 }
396 
397 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
398 				     struct mm_struct *mm)
399 {
400 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
401 	int idx;
402 
403 	idx = srcu_read_lock(&kvm->srcu);
404 	kvm_arch_flush_shadow_all(kvm);
405 	srcu_read_unlock(&kvm->srcu, idx);
406 }
407 
408 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
409 	.invalidate_page	= kvm_mmu_notifier_invalidate_page,
410 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
411 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
412 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
413 	.test_young		= kvm_mmu_notifier_test_young,
414 	.change_pte		= kvm_mmu_notifier_change_pte,
415 	.release		= kvm_mmu_notifier_release,
416 };
417 
418 static int kvm_init_mmu_notifier(struct kvm *kvm)
419 {
420 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
421 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
422 }
423 
424 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
425 
426 static int kvm_init_mmu_notifier(struct kvm *kvm)
427 {
428 	return 0;
429 }
430 
431 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
432 
433 static void kvm_init_memslots_id(struct kvm *kvm)
434 {
435 	int i;
436 	struct kvm_memslots *slots = kvm->memslots;
437 
438 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
439 		slots->id_to_index[i] = slots->memslots[i].id = i;
440 }
441 
442 static struct kvm *kvm_create_vm(unsigned long type)
443 {
444 	int r, i;
445 	struct kvm *kvm = kvm_arch_alloc_vm();
446 
447 	if (!kvm)
448 		return ERR_PTR(-ENOMEM);
449 
450 	r = kvm_arch_init_vm(kvm, type);
451 	if (r)
452 		goto out_err_nodisable;
453 
454 	r = hardware_enable_all();
455 	if (r)
456 		goto out_err_nodisable;
457 
458 #ifdef CONFIG_HAVE_KVM_IRQCHIP
459 	INIT_HLIST_HEAD(&kvm->mask_notifier_list);
460 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
461 #endif
462 
463 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
464 
465 	r = -ENOMEM;
466 	kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
467 	if (!kvm->memslots)
468 		goto out_err_nosrcu;
469 	kvm_init_memslots_id(kvm);
470 	if (init_srcu_struct(&kvm->srcu))
471 		goto out_err_nosrcu;
472 	for (i = 0; i < KVM_NR_BUSES; i++) {
473 		kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
474 					GFP_KERNEL);
475 		if (!kvm->buses[i])
476 			goto out_err;
477 	}
478 
479 	spin_lock_init(&kvm->mmu_lock);
480 	kvm->mm = current->mm;
481 	atomic_inc(&kvm->mm->mm_count);
482 	kvm_eventfd_init(kvm);
483 	mutex_init(&kvm->lock);
484 	mutex_init(&kvm->irq_lock);
485 	mutex_init(&kvm->slots_lock);
486 	atomic_set(&kvm->users_count, 1);
487 	INIT_LIST_HEAD(&kvm->devices);
488 
489 	r = kvm_init_mmu_notifier(kvm);
490 	if (r)
491 		goto out_err;
492 
493 	raw_spin_lock(&kvm_lock);
494 	list_add(&kvm->vm_list, &vm_list);
495 	raw_spin_unlock(&kvm_lock);
496 
497 	return kvm;
498 
499 out_err:
500 	cleanup_srcu_struct(&kvm->srcu);
501 out_err_nosrcu:
502 	hardware_disable_all();
503 out_err_nodisable:
504 	for (i = 0; i < KVM_NR_BUSES; i++)
505 		kfree(kvm->buses[i]);
506 	kfree(kvm->memslots);
507 	kvm_arch_free_vm(kvm);
508 	return ERR_PTR(r);
509 }
510 
511 /*
512  * Avoid using vmalloc for a small buffer.
513  * Should not be used when the size is statically known.
514  */
515 void *kvm_kvzalloc(unsigned long size)
516 {
517 	if (size > PAGE_SIZE)
518 		return vzalloc(size);
519 	else
520 		return kzalloc(size, GFP_KERNEL);
521 }
522 
523 void kvm_kvfree(const void *addr)
524 {
525 	if (is_vmalloc_addr(addr))
526 		vfree(addr);
527 	else
528 		kfree(addr);
529 }
530 
531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
532 {
533 	if (!memslot->dirty_bitmap)
534 		return;
535 
536 	kvm_kvfree(memslot->dirty_bitmap);
537 	memslot->dirty_bitmap = NULL;
538 }
539 
540 /*
541  * Free any memory in @free but not in @dont.
542  */
543 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
544 				  struct kvm_memory_slot *dont)
545 {
546 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
547 		kvm_destroy_dirty_bitmap(free);
548 
549 	kvm_arch_free_memslot(free, dont);
550 
551 	free->npages = 0;
552 }
553 
554 void kvm_free_physmem(struct kvm *kvm)
555 {
556 	struct kvm_memslots *slots = kvm->memslots;
557 	struct kvm_memory_slot *memslot;
558 
559 	kvm_for_each_memslot(memslot, slots)
560 		kvm_free_physmem_slot(memslot, NULL);
561 
562 	kfree(kvm->memslots);
563 }
564 
565 static void kvm_destroy_devices(struct kvm *kvm)
566 {
567 	struct list_head *node, *tmp;
568 
569 	list_for_each_safe(node, tmp, &kvm->devices) {
570 		struct kvm_device *dev =
571 			list_entry(node, struct kvm_device, vm_node);
572 
573 		list_del(node);
574 		dev->ops->destroy(dev);
575 	}
576 }
577 
578 static void kvm_destroy_vm(struct kvm *kvm)
579 {
580 	int i;
581 	struct mm_struct *mm = kvm->mm;
582 
583 	kvm_arch_sync_events(kvm);
584 	raw_spin_lock(&kvm_lock);
585 	list_del(&kvm->vm_list);
586 	raw_spin_unlock(&kvm_lock);
587 	kvm_free_irq_routing(kvm);
588 	for (i = 0; i < KVM_NR_BUSES; i++)
589 		kvm_io_bus_destroy(kvm->buses[i]);
590 	kvm_coalesced_mmio_free(kvm);
591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
592 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
593 #else
594 	kvm_arch_flush_shadow_all(kvm);
595 #endif
596 	kvm_arch_destroy_vm(kvm);
597 	kvm_destroy_devices(kvm);
598 	kvm_free_physmem(kvm);
599 	cleanup_srcu_struct(&kvm->srcu);
600 	kvm_arch_free_vm(kvm);
601 	hardware_disable_all();
602 	mmdrop(mm);
603 }
604 
605 void kvm_get_kvm(struct kvm *kvm)
606 {
607 	atomic_inc(&kvm->users_count);
608 }
609 EXPORT_SYMBOL_GPL(kvm_get_kvm);
610 
611 void kvm_put_kvm(struct kvm *kvm)
612 {
613 	if (atomic_dec_and_test(&kvm->users_count))
614 		kvm_destroy_vm(kvm);
615 }
616 EXPORT_SYMBOL_GPL(kvm_put_kvm);
617 
618 
619 static int kvm_vm_release(struct inode *inode, struct file *filp)
620 {
621 	struct kvm *kvm = filp->private_data;
622 
623 	kvm_irqfd_release(kvm);
624 
625 	kvm_put_kvm(kvm);
626 	return 0;
627 }
628 
629 /*
630  * Allocation size is twice as large as the actual dirty bitmap size.
631  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
632  */
633 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
634 {
635 #ifndef CONFIG_S390
636 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
637 
638 	memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
639 	if (!memslot->dirty_bitmap)
640 		return -ENOMEM;
641 
642 #endif /* !CONFIG_S390 */
643 	return 0;
644 }
645 
646 static int cmp_memslot(const void *slot1, const void *slot2)
647 {
648 	struct kvm_memory_slot *s1, *s2;
649 
650 	s1 = (struct kvm_memory_slot *)slot1;
651 	s2 = (struct kvm_memory_slot *)slot2;
652 
653 	if (s1->npages < s2->npages)
654 		return 1;
655 	if (s1->npages > s2->npages)
656 		return -1;
657 
658 	return 0;
659 }
660 
661 /*
662  * Sort the memslots base on its size, so the larger slots
663  * will get better fit.
664  */
665 static void sort_memslots(struct kvm_memslots *slots)
666 {
667 	int i;
668 
669 	sort(slots->memslots, KVM_MEM_SLOTS_NUM,
670 	      sizeof(struct kvm_memory_slot), cmp_memslot, NULL);
671 
672 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
673 		slots->id_to_index[slots->memslots[i].id] = i;
674 }
675 
676 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new,
677 		     u64 last_generation)
678 {
679 	if (new) {
680 		int id = new->id;
681 		struct kvm_memory_slot *old = id_to_memslot(slots, id);
682 		unsigned long npages = old->npages;
683 
684 		*old = *new;
685 		if (new->npages != npages)
686 			sort_memslots(slots);
687 	}
688 
689 	slots->generation = last_generation + 1;
690 }
691 
692 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
693 {
694 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
695 
696 #ifdef KVM_CAP_READONLY_MEM
697 	valid_flags |= KVM_MEM_READONLY;
698 #endif
699 
700 	if (mem->flags & ~valid_flags)
701 		return -EINVAL;
702 
703 	return 0;
704 }
705 
706 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
707 		struct kvm_memslots *slots, struct kvm_memory_slot *new)
708 {
709 	struct kvm_memslots *old_memslots = kvm->memslots;
710 
711 	update_memslots(slots, new, kvm->memslots->generation);
712 	rcu_assign_pointer(kvm->memslots, slots);
713 	synchronize_srcu_expedited(&kvm->srcu);
714 
715 	kvm_arch_memslots_updated(kvm);
716 
717 	return old_memslots;
718 }
719 
720 /*
721  * Allocate some memory and give it an address in the guest physical address
722  * space.
723  *
724  * Discontiguous memory is allowed, mostly for framebuffers.
725  *
726  * Must be called holding mmap_sem for write.
727  */
728 int __kvm_set_memory_region(struct kvm *kvm,
729 			    struct kvm_userspace_memory_region *mem)
730 {
731 	int r;
732 	gfn_t base_gfn;
733 	unsigned long npages;
734 	struct kvm_memory_slot *slot;
735 	struct kvm_memory_slot old, new;
736 	struct kvm_memslots *slots = NULL, *old_memslots;
737 	enum kvm_mr_change change;
738 
739 	r = check_memory_region_flags(mem);
740 	if (r)
741 		goto out;
742 
743 	r = -EINVAL;
744 	/* General sanity checks */
745 	if (mem->memory_size & (PAGE_SIZE - 1))
746 		goto out;
747 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
748 		goto out;
749 	/* We can read the guest memory with __xxx_user() later on. */
750 	if ((mem->slot < KVM_USER_MEM_SLOTS) &&
751 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
752 	     !access_ok(VERIFY_WRITE,
753 			(void __user *)(unsigned long)mem->userspace_addr,
754 			mem->memory_size)))
755 		goto out;
756 	if (mem->slot >= KVM_MEM_SLOTS_NUM)
757 		goto out;
758 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
759 		goto out;
760 
761 	slot = id_to_memslot(kvm->memslots, mem->slot);
762 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
763 	npages = mem->memory_size >> PAGE_SHIFT;
764 
765 	r = -EINVAL;
766 	if (npages > KVM_MEM_MAX_NR_PAGES)
767 		goto out;
768 
769 	if (!npages)
770 		mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
771 
772 	new = old = *slot;
773 
774 	new.id = mem->slot;
775 	new.base_gfn = base_gfn;
776 	new.npages = npages;
777 	new.flags = mem->flags;
778 
779 	r = -EINVAL;
780 	if (npages) {
781 		if (!old.npages)
782 			change = KVM_MR_CREATE;
783 		else { /* Modify an existing slot. */
784 			if ((mem->userspace_addr != old.userspace_addr) ||
785 			    (npages != old.npages) ||
786 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
787 				goto out;
788 
789 			if (base_gfn != old.base_gfn)
790 				change = KVM_MR_MOVE;
791 			else if (new.flags != old.flags)
792 				change = KVM_MR_FLAGS_ONLY;
793 			else { /* Nothing to change. */
794 				r = 0;
795 				goto out;
796 			}
797 		}
798 	} else if (old.npages) {
799 		change = KVM_MR_DELETE;
800 	} else /* Modify a non-existent slot: disallowed. */
801 		goto out;
802 
803 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
804 		/* Check for overlaps */
805 		r = -EEXIST;
806 		kvm_for_each_memslot(slot, kvm->memslots) {
807 			if ((slot->id >= KVM_USER_MEM_SLOTS) ||
808 			    (slot->id == mem->slot))
809 				continue;
810 			if (!((base_gfn + npages <= slot->base_gfn) ||
811 			      (base_gfn >= slot->base_gfn + slot->npages)))
812 				goto out;
813 		}
814 	}
815 
816 	/* Free page dirty bitmap if unneeded */
817 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
818 		new.dirty_bitmap = NULL;
819 
820 	r = -ENOMEM;
821 	if (change == KVM_MR_CREATE) {
822 		new.userspace_addr = mem->userspace_addr;
823 
824 		if (kvm_arch_create_memslot(&new, npages))
825 			goto out_free;
826 	}
827 
828 	/* Allocate page dirty bitmap if needed */
829 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
830 		if (kvm_create_dirty_bitmap(&new) < 0)
831 			goto out_free;
832 	}
833 
834 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
835 		r = -ENOMEM;
836 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
837 				GFP_KERNEL);
838 		if (!slots)
839 			goto out_free;
840 		slot = id_to_memslot(slots, mem->slot);
841 		slot->flags |= KVM_MEMSLOT_INVALID;
842 
843 		old_memslots = install_new_memslots(kvm, slots, NULL);
844 
845 		/* slot was deleted or moved, clear iommu mapping */
846 		kvm_iommu_unmap_pages(kvm, &old);
847 		/* From this point no new shadow pages pointing to a deleted,
848 		 * or moved, memslot will be created.
849 		 *
850 		 * validation of sp->gfn happens in:
851 		 * 	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
852 		 * 	- kvm_is_visible_gfn (mmu_check_roots)
853 		 */
854 		kvm_arch_flush_shadow_memslot(kvm, slot);
855 		slots = old_memslots;
856 	}
857 
858 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
859 	if (r)
860 		goto out_slots;
861 
862 	r = -ENOMEM;
863 	/*
864 	 * We can re-use the old_memslots from above, the only difference
865 	 * from the currently installed memslots is the invalid flag.  This
866 	 * will get overwritten by update_memslots anyway.
867 	 */
868 	if (!slots) {
869 		slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots),
870 				GFP_KERNEL);
871 		if (!slots)
872 			goto out_free;
873 	}
874 
875 	/*
876 	 * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
877 	 * un-mapped and re-mapped if their base changes.  Since base change
878 	 * unmapping is handled above with slot deletion, mapping alone is
879 	 * needed here.  Anything else the iommu might care about for existing
880 	 * slots (size changes, userspace addr changes and read-only flag
881 	 * changes) is disallowed above, so any other attribute changes getting
882 	 * here can be skipped.
883 	 */
884 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
885 		r = kvm_iommu_map_pages(kvm, &new);
886 		if (r)
887 			goto out_slots;
888 	}
889 
890 	/* actual memory is freed via old in kvm_free_physmem_slot below */
891 	if (change == KVM_MR_DELETE) {
892 		new.dirty_bitmap = NULL;
893 		memset(&new.arch, 0, sizeof(new.arch));
894 	}
895 
896 	old_memslots = install_new_memslots(kvm, slots, &new);
897 
898 	kvm_arch_commit_memory_region(kvm, mem, &old, change);
899 
900 	kvm_free_physmem_slot(&old, &new);
901 	kfree(old_memslots);
902 
903 	return 0;
904 
905 out_slots:
906 	kfree(slots);
907 out_free:
908 	kvm_free_physmem_slot(&new, &old);
909 out:
910 	return r;
911 }
912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
913 
914 int kvm_set_memory_region(struct kvm *kvm,
915 			  struct kvm_userspace_memory_region *mem)
916 {
917 	int r;
918 
919 	mutex_lock(&kvm->slots_lock);
920 	r = __kvm_set_memory_region(kvm, mem);
921 	mutex_unlock(&kvm->slots_lock);
922 	return r;
923 }
924 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
925 
926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
927 				   struct kvm_userspace_memory_region *mem)
928 {
929 	if (mem->slot >= KVM_USER_MEM_SLOTS)
930 		return -EINVAL;
931 	return kvm_set_memory_region(kvm, mem);
932 }
933 
934 int kvm_get_dirty_log(struct kvm *kvm,
935 			struct kvm_dirty_log *log, int *is_dirty)
936 {
937 	struct kvm_memory_slot *memslot;
938 	int r, i;
939 	unsigned long n;
940 	unsigned long any = 0;
941 
942 	r = -EINVAL;
943 	if (log->slot >= KVM_USER_MEM_SLOTS)
944 		goto out;
945 
946 	memslot = id_to_memslot(kvm->memslots, log->slot);
947 	r = -ENOENT;
948 	if (!memslot->dirty_bitmap)
949 		goto out;
950 
951 	n = kvm_dirty_bitmap_bytes(memslot);
952 
953 	for (i = 0; !any && i < n/sizeof(long); ++i)
954 		any = memslot->dirty_bitmap[i];
955 
956 	r = -EFAULT;
957 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
958 		goto out;
959 
960 	if (any)
961 		*is_dirty = 1;
962 
963 	r = 0;
964 out:
965 	return r;
966 }
967 
968 bool kvm_largepages_enabled(void)
969 {
970 	return largepages_enabled;
971 }
972 
973 void kvm_disable_largepages(void)
974 {
975 	largepages_enabled = false;
976 }
977 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
978 
979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
980 {
981 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
982 }
983 EXPORT_SYMBOL_GPL(gfn_to_memslot);
984 
985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
986 {
987 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
988 
989 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
990 	      memslot->flags & KVM_MEMSLOT_INVALID)
991 		return 0;
992 
993 	return 1;
994 }
995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
996 
997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
998 {
999 	struct vm_area_struct *vma;
1000 	unsigned long addr, size;
1001 
1002 	size = PAGE_SIZE;
1003 
1004 	addr = gfn_to_hva(kvm, gfn);
1005 	if (kvm_is_error_hva(addr))
1006 		return PAGE_SIZE;
1007 
1008 	down_read(&current->mm->mmap_sem);
1009 	vma = find_vma(current->mm, addr);
1010 	if (!vma)
1011 		goto out;
1012 
1013 	size = vma_kernel_pagesize(vma);
1014 
1015 out:
1016 	up_read(&current->mm->mmap_sem);
1017 
1018 	return size;
1019 }
1020 
1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1022 {
1023 	return slot->flags & KVM_MEM_READONLY;
1024 }
1025 
1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1027 				       gfn_t *nr_pages, bool write)
1028 {
1029 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1030 		return KVM_HVA_ERR_BAD;
1031 
1032 	if (memslot_is_readonly(slot) && write)
1033 		return KVM_HVA_ERR_RO_BAD;
1034 
1035 	if (nr_pages)
1036 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1037 
1038 	return __gfn_to_hva_memslot(slot, gfn);
1039 }
1040 
1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1042 				     gfn_t *nr_pages)
1043 {
1044 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1045 }
1046 
1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1048 				 gfn_t gfn)
1049 {
1050 	return gfn_to_hva_many(slot, gfn, NULL);
1051 }
1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1053 
1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1055 {
1056 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1057 }
1058 EXPORT_SYMBOL_GPL(gfn_to_hva);
1059 
1060 /*
1061  * If writable is set to false, the hva returned by this function is only
1062  * allowed to be read.
1063  */
1064 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1065 {
1066 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1067 	if (writable)
1068 		*writable = !memslot_is_readonly(slot);
1069 
1070 	return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false);
1071 }
1072 
1073 static int kvm_read_hva(void *data, void __user *hva, int len)
1074 {
1075 	return __copy_from_user(data, hva, len);
1076 }
1077 
1078 static int kvm_read_hva_atomic(void *data, void __user *hva, int len)
1079 {
1080 	return __copy_from_user_inatomic(data, hva, len);
1081 }
1082 
1083 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1084 	unsigned long start, int write, struct page **page)
1085 {
1086 	int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1087 
1088 	if (write)
1089 		flags |= FOLL_WRITE;
1090 
1091 	return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1092 }
1093 
1094 static inline int check_user_page_hwpoison(unsigned long addr)
1095 {
1096 	int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1097 
1098 	rc = __get_user_pages(current, current->mm, addr, 1,
1099 			      flags, NULL, NULL, NULL);
1100 	return rc == -EHWPOISON;
1101 }
1102 
1103 /*
1104  * The atomic path to get the writable pfn which will be stored in @pfn,
1105  * true indicates success, otherwise false is returned.
1106  */
1107 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1108 			    bool write_fault, bool *writable, pfn_t *pfn)
1109 {
1110 	struct page *page[1];
1111 	int npages;
1112 
1113 	if (!(async || atomic))
1114 		return false;
1115 
1116 	/*
1117 	 * Fast pin a writable pfn only if it is a write fault request
1118 	 * or the caller allows to map a writable pfn for a read fault
1119 	 * request.
1120 	 */
1121 	if (!(write_fault || writable))
1122 		return false;
1123 
1124 	npages = __get_user_pages_fast(addr, 1, 1, page);
1125 	if (npages == 1) {
1126 		*pfn = page_to_pfn(page[0]);
1127 
1128 		if (writable)
1129 			*writable = true;
1130 		return true;
1131 	}
1132 
1133 	return false;
1134 }
1135 
1136 /*
1137  * The slow path to get the pfn of the specified host virtual address,
1138  * 1 indicates success, -errno is returned if error is detected.
1139  */
1140 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1141 			   bool *writable, pfn_t *pfn)
1142 {
1143 	struct page *page[1];
1144 	int npages = 0;
1145 
1146 	might_sleep();
1147 
1148 	if (writable)
1149 		*writable = write_fault;
1150 
1151 	if (async) {
1152 		down_read(&current->mm->mmap_sem);
1153 		npages = get_user_page_nowait(current, current->mm,
1154 					      addr, write_fault, page);
1155 		up_read(&current->mm->mmap_sem);
1156 	} else
1157 		npages = get_user_pages_fast(addr, 1, write_fault,
1158 					     page);
1159 	if (npages != 1)
1160 		return npages;
1161 
1162 	/* map read fault as writable if possible */
1163 	if (unlikely(!write_fault) && writable) {
1164 		struct page *wpage[1];
1165 
1166 		npages = __get_user_pages_fast(addr, 1, 1, wpage);
1167 		if (npages == 1) {
1168 			*writable = true;
1169 			put_page(page[0]);
1170 			page[0] = wpage[0];
1171 		}
1172 
1173 		npages = 1;
1174 	}
1175 	*pfn = page_to_pfn(page[0]);
1176 	return npages;
1177 }
1178 
1179 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1180 {
1181 	if (unlikely(!(vma->vm_flags & VM_READ)))
1182 		return false;
1183 
1184 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1185 		return false;
1186 
1187 	return true;
1188 }
1189 
1190 /*
1191  * Pin guest page in memory and return its pfn.
1192  * @addr: host virtual address which maps memory to the guest
1193  * @atomic: whether this function can sleep
1194  * @async: whether this function need to wait IO complete if the
1195  *         host page is not in the memory
1196  * @write_fault: whether we should get a writable host page
1197  * @writable: whether it allows to map a writable host page for !@write_fault
1198  *
1199  * The function will map a writable host page for these two cases:
1200  * 1): @write_fault = true
1201  * 2): @write_fault = false && @writable, @writable will tell the caller
1202  *     whether the mapping is writable.
1203  */
1204 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1205 			bool write_fault, bool *writable)
1206 {
1207 	struct vm_area_struct *vma;
1208 	pfn_t pfn = 0;
1209 	int npages;
1210 
1211 	/* we can do it either atomically or asynchronously, not both */
1212 	BUG_ON(atomic && async);
1213 
1214 	if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1215 		return pfn;
1216 
1217 	if (atomic)
1218 		return KVM_PFN_ERR_FAULT;
1219 
1220 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1221 	if (npages == 1)
1222 		return pfn;
1223 
1224 	down_read(&current->mm->mmap_sem);
1225 	if (npages == -EHWPOISON ||
1226 	      (!async && check_user_page_hwpoison(addr))) {
1227 		pfn = KVM_PFN_ERR_HWPOISON;
1228 		goto exit;
1229 	}
1230 
1231 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1232 
1233 	if (vma == NULL)
1234 		pfn = KVM_PFN_ERR_FAULT;
1235 	else if ((vma->vm_flags & VM_PFNMAP)) {
1236 		pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1237 			vma->vm_pgoff;
1238 		BUG_ON(!kvm_is_mmio_pfn(pfn));
1239 	} else {
1240 		if (async && vma_is_valid(vma, write_fault))
1241 			*async = true;
1242 		pfn = KVM_PFN_ERR_FAULT;
1243 	}
1244 exit:
1245 	up_read(&current->mm->mmap_sem);
1246 	return pfn;
1247 }
1248 
1249 static pfn_t
1250 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1251 		     bool *async, bool write_fault, bool *writable)
1252 {
1253 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1254 
1255 	if (addr == KVM_HVA_ERR_RO_BAD)
1256 		return KVM_PFN_ERR_RO_FAULT;
1257 
1258 	if (kvm_is_error_hva(addr))
1259 		return KVM_PFN_NOSLOT;
1260 
1261 	/* Do not map writable pfn in the readonly memslot. */
1262 	if (writable && memslot_is_readonly(slot)) {
1263 		*writable = false;
1264 		writable = NULL;
1265 	}
1266 
1267 	return hva_to_pfn(addr, atomic, async, write_fault,
1268 			  writable);
1269 }
1270 
1271 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1272 			  bool write_fault, bool *writable)
1273 {
1274 	struct kvm_memory_slot *slot;
1275 
1276 	if (async)
1277 		*async = false;
1278 
1279 	slot = gfn_to_memslot(kvm, gfn);
1280 
1281 	return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1282 				    writable);
1283 }
1284 
1285 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1286 {
1287 	return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1288 }
1289 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1290 
1291 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1292 		       bool write_fault, bool *writable)
1293 {
1294 	return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1295 }
1296 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1297 
1298 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1299 {
1300 	return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1301 }
1302 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1303 
1304 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1305 		      bool *writable)
1306 {
1307 	return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1308 }
1309 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1310 
1311 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1312 {
1313 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1314 }
1315 
1316 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1317 {
1318 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1319 }
1320 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1321 
1322 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1323 								  int nr_pages)
1324 {
1325 	unsigned long addr;
1326 	gfn_t entry;
1327 
1328 	addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1329 	if (kvm_is_error_hva(addr))
1330 		return -1;
1331 
1332 	if (entry < nr_pages)
1333 		return 0;
1334 
1335 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1336 }
1337 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1338 
1339 static struct page *kvm_pfn_to_page(pfn_t pfn)
1340 {
1341 	if (is_error_noslot_pfn(pfn))
1342 		return KVM_ERR_PTR_BAD_PAGE;
1343 
1344 	if (kvm_is_mmio_pfn(pfn)) {
1345 		WARN_ON(1);
1346 		return KVM_ERR_PTR_BAD_PAGE;
1347 	}
1348 
1349 	return pfn_to_page(pfn);
1350 }
1351 
1352 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1353 {
1354 	pfn_t pfn;
1355 
1356 	pfn = gfn_to_pfn(kvm, gfn);
1357 
1358 	return kvm_pfn_to_page(pfn);
1359 }
1360 
1361 EXPORT_SYMBOL_GPL(gfn_to_page);
1362 
1363 void kvm_release_page_clean(struct page *page)
1364 {
1365 	WARN_ON(is_error_page(page));
1366 
1367 	kvm_release_pfn_clean(page_to_pfn(page));
1368 }
1369 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1370 
1371 void kvm_release_pfn_clean(pfn_t pfn)
1372 {
1373 	if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn))
1374 		put_page(pfn_to_page(pfn));
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1377 
1378 void kvm_release_page_dirty(struct page *page)
1379 {
1380 	WARN_ON(is_error_page(page));
1381 
1382 	kvm_release_pfn_dirty(page_to_pfn(page));
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1385 
1386 void kvm_release_pfn_dirty(pfn_t pfn)
1387 {
1388 	kvm_set_pfn_dirty(pfn);
1389 	kvm_release_pfn_clean(pfn);
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1392 
1393 void kvm_set_page_dirty(struct page *page)
1394 {
1395 	kvm_set_pfn_dirty(page_to_pfn(page));
1396 }
1397 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1398 
1399 void kvm_set_pfn_dirty(pfn_t pfn)
1400 {
1401 	if (!kvm_is_mmio_pfn(pfn)) {
1402 		struct page *page = pfn_to_page(pfn);
1403 		if (!PageReserved(page))
1404 			SetPageDirty(page);
1405 	}
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1408 
1409 void kvm_set_pfn_accessed(pfn_t pfn)
1410 {
1411 	if (!kvm_is_mmio_pfn(pfn))
1412 		mark_page_accessed(pfn_to_page(pfn));
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1415 
1416 void kvm_get_pfn(pfn_t pfn)
1417 {
1418 	if (!kvm_is_mmio_pfn(pfn))
1419 		get_page(pfn_to_page(pfn));
1420 }
1421 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1422 
1423 static int next_segment(unsigned long len, int offset)
1424 {
1425 	if (len > PAGE_SIZE - offset)
1426 		return PAGE_SIZE - offset;
1427 	else
1428 		return len;
1429 }
1430 
1431 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1432 			int len)
1433 {
1434 	int r;
1435 	unsigned long addr;
1436 
1437 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1438 	if (kvm_is_error_hva(addr))
1439 		return -EFAULT;
1440 	r = kvm_read_hva(data, (void __user *)addr + offset, len);
1441 	if (r)
1442 		return -EFAULT;
1443 	return 0;
1444 }
1445 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1446 
1447 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1448 {
1449 	gfn_t gfn = gpa >> PAGE_SHIFT;
1450 	int seg;
1451 	int offset = offset_in_page(gpa);
1452 	int ret;
1453 
1454 	while ((seg = next_segment(len, offset)) != 0) {
1455 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1456 		if (ret < 0)
1457 			return ret;
1458 		offset = 0;
1459 		len -= seg;
1460 		data += seg;
1461 		++gfn;
1462 	}
1463 	return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(kvm_read_guest);
1466 
1467 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1468 			  unsigned long len)
1469 {
1470 	int r;
1471 	unsigned long addr;
1472 	gfn_t gfn = gpa >> PAGE_SHIFT;
1473 	int offset = offset_in_page(gpa);
1474 
1475 	addr = gfn_to_hva_prot(kvm, gfn, NULL);
1476 	if (kvm_is_error_hva(addr))
1477 		return -EFAULT;
1478 	pagefault_disable();
1479 	r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len);
1480 	pagefault_enable();
1481 	if (r)
1482 		return -EFAULT;
1483 	return 0;
1484 }
1485 EXPORT_SYMBOL(kvm_read_guest_atomic);
1486 
1487 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1488 			 int offset, int len)
1489 {
1490 	int r;
1491 	unsigned long addr;
1492 
1493 	addr = gfn_to_hva(kvm, gfn);
1494 	if (kvm_is_error_hva(addr))
1495 		return -EFAULT;
1496 	r = __copy_to_user((void __user *)addr + offset, data, len);
1497 	if (r)
1498 		return -EFAULT;
1499 	mark_page_dirty(kvm, gfn);
1500 	return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1503 
1504 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1505 		    unsigned long len)
1506 {
1507 	gfn_t gfn = gpa >> PAGE_SHIFT;
1508 	int seg;
1509 	int offset = offset_in_page(gpa);
1510 	int ret;
1511 
1512 	while ((seg = next_segment(len, offset)) != 0) {
1513 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1514 		if (ret < 0)
1515 			return ret;
1516 		offset = 0;
1517 		len -= seg;
1518 		data += seg;
1519 		++gfn;
1520 	}
1521 	return 0;
1522 }
1523 
1524 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1525 			      gpa_t gpa, unsigned long len)
1526 {
1527 	struct kvm_memslots *slots = kvm_memslots(kvm);
1528 	int offset = offset_in_page(gpa);
1529 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1530 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1531 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1532 	gfn_t nr_pages_avail;
1533 
1534 	ghc->gpa = gpa;
1535 	ghc->generation = slots->generation;
1536 	ghc->len = len;
1537 	ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1538 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail);
1539 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) {
1540 		ghc->hva += offset;
1541 	} else {
1542 		/*
1543 		 * If the requested region crosses two memslots, we still
1544 		 * verify that the entire region is valid here.
1545 		 */
1546 		while (start_gfn <= end_gfn) {
1547 			ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1548 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1549 						   &nr_pages_avail);
1550 			if (kvm_is_error_hva(ghc->hva))
1551 				return -EFAULT;
1552 			start_gfn += nr_pages_avail;
1553 		}
1554 		/* Use the slow path for cross page reads and writes. */
1555 		ghc->memslot = NULL;
1556 	}
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1560 
1561 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1562 			   void *data, unsigned long len)
1563 {
1564 	struct kvm_memslots *slots = kvm_memslots(kvm);
1565 	int r;
1566 
1567 	BUG_ON(len > ghc->len);
1568 
1569 	if (slots->generation != ghc->generation)
1570 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1571 
1572 	if (unlikely(!ghc->memslot))
1573 		return kvm_write_guest(kvm, ghc->gpa, data, len);
1574 
1575 	if (kvm_is_error_hva(ghc->hva))
1576 		return -EFAULT;
1577 
1578 	r = __copy_to_user((void __user *)ghc->hva, data, len);
1579 	if (r)
1580 		return -EFAULT;
1581 	mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1582 
1583 	return 0;
1584 }
1585 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1586 
1587 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1588 			   void *data, unsigned long len)
1589 {
1590 	struct kvm_memslots *slots = kvm_memslots(kvm);
1591 	int r;
1592 
1593 	BUG_ON(len > ghc->len);
1594 
1595 	if (slots->generation != ghc->generation)
1596 		kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1597 
1598 	if (unlikely(!ghc->memslot))
1599 		return kvm_read_guest(kvm, ghc->gpa, data, len);
1600 
1601 	if (kvm_is_error_hva(ghc->hva))
1602 		return -EFAULT;
1603 
1604 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
1605 	if (r)
1606 		return -EFAULT;
1607 
1608 	return 0;
1609 }
1610 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1611 
1612 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1613 {
1614 	return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1615 				    offset, len);
1616 }
1617 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1618 
1619 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1620 {
1621 	gfn_t gfn = gpa >> PAGE_SHIFT;
1622 	int seg;
1623 	int offset = offset_in_page(gpa);
1624 	int ret;
1625 
1626         while ((seg = next_segment(len, offset)) != 0) {
1627 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1628 		if (ret < 0)
1629 			return ret;
1630 		offset = 0;
1631 		len -= seg;
1632 		++gfn;
1633 	}
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1637 
1638 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1639 			     gfn_t gfn)
1640 {
1641 	if (memslot && memslot->dirty_bitmap) {
1642 		unsigned long rel_gfn = gfn - memslot->base_gfn;
1643 
1644 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
1645 	}
1646 }
1647 
1648 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1649 {
1650 	struct kvm_memory_slot *memslot;
1651 
1652 	memslot = gfn_to_memslot(kvm, gfn);
1653 	mark_page_dirty_in_slot(kvm, memslot, gfn);
1654 }
1655 
1656 /*
1657  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1658  */
1659 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1660 {
1661 	DEFINE_WAIT(wait);
1662 
1663 	for (;;) {
1664 		prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1665 
1666 		if (kvm_arch_vcpu_runnable(vcpu)) {
1667 			kvm_make_request(KVM_REQ_UNHALT, vcpu);
1668 			break;
1669 		}
1670 		if (kvm_cpu_has_pending_timer(vcpu))
1671 			break;
1672 		if (signal_pending(current))
1673 			break;
1674 
1675 		schedule();
1676 	}
1677 
1678 	finish_wait(&vcpu->wq, &wait);
1679 }
1680 
1681 #ifndef CONFIG_S390
1682 /*
1683  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1684  */
1685 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1686 {
1687 	int me;
1688 	int cpu = vcpu->cpu;
1689 	wait_queue_head_t *wqp;
1690 
1691 	wqp = kvm_arch_vcpu_wq(vcpu);
1692 	if (waitqueue_active(wqp)) {
1693 		wake_up_interruptible(wqp);
1694 		++vcpu->stat.halt_wakeup;
1695 	}
1696 
1697 	me = get_cpu();
1698 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1699 		if (kvm_arch_vcpu_should_kick(vcpu))
1700 			smp_send_reschedule(cpu);
1701 	put_cpu();
1702 }
1703 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1704 #endif /* !CONFIG_S390 */
1705 
1706 void kvm_resched(struct kvm_vcpu *vcpu)
1707 {
1708 	if (!need_resched())
1709 		return;
1710 	cond_resched();
1711 }
1712 EXPORT_SYMBOL_GPL(kvm_resched);
1713 
1714 bool kvm_vcpu_yield_to(struct kvm_vcpu *target)
1715 {
1716 	struct pid *pid;
1717 	struct task_struct *task = NULL;
1718 	bool ret = false;
1719 
1720 	rcu_read_lock();
1721 	pid = rcu_dereference(target->pid);
1722 	if (pid)
1723 		task = get_pid_task(target->pid, PIDTYPE_PID);
1724 	rcu_read_unlock();
1725 	if (!task)
1726 		return ret;
1727 	if (task->flags & PF_VCPU) {
1728 		put_task_struct(task);
1729 		return ret;
1730 	}
1731 	ret = yield_to(task, 1);
1732 	put_task_struct(task);
1733 
1734 	return ret;
1735 }
1736 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1737 
1738 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1739 /*
1740  * Helper that checks whether a VCPU is eligible for directed yield.
1741  * Most eligible candidate to yield is decided by following heuristics:
1742  *
1743  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1744  *  (preempted lock holder), indicated by @in_spin_loop.
1745  *  Set at the beiginning and cleared at the end of interception/PLE handler.
1746  *
1747  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1748  *  chance last time (mostly it has become eligible now since we have probably
1749  *  yielded to lockholder in last iteration. This is done by toggling
1750  *  @dy_eligible each time a VCPU checked for eligibility.)
1751  *
1752  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1753  *  to preempted lock-holder could result in wrong VCPU selection and CPU
1754  *  burning. Giving priority for a potential lock-holder increases lock
1755  *  progress.
1756  *
1757  *  Since algorithm is based on heuristics, accessing another VCPU data without
1758  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
1759  *  and continue with next VCPU and so on.
1760  */
1761 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1762 {
1763 	bool eligible;
1764 
1765 	eligible = !vcpu->spin_loop.in_spin_loop ||
1766 			(vcpu->spin_loop.in_spin_loop &&
1767 			 vcpu->spin_loop.dy_eligible);
1768 
1769 	if (vcpu->spin_loop.in_spin_loop)
1770 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1771 
1772 	return eligible;
1773 }
1774 #endif
1775 
1776 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1777 {
1778 	struct kvm *kvm = me->kvm;
1779 	struct kvm_vcpu *vcpu;
1780 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1781 	int yielded = 0;
1782 	int try = 3;
1783 	int pass;
1784 	int i;
1785 
1786 	kvm_vcpu_set_in_spin_loop(me, true);
1787 	/*
1788 	 * We boost the priority of a VCPU that is runnable but not
1789 	 * currently running, because it got preempted by something
1790 	 * else and called schedule in __vcpu_run.  Hopefully that
1791 	 * VCPU is holding the lock that we need and will release it.
1792 	 * We approximate round-robin by starting at the last boosted VCPU.
1793 	 */
1794 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
1795 		kvm_for_each_vcpu(i, vcpu, kvm) {
1796 			if (!pass && i <= last_boosted_vcpu) {
1797 				i = last_boosted_vcpu;
1798 				continue;
1799 			} else if (pass && i > last_boosted_vcpu)
1800 				break;
1801 			if (!ACCESS_ONCE(vcpu->preempted))
1802 				continue;
1803 			if (vcpu == me)
1804 				continue;
1805 			if (waitqueue_active(&vcpu->wq))
1806 				continue;
1807 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1808 				continue;
1809 
1810 			yielded = kvm_vcpu_yield_to(vcpu);
1811 			if (yielded > 0) {
1812 				kvm->last_boosted_vcpu = i;
1813 				break;
1814 			} else if (yielded < 0) {
1815 				try--;
1816 				if (!try)
1817 					break;
1818 			}
1819 		}
1820 	}
1821 	kvm_vcpu_set_in_spin_loop(me, false);
1822 
1823 	/* Ensure vcpu is not eligible during next spinloop */
1824 	kvm_vcpu_set_dy_eligible(me, false);
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1827 
1828 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1829 {
1830 	struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1831 	struct page *page;
1832 
1833 	if (vmf->pgoff == 0)
1834 		page = virt_to_page(vcpu->run);
1835 #ifdef CONFIG_X86
1836 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1837 		page = virt_to_page(vcpu->arch.pio_data);
1838 #endif
1839 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1840 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1841 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1842 #endif
1843 	else
1844 		return kvm_arch_vcpu_fault(vcpu, vmf);
1845 	get_page(page);
1846 	vmf->page = page;
1847 	return 0;
1848 }
1849 
1850 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1851 	.fault = kvm_vcpu_fault,
1852 };
1853 
1854 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1855 {
1856 	vma->vm_ops = &kvm_vcpu_vm_ops;
1857 	return 0;
1858 }
1859 
1860 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1861 {
1862 	struct kvm_vcpu *vcpu = filp->private_data;
1863 
1864 	kvm_put_kvm(vcpu->kvm);
1865 	return 0;
1866 }
1867 
1868 static struct file_operations kvm_vcpu_fops = {
1869 	.release        = kvm_vcpu_release,
1870 	.unlocked_ioctl = kvm_vcpu_ioctl,
1871 #ifdef CONFIG_COMPAT
1872 	.compat_ioctl   = kvm_vcpu_compat_ioctl,
1873 #endif
1874 	.mmap           = kvm_vcpu_mmap,
1875 	.llseek		= noop_llseek,
1876 };
1877 
1878 /*
1879  * Allocates an inode for the vcpu.
1880  */
1881 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1882 {
1883 	return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
1884 }
1885 
1886 /*
1887  * Creates some virtual cpus.  Good luck creating more than one.
1888  */
1889 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1890 {
1891 	int r;
1892 	struct kvm_vcpu *vcpu, *v;
1893 
1894 	vcpu = kvm_arch_vcpu_create(kvm, id);
1895 	if (IS_ERR(vcpu))
1896 		return PTR_ERR(vcpu);
1897 
1898 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1899 
1900 	r = kvm_arch_vcpu_setup(vcpu);
1901 	if (r)
1902 		goto vcpu_destroy;
1903 
1904 	mutex_lock(&kvm->lock);
1905 	if (!kvm_vcpu_compatible(vcpu)) {
1906 		r = -EINVAL;
1907 		goto unlock_vcpu_destroy;
1908 	}
1909 	if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1910 		r = -EINVAL;
1911 		goto unlock_vcpu_destroy;
1912 	}
1913 
1914 	kvm_for_each_vcpu(r, v, kvm)
1915 		if (v->vcpu_id == id) {
1916 			r = -EEXIST;
1917 			goto unlock_vcpu_destroy;
1918 		}
1919 
1920 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1921 
1922 	/* Now it's all set up, let userspace reach it */
1923 	kvm_get_kvm(kvm);
1924 	r = create_vcpu_fd(vcpu);
1925 	if (r < 0) {
1926 		kvm_put_kvm(kvm);
1927 		goto unlock_vcpu_destroy;
1928 	}
1929 
1930 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1931 	smp_wmb();
1932 	atomic_inc(&kvm->online_vcpus);
1933 
1934 	mutex_unlock(&kvm->lock);
1935 	kvm_arch_vcpu_postcreate(vcpu);
1936 	return r;
1937 
1938 unlock_vcpu_destroy:
1939 	mutex_unlock(&kvm->lock);
1940 vcpu_destroy:
1941 	kvm_arch_vcpu_destroy(vcpu);
1942 	return r;
1943 }
1944 
1945 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1946 {
1947 	if (sigset) {
1948 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1949 		vcpu->sigset_active = 1;
1950 		vcpu->sigset = *sigset;
1951 	} else
1952 		vcpu->sigset_active = 0;
1953 	return 0;
1954 }
1955 
1956 static long kvm_vcpu_ioctl(struct file *filp,
1957 			   unsigned int ioctl, unsigned long arg)
1958 {
1959 	struct kvm_vcpu *vcpu = filp->private_data;
1960 	void __user *argp = (void __user *)arg;
1961 	int r;
1962 	struct kvm_fpu *fpu = NULL;
1963 	struct kvm_sregs *kvm_sregs = NULL;
1964 
1965 	if (vcpu->kvm->mm != current->mm)
1966 		return -EIO;
1967 
1968 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
1969 	/*
1970 	 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1971 	 * so vcpu_load() would break it.
1972 	 */
1973 	if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1974 		return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1975 #endif
1976 
1977 
1978 	r = vcpu_load(vcpu);
1979 	if (r)
1980 		return r;
1981 	switch (ioctl) {
1982 	case KVM_RUN:
1983 		r = -EINVAL;
1984 		if (arg)
1985 			goto out;
1986 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1987 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1988 		break;
1989 	case KVM_GET_REGS: {
1990 		struct kvm_regs *kvm_regs;
1991 
1992 		r = -ENOMEM;
1993 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1994 		if (!kvm_regs)
1995 			goto out;
1996 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1997 		if (r)
1998 			goto out_free1;
1999 		r = -EFAULT;
2000 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2001 			goto out_free1;
2002 		r = 0;
2003 out_free1:
2004 		kfree(kvm_regs);
2005 		break;
2006 	}
2007 	case KVM_SET_REGS: {
2008 		struct kvm_regs *kvm_regs;
2009 
2010 		r = -ENOMEM;
2011 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2012 		if (IS_ERR(kvm_regs)) {
2013 			r = PTR_ERR(kvm_regs);
2014 			goto out;
2015 		}
2016 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2017 		kfree(kvm_regs);
2018 		break;
2019 	}
2020 	case KVM_GET_SREGS: {
2021 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2022 		r = -ENOMEM;
2023 		if (!kvm_sregs)
2024 			goto out;
2025 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2026 		if (r)
2027 			goto out;
2028 		r = -EFAULT;
2029 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2030 			goto out;
2031 		r = 0;
2032 		break;
2033 	}
2034 	case KVM_SET_SREGS: {
2035 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2036 		if (IS_ERR(kvm_sregs)) {
2037 			r = PTR_ERR(kvm_sregs);
2038 			kvm_sregs = NULL;
2039 			goto out;
2040 		}
2041 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2042 		break;
2043 	}
2044 	case KVM_GET_MP_STATE: {
2045 		struct kvm_mp_state mp_state;
2046 
2047 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2048 		if (r)
2049 			goto out;
2050 		r = -EFAULT;
2051 		if (copy_to_user(argp, &mp_state, sizeof mp_state))
2052 			goto out;
2053 		r = 0;
2054 		break;
2055 	}
2056 	case KVM_SET_MP_STATE: {
2057 		struct kvm_mp_state mp_state;
2058 
2059 		r = -EFAULT;
2060 		if (copy_from_user(&mp_state, argp, sizeof mp_state))
2061 			goto out;
2062 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2063 		break;
2064 	}
2065 	case KVM_TRANSLATE: {
2066 		struct kvm_translation tr;
2067 
2068 		r = -EFAULT;
2069 		if (copy_from_user(&tr, argp, sizeof tr))
2070 			goto out;
2071 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2072 		if (r)
2073 			goto out;
2074 		r = -EFAULT;
2075 		if (copy_to_user(argp, &tr, sizeof tr))
2076 			goto out;
2077 		r = 0;
2078 		break;
2079 	}
2080 	case KVM_SET_GUEST_DEBUG: {
2081 		struct kvm_guest_debug dbg;
2082 
2083 		r = -EFAULT;
2084 		if (copy_from_user(&dbg, argp, sizeof dbg))
2085 			goto out;
2086 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2087 		break;
2088 	}
2089 	case KVM_SET_SIGNAL_MASK: {
2090 		struct kvm_signal_mask __user *sigmask_arg = argp;
2091 		struct kvm_signal_mask kvm_sigmask;
2092 		sigset_t sigset, *p;
2093 
2094 		p = NULL;
2095 		if (argp) {
2096 			r = -EFAULT;
2097 			if (copy_from_user(&kvm_sigmask, argp,
2098 					   sizeof kvm_sigmask))
2099 				goto out;
2100 			r = -EINVAL;
2101 			if (kvm_sigmask.len != sizeof sigset)
2102 				goto out;
2103 			r = -EFAULT;
2104 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2105 					   sizeof sigset))
2106 				goto out;
2107 			p = &sigset;
2108 		}
2109 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2110 		break;
2111 	}
2112 	case KVM_GET_FPU: {
2113 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2114 		r = -ENOMEM;
2115 		if (!fpu)
2116 			goto out;
2117 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2118 		if (r)
2119 			goto out;
2120 		r = -EFAULT;
2121 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2122 			goto out;
2123 		r = 0;
2124 		break;
2125 	}
2126 	case KVM_SET_FPU: {
2127 		fpu = memdup_user(argp, sizeof(*fpu));
2128 		if (IS_ERR(fpu)) {
2129 			r = PTR_ERR(fpu);
2130 			fpu = NULL;
2131 			goto out;
2132 		}
2133 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2134 		break;
2135 	}
2136 	default:
2137 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2138 	}
2139 out:
2140 	vcpu_put(vcpu);
2141 	kfree(fpu);
2142 	kfree(kvm_sregs);
2143 	return r;
2144 }
2145 
2146 #ifdef CONFIG_COMPAT
2147 static long kvm_vcpu_compat_ioctl(struct file *filp,
2148 				  unsigned int ioctl, unsigned long arg)
2149 {
2150 	struct kvm_vcpu *vcpu = filp->private_data;
2151 	void __user *argp = compat_ptr(arg);
2152 	int r;
2153 
2154 	if (vcpu->kvm->mm != current->mm)
2155 		return -EIO;
2156 
2157 	switch (ioctl) {
2158 	case KVM_SET_SIGNAL_MASK: {
2159 		struct kvm_signal_mask __user *sigmask_arg = argp;
2160 		struct kvm_signal_mask kvm_sigmask;
2161 		compat_sigset_t csigset;
2162 		sigset_t sigset;
2163 
2164 		if (argp) {
2165 			r = -EFAULT;
2166 			if (copy_from_user(&kvm_sigmask, argp,
2167 					   sizeof kvm_sigmask))
2168 				goto out;
2169 			r = -EINVAL;
2170 			if (kvm_sigmask.len != sizeof csigset)
2171 				goto out;
2172 			r = -EFAULT;
2173 			if (copy_from_user(&csigset, sigmask_arg->sigset,
2174 					   sizeof csigset))
2175 				goto out;
2176 			sigset_from_compat(&sigset, &csigset);
2177 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2178 		} else
2179 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2180 		break;
2181 	}
2182 	default:
2183 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2184 	}
2185 
2186 out:
2187 	return r;
2188 }
2189 #endif
2190 
2191 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2192 				 int (*accessor)(struct kvm_device *dev,
2193 						 struct kvm_device_attr *attr),
2194 				 unsigned long arg)
2195 {
2196 	struct kvm_device_attr attr;
2197 
2198 	if (!accessor)
2199 		return -EPERM;
2200 
2201 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2202 		return -EFAULT;
2203 
2204 	return accessor(dev, &attr);
2205 }
2206 
2207 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2208 			     unsigned long arg)
2209 {
2210 	struct kvm_device *dev = filp->private_data;
2211 
2212 	switch (ioctl) {
2213 	case KVM_SET_DEVICE_ATTR:
2214 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2215 	case KVM_GET_DEVICE_ATTR:
2216 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2217 	case KVM_HAS_DEVICE_ATTR:
2218 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2219 	default:
2220 		if (dev->ops->ioctl)
2221 			return dev->ops->ioctl(dev, ioctl, arg);
2222 
2223 		return -ENOTTY;
2224 	}
2225 }
2226 
2227 static int kvm_device_release(struct inode *inode, struct file *filp)
2228 {
2229 	struct kvm_device *dev = filp->private_data;
2230 	struct kvm *kvm = dev->kvm;
2231 
2232 	kvm_put_kvm(kvm);
2233 	return 0;
2234 }
2235 
2236 static const struct file_operations kvm_device_fops = {
2237 	.unlocked_ioctl = kvm_device_ioctl,
2238 #ifdef CONFIG_COMPAT
2239 	.compat_ioctl = kvm_device_ioctl,
2240 #endif
2241 	.release = kvm_device_release,
2242 };
2243 
2244 struct kvm_device *kvm_device_from_filp(struct file *filp)
2245 {
2246 	if (filp->f_op != &kvm_device_fops)
2247 		return NULL;
2248 
2249 	return filp->private_data;
2250 }
2251 
2252 static int kvm_ioctl_create_device(struct kvm *kvm,
2253 				   struct kvm_create_device *cd)
2254 {
2255 	struct kvm_device_ops *ops = NULL;
2256 	struct kvm_device *dev;
2257 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2258 	int ret;
2259 
2260 	switch (cd->type) {
2261 #ifdef CONFIG_KVM_MPIC
2262 	case KVM_DEV_TYPE_FSL_MPIC_20:
2263 	case KVM_DEV_TYPE_FSL_MPIC_42:
2264 		ops = &kvm_mpic_ops;
2265 		break;
2266 #endif
2267 #ifdef CONFIG_KVM_XICS
2268 	case KVM_DEV_TYPE_XICS:
2269 		ops = &kvm_xics_ops;
2270 		break;
2271 #endif
2272 	default:
2273 		return -ENODEV;
2274 	}
2275 
2276 	if (test)
2277 		return 0;
2278 
2279 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2280 	if (!dev)
2281 		return -ENOMEM;
2282 
2283 	dev->ops = ops;
2284 	dev->kvm = kvm;
2285 
2286 	ret = ops->create(dev, cd->type);
2287 	if (ret < 0) {
2288 		kfree(dev);
2289 		return ret;
2290 	}
2291 
2292 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2293 	if (ret < 0) {
2294 		ops->destroy(dev);
2295 		return ret;
2296 	}
2297 
2298 	list_add(&dev->vm_node, &kvm->devices);
2299 	kvm_get_kvm(kvm);
2300 	cd->fd = ret;
2301 	return 0;
2302 }
2303 
2304 static long kvm_vm_ioctl(struct file *filp,
2305 			   unsigned int ioctl, unsigned long arg)
2306 {
2307 	struct kvm *kvm = filp->private_data;
2308 	void __user *argp = (void __user *)arg;
2309 	int r;
2310 
2311 	if (kvm->mm != current->mm)
2312 		return -EIO;
2313 	switch (ioctl) {
2314 	case KVM_CREATE_VCPU:
2315 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2316 		break;
2317 	case KVM_SET_USER_MEMORY_REGION: {
2318 		struct kvm_userspace_memory_region kvm_userspace_mem;
2319 
2320 		r = -EFAULT;
2321 		if (copy_from_user(&kvm_userspace_mem, argp,
2322 						sizeof kvm_userspace_mem))
2323 			goto out;
2324 
2325 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2326 		break;
2327 	}
2328 	case KVM_GET_DIRTY_LOG: {
2329 		struct kvm_dirty_log log;
2330 
2331 		r = -EFAULT;
2332 		if (copy_from_user(&log, argp, sizeof log))
2333 			goto out;
2334 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2335 		break;
2336 	}
2337 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2338 	case KVM_REGISTER_COALESCED_MMIO: {
2339 		struct kvm_coalesced_mmio_zone zone;
2340 		r = -EFAULT;
2341 		if (copy_from_user(&zone, argp, sizeof zone))
2342 			goto out;
2343 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2344 		break;
2345 	}
2346 	case KVM_UNREGISTER_COALESCED_MMIO: {
2347 		struct kvm_coalesced_mmio_zone zone;
2348 		r = -EFAULT;
2349 		if (copy_from_user(&zone, argp, sizeof zone))
2350 			goto out;
2351 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2352 		break;
2353 	}
2354 #endif
2355 	case KVM_IRQFD: {
2356 		struct kvm_irqfd data;
2357 
2358 		r = -EFAULT;
2359 		if (copy_from_user(&data, argp, sizeof data))
2360 			goto out;
2361 		r = kvm_irqfd(kvm, &data);
2362 		break;
2363 	}
2364 	case KVM_IOEVENTFD: {
2365 		struct kvm_ioeventfd data;
2366 
2367 		r = -EFAULT;
2368 		if (copy_from_user(&data, argp, sizeof data))
2369 			goto out;
2370 		r = kvm_ioeventfd(kvm, &data);
2371 		break;
2372 	}
2373 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2374 	case KVM_SET_BOOT_CPU_ID:
2375 		r = 0;
2376 		mutex_lock(&kvm->lock);
2377 		if (atomic_read(&kvm->online_vcpus) != 0)
2378 			r = -EBUSY;
2379 		else
2380 			kvm->bsp_vcpu_id = arg;
2381 		mutex_unlock(&kvm->lock);
2382 		break;
2383 #endif
2384 #ifdef CONFIG_HAVE_KVM_MSI
2385 	case KVM_SIGNAL_MSI: {
2386 		struct kvm_msi msi;
2387 
2388 		r = -EFAULT;
2389 		if (copy_from_user(&msi, argp, sizeof msi))
2390 			goto out;
2391 		r = kvm_send_userspace_msi(kvm, &msi);
2392 		break;
2393 	}
2394 #endif
2395 #ifdef __KVM_HAVE_IRQ_LINE
2396 	case KVM_IRQ_LINE_STATUS:
2397 	case KVM_IRQ_LINE: {
2398 		struct kvm_irq_level irq_event;
2399 
2400 		r = -EFAULT;
2401 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
2402 			goto out;
2403 
2404 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2405 					ioctl == KVM_IRQ_LINE_STATUS);
2406 		if (r)
2407 			goto out;
2408 
2409 		r = -EFAULT;
2410 		if (ioctl == KVM_IRQ_LINE_STATUS) {
2411 			if (copy_to_user(argp, &irq_event, sizeof irq_event))
2412 				goto out;
2413 		}
2414 
2415 		r = 0;
2416 		break;
2417 	}
2418 #endif
2419 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2420 	case KVM_SET_GSI_ROUTING: {
2421 		struct kvm_irq_routing routing;
2422 		struct kvm_irq_routing __user *urouting;
2423 		struct kvm_irq_routing_entry *entries;
2424 
2425 		r = -EFAULT;
2426 		if (copy_from_user(&routing, argp, sizeof(routing)))
2427 			goto out;
2428 		r = -EINVAL;
2429 		if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2430 			goto out;
2431 		if (routing.flags)
2432 			goto out;
2433 		r = -ENOMEM;
2434 		entries = vmalloc(routing.nr * sizeof(*entries));
2435 		if (!entries)
2436 			goto out;
2437 		r = -EFAULT;
2438 		urouting = argp;
2439 		if (copy_from_user(entries, urouting->entries,
2440 				   routing.nr * sizeof(*entries)))
2441 			goto out_free_irq_routing;
2442 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
2443 					routing.flags);
2444 	out_free_irq_routing:
2445 		vfree(entries);
2446 		break;
2447 	}
2448 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2449 	case KVM_CREATE_DEVICE: {
2450 		struct kvm_create_device cd;
2451 
2452 		r = -EFAULT;
2453 		if (copy_from_user(&cd, argp, sizeof(cd)))
2454 			goto out;
2455 
2456 		r = kvm_ioctl_create_device(kvm, &cd);
2457 		if (r)
2458 			goto out;
2459 
2460 		r = -EFAULT;
2461 		if (copy_to_user(argp, &cd, sizeof(cd)))
2462 			goto out;
2463 
2464 		r = 0;
2465 		break;
2466 	}
2467 	default:
2468 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2469 		if (r == -ENOTTY)
2470 			r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2471 	}
2472 out:
2473 	return r;
2474 }
2475 
2476 #ifdef CONFIG_COMPAT
2477 struct compat_kvm_dirty_log {
2478 	__u32 slot;
2479 	__u32 padding1;
2480 	union {
2481 		compat_uptr_t dirty_bitmap; /* one bit per page */
2482 		__u64 padding2;
2483 	};
2484 };
2485 
2486 static long kvm_vm_compat_ioctl(struct file *filp,
2487 			   unsigned int ioctl, unsigned long arg)
2488 {
2489 	struct kvm *kvm = filp->private_data;
2490 	int r;
2491 
2492 	if (kvm->mm != current->mm)
2493 		return -EIO;
2494 	switch (ioctl) {
2495 	case KVM_GET_DIRTY_LOG: {
2496 		struct compat_kvm_dirty_log compat_log;
2497 		struct kvm_dirty_log log;
2498 
2499 		r = -EFAULT;
2500 		if (copy_from_user(&compat_log, (void __user *)arg,
2501 				   sizeof(compat_log)))
2502 			goto out;
2503 		log.slot	 = compat_log.slot;
2504 		log.padding1	 = compat_log.padding1;
2505 		log.padding2	 = compat_log.padding2;
2506 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2507 
2508 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2509 		break;
2510 	}
2511 	default:
2512 		r = kvm_vm_ioctl(filp, ioctl, arg);
2513 	}
2514 
2515 out:
2516 	return r;
2517 }
2518 #endif
2519 
2520 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2521 {
2522 	struct page *page[1];
2523 	unsigned long addr;
2524 	int npages;
2525 	gfn_t gfn = vmf->pgoff;
2526 	struct kvm *kvm = vma->vm_file->private_data;
2527 
2528 	addr = gfn_to_hva(kvm, gfn);
2529 	if (kvm_is_error_hva(addr))
2530 		return VM_FAULT_SIGBUS;
2531 
2532 	npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2533 				NULL);
2534 	if (unlikely(npages != 1))
2535 		return VM_FAULT_SIGBUS;
2536 
2537 	vmf->page = page[0];
2538 	return 0;
2539 }
2540 
2541 static const struct vm_operations_struct kvm_vm_vm_ops = {
2542 	.fault = kvm_vm_fault,
2543 };
2544 
2545 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2546 {
2547 	vma->vm_ops = &kvm_vm_vm_ops;
2548 	return 0;
2549 }
2550 
2551 static struct file_operations kvm_vm_fops = {
2552 	.release        = kvm_vm_release,
2553 	.unlocked_ioctl = kvm_vm_ioctl,
2554 #ifdef CONFIG_COMPAT
2555 	.compat_ioctl   = kvm_vm_compat_ioctl,
2556 #endif
2557 	.mmap           = kvm_vm_mmap,
2558 	.llseek		= noop_llseek,
2559 };
2560 
2561 static int kvm_dev_ioctl_create_vm(unsigned long type)
2562 {
2563 	int r;
2564 	struct kvm *kvm;
2565 
2566 	kvm = kvm_create_vm(type);
2567 	if (IS_ERR(kvm))
2568 		return PTR_ERR(kvm);
2569 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2570 	r = kvm_coalesced_mmio_init(kvm);
2571 	if (r < 0) {
2572 		kvm_put_kvm(kvm);
2573 		return r;
2574 	}
2575 #endif
2576 	r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2577 	if (r < 0)
2578 		kvm_put_kvm(kvm);
2579 
2580 	return r;
2581 }
2582 
2583 static long kvm_dev_ioctl_check_extension_generic(long arg)
2584 {
2585 	switch (arg) {
2586 	case KVM_CAP_USER_MEMORY:
2587 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2588 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2589 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2590 	case KVM_CAP_SET_BOOT_CPU_ID:
2591 #endif
2592 	case KVM_CAP_INTERNAL_ERROR_DATA:
2593 #ifdef CONFIG_HAVE_KVM_MSI
2594 	case KVM_CAP_SIGNAL_MSI:
2595 #endif
2596 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2597 	case KVM_CAP_IRQFD_RESAMPLE:
2598 #endif
2599 		return 1;
2600 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2601 	case KVM_CAP_IRQ_ROUTING:
2602 		return KVM_MAX_IRQ_ROUTES;
2603 #endif
2604 	default:
2605 		break;
2606 	}
2607 	return kvm_dev_ioctl_check_extension(arg);
2608 }
2609 
2610 static long kvm_dev_ioctl(struct file *filp,
2611 			  unsigned int ioctl, unsigned long arg)
2612 {
2613 	long r = -EINVAL;
2614 
2615 	switch (ioctl) {
2616 	case KVM_GET_API_VERSION:
2617 		r = -EINVAL;
2618 		if (arg)
2619 			goto out;
2620 		r = KVM_API_VERSION;
2621 		break;
2622 	case KVM_CREATE_VM:
2623 		r = kvm_dev_ioctl_create_vm(arg);
2624 		break;
2625 	case KVM_CHECK_EXTENSION:
2626 		r = kvm_dev_ioctl_check_extension_generic(arg);
2627 		break;
2628 	case KVM_GET_VCPU_MMAP_SIZE:
2629 		r = -EINVAL;
2630 		if (arg)
2631 			goto out;
2632 		r = PAGE_SIZE;     /* struct kvm_run */
2633 #ifdef CONFIG_X86
2634 		r += PAGE_SIZE;    /* pio data page */
2635 #endif
2636 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2637 		r += PAGE_SIZE;    /* coalesced mmio ring page */
2638 #endif
2639 		break;
2640 	case KVM_TRACE_ENABLE:
2641 	case KVM_TRACE_PAUSE:
2642 	case KVM_TRACE_DISABLE:
2643 		r = -EOPNOTSUPP;
2644 		break;
2645 	default:
2646 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
2647 	}
2648 out:
2649 	return r;
2650 }
2651 
2652 static struct file_operations kvm_chardev_ops = {
2653 	.unlocked_ioctl = kvm_dev_ioctl,
2654 	.compat_ioctl   = kvm_dev_ioctl,
2655 	.llseek		= noop_llseek,
2656 };
2657 
2658 static struct miscdevice kvm_dev = {
2659 	KVM_MINOR,
2660 	"kvm",
2661 	&kvm_chardev_ops,
2662 };
2663 
2664 static void hardware_enable_nolock(void *junk)
2665 {
2666 	int cpu = raw_smp_processor_id();
2667 	int r;
2668 
2669 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2670 		return;
2671 
2672 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
2673 
2674 	r = kvm_arch_hardware_enable(NULL);
2675 
2676 	if (r) {
2677 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2678 		atomic_inc(&hardware_enable_failed);
2679 		printk(KERN_INFO "kvm: enabling virtualization on "
2680 				 "CPU%d failed\n", cpu);
2681 	}
2682 }
2683 
2684 static void hardware_enable(void *junk)
2685 {
2686 	raw_spin_lock(&kvm_lock);
2687 	hardware_enable_nolock(junk);
2688 	raw_spin_unlock(&kvm_lock);
2689 }
2690 
2691 static void hardware_disable_nolock(void *junk)
2692 {
2693 	int cpu = raw_smp_processor_id();
2694 
2695 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2696 		return;
2697 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2698 	kvm_arch_hardware_disable(NULL);
2699 }
2700 
2701 static void hardware_disable(void *junk)
2702 {
2703 	raw_spin_lock(&kvm_lock);
2704 	hardware_disable_nolock(junk);
2705 	raw_spin_unlock(&kvm_lock);
2706 }
2707 
2708 static void hardware_disable_all_nolock(void)
2709 {
2710 	BUG_ON(!kvm_usage_count);
2711 
2712 	kvm_usage_count--;
2713 	if (!kvm_usage_count)
2714 		on_each_cpu(hardware_disable_nolock, NULL, 1);
2715 }
2716 
2717 static void hardware_disable_all(void)
2718 {
2719 	raw_spin_lock(&kvm_lock);
2720 	hardware_disable_all_nolock();
2721 	raw_spin_unlock(&kvm_lock);
2722 }
2723 
2724 static int hardware_enable_all(void)
2725 {
2726 	int r = 0;
2727 
2728 	raw_spin_lock(&kvm_lock);
2729 
2730 	kvm_usage_count++;
2731 	if (kvm_usage_count == 1) {
2732 		atomic_set(&hardware_enable_failed, 0);
2733 		on_each_cpu(hardware_enable_nolock, NULL, 1);
2734 
2735 		if (atomic_read(&hardware_enable_failed)) {
2736 			hardware_disable_all_nolock();
2737 			r = -EBUSY;
2738 		}
2739 	}
2740 
2741 	raw_spin_unlock(&kvm_lock);
2742 
2743 	return r;
2744 }
2745 
2746 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2747 			   void *v)
2748 {
2749 	int cpu = (long)v;
2750 
2751 	if (!kvm_usage_count)
2752 		return NOTIFY_OK;
2753 
2754 	val &= ~CPU_TASKS_FROZEN;
2755 	switch (val) {
2756 	case CPU_DYING:
2757 		printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2758 		       cpu);
2759 		hardware_disable(NULL);
2760 		break;
2761 	case CPU_STARTING:
2762 		printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2763 		       cpu);
2764 		hardware_enable(NULL);
2765 		break;
2766 	}
2767 	return NOTIFY_OK;
2768 }
2769 
2770 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2771 		      void *v)
2772 {
2773 	/*
2774 	 * Some (well, at least mine) BIOSes hang on reboot if
2775 	 * in vmx root mode.
2776 	 *
2777 	 * And Intel TXT required VMX off for all cpu when system shutdown.
2778 	 */
2779 	printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2780 	kvm_rebooting = true;
2781 	on_each_cpu(hardware_disable_nolock, NULL, 1);
2782 	return NOTIFY_OK;
2783 }
2784 
2785 static struct notifier_block kvm_reboot_notifier = {
2786 	.notifier_call = kvm_reboot,
2787 	.priority = 0,
2788 };
2789 
2790 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2791 {
2792 	int i;
2793 
2794 	for (i = 0; i < bus->dev_count; i++) {
2795 		struct kvm_io_device *pos = bus->range[i].dev;
2796 
2797 		kvm_iodevice_destructor(pos);
2798 	}
2799 	kfree(bus);
2800 }
2801 
2802 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2803                                  const struct kvm_io_range *r2)
2804 {
2805 	if (r1->addr < r2->addr)
2806 		return -1;
2807 	if (r1->addr + r1->len > r2->addr + r2->len)
2808 		return 1;
2809 	return 0;
2810 }
2811 
2812 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2813 {
2814 	return kvm_io_bus_cmp(p1, p2);
2815 }
2816 
2817 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2818 			  gpa_t addr, int len)
2819 {
2820 	bus->range[bus->dev_count++] = (struct kvm_io_range) {
2821 		.addr = addr,
2822 		.len = len,
2823 		.dev = dev,
2824 	};
2825 
2826 	sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2827 		kvm_io_bus_sort_cmp, NULL);
2828 
2829 	return 0;
2830 }
2831 
2832 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2833 			     gpa_t addr, int len)
2834 {
2835 	struct kvm_io_range *range, key;
2836 	int off;
2837 
2838 	key = (struct kvm_io_range) {
2839 		.addr = addr,
2840 		.len = len,
2841 	};
2842 
2843 	range = bsearch(&key, bus->range, bus->dev_count,
2844 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2845 	if (range == NULL)
2846 		return -ENOENT;
2847 
2848 	off = range - bus->range;
2849 
2850 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
2851 		off--;
2852 
2853 	return off;
2854 }
2855 
2856 static int __kvm_io_bus_write(struct kvm_io_bus *bus,
2857 			      struct kvm_io_range *range, const void *val)
2858 {
2859 	int idx;
2860 
2861 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2862 	if (idx < 0)
2863 		return -EOPNOTSUPP;
2864 
2865 	while (idx < bus->dev_count &&
2866 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2867 		if (!kvm_iodevice_write(bus->range[idx].dev, range->addr,
2868 					range->len, val))
2869 			return idx;
2870 		idx++;
2871 	}
2872 
2873 	return -EOPNOTSUPP;
2874 }
2875 
2876 /* kvm_io_bus_write - called under kvm->slots_lock */
2877 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2878 		     int len, const void *val)
2879 {
2880 	struct kvm_io_bus *bus;
2881 	struct kvm_io_range range;
2882 	int r;
2883 
2884 	range = (struct kvm_io_range) {
2885 		.addr = addr,
2886 		.len = len,
2887 	};
2888 
2889 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2890 	r = __kvm_io_bus_write(bus, &range, val);
2891 	return r < 0 ? r : 0;
2892 }
2893 
2894 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
2895 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2896 			    int len, const void *val, long cookie)
2897 {
2898 	struct kvm_io_bus *bus;
2899 	struct kvm_io_range range;
2900 
2901 	range = (struct kvm_io_range) {
2902 		.addr = addr,
2903 		.len = len,
2904 	};
2905 
2906 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2907 
2908 	/* First try the device referenced by cookie. */
2909 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2910 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2911 		if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len,
2912 					val))
2913 			return cookie;
2914 
2915 	/*
2916 	 * cookie contained garbage; fall back to search and return the
2917 	 * correct cookie value.
2918 	 */
2919 	return __kvm_io_bus_write(bus, &range, val);
2920 }
2921 
2922 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range,
2923 			     void *val)
2924 {
2925 	int idx;
2926 
2927 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
2928 	if (idx < 0)
2929 		return -EOPNOTSUPP;
2930 
2931 	while (idx < bus->dev_count &&
2932 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
2933 		if (!kvm_iodevice_read(bus->range[idx].dev, range->addr,
2934 				       range->len, val))
2935 			return idx;
2936 		idx++;
2937 	}
2938 
2939 	return -EOPNOTSUPP;
2940 }
2941 
2942 /* kvm_io_bus_read - called under kvm->slots_lock */
2943 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2944 		    int len, void *val)
2945 {
2946 	struct kvm_io_bus *bus;
2947 	struct kvm_io_range range;
2948 	int r;
2949 
2950 	range = (struct kvm_io_range) {
2951 		.addr = addr,
2952 		.len = len,
2953 	};
2954 
2955 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2956 	r = __kvm_io_bus_read(bus, &range, val);
2957 	return r < 0 ? r : 0;
2958 }
2959 
2960 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */
2961 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2962 			   int len, void *val, long cookie)
2963 {
2964 	struct kvm_io_bus *bus;
2965 	struct kvm_io_range range;
2966 
2967 	range = (struct kvm_io_range) {
2968 		.addr = addr,
2969 		.len = len,
2970 	};
2971 
2972 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2973 
2974 	/* First try the device referenced by cookie. */
2975 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
2976 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
2977 		if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len,
2978 				       val))
2979 			return cookie;
2980 
2981 	/*
2982 	 * cookie contained garbage; fall back to search and return the
2983 	 * correct cookie value.
2984 	 */
2985 	return __kvm_io_bus_read(bus, &range, val);
2986 }
2987 
2988 /* Caller must hold slots_lock. */
2989 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2990 			    int len, struct kvm_io_device *dev)
2991 {
2992 	struct kvm_io_bus *new_bus, *bus;
2993 
2994 	bus = kvm->buses[bus_idx];
2995 	/* exclude ioeventfd which is limited by maximum fd */
2996 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
2997 		return -ENOSPC;
2998 
2999 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3000 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3001 	if (!new_bus)
3002 		return -ENOMEM;
3003 	memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3004 	       sizeof(struct kvm_io_range)));
3005 	kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3006 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3007 	synchronize_srcu_expedited(&kvm->srcu);
3008 	kfree(bus);
3009 
3010 	return 0;
3011 }
3012 
3013 /* Caller must hold slots_lock. */
3014 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3015 			      struct kvm_io_device *dev)
3016 {
3017 	int i, r;
3018 	struct kvm_io_bus *new_bus, *bus;
3019 
3020 	bus = kvm->buses[bus_idx];
3021 	r = -ENOENT;
3022 	for (i = 0; i < bus->dev_count; i++)
3023 		if (bus->range[i].dev == dev) {
3024 			r = 0;
3025 			break;
3026 		}
3027 
3028 	if (r)
3029 		return r;
3030 
3031 	new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3032 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3033 	if (!new_bus)
3034 		return -ENOMEM;
3035 
3036 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3037 	new_bus->dev_count--;
3038 	memcpy(new_bus->range + i, bus->range + i + 1,
3039 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3040 
3041 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3042 	synchronize_srcu_expedited(&kvm->srcu);
3043 	kfree(bus);
3044 	return r;
3045 }
3046 
3047 static struct notifier_block kvm_cpu_notifier = {
3048 	.notifier_call = kvm_cpu_hotplug,
3049 };
3050 
3051 static int vm_stat_get(void *_offset, u64 *val)
3052 {
3053 	unsigned offset = (long)_offset;
3054 	struct kvm *kvm;
3055 
3056 	*val = 0;
3057 	raw_spin_lock(&kvm_lock);
3058 	list_for_each_entry(kvm, &vm_list, vm_list)
3059 		*val += *(u32 *)((void *)kvm + offset);
3060 	raw_spin_unlock(&kvm_lock);
3061 	return 0;
3062 }
3063 
3064 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3065 
3066 static int vcpu_stat_get(void *_offset, u64 *val)
3067 {
3068 	unsigned offset = (long)_offset;
3069 	struct kvm *kvm;
3070 	struct kvm_vcpu *vcpu;
3071 	int i;
3072 
3073 	*val = 0;
3074 	raw_spin_lock(&kvm_lock);
3075 	list_for_each_entry(kvm, &vm_list, vm_list)
3076 		kvm_for_each_vcpu(i, vcpu, kvm)
3077 			*val += *(u32 *)((void *)vcpu + offset);
3078 
3079 	raw_spin_unlock(&kvm_lock);
3080 	return 0;
3081 }
3082 
3083 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3084 
3085 static const struct file_operations *stat_fops[] = {
3086 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3087 	[KVM_STAT_VM]   = &vm_stat_fops,
3088 };
3089 
3090 static int kvm_init_debug(void)
3091 {
3092 	int r = -EFAULT;
3093 	struct kvm_stats_debugfs_item *p;
3094 
3095 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3096 	if (kvm_debugfs_dir == NULL)
3097 		goto out;
3098 
3099 	for (p = debugfs_entries; p->name; ++p) {
3100 		p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3101 						(void *)(long)p->offset,
3102 						stat_fops[p->kind]);
3103 		if (p->dentry == NULL)
3104 			goto out_dir;
3105 	}
3106 
3107 	return 0;
3108 
3109 out_dir:
3110 	debugfs_remove_recursive(kvm_debugfs_dir);
3111 out:
3112 	return r;
3113 }
3114 
3115 static void kvm_exit_debug(void)
3116 {
3117 	struct kvm_stats_debugfs_item *p;
3118 
3119 	for (p = debugfs_entries; p->name; ++p)
3120 		debugfs_remove(p->dentry);
3121 	debugfs_remove(kvm_debugfs_dir);
3122 }
3123 
3124 static int kvm_suspend(void)
3125 {
3126 	if (kvm_usage_count)
3127 		hardware_disable_nolock(NULL);
3128 	return 0;
3129 }
3130 
3131 static void kvm_resume(void)
3132 {
3133 	if (kvm_usage_count) {
3134 		WARN_ON(raw_spin_is_locked(&kvm_lock));
3135 		hardware_enable_nolock(NULL);
3136 	}
3137 }
3138 
3139 static struct syscore_ops kvm_syscore_ops = {
3140 	.suspend = kvm_suspend,
3141 	.resume = kvm_resume,
3142 };
3143 
3144 static inline
3145 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3146 {
3147 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3148 }
3149 
3150 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3151 {
3152 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3153 	if (vcpu->preempted)
3154 		vcpu->preempted = false;
3155 
3156 	kvm_arch_vcpu_load(vcpu, cpu);
3157 }
3158 
3159 static void kvm_sched_out(struct preempt_notifier *pn,
3160 			  struct task_struct *next)
3161 {
3162 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3163 
3164 	if (current->state == TASK_RUNNING)
3165 		vcpu->preempted = true;
3166 	kvm_arch_vcpu_put(vcpu);
3167 }
3168 
3169 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3170 		  struct module *module)
3171 {
3172 	int r;
3173 	int cpu;
3174 
3175 	r = kvm_arch_init(opaque);
3176 	if (r)
3177 		goto out_fail;
3178 
3179 	/*
3180 	 * kvm_arch_init makes sure there's at most one caller
3181 	 * for architectures that support multiple implementations,
3182 	 * like intel and amd on x86.
3183 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3184 	 * conflicts in case kvm is already setup for another implementation.
3185 	 */
3186 	r = kvm_irqfd_init();
3187 	if (r)
3188 		goto out_irqfd;
3189 
3190 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3191 		r = -ENOMEM;
3192 		goto out_free_0;
3193 	}
3194 
3195 	r = kvm_arch_hardware_setup();
3196 	if (r < 0)
3197 		goto out_free_0a;
3198 
3199 	for_each_online_cpu(cpu) {
3200 		smp_call_function_single(cpu,
3201 				kvm_arch_check_processor_compat,
3202 				&r, 1);
3203 		if (r < 0)
3204 			goto out_free_1;
3205 	}
3206 
3207 	r = register_cpu_notifier(&kvm_cpu_notifier);
3208 	if (r)
3209 		goto out_free_2;
3210 	register_reboot_notifier(&kvm_reboot_notifier);
3211 
3212 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
3213 	if (!vcpu_align)
3214 		vcpu_align = __alignof__(struct kvm_vcpu);
3215 	kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3216 					   0, NULL);
3217 	if (!kvm_vcpu_cache) {
3218 		r = -ENOMEM;
3219 		goto out_free_3;
3220 	}
3221 
3222 	r = kvm_async_pf_init();
3223 	if (r)
3224 		goto out_free;
3225 
3226 	kvm_chardev_ops.owner = module;
3227 	kvm_vm_fops.owner = module;
3228 	kvm_vcpu_fops.owner = module;
3229 
3230 	r = misc_register(&kvm_dev);
3231 	if (r) {
3232 		printk(KERN_ERR "kvm: misc device register failed\n");
3233 		goto out_unreg;
3234 	}
3235 
3236 	register_syscore_ops(&kvm_syscore_ops);
3237 
3238 	kvm_preempt_ops.sched_in = kvm_sched_in;
3239 	kvm_preempt_ops.sched_out = kvm_sched_out;
3240 
3241 	r = kvm_init_debug();
3242 	if (r) {
3243 		printk(KERN_ERR "kvm: create debugfs files failed\n");
3244 		goto out_undebugfs;
3245 	}
3246 
3247 	return 0;
3248 
3249 out_undebugfs:
3250 	unregister_syscore_ops(&kvm_syscore_ops);
3251 	misc_deregister(&kvm_dev);
3252 out_unreg:
3253 	kvm_async_pf_deinit();
3254 out_free:
3255 	kmem_cache_destroy(kvm_vcpu_cache);
3256 out_free_3:
3257 	unregister_reboot_notifier(&kvm_reboot_notifier);
3258 	unregister_cpu_notifier(&kvm_cpu_notifier);
3259 out_free_2:
3260 out_free_1:
3261 	kvm_arch_hardware_unsetup();
3262 out_free_0a:
3263 	free_cpumask_var(cpus_hardware_enabled);
3264 out_free_0:
3265 	kvm_irqfd_exit();
3266 out_irqfd:
3267 	kvm_arch_exit();
3268 out_fail:
3269 	return r;
3270 }
3271 EXPORT_SYMBOL_GPL(kvm_init);
3272 
3273 void kvm_exit(void)
3274 {
3275 	kvm_exit_debug();
3276 	misc_deregister(&kvm_dev);
3277 	kmem_cache_destroy(kvm_vcpu_cache);
3278 	kvm_async_pf_deinit();
3279 	unregister_syscore_ops(&kvm_syscore_ops);
3280 	unregister_reboot_notifier(&kvm_reboot_notifier);
3281 	unregister_cpu_notifier(&kvm_cpu_notifier);
3282 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3283 	kvm_arch_hardware_unsetup();
3284 	kvm_arch_exit();
3285 	kvm_irqfd_exit();
3286 	free_cpumask_var(cpus_hardware_enabled);
3287 }
3288 EXPORT_SYMBOL_GPL(kvm_exit);
3289