1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_RAW_SPINLOCK(kvm_lock); 74 LIST_HEAD(vm_list); 75 76 static cpumask_var_t cpus_hardware_enabled; 77 static int kvm_usage_count = 0; 78 static atomic_t hardware_enable_failed; 79 80 struct kmem_cache *kvm_vcpu_cache; 81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 82 83 static __read_mostly struct preempt_ops kvm_preempt_ops; 84 85 struct dentry *kvm_debugfs_dir; 86 87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 88 unsigned long arg); 89 #ifdef CONFIG_COMPAT 90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 91 unsigned long arg); 92 #endif 93 static int hardware_enable_all(void); 94 static void hardware_disable_all(void); 95 96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 97 98 bool kvm_rebooting; 99 EXPORT_SYMBOL_GPL(kvm_rebooting); 100 101 static bool largepages_enabled = true; 102 103 bool kvm_is_mmio_pfn(pfn_t pfn) 104 { 105 if (pfn_valid(pfn)) 106 return PageReserved(pfn_to_page(pfn)); 107 108 return true; 109 } 110 111 /* 112 * Switches to specified vcpu, until a matching vcpu_put() 113 */ 114 int vcpu_load(struct kvm_vcpu *vcpu) 115 { 116 int cpu; 117 118 if (mutex_lock_killable(&vcpu->mutex)) 119 return -EINTR; 120 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 121 /* The thread running this VCPU changed. */ 122 struct pid *oldpid = vcpu->pid; 123 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 124 rcu_assign_pointer(vcpu->pid, newpid); 125 synchronize_rcu(); 126 put_pid(oldpid); 127 } 128 cpu = get_cpu(); 129 preempt_notifier_register(&vcpu->preempt_notifier); 130 kvm_arch_vcpu_load(vcpu, cpu); 131 put_cpu(); 132 return 0; 133 } 134 135 void vcpu_put(struct kvm_vcpu *vcpu) 136 { 137 preempt_disable(); 138 kvm_arch_vcpu_put(vcpu); 139 preempt_notifier_unregister(&vcpu->preempt_notifier); 140 preempt_enable(); 141 mutex_unlock(&vcpu->mutex); 142 } 143 144 static void ack_flush(void *_completed) 145 { 146 } 147 148 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 149 { 150 int i, cpu, me; 151 cpumask_var_t cpus; 152 bool called = true; 153 struct kvm_vcpu *vcpu; 154 155 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 156 157 me = get_cpu(); 158 kvm_for_each_vcpu(i, vcpu, kvm) { 159 kvm_make_request(req, vcpu); 160 cpu = vcpu->cpu; 161 162 /* Set ->requests bit before we read ->mode */ 163 smp_mb(); 164 165 if (cpus != NULL && cpu != -1 && cpu != me && 166 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 167 cpumask_set_cpu(cpu, cpus); 168 } 169 if (unlikely(cpus == NULL)) 170 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 171 else if (!cpumask_empty(cpus)) 172 smp_call_function_many(cpus, ack_flush, NULL, 1); 173 else 174 called = false; 175 put_cpu(); 176 free_cpumask_var(cpus); 177 return called; 178 } 179 180 void kvm_flush_remote_tlbs(struct kvm *kvm) 181 { 182 long dirty_count = kvm->tlbs_dirty; 183 184 smp_mb(); 185 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 186 ++kvm->stat.remote_tlb_flush; 187 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 188 } 189 190 void kvm_reload_remote_mmus(struct kvm *kvm) 191 { 192 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 193 } 194 195 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 196 { 197 make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 198 } 199 200 void kvm_make_scan_ioapic_request(struct kvm *kvm) 201 { 202 make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 203 } 204 205 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 206 { 207 struct page *page; 208 int r; 209 210 mutex_init(&vcpu->mutex); 211 vcpu->cpu = -1; 212 vcpu->kvm = kvm; 213 vcpu->vcpu_id = id; 214 vcpu->pid = NULL; 215 init_waitqueue_head(&vcpu->wq); 216 kvm_async_pf_vcpu_init(vcpu); 217 218 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 219 if (!page) { 220 r = -ENOMEM; 221 goto fail; 222 } 223 vcpu->run = page_address(page); 224 225 kvm_vcpu_set_in_spin_loop(vcpu, false); 226 kvm_vcpu_set_dy_eligible(vcpu, false); 227 vcpu->preempted = false; 228 229 r = kvm_arch_vcpu_init(vcpu); 230 if (r < 0) 231 goto fail_free_run; 232 return 0; 233 234 fail_free_run: 235 free_page((unsigned long)vcpu->run); 236 fail: 237 return r; 238 } 239 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 240 241 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 242 { 243 put_pid(vcpu->pid); 244 kvm_arch_vcpu_uninit(vcpu); 245 free_page((unsigned long)vcpu->run); 246 } 247 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 248 249 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 250 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 251 { 252 return container_of(mn, struct kvm, mmu_notifier); 253 } 254 255 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 256 struct mm_struct *mm, 257 unsigned long address) 258 { 259 struct kvm *kvm = mmu_notifier_to_kvm(mn); 260 int need_tlb_flush, idx; 261 262 /* 263 * When ->invalidate_page runs, the linux pte has been zapped 264 * already but the page is still allocated until 265 * ->invalidate_page returns. So if we increase the sequence 266 * here the kvm page fault will notice if the spte can't be 267 * established because the page is going to be freed. If 268 * instead the kvm page fault establishes the spte before 269 * ->invalidate_page runs, kvm_unmap_hva will release it 270 * before returning. 271 * 272 * The sequence increase only need to be seen at spin_unlock 273 * time, and not at spin_lock time. 274 * 275 * Increasing the sequence after the spin_unlock would be 276 * unsafe because the kvm page fault could then establish the 277 * pte after kvm_unmap_hva returned, without noticing the page 278 * is going to be freed. 279 */ 280 idx = srcu_read_lock(&kvm->srcu); 281 spin_lock(&kvm->mmu_lock); 282 283 kvm->mmu_notifier_seq++; 284 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 285 /* we've to flush the tlb before the pages can be freed */ 286 if (need_tlb_flush) 287 kvm_flush_remote_tlbs(kvm); 288 289 spin_unlock(&kvm->mmu_lock); 290 srcu_read_unlock(&kvm->srcu, idx); 291 } 292 293 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 294 struct mm_struct *mm, 295 unsigned long address, 296 pte_t pte) 297 { 298 struct kvm *kvm = mmu_notifier_to_kvm(mn); 299 int idx; 300 301 idx = srcu_read_lock(&kvm->srcu); 302 spin_lock(&kvm->mmu_lock); 303 kvm->mmu_notifier_seq++; 304 kvm_set_spte_hva(kvm, address, pte); 305 spin_unlock(&kvm->mmu_lock); 306 srcu_read_unlock(&kvm->srcu, idx); 307 } 308 309 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 310 struct mm_struct *mm, 311 unsigned long start, 312 unsigned long end) 313 { 314 struct kvm *kvm = mmu_notifier_to_kvm(mn); 315 int need_tlb_flush = 0, idx; 316 317 idx = srcu_read_lock(&kvm->srcu); 318 spin_lock(&kvm->mmu_lock); 319 /* 320 * The count increase must become visible at unlock time as no 321 * spte can be established without taking the mmu_lock and 322 * count is also read inside the mmu_lock critical section. 323 */ 324 kvm->mmu_notifier_count++; 325 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 326 need_tlb_flush |= kvm->tlbs_dirty; 327 /* we've to flush the tlb before the pages can be freed */ 328 if (need_tlb_flush) 329 kvm_flush_remote_tlbs(kvm); 330 331 spin_unlock(&kvm->mmu_lock); 332 srcu_read_unlock(&kvm->srcu, idx); 333 } 334 335 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 336 struct mm_struct *mm, 337 unsigned long start, 338 unsigned long end) 339 { 340 struct kvm *kvm = mmu_notifier_to_kvm(mn); 341 342 spin_lock(&kvm->mmu_lock); 343 /* 344 * This sequence increase will notify the kvm page fault that 345 * the page that is going to be mapped in the spte could have 346 * been freed. 347 */ 348 kvm->mmu_notifier_seq++; 349 smp_wmb(); 350 /* 351 * The above sequence increase must be visible before the 352 * below count decrease, which is ensured by the smp_wmb above 353 * in conjunction with the smp_rmb in mmu_notifier_retry(). 354 */ 355 kvm->mmu_notifier_count--; 356 spin_unlock(&kvm->mmu_lock); 357 358 BUG_ON(kvm->mmu_notifier_count < 0); 359 } 360 361 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 362 struct mm_struct *mm, 363 unsigned long address) 364 { 365 struct kvm *kvm = mmu_notifier_to_kvm(mn); 366 int young, idx; 367 368 idx = srcu_read_lock(&kvm->srcu); 369 spin_lock(&kvm->mmu_lock); 370 371 young = kvm_age_hva(kvm, address); 372 if (young) 373 kvm_flush_remote_tlbs(kvm); 374 375 spin_unlock(&kvm->mmu_lock); 376 srcu_read_unlock(&kvm->srcu, idx); 377 378 return young; 379 } 380 381 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 382 struct mm_struct *mm, 383 unsigned long address) 384 { 385 struct kvm *kvm = mmu_notifier_to_kvm(mn); 386 int young, idx; 387 388 idx = srcu_read_lock(&kvm->srcu); 389 spin_lock(&kvm->mmu_lock); 390 young = kvm_test_age_hva(kvm, address); 391 spin_unlock(&kvm->mmu_lock); 392 srcu_read_unlock(&kvm->srcu, idx); 393 394 return young; 395 } 396 397 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 398 struct mm_struct *mm) 399 { 400 struct kvm *kvm = mmu_notifier_to_kvm(mn); 401 int idx; 402 403 idx = srcu_read_lock(&kvm->srcu); 404 kvm_arch_flush_shadow_all(kvm); 405 srcu_read_unlock(&kvm->srcu, idx); 406 } 407 408 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 409 .invalidate_page = kvm_mmu_notifier_invalidate_page, 410 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 411 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 412 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 413 .test_young = kvm_mmu_notifier_test_young, 414 .change_pte = kvm_mmu_notifier_change_pte, 415 .release = kvm_mmu_notifier_release, 416 }; 417 418 static int kvm_init_mmu_notifier(struct kvm *kvm) 419 { 420 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 421 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 422 } 423 424 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 425 426 static int kvm_init_mmu_notifier(struct kvm *kvm) 427 { 428 return 0; 429 } 430 431 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 432 433 static void kvm_init_memslots_id(struct kvm *kvm) 434 { 435 int i; 436 struct kvm_memslots *slots = kvm->memslots; 437 438 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 439 slots->id_to_index[i] = slots->memslots[i].id = i; 440 } 441 442 static struct kvm *kvm_create_vm(unsigned long type) 443 { 444 int r, i; 445 struct kvm *kvm = kvm_arch_alloc_vm(); 446 447 if (!kvm) 448 return ERR_PTR(-ENOMEM); 449 450 r = kvm_arch_init_vm(kvm, type); 451 if (r) 452 goto out_err_nodisable; 453 454 r = hardware_enable_all(); 455 if (r) 456 goto out_err_nodisable; 457 458 #ifdef CONFIG_HAVE_KVM_IRQCHIP 459 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 460 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 461 #endif 462 463 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 464 465 r = -ENOMEM; 466 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 467 if (!kvm->memslots) 468 goto out_err_nosrcu; 469 kvm_init_memslots_id(kvm); 470 if (init_srcu_struct(&kvm->srcu)) 471 goto out_err_nosrcu; 472 for (i = 0; i < KVM_NR_BUSES; i++) { 473 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 474 GFP_KERNEL); 475 if (!kvm->buses[i]) 476 goto out_err; 477 } 478 479 spin_lock_init(&kvm->mmu_lock); 480 kvm->mm = current->mm; 481 atomic_inc(&kvm->mm->mm_count); 482 kvm_eventfd_init(kvm); 483 mutex_init(&kvm->lock); 484 mutex_init(&kvm->irq_lock); 485 mutex_init(&kvm->slots_lock); 486 atomic_set(&kvm->users_count, 1); 487 INIT_LIST_HEAD(&kvm->devices); 488 489 r = kvm_init_mmu_notifier(kvm); 490 if (r) 491 goto out_err; 492 493 raw_spin_lock(&kvm_lock); 494 list_add(&kvm->vm_list, &vm_list); 495 raw_spin_unlock(&kvm_lock); 496 497 return kvm; 498 499 out_err: 500 cleanup_srcu_struct(&kvm->srcu); 501 out_err_nosrcu: 502 hardware_disable_all(); 503 out_err_nodisable: 504 for (i = 0; i < KVM_NR_BUSES; i++) 505 kfree(kvm->buses[i]); 506 kfree(kvm->memslots); 507 kvm_arch_free_vm(kvm); 508 return ERR_PTR(r); 509 } 510 511 /* 512 * Avoid using vmalloc for a small buffer. 513 * Should not be used when the size is statically known. 514 */ 515 void *kvm_kvzalloc(unsigned long size) 516 { 517 if (size > PAGE_SIZE) 518 return vzalloc(size); 519 else 520 return kzalloc(size, GFP_KERNEL); 521 } 522 523 void kvm_kvfree(const void *addr) 524 { 525 if (is_vmalloc_addr(addr)) 526 vfree(addr); 527 else 528 kfree(addr); 529 } 530 531 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 532 { 533 if (!memslot->dirty_bitmap) 534 return; 535 536 kvm_kvfree(memslot->dirty_bitmap); 537 memslot->dirty_bitmap = NULL; 538 } 539 540 /* 541 * Free any memory in @free but not in @dont. 542 */ 543 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 544 struct kvm_memory_slot *dont) 545 { 546 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 547 kvm_destroy_dirty_bitmap(free); 548 549 kvm_arch_free_memslot(free, dont); 550 551 free->npages = 0; 552 } 553 554 void kvm_free_physmem(struct kvm *kvm) 555 { 556 struct kvm_memslots *slots = kvm->memslots; 557 struct kvm_memory_slot *memslot; 558 559 kvm_for_each_memslot(memslot, slots) 560 kvm_free_physmem_slot(memslot, NULL); 561 562 kfree(kvm->memslots); 563 } 564 565 static void kvm_destroy_devices(struct kvm *kvm) 566 { 567 struct list_head *node, *tmp; 568 569 list_for_each_safe(node, tmp, &kvm->devices) { 570 struct kvm_device *dev = 571 list_entry(node, struct kvm_device, vm_node); 572 573 list_del(node); 574 dev->ops->destroy(dev); 575 } 576 } 577 578 static void kvm_destroy_vm(struct kvm *kvm) 579 { 580 int i; 581 struct mm_struct *mm = kvm->mm; 582 583 kvm_arch_sync_events(kvm); 584 raw_spin_lock(&kvm_lock); 585 list_del(&kvm->vm_list); 586 raw_spin_unlock(&kvm_lock); 587 kvm_free_irq_routing(kvm); 588 for (i = 0; i < KVM_NR_BUSES; i++) 589 kvm_io_bus_destroy(kvm->buses[i]); 590 kvm_coalesced_mmio_free(kvm); 591 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 592 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 593 #else 594 kvm_arch_flush_shadow_all(kvm); 595 #endif 596 kvm_arch_destroy_vm(kvm); 597 kvm_destroy_devices(kvm); 598 kvm_free_physmem(kvm); 599 cleanup_srcu_struct(&kvm->srcu); 600 kvm_arch_free_vm(kvm); 601 hardware_disable_all(); 602 mmdrop(mm); 603 } 604 605 void kvm_get_kvm(struct kvm *kvm) 606 { 607 atomic_inc(&kvm->users_count); 608 } 609 EXPORT_SYMBOL_GPL(kvm_get_kvm); 610 611 void kvm_put_kvm(struct kvm *kvm) 612 { 613 if (atomic_dec_and_test(&kvm->users_count)) 614 kvm_destroy_vm(kvm); 615 } 616 EXPORT_SYMBOL_GPL(kvm_put_kvm); 617 618 619 static int kvm_vm_release(struct inode *inode, struct file *filp) 620 { 621 struct kvm *kvm = filp->private_data; 622 623 kvm_irqfd_release(kvm); 624 625 kvm_put_kvm(kvm); 626 return 0; 627 } 628 629 /* 630 * Allocation size is twice as large as the actual dirty bitmap size. 631 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 632 */ 633 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 634 { 635 #ifndef CONFIG_S390 636 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 637 638 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 639 if (!memslot->dirty_bitmap) 640 return -ENOMEM; 641 642 #endif /* !CONFIG_S390 */ 643 return 0; 644 } 645 646 static int cmp_memslot(const void *slot1, const void *slot2) 647 { 648 struct kvm_memory_slot *s1, *s2; 649 650 s1 = (struct kvm_memory_slot *)slot1; 651 s2 = (struct kvm_memory_slot *)slot2; 652 653 if (s1->npages < s2->npages) 654 return 1; 655 if (s1->npages > s2->npages) 656 return -1; 657 658 return 0; 659 } 660 661 /* 662 * Sort the memslots base on its size, so the larger slots 663 * will get better fit. 664 */ 665 static void sort_memslots(struct kvm_memslots *slots) 666 { 667 int i; 668 669 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 670 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 671 672 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 673 slots->id_to_index[slots->memslots[i].id] = i; 674 } 675 676 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new, 677 u64 last_generation) 678 { 679 if (new) { 680 int id = new->id; 681 struct kvm_memory_slot *old = id_to_memslot(slots, id); 682 unsigned long npages = old->npages; 683 684 *old = *new; 685 if (new->npages != npages) 686 sort_memslots(slots); 687 } 688 689 slots->generation = last_generation + 1; 690 } 691 692 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 693 { 694 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 695 696 #ifdef KVM_CAP_READONLY_MEM 697 valid_flags |= KVM_MEM_READONLY; 698 #endif 699 700 if (mem->flags & ~valid_flags) 701 return -EINVAL; 702 703 return 0; 704 } 705 706 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 707 struct kvm_memslots *slots, struct kvm_memory_slot *new) 708 { 709 struct kvm_memslots *old_memslots = kvm->memslots; 710 711 update_memslots(slots, new, kvm->memslots->generation); 712 rcu_assign_pointer(kvm->memslots, slots); 713 synchronize_srcu_expedited(&kvm->srcu); 714 715 kvm_arch_memslots_updated(kvm); 716 717 return old_memslots; 718 } 719 720 /* 721 * Allocate some memory and give it an address in the guest physical address 722 * space. 723 * 724 * Discontiguous memory is allowed, mostly for framebuffers. 725 * 726 * Must be called holding mmap_sem for write. 727 */ 728 int __kvm_set_memory_region(struct kvm *kvm, 729 struct kvm_userspace_memory_region *mem) 730 { 731 int r; 732 gfn_t base_gfn; 733 unsigned long npages; 734 struct kvm_memory_slot *slot; 735 struct kvm_memory_slot old, new; 736 struct kvm_memslots *slots = NULL, *old_memslots; 737 enum kvm_mr_change change; 738 739 r = check_memory_region_flags(mem); 740 if (r) 741 goto out; 742 743 r = -EINVAL; 744 /* General sanity checks */ 745 if (mem->memory_size & (PAGE_SIZE - 1)) 746 goto out; 747 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 748 goto out; 749 /* We can read the guest memory with __xxx_user() later on. */ 750 if ((mem->slot < KVM_USER_MEM_SLOTS) && 751 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 752 !access_ok(VERIFY_WRITE, 753 (void __user *)(unsigned long)mem->userspace_addr, 754 mem->memory_size))) 755 goto out; 756 if (mem->slot >= KVM_MEM_SLOTS_NUM) 757 goto out; 758 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 759 goto out; 760 761 slot = id_to_memslot(kvm->memslots, mem->slot); 762 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 763 npages = mem->memory_size >> PAGE_SHIFT; 764 765 r = -EINVAL; 766 if (npages > KVM_MEM_MAX_NR_PAGES) 767 goto out; 768 769 if (!npages) 770 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 771 772 new = old = *slot; 773 774 new.id = mem->slot; 775 new.base_gfn = base_gfn; 776 new.npages = npages; 777 new.flags = mem->flags; 778 779 r = -EINVAL; 780 if (npages) { 781 if (!old.npages) 782 change = KVM_MR_CREATE; 783 else { /* Modify an existing slot. */ 784 if ((mem->userspace_addr != old.userspace_addr) || 785 (npages != old.npages) || 786 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 787 goto out; 788 789 if (base_gfn != old.base_gfn) 790 change = KVM_MR_MOVE; 791 else if (new.flags != old.flags) 792 change = KVM_MR_FLAGS_ONLY; 793 else { /* Nothing to change. */ 794 r = 0; 795 goto out; 796 } 797 } 798 } else if (old.npages) { 799 change = KVM_MR_DELETE; 800 } else /* Modify a non-existent slot: disallowed. */ 801 goto out; 802 803 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 804 /* Check for overlaps */ 805 r = -EEXIST; 806 kvm_for_each_memslot(slot, kvm->memslots) { 807 if ((slot->id >= KVM_USER_MEM_SLOTS) || 808 (slot->id == mem->slot)) 809 continue; 810 if (!((base_gfn + npages <= slot->base_gfn) || 811 (base_gfn >= slot->base_gfn + slot->npages))) 812 goto out; 813 } 814 } 815 816 /* Free page dirty bitmap if unneeded */ 817 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 818 new.dirty_bitmap = NULL; 819 820 r = -ENOMEM; 821 if (change == KVM_MR_CREATE) { 822 new.userspace_addr = mem->userspace_addr; 823 824 if (kvm_arch_create_memslot(&new, npages)) 825 goto out_free; 826 } 827 828 /* Allocate page dirty bitmap if needed */ 829 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 830 if (kvm_create_dirty_bitmap(&new) < 0) 831 goto out_free; 832 } 833 834 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 835 r = -ENOMEM; 836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 837 GFP_KERNEL); 838 if (!slots) 839 goto out_free; 840 slot = id_to_memslot(slots, mem->slot); 841 slot->flags |= KVM_MEMSLOT_INVALID; 842 843 old_memslots = install_new_memslots(kvm, slots, NULL); 844 845 /* slot was deleted or moved, clear iommu mapping */ 846 kvm_iommu_unmap_pages(kvm, &old); 847 /* From this point no new shadow pages pointing to a deleted, 848 * or moved, memslot will be created. 849 * 850 * validation of sp->gfn happens in: 851 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 852 * - kvm_is_visible_gfn (mmu_check_roots) 853 */ 854 kvm_arch_flush_shadow_memslot(kvm, slot); 855 slots = old_memslots; 856 } 857 858 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 859 if (r) 860 goto out_slots; 861 862 r = -ENOMEM; 863 /* 864 * We can re-use the old_memslots from above, the only difference 865 * from the currently installed memslots is the invalid flag. This 866 * will get overwritten by update_memslots anyway. 867 */ 868 if (!slots) { 869 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 870 GFP_KERNEL); 871 if (!slots) 872 goto out_free; 873 } 874 875 /* 876 * IOMMU mapping: New slots need to be mapped. Old slots need to be 877 * un-mapped and re-mapped if their base changes. Since base change 878 * unmapping is handled above with slot deletion, mapping alone is 879 * needed here. Anything else the iommu might care about for existing 880 * slots (size changes, userspace addr changes and read-only flag 881 * changes) is disallowed above, so any other attribute changes getting 882 * here can be skipped. 883 */ 884 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 885 r = kvm_iommu_map_pages(kvm, &new); 886 if (r) 887 goto out_slots; 888 } 889 890 /* actual memory is freed via old in kvm_free_physmem_slot below */ 891 if (change == KVM_MR_DELETE) { 892 new.dirty_bitmap = NULL; 893 memset(&new.arch, 0, sizeof(new.arch)); 894 } 895 896 old_memslots = install_new_memslots(kvm, slots, &new); 897 898 kvm_arch_commit_memory_region(kvm, mem, &old, change); 899 900 kvm_free_physmem_slot(&old, &new); 901 kfree(old_memslots); 902 903 return 0; 904 905 out_slots: 906 kfree(slots); 907 out_free: 908 kvm_free_physmem_slot(&new, &old); 909 out: 910 return r; 911 } 912 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 913 914 int kvm_set_memory_region(struct kvm *kvm, 915 struct kvm_userspace_memory_region *mem) 916 { 917 int r; 918 919 mutex_lock(&kvm->slots_lock); 920 r = __kvm_set_memory_region(kvm, mem); 921 mutex_unlock(&kvm->slots_lock); 922 return r; 923 } 924 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 925 926 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 927 struct kvm_userspace_memory_region *mem) 928 { 929 if (mem->slot >= KVM_USER_MEM_SLOTS) 930 return -EINVAL; 931 return kvm_set_memory_region(kvm, mem); 932 } 933 934 int kvm_get_dirty_log(struct kvm *kvm, 935 struct kvm_dirty_log *log, int *is_dirty) 936 { 937 struct kvm_memory_slot *memslot; 938 int r, i; 939 unsigned long n; 940 unsigned long any = 0; 941 942 r = -EINVAL; 943 if (log->slot >= KVM_USER_MEM_SLOTS) 944 goto out; 945 946 memslot = id_to_memslot(kvm->memslots, log->slot); 947 r = -ENOENT; 948 if (!memslot->dirty_bitmap) 949 goto out; 950 951 n = kvm_dirty_bitmap_bytes(memslot); 952 953 for (i = 0; !any && i < n/sizeof(long); ++i) 954 any = memslot->dirty_bitmap[i]; 955 956 r = -EFAULT; 957 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 958 goto out; 959 960 if (any) 961 *is_dirty = 1; 962 963 r = 0; 964 out: 965 return r; 966 } 967 968 bool kvm_largepages_enabled(void) 969 { 970 return largepages_enabled; 971 } 972 973 void kvm_disable_largepages(void) 974 { 975 largepages_enabled = false; 976 } 977 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 978 979 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 980 { 981 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 982 } 983 EXPORT_SYMBOL_GPL(gfn_to_memslot); 984 985 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 986 { 987 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 988 989 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 990 memslot->flags & KVM_MEMSLOT_INVALID) 991 return 0; 992 993 return 1; 994 } 995 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 996 997 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 998 { 999 struct vm_area_struct *vma; 1000 unsigned long addr, size; 1001 1002 size = PAGE_SIZE; 1003 1004 addr = gfn_to_hva(kvm, gfn); 1005 if (kvm_is_error_hva(addr)) 1006 return PAGE_SIZE; 1007 1008 down_read(¤t->mm->mmap_sem); 1009 vma = find_vma(current->mm, addr); 1010 if (!vma) 1011 goto out; 1012 1013 size = vma_kernel_pagesize(vma); 1014 1015 out: 1016 up_read(¤t->mm->mmap_sem); 1017 1018 return size; 1019 } 1020 1021 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1022 { 1023 return slot->flags & KVM_MEM_READONLY; 1024 } 1025 1026 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1027 gfn_t *nr_pages, bool write) 1028 { 1029 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1030 return KVM_HVA_ERR_BAD; 1031 1032 if (memslot_is_readonly(slot) && write) 1033 return KVM_HVA_ERR_RO_BAD; 1034 1035 if (nr_pages) 1036 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1037 1038 return __gfn_to_hva_memslot(slot, gfn); 1039 } 1040 1041 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1042 gfn_t *nr_pages) 1043 { 1044 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1045 } 1046 1047 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1048 gfn_t gfn) 1049 { 1050 return gfn_to_hva_many(slot, gfn, NULL); 1051 } 1052 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1053 1054 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1055 { 1056 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1057 } 1058 EXPORT_SYMBOL_GPL(gfn_to_hva); 1059 1060 /* 1061 * If writable is set to false, the hva returned by this function is only 1062 * allowed to be read. 1063 */ 1064 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1065 { 1066 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1067 if (writable) 1068 *writable = !memslot_is_readonly(slot); 1069 1070 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false); 1071 } 1072 1073 static int kvm_read_hva(void *data, void __user *hva, int len) 1074 { 1075 return __copy_from_user(data, hva, len); 1076 } 1077 1078 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1079 { 1080 return __copy_from_user_inatomic(data, hva, len); 1081 } 1082 1083 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1084 unsigned long start, int write, struct page **page) 1085 { 1086 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1087 1088 if (write) 1089 flags |= FOLL_WRITE; 1090 1091 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1092 } 1093 1094 static inline int check_user_page_hwpoison(unsigned long addr) 1095 { 1096 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1097 1098 rc = __get_user_pages(current, current->mm, addr, 1, 1099 flags, NULL, NULL, NULL); 1100 return rc == -EHWPOISON; 1101 } 1102 1103 /* 1104 * The atomic path to get the writable pfn which will be stored in @pfn, 1105 * true indicates success, otherwise false is returned. 1106 */ 1107 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1108 bool write_fault, bool *writable, pfn_t *pfn) 1109 { 1110 struct page *page[1]; 1111 int npages; 1112 1113 if (!(async || atomic)) 1114 return false; 1115 1116 /* 1117 * Fast pin a writable pfn only if it is a write fault request 1118 * or the caller allows to map a writable pfn for a read fault 1119 * request. 1120 */ 1121 if (!(write_fault || writable)) 1122 return false; 1123 1124 npages = __get_user_pages_fast(addr, 1, 1, page); 1125 if (npages == 1) { 1126 *pfn = page_to_pfn(page[0]); 1127 1128 if (writable) 1129 *writable = true; 1130 return true; 1131 } 1132 1133 return false; 1134 } 1135 1136 /* 1137 * The slow path to get the pfn of the specified host virtual address, 1138 * 1 indicates success, -errno is returned if error is detected. 1139 */ 1140 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1141 bool *writable, pfn_t *pfn) 1142 { 1143 struct page *page[1]; 1144 int npages = 0; 1145 1146 might_sleep(); 1147 1148 if (writable) 1149 *writable = write_fault; 1150 1151 if (async) { 1152 down_read(¤t->mm->mmap_sem); 1153 npages = get_user_page_nowait(current, current->mm, 1154 addr, write_fault, page); 1155 up_read(¤t->mm->mmap_sem); 1156 } else 1157 npages = get_user_pages_fast(addr, 1, write_fault, 1158 page); 1159 if (npages != 1) 1160 return npages; 1161 1162 /* map read fault as writable if possible */ 1163 if (unlikely(!write_fault) && writable) { 1164 struct page *wpage[1]; 1165 1166 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1167 if (npages == 1) { 1168 *writable = true; 1169 put_page(page[0]); 1170 page[0] = wpage[0]; 1171 } 1172 1173 npages = 1; 1174 } 1175 *pfn = page_to_pfn(page[0]); 1176 return npages; 1177 } 1178 1179 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1180 { 1181 if (unlikely(!(vma->vm_flags & VM_READ))) 1182 return false; 1183 1184 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1185 return false; 1186 1187 return true; 1188 } 1189 1190 /* 1191 * Pin guest page in memory and return its pfn. 1192 * @addr: host virtual address which maps memory to the guest 1193 * @atomic: whether this function can sleep 1194 * @async: whether this function need to wait IO complete if the 1195 * host page is not in the memory 1196 * @write_fault: whether we should get a writable host page 1197 * @writable: whether it allows to map a writable host page for !@write_fault 1198 * 1199 * The function will map a writable host page for these two cases: 1200 * 1): @write_fault = true 1201 * 2): @write_fault = false && @writable, @writable will tell the caller 1202 * whether the mapping is writable. 1203 */ 1204 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1205 bool write_fault, bool *writable) 1206 { 1207 struct vm_area_struct *vma; 1208 pfn_t pfn = 0; 1209 int npages; 1210 1211 /* we can do it either atomically or asynchronously, not both */ 1212 BUG_ON(atomic && async); 1213 1214 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1215 return pfn; 1216 1217 if (atomic) 1218 return KVM_PFN_ERR_FAULT; 1219 1220 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1221 if (npages == 1) 1222 return pfn; 1223 1224 down_read(¤t->mm->mmap_sem); 1225 if (npages == -EHWPOISON || 1226 (!async && check_user_page_hwpoison(addr))) { 1227 pfn = KVM_PFN_ERR_HWPOISON; 1228 goto exit; 1229 } 1230 1231 vma = find_vma_intersection(current->mm, addr, addr + 1); 1232 1233 if (vma == NULL) 1234 pfn = KVM_PFN_ERR_FAULT; 1235 else if ((vma->vm_flags & VM_PFNMAP)) { 1236 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1237 vma->vm_pgoff; 1238 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1239 } else { 1240 if (async && vma_is_valid(vma, write_fault)) 1241 *async = true; 1242 pfn = KVM_PFN_ERR_FAULT; 1243 } 1244 exit: 1245 up_read(¤t->mm->mmap_sem); 1246 return pfn; 1247 } 1248 1249 static pfn_t 1250 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1251 bool *async, bool write_fault, bool *writable) 1252 { 1253 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1254 1255 if (addr == KVM_HVA_ERR_RO_BAD) 1256 return KVM_PFN_ERR_RO_FAULT; 1257 1258 if (kvm_is_error_hva(addr)) 1259 return KVM_PFN_NOSLOT; 1260 1261 /* Do not map writable pfn in the readonly memslot. */ 1262 if (writable && memslot_is_readonly(slot)) { 1263 *writable = false; 1264 writable = NULL; 1265 } 1266 1267 return hva_to_pfn(addr, atomic, async, write_fault, 1268 writable); 1269 } 1270 1271 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1272 bool write_fault, bool *writable) 1273 { 1274 struct kvm_memory_slot *slot; 1275 1276 if (async) 1277 *async = false; 1278 1279 slot = gfn_to_memslot(kvm, gfn); 1280 1281 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1282 writable); 1283 } 1284 1285 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1286 { 1287 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1288 } 1289 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1290 1291 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1292 bool write_fault, bool *writable) 1293 { 1294 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1295 } 1296 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1297 1298 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1299 { 1300 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1301 } 1302 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1303 1304 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1305 bool *writable) 1306 { 1307 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1308 } 1309 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1310 1311 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1312 { 1313 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1314 } 1315 1316 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1317 { 1318 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1319 } 1320 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1321 1322 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1323 int nr_pages) 1324 { 1325 unsigned long addr; 1326 gfn_t entry; 1327 1328 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1329 if (kvm_is_error_hva(addr)) 1330 return -1; 1331 1332 if (entry < nr_pages) 1333 return 0; 1334 1335 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1336 } 1337 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1338 1339 static struct page *kvm_pfn_to_page(pfn_t pfn) 1340 { 1341 if (is_error_noslot_pfn(pfn)) 1342 return KVM_ERR_PTR_BAD_PAGE; 1343 1344 if (kvm_is_mmio_pfn(pfn)) { 1345 WARN_ON(1); 1346 return KVM_ERR_PTR_BAD_PAGE; 1347 } 1348 1349 return pfn_to_page(pfn); 1350 } 1351 1352 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1353 { 1354 pfn_t pfn; 1355 1356 pfn = gfn_to_pfn(kvm, gfn); 1357 1358 return kvm_pfn_to_page(pfn); 1359 } 1360 1361 EXPORT_SYMBOL_GPL(gfn_to_page); 1362 1363 void kvm_release_page_clean(struct page *page) 1364 { 1365 WARN_ON(is_error_page(page)); 1366 1367 kvm_release_pfn_clean(page_to_pfn(page)); 1368 } 1369 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1370 1371 void kvm_release_pfn_clean(pfn_t pfn) 1372 { 1373 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) 1374 put_page(pfn_to_page(pfn)); 1375 } 1376 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1377 1378 void kvm_release_page_dirty(struct page *page) 1379 { 1380 WARN_ON(is_error_page(page)); 1381 1382 kvm_release_pfn_dirty(page_to_pfn(page)); 1383 } 1384 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1385 1386 void kvm_release_pfn_dirty(pfn_t pfn) 1387 { 1388 kvm_set_pfn_dirty(pfn); 1389 kvm_release_pfn_clean(pfn); 1390 } 1391 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1392 1393 void kvm_set_page_dirty(struct page *page) 1394 { 1395 kvm_set_pfn_dirty(page_to_pfn(page)); 1396 } 1397 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1398 1399 void kvm_set_pfn_dirty(pfn_t pfn) 1400 { 1401 if (!kvm_is_mmio_pfn(pfn)) { 1402 struct page *page = pfn_to_page(pfn); 1403 if (!PageReserved(page)) 1404 SetPageDirty(page); 1405 } 1406 } 1407 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1408 1409 void kvm_set_pfn_accessed(pfn_t pfn) 1410 { 1411 if (!kvm_is_mmio_pfn(pfn)) 1412 mark_page_accessed(pfn_to_page(pfn)); 1413 } 1414 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1415 1416 void kvm_get_pfn(pfn_t pfn) 1417 { 1418 if (!kvm_is_mmio_pfn(pfn)) 1419 get_page(pfn_to_page(pfn)); 1420 } 1421 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1422 1423 static int next_segment(unsigned long len, int offset) 1424 { 1425 if (len > PAGE_SIZE - offset) 1426 return PAGE_SIZE - offset; 1427 else 1428 return len; 1429 } 1430 1431 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1432 int len) 1433 { 1434 int r; 1435 unsigned long addr; 1436 1437 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1438 if (kvm_is_error_hva(addr)) 1439 return -EFAULT; 1440 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1441 if (r) 1442 return -EFAULT; 1443 return 0; 1444 } 1445 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1446 1447 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1448 { 1449 gfn_t gfn = gpa >> PAGE_SHIFT; 1450 int seg; 1451 int offset = offset_in_page(gpa); 1452 int ret; 1453 1454 while ((seg = next_segment(len, offset)) != 0) { 1455 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1456 if (ret < 0) 1457 return ret; 1458 offset = 0; 1459 len -= seg; 1460 data += seg; 1461 ++gfn; 1462 } 1463 return 0; 1464 } 1465 EXPORT_SYMBOL_GPL(kvm_read_guest); 1466 1467 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1468 unsigned long len) 1469 { 1470 int r; 1471 unsigned long addr; 1472 gfn_t gfn = gpa >> PAGE_SHIFT; 1473 int offset = offset_in_page(gpa); 1474 1475 addr = gfn_to_hva_prot(kvm, gfn, NULL); 1476 if (kvm_is_error_hva(addr)) 1477 return -EFAULT; 1478 pagefault_disable(); 1479 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1480 pagefault_enable(); 1481 if (r) 1482 return -EFAULT; 1483 return 0; 1484 } 1485 EXPORT_SYMBOL(kvm_read_guest_atomic); 1486 1487 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1488 int offset, int len) 1489 { 1490 int r; 1491 unsigned long addr; 1492 1493 addr = gfn_to_hva(kvm, gfn); 1494 if (kvm_is_error_hva(addr)) 1495 return -EFAULT; 1496 r = __copy_to_user((void __user *)addr + offset, data, len); 1497 if (r) 1498 return -EFAULT; 1499 mark_page_dirty(kvm, gfn); 1500 return 0; 1501 } 1502 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1503 1504 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1505 unsigned long len) 1506 { 1507 gfn_t gfn = gpa >> PAGE_SHIFT; 1508 int seg; 1509 int offset = offset_in_page(gpa); 1510 int ret; 1511 1512 while ((seg = next_segment(len, offset)) != 0) { 1513 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1514 if (ret < 0) 1515 return ret; 1516 offset = 0; 1517 len -= seg; 1518 data += seg; 1519 ++gfn; 1520 } 1521 return 0; 1522 } 1523 1524 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1525 gpa_t gpa, unsigned long len) 1526 { 1527 struct kvm_memslots *slots = kvm_memslots(kvm); 1528 int offset = offset_in_page(gpa); 1529 gfn_t start_gfn = gpa >> PAGE_SHIFT; 1530 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 1531 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 1532 gfn_t nr_pages_avail; 1533 1534 ghc->gpa = gpa; 1535 ghc->generation = slots->generation; 1536 ghc->len = len; 1537 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1538 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); 1539 if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { 1540 ghc->hva += offset; 1541 } else { 1542 /* 1543 * If the requested region crosses two memslots, we still 1544 * verify that the entire region is valid here. 1545 */ 1546 while (start_gfn <= end_gfn) { 1547 ghc->memslot = gfn_to_memslot(kvm, start_gfn); 1548 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 1549 &nr_pages_avail); 1550 if (kvm_is_error_hva(ghc->hva)) 1551 return -EFAULT; 1552 start_gfn += nr_pages_avail; 1553 } 1554 /* Use the slow path for cross page reads and writes. */ 1555 ghc->memslot = NULL; 1556 } 1557 return 0; 1558 } 1559 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1560 1561 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1562 void *data, unsigned long len) 1563 { 1564 struct kvm_memslots *slots = kvm_memslots(kvm); 1565 int r; 1566 1567 BUG_ON(len > ghc->len); 1568 1569 if (slots->generation != ghc->generation) 1570 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1571 1572 if (unlikely(!ghc->memslot)) 1573 return kvm_write_guest(kvm, ghc->gpa, data, len); 1574 1575 if (kvm_is_error_hva(ghc->hva)) 1576 return -EFAULT; 1577 1578 r = __copy_to_user((void __user *)ghc->hva, data, len); 1579 if (r) 1580 return -EFAULT; 1581 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1582 1583 return 0; 1584 } 1585 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1586 1587 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1588 void *data, unsigned long len) 1589 { 1590 struct kvm_memslots *slots = kvm_memslots(kvm); 1591 int r; 1592 1593 BUG_ON(len > ghc->len); 1594 1595 if (slots->generation != ghc->generation) 1596 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); 1597 1598 if (unlikely(!ghc->memslot)) 1599 return kvm_read_guest(kvm, ghc->gpa, data, len); 1600 1601 if (kvm_is_error_hva(ghc->hva)) 1602 return -EFAULT; 1603 1604 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1605 if (r) 1606 return -EFAULT; 1607 1608 return 0; 1609 } 1610 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1611 1612 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1613 { 1614 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, 1615 offset, len); 1616 } 1617 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1618 1619 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1620 { 1621 gfn_t gfn = gpa >> PAGE_SHIFT; 1622 int seg; 1623 int offset = offset_in_page(gpa); 1624 int ret; 1625 1626 while ((seg = next_segment(len, offset)) != 0) { 1627 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1628 if (ret < 0) 1629 return ret; 1630 offset = 0; 1631 len -= seg; 1632 ++gfn; 1633 } 1634 return 0; 1635 } 1636 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1637 1638 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1639 gfn_t gfn) 1640 { 1641 if (memslot && memslot->dirty_bitmap) { 1642 unsigned long rel_gfn = gfn - memslot->base_gfn; 1643 1644 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1645 } 1646 } 1647 1648 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1649 { 1650 struct kvm_memory_slot *memslot; 1651 1652 memslot = gfn_to_memslot(kvm, gfn); 1653 mark_page_dirty_in_slot(kvm, memslot, gfn); 1654 } 1655 1656 /* 1657 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1658 */ 1659 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1660 { 1661 DEFINE_WAIT(wait); 1662 1663 for (;;) { 1664 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1665 1666 if (kvm_arch_vcpu_runnable(vcpu)) { 1667 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1668 break; 1669 } 1670 if (kvm_cpu_has_pending_timer(vcpu)) 1671 break; 1672 if (signal_pending(current)) 1673 break; 1674 1675 schedule(); 1676 } 1677 1678 finish_wait(&vcpu->wq, &wait); 1679 } 1680 1681 #ifndef CONFIG_S390 1682 /* 1683 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1684 */ 1685 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1686 { 1687 int me; 1688 int cpu = vcpu->cpu; 1689 wait_queue_head_t *wqp; 1690 1691 wqp = kvm_arch_vcpu_wq(vcpu); 1692 if (waitqueue_active(wqp)) { 1693 wake_up_interruptible(wqp); 1694 ++vcpu->stat.halt_wakeup; 1695 } 1696 1697 me = get_cpu(); 1698 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1699 if (kvm_arch_vcpu_should_kick(vcpu)) 1700 smp_send_reschedule(cpu); 1701 put_cpu(); 1702 } 1703 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 1704 #endif /* !CONFIG_S390 */ 1705 1706 void kvm_resched(struct kvm_vcpu *vcpu) 1707 { 1708 if (!need_resched()) 1709 return; 1710 cond_resched(); 1711 } 1712 EXPORT_SYMBOL_GPL(kvm_resched); 1713 1714 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1715 { 1716 struct pid *pid; 1717 struct task_struct *task = NULL; 1718 bool ret = false; 1719 1720 rcu_read_lock(); 1721 pid = rcu_dereference(target->pid); 1722 if (pid) 1723 task = get_pid_task(target->pid, PIDTYPE_PID); 1724 rcu_read_unlock(); 1725 if (!task) 1726 return ret; 1727 if (task->flags & PF_VCPU) { 1728 put_task_struct(task); 1729 return ret; 1730 } 1731 ret = yield_to(task, 1); 1732 put_task_struct(task); 1733 1734 return ret; 1735 } 1736 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1737 1738 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1739 /* 1740 * Helper that checks whether a VCPU is eligible for directed yield. 1741 * Most eligible candidate to yield is decided by following heuristics: 1742 * 1743 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1744 * (preempted lock holder), indicated by @in_spin_loop. 1745 * Set at the beiginning and cleared at the end of interception/PLE handler. 1746 * 1747 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1748 * chance last time (mostly it has become eligible now since we have probably 1749 * yielded to lockholder in last iteration. This is done by toggling 1750 * @dy_eligible each time a VCPU checked for eligibility.) 1751 * 1752 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1753 * to preempted lock-holder could result in wrong VCPU selection and CPU 1754 * burning. Giving priority for a potential lock-holder increases lock 1755 * progress. 1756 * 1757 * Since algorithm is based on heuristics, accessing another VCPU data without 1758 * locking does not harm. It may result in trying to yield to same VCPU, fail 1759 * and continue with next VCPU and so on. 1760 */ 1761 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1762 { 1763 bool eligible; 1764 1765 eligible = !vcpu->spin_loop.in_spin_loop || 1766 (vcpu->spin_loop.in_spin_loop && 1767 vcpu->spin_loop.dy_eligible); 1768 1769 if (vcpu->spin_loop.in_spin_loop) 1770 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1771 1772 return eligible; 1773 } 1774 #endif 1775 1776 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1777 { 1778 struct kvm *kvm = me->kvm; 1779 struct kvm_vcpu *vcpu; 1780 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1781 int yielded = 0; 1782 int try = 3; 1783 int pass; 1784 int i; 1785 1786 kvm_vcpu_set_in_spin_loop(me, true); 1787 /* 1788 * We boost the priority of a VCPU that is runnable but not 1789 * currently running, because it got preempted by something 1790 * else and called schedule in __vcpu_run. Hopefully that 1791 * VCPU is holding the lock that we need and will release it. 1792 * We approximate round-robin by starting at the last boosted VCPU. 1793 */ 1794 for (pass = 0; pass < 2 && !yielded && try; pass++) { 1795 kvm_for_each_vcpu(i, vcpu, kvm) { 1796 if (!pass && i <= last_boosted_vcpu) { 1797 i = last_boosted_vcpu; 1798 continue; 1799 } else if (pass && i > last_boosted_vcpu) 1800 break; 1801 if (!ACCESS_ONCE(vcpu->preempted)) 1802 continue; 1803 if (vcpu == me) 1804 continue; 1805 if (waitqueue_active(&vcpu->wq)) 1806 continue; 1807 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1808 continue; 1809 1810 yielded = kvm_vcpu_yield_to(vcpu); 1811 if (yielded > 0) { 1812 kvm->last_boosted_vcpu = i; 1813 break; 1814 } else if (yielded < 0) { 1815 try--; 1816 if (!try) 1817 break; 1818 } 1819 } 1820 } 1821 kvm_vcpu_set_in_spin_loop(me, false); 1822 1823 /* Ensure vcpu is not eligible during next spinloop */ 1824 kvm_vcpu_set_dy_eligible(me, false); 1825 } 1826 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1827 1828 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1829 { 1830 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1831 struct page *page; 1832 1833 if (vmf->pgoff == 0) 1834 page = virt_to_page(vcpu->run); 1835 #ifdef CONFIG_X86 1836 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1837 page = virt_to_page(vcpu->arch.pio_data); 1838 #endif 1839 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1840 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1841 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1842 #endif 1843 else 1844 return kvm_arch_vcpu_fault(vcpu, vmf); 1845 get_page(page); 1846 vmf->page = page; 1847 return 0; 1848 } 1849 1850 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1851 .fault = kvm_vcpu_fault, 1852 }; 1853 1854 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1855 { 1856 vma->vm_ops = &kvm_vcpu_vm_ops; 1857 return 0; 1858 } 1859 1860 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1861 { 1862 struct kvm_vcpu *vcpu = filp->private_data; 1863 1864 kvm_put_kvm(vcpu->kvm); 1865 return 0; 1866 } 1867 1868 static struct file_operations kvm_vcpu_fops = { 1869 .release = kvm_vcpu_release, 1870 .unlocked_ioctl = kvm_vcpu_ioctl, 1871 #ifdef CONFIG_COMPAT 1872 .compat_ioctl = kvm_vcpu_compat_ioctl, 1873 #endif 1874 .mmap = kvm_vcpu_mmap, 1875 .llseek = noop_llseek, 1876 }; 1877 1878 /* 1879 * Allocates an inode for the vcpu. 1880 */ 1881 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1882 { 1883 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 1884 } 1885 1886 /* 1887 * Creates some virtual cpus. Good luck creating more than one. 1888 */ 1889 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1890 { 1891 int r; 1892 struct kvm_vcpu *vcpu, *v; 1893 1894 vcpu = kvm_arch_vcpu_create(kvm, id); 1895 if (IS_ERR(vcpu)) 1896 return PTR_ERR(vcpu); 1897 1898 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1899 1900 r = kvm_arch_vcpu_setup(vcpu); 1901 if (r) 1902 goto vcpu_destroy; 1903 1904 mutex_lock(&kvm->lock); 1905 if (!kvm_vcpu_compatible(vcpu)) { 1906 r = -EINVAL; 1907 goto unlock_vcpu_destroy; 1908 } 1909 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1910 r = -EINVAL; 1911 goto unlock_vcpu_destroy; 1912 } 1913 1914 kvm_for_each_vcpu(r, v, kvm) 1915 if (v->vcpu_id == id) { 1916 r = -EEXIST; 1917 goto unlock_vcpu_destroy; 1918 } 1919 1920 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1921 1922 /* Now it's all set up, let userspace reach it */ 1923 kvm_get_kvm(kvm); 1924 r = create_vcpu_fd(vcpu); 1925 if (r < 0) { 1926 kvm_put_kvm(kvm); 1927 goto unlock_vcpu_destroy; 1928 } 1929 1930 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1931 smp_wmb(); 1932 atomic_inc(&kvm->online_vcpus); 1933 1934 mutex_unlock(&kvm->lock); 1935 kvm_arch_vcpu_postcreate(vcpu); 1936 return r; 1937 1938 unlock_vcpu_destroy: 1939 mutex_unlock(&kvm->lock); 1940 vcpu_destroy: 1941 kvm_arch_vcpu_destroy(vcpu); 1942 return r; 1943 } 1944 1945 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1946 { 1947 if (sigset) { 1948 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1949 vcpu->sigset_active = 1; 1950 vcpu->sigset = *sigset; 1951 } else 1952 vcpu->sigset_active = 0; 1953 return 0; 1954 } 1955 1956 static long kvm_vcpu_ioctl(struct file *filp, 1957 unsigned int ioctl, unsigned long arg) 1958 { 1959 struct kvm_vcpu *vcpu = filp->private_data; 1960 void __user *argp = (void __user *)arg; 1961 int r; 1962 struct kvm_fpu *fpu = NULL; 1963 struct kvm_sregs *kvm_sregs = NULL; 1964 1965 if (vcpu->kvm->mm != current->mm) 1966 return -EIO; 1967 1968 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS) 1969 /* 1970 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1971 * so vcpu_load() would break it. 1972 */ 1973 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1974 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1975 #endif 1976 1977 1978 r = vcpu_load(vcpu); 1979 if (r) 1980 return r; 1981 switch (ioctl) { 1982 case KVM_RUN: 1983 r = -EINVAL; 1984 if (arg) 1985 goto out; 1986 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1987 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1988 break; 1989 case KVM_GET_REGS: { 1990 struct kvm_regs *kvm_regs; 1991 1992 r = -ENOMEM; 1993 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1994 if (!kvm_regs) 1995 goto out; 1996 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1997 if (r) 1998 goto out_free1; 1999 r = -EFAULT; 2000 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2001 goto out_free1; 2002 r = 0; 2003 out_free1: 2004 kfree(kvm_regs); 2005 break; 2006 } 2007 case KVM_SET_REGS: { 2008 struct kvm_regs *kvm_regs; 2009 2010 r = -ENOMEM; 2011 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2012 if (IS_ERR(kvm_regs)) { 2013 r = PTR_ERR(kvm_regs); 2014 goto out; 2015 } 2016 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2017 kfree(kvm_regs); 2018 break; 2019 } 2020 case KVM_GET_SREGS: { 2021 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 2022 r = -ENOMEM; 2023 if (!kvm_sregs) 2024 goto out; 2025 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2026 if (r) 2027 goto out; 2028 r = -EFAULT; 2029 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2030 goto out; 2031 r = 0; 2032 break; 2033 } 2034 case KVM_SET_SREGS: { 2035 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2036 if (IS_ERR(kvm_sregs)) { 2037 r = PTR_ERR(kvm_sregs); 2038 kvm_sregs = NULL; 2039 goto out; 2040 } 2041 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2042 break; 2043 } 2044 case KVM_GET_MP_STATE: { 2045 struct kvm_mp_state mp_state; 2046 2047 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2048 if (r) 2049 goto out; 2050 r = -EFAULT; 2051 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 2052 goto out; 2053 r = 0; 2054 break; 2055 } 2056 case KVM_SET_MP_STATE: { 2057 struct kvm_mp_state mp_state; 2058 2059 r = -EFAULT; 2060 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 2061 goto out; 2062 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2063 break; 2064 } 2065 case KVM_TRANSLATE: { 2066 struct kvm_translation tr; 2067 2068 r = -EFAULT; 2069 if (copy_from_user(&tr, argp, sizeof tr)) 2070 goto out; 2071 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2072 if (r) 2073 goto out; 2074 r = -EFAULT; 2075 if (copy_to_user(argp, &tr, sizeof tr)) 2076 goto out; 2077 r = 0; 2078 break; 2079 } 2080 case KVM_SET_GUEST_DEBUG: { 2081 struct kvm_guest_debug dbg; 2082 2083 r = -EFAULT; 2084 if (copy_from_user(&dbg, argp, sizeof dbg)) 2085 goto out; 2086 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2087 break; 2088 } 2089 case KVM_SET_SIGNAL_MASK: { 2090 struct kvm_signal_mask __user *sigmask_arg = argp; 2091 struct kvm_signal_mask kvm_sigmask; 2092 sigset_t sigset, *p; 2093 2094 p = NULL; 2095 if (argp) { 2096 r = -EFAULT; 2097 if (copy_from_user(&kvm_sigmask, argp, 2098 sizeof kvm_sigmask)) 2099 goto out; 2100 r = -EINVAL; 2101 if (kvm_sigmask.len != sizeof sigset) 2102 goto out; 2103 r = -EFAULT; 2104 if (copy_from_user(&sigset, sigmask_arg->sigset, 2105 sizeof sigset)) 2106 goto out; 2107 p = &sigset; 2108 } 2109 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2110 break; 2111 } 2112 case KVM_GET_FPU: { 2113 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2114 r = -ENOMEM; 2115 if (!fpu) 2116 goto out; 2117 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2118 if (r) 2119 goto out; 2120 r = -EFAULT; 2121 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2122 goto out; 2123 r = 0; 2124 break; 2125 } 2126 case KVM_SET_FPU: { 2127 fpu = memdup_user(argp, sizeof(*fpu)); 2128 if (IS_ERR(fpu)) { 2129 r = PTR_ERR(fpu); 2130 fpu = NULL; 2131 goto out; 2132 } 2133 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2134 break; 2135 } 2136 default: 2137 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2138 } 2139 out: 2140 vcpu_put(vcpu); 2141 kfree(fpu); 2142 kfree(kvm_sregs); 2143 return r; 2144 } 2145 2146 #ifdef CONFIG_COMPAT 2147 static long kvm_vcpu_compat_ioctl(struct file *filp, 2148 unsigned int ioctl, unsigned long arg) 2149 { 2150 struct kvm_vcpu *vcpu = filp->private_data; 2151 void __user *argp = compat_ptr(arg); 2152 int r; 2153 2154 if (vcpu->kvm->mm != current->mm) 2155 return -EIO; 2156 2157 switch (ioctl) { 2158 case KVM_SET_SIGNAL_MASK: { 2159 struct kvm_signal_mask __user *sigmask_arg = argp; 2160 struct kvm_signal_mask kvm_sigmask; 2161 compat_sigset_t csigset; 2162 sigset_t sigset; 2163 2164 if (argp) { 2165 r = -EFAULT; 2166 if (copy_from_user(&kvm_sigmask, argp, 2167 sizeof kvm_sigmask)) 2168 goto out; 2169 r = -EINVAL; 2170 if (kvm_sigmask.len != sizeof csigset) 2171 goto out; 2172 r = -EFAULT; 2173 if (copy_from_user(&csigset, sigmask_arg->sigset, 2174 sizeof csigset)) 2175 goto out; 2176 sigset_from_compat(&sigset, &csigset); 2177 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2178 } else 2179 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2180 break; 2181 } 2182 default: 2183 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2184 } 2185 2186 out: 2187 return r; 2188 } 2189 #endif 2190 2191 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2192 int (*accessor)(struct kvm_device *dev, 2193 struct kvm_device_attr *attr), 2194 unsigned long arg) 2195 { 2196 struct kvm_device_attr attr; 2197 2198 if (!accessor) 2199 return -EPERM; 2200 2201 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2202 return -EFAULT; 2203 2204 return accessor(dev, &attr); 2205 } 2206 2207 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 2208 unsigned long arg) 2209 { 2210 struct kvm_device *dev = filp->private_data; 2211 2212 switch (ioctl) { 2213 case KVM_SET_DEVICE_ATTR: 2214 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 2215 case KVM_GET_DEVICE_ATTR: 2216 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 2217 case KVM_HAS_DEVICE_ATTR: 2218 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 2219 default: 2220 if (dev->ops->ioctl) 2221 return dev->ops->ioctl(dev, ioctl, arg); 2222 2223 return -ENOTTY; 2224 } 2225 } 2226 2227 static int kvm_device_release(struct inode *inode, struct file *filp) 2228 { 2229 struct kvm_device *dev = filp->private_data; 2230 struct kvm *kvm = dev->kvm; 2231 2232 kvm_put_kvm(kvm); 2233 return 0; 2234 } 2235 2236 static const struct file_operations kvm_device_fops = { 2237 .unlocked_ioctl = kvm_device_ioctl, 2238 #ifdef CONFIG_COMPAT 2239 .compat_ioctl = kvm_device_ioctl, 2240 #endif 2241 .release = kvm_device_release, 2242 }; 2243 2244 struct kvm_device *kvm_device_from_filp(struct file *filp) 2245 { 2246 if (filp->f_op != &kvm_device_fops) 2247 return NULL; 2248 2249 return filp->private_data; 2250 } 2251 2252 static int kvm_ioctl_create_device(struct kvm *kvm, 2253 struct kvm_create_device *cd) 2254 { 2255 struct kvm_device_ops *ops = NULL; 2256 struct kvm_device *dev; 2257 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 2258 int ret; 2259 2260 switch (cd->type) { 2261 #ifdef CONFIG_KVM_MPIC 2262 case KVM_DEV_TYPE_FSL_MPIC_20: 2263 case KVM_DEV_TYPE_FSL_MPIC_42: 2264 ops = &kvm_mpic_ops; 2265 break; 2266 #endif 2267 #ifdef CONFIG_KVM_XICS 2268 case KVM_DEV_TYPE_XICS: 2269 ops = &kvm_xics_ops; 2270 break; 2271 #endif 2272 default: 2273 return -ENODEV; 2274 } 2275 2276 if (test) 2277 return 0; 2278 2279 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2280 if (!dev) 2281 return -ENOMEM; 2282 2283 dev->ops = ops; 2284 dev->kvm = kvm; 2285 2286 ret = ops->create(dev, cd->type); 2287 if (ret < 0) { 2288 kfree(dev); 2289 return ret; 2290 } 2291 2292 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 2293 if (ret < 0) { 2294 ops->destroy(dev); 2295 return ret; 2296 } 2297 2298 list_add(&dev->vm_node, &kvm->devices); 2299 kvm_get_kvm(kvm); 2300 cd->fd = ret; 2301 return 0; 2302 } 2303 2304 static long kvm_vm_ioctl(struct file *filp, 2305 unsigned int ioctl, unsigned long arg) 2306 { 2307 struct kvm *kvm = filp->private_data; 2308 void __user *argp = (void __user *)arg; 2309 int r; 2310 2311 if (kvm->mm != current->mm) 2312 return -EIO; 2313 switch (ioctl) { 2314 case KVM_CREATE_VCPU: 2315 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2316 break; 2317 case KVM_SET_USER_MEMORY_REGION: { 2318 struct kvm_userspace_memory_region kvm_userspace_mem; 2319 2320 r = -EFAULT; 2321 if (copy_from_user(&kvm_userspace_mem, argp, 2322 sizeof kvm_userspace_mem)) 2323 goto out; 2324 2325 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 2326 break; 2327 } 2328 case KVM_GET_DIRTY_LOG: { 2329 struct kvm_dirty_log log; 2330 2331 r = -EFAULT; 2332 if (copy_from_user(&log, argp, sizeof log)) 2333 goto out; 2334 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2335 break; 2336 } 2337 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2338 case KVM_REGISTER_COALESCED_MMIO: { 2339 struct kvm_coalesced_mmio_zone zone; 2340 r = -EFAULT; 2341 if (copy_from_user(&zone, argp, sizeof zone)) 2342 goto out; 2343 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2344 break; 2345 } 2346 case KVM_UNREGISTER_COALESCED_MMIO: { 2347 struct kvm_coalesced_mmio_zone zone; 2348 r = -EFAULT; 2349 if (copy_from_user(&zone, argp, sizeof zone)) 2350 goto out; 2351 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2352 break; 2353 } 2354 #endif 2355 case KVM_IRQFD: { 2356 struct kvm_irqfd data; 2357 2358 r = -EFAULT; 2359 if (copy_from_user(&data, argp, sizeof data)) 2360 goto out; 2361 r = kvm_irqfd(kvm, &data); 2362 break; 2363 } 2364 case KVM_IOEVENTFD: { 2365 struct kvm_ioeventfd data; 2366 2367 r = -EFAULT; 2368 if (copy_from_user(&data, argp, sizeof data)) 2369 goto out; 2370 r = kvm_ioeventfd(kvm, &data); 2371 break; 2372 } 2373 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2374 case KVM_SET_BOOT_CPU_ID: 2375 r = 0; 2376 mutex_lock(&kvm->lock); 2377 if (atomic_read(&kvm->online_vcpus) != 0) 2378 r = -EBUSY; 2379 else 2380 kvm->bsp_vcpu_id = arg; 2381 mutex_unlock(&kvm->lock); 2382 break; 2383 #endif 2384 #ifdef CONFIG_HAVE_KVM_MSI 2385 case KVM_SIGNAL_MSI: { 2386 struct kvm_msi msi; 2387 2388 r = -EFAULT; 2389 if (copy_from_user(&msi, argp, sizeof msi)) 2390 goto out; 2391 r = kvm_send_userspace_msi(kvm, &msi); 2392 break; 2393 } 2394 #endif 2395 #ifdef __KVM_HAVE_IRQ_LINE 2396 case KVM_IRQ_LINE_STATUS: 2397 case KVM_IRQ_LINE: { 2398 struct kvm_irq_level irq_event; 2399 2400 r = -EFAULT; 2401 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2402 goto out; 2403 2404 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 2405 ioctl == KVM_IRQ_LINE_STATUS); 2406 if (r) 2407 goto out; 2408 2409 r = -EFAULT; 2410 if (ioctl == KVM_IRQ_LINE_STATUS) { 2411 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2412 goto out; 2413 } 2414 2415 r = 0; 2416 break; 2417 } 2418 #endif 2419 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2420 case KVM_SET_GSI_ROUTING: { 2421 struct kvm_irq_routing routing; 2422 struct kvm_irq_routing __user *urouting; 2423 struct kvm_irq_routing_entry *entries; 2424 2425 r = -EFAULT; 2426 if (copy_from_user(&routing, argp, sizeof(routing))) 2427 goto out; 2428 r = -EINVAL; 2429 if (routing.nr >= KVM_MAX_IRQ_ROUTES) 2430 goto out; 2431 if (routing.flags) 2432 goto out; 2433 r = -ENOMEM; 2434 entries = vmalloc(routing.nr * sizeof(*entries)); 2435 if (!entries) 2436 goto out; 2437 r = -EFAULT; 2438 urouting = argp; 2439 if (copy_from_user(entries, urouting->entries, 2440 routing.nr * sizeof(*entries))) 2441 goto out_free_irq_routing; 2442 r = kvm_set_irq_routing(kvm, entries, routing.nr, 2443 routing.flags); 2444 out_free_irq_routing: 2445 vfree(entries); 2446 break; 2447 } 2448 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 2449 case KVM_CREATE_DEVICE: { 2450 struct kvm_create_device cd; 2451 2452 r = -EFAULT; 2453 if (copy_from_user(&cd, argp, sizeof(cd))) 2454 goto out; 2455 2456 r = kvm_ioctl_create_device(kvm, &cd); 2457 if (r) 2458 goto out; 2459 2460 r = -EFAULT; 2461 if (copy_to_user(argp, &cd, sizeof(cd))) 2462 goto out; 2463 2464 r = 0; 2465 break; 2466 } 2467 default: 2468 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2469 if (r == -ENOTTY) 2470 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2471 } 2472 out: 2473 return r; 2474 } 2475 2476 #ifdef CONFIG_COMPAT 2477 struct compat_kvm_dirty_log { 2478 __u32 slot; 2479 __u32 padding1; 2480 union { 2481 compat_uptr_t dirty_bitmap; /* one bit per page */ 2482 __u64 padding2; 2483 }; 2484 }; 2485 2486 static long kvm_vm_compat_ioctl(struct file *filp, 2487 unsigned int ioctl, unsigned long arg) 2488 { 2489 struct kvm *kvm = filp->private_data; 2490 int r; 2491 2492 if (kvm->mm != current->mm) 2493 return -EIO; 2494 switch (ioctl) { 2495 case KVM_GET_DIRTY_LOG: { 2496 struct compat_kvm_dirty_log compat_log; 2497 struct kvm_dirty_log log; 2498 2499 r = -EFAULT; 2500 if (copy_from_user(&compat_log, (void __user *)arg, 2501 sizeof(compat_log))) 2502 goto out; 2503 log.slot = compat_log.slot; 2504 log.padding1 = compat_log.padding1; 2505 log.padding2 = compat_log.padding2; 2506 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2507 2508 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2509 break; 2510 } 2511 default: 2512 r = kvm_vm_ioctl(filp, ioctl, arg); 2513 } 2514 2515 out: 2516 return r; 2517 } 2518 #endif 2519 2520 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2521 { 2522 struct page *page[1]; 2523 unsigned long addr; 2524 int npages; 2525 gfn_t gfn = vmf->pgoff; 2526 struct kvm *kvm = vma->vm_file->private_data; 2527 2528 addr = gfn_to_hva(kvm, gfn); 2529 if (kvm_is_error_hva(addr)) 2530 return VM_FAULT_SIGBUS; 2531 2532 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 2533 NULL); 2534 if (unlikely(npages != 1)) 2535 return VM_FAULT_SIGBUS; 2536 2537 vmf->page = page[0]; 2538 return 0; 2539 } 2540 2541 static const struct vm_operations_struct kvm_vm_vm_ops = { 2542 .fault = kvm_vm_fault, 2543 }; 2544 2545 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 2546 { 2547 vma->vm_ops = &kvm_vm_vm_ops; 2548 return 0; 2549 } 2550 2551 static struct file_operations kvm_vm_fops = { 2552 .release = kvm_vm_release, 2553 .unlocked_ioctl = kvm_vm_ioctl, 2554 #ifdef CONFIG_COMPAT 2555 .compat_ioctl = kvm_vm_compat_ioctl, 2556 #endif 2557 .mmap = kvm_vm_mmap, 2558 .llseek = noop_llseek, 2559 }; 2560 2561 static int kvm_dev_ioctl_create_vm(unsigned long type) 2562 { 2563 int r; 2564 struct kvm *kvm; 2565 2566 kvm = kvm_create_vm(type); 2567 if (IS_ERR(kvm)) 2568 return PTR_ERR(kvm); 2569 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2570 r = kvm_coalesced_mmio_init(kvm); 2571 if (r < 0) { 2572 kvm_put_kvm(kvm); 2573 return r; 2574 } 2575 #endif 2576 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC); 2577 if (r < 0) 2578 kvm_put_kvm(kvm); 2579 2580 return r; 2581 } 2582 2583 static long kvm_dev_ioctl_check_extension_generic(long arg) 2584 { 2585 switch (arg) { 2586 case KVM_CAP_USER_MEMORY: 2587 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2588 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2589 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2590 case KVM_CAP_SET_BOOT_CPU_ID: 2591 #endif 2592 case KVM_CAP_INTERNAL_ERROR_DATA: 2593 #ifdef CONFIG_HAVE_KVM_MSI 2594 case KVM_CAP_SIGNAL_MSI: 2595 #endif 2596 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2597 case KVM_CAP_IRQFD_RESAMPLE: 2598 #endif 2599 return 1; 2600 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 2601 case KVM_CAP_IRQ_ROUTING: 2602 return KVM_MAX_IRQ_ROUTES; 2603 #endif 2604 default: 2605 break; 2606 } 2607 return kvm_dev_ioctl_check_extension(arg); 2608 } 2609 2610 static long kvm_dev_ioctl(struct file *filp, 2611 unsigned int ioctl, unsigned long arg) 2612 { 2613 long r = -EINVAL; 2614 2615 switch (ioctl) { 2616 case KVM_GET_API_VERSION: 2617 r = -EINVAL; 2618 if (arg) 2619 goto out; 2620 r = KVM_API_VERSION; 2621 break; 2622 case KVM_CREATE_VM: 2623 r = kvm_dev_ioctl_create_vm(arg); 2624 break; 2625 case KVM_CHECK_EXTENSION: 2626 r = kvm_dev_ioctl_check_extension_generic(arg); 2627 break; 2628 case KVM_GET_VCPU_MMAP_SIZE: 2629 r = -EINVAL; 2630 if (arg) 2631 goto out; 2632 r = PAGE_SIZE; /* struct kvm_run */ 2633 #ifdef CONFIG_X86 2634 r += PAGE_SIZE; /* pio data page */ 2635 #endif 2636 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2637 r += PAGE_SIZE; /* coalesced mmio ring page */ 2638 #endif 2639 break; 2640 case KVM_TRACE_ENABLE: 2641 case KVM_TRACE_PAUSE: 2642 case KVM_TRACE_DISABLE: 2643 r = -EOPNOTSUPP; 2644 break; 2645 default: 2646 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2647 } 2648 out: 2649 return r; 2650 } 2651 2652 static struct file_operations kvm_chardev_ops = { 2653 .unlocked_ioctl = kvm_dev_ioctl, 2654 .compat_ioctl = kvm_dev_ioctl, 2655 .llseek = noop_llseek, 2656 }; 2657 2658 static struct miscdevice kvm_dev = { 2659 KVM_MINOR, 2660 "kvm", 2661 &kvm_chardev_ops, 2662 }; 2663 2664 static void hardware_enable_nolock(void *junk) 2665 { 2666 int cpu = raw_smp_processor_id(); 2667 int r; 2668 2669 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2670 return; 2671 2672 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2673 2674 r = kvm_arch_hardware_enable(NULL); 2675 2676 if (r) { 2677 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2678 atomic_inc(&hardware_enable_failed); 2679 printk(KERN_INFO "kvm: enabling virtualization on " 2680 "CPU%d failed\n", cpu); 2681 } 2682 } 2683 2684 static void hardware_enable(void *junk) 2685 { 2686 raw_spin_lock(&kvm_lock); 2687 hardware_enable_nolock(junk); 2688 raw_spin_unlock(&kvm_lock); 2689 } 2690 2691 static void hardware_disable_nolock(void *junk) 2692 { 2693 int cpu = raw_smp_processor_id(); 2694 2695 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2696 return; 2697 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2698 kvm_arch_hardware_disable(NULL); 2699 } 2700 2701 static void hardware_disable(void *junk) 2702 { 2703 raw_spin_lock(&kvm_lock); 2704 hardware_disable_nolock(junk); 2705 raw_spin_unlock(&kvm_lock); 2706 } 2707 2708 static void hardware_disable_all_nolock(void) 2709 { 2710 BUG_ON(!kvm_usage_count); 2711 2712 kvm_usage_count--; 2713 if (!kvm_usage_count) 2714 on_each_cpu(hardware_disable_nolock, NULL, 1); 2715 } 2716 2717 static void hardware_disable_all(void) 2718 { 2719 raw_spin_lock(&kvm_lock); 2720 hardware_disable_all_nolock(); 2721 raw_spin_unlock(&kvm_lock); 2722 } 2723 2724 static int hardware_enable_all(void) 2725 { 2726 int r = 0; 2727 2728 raw_spin_lock(&kvm_lock); 2729 2730 kvm_usage_count++; 2731 if (kvm_usage_count == 1) { 2732 atomic_set(&hardware_enable_failed, 0); 2733 on_each_cpu(hardware_enable_nolock, NULL, 1); 2734 2735 if (atomic_read(&hardware_enable_failed)) { 2736 hardware_disable_all_nolock(); 2737 r = -EBUSY; 2738 } 2739 } 2740 2741 raw_spin_unlock(&kvm_lock); 2742 2743 return r; 2744 } 2745 2746 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2747 void *v) 2748 { 2749 int cpu = (long)v; 2750 2751 if (!kvm_usage_count) 2752 return NOTIFY_OK; 2753 2754 val &= ~CPU_TASKS_FROZEN; 2755 switch (val) { 2756 case CPU_DYING: 2757 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2758 cpu); 2759 hardware_disable(NULL); 2760 break; 2761 case CPU_STARTING: 2762 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2763 cpu); 2764 hardware_enable(NULL); 2765 break; 2766 } 2767 return NOTIFY_OK; 2768 } 2769 2770 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2771 void *v) 2772 { 2773 /* 2774 * Some (well, at least mine) BIOSes hang on reboot if 2775 * in vmx root mode. 2776 * 2777 * And Intel TXT required VMX off for all cpu when system shutdown. 2778 */ 2779 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2780 kvm_rebooting = true; 2781 on_each_cpu(hardware_disable_nolock, NULL, 1); 2782 return NOTIFY_OK; 2783 } 2784 2785 static struct notifier_block kvm_reboot_notifier = { 2786 .notifier_call = kvm_reboot, 2787 .priority = 0, 2788 }; 2789 2790 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2791 { 2792 int i; 2793 2794 for (i = 0; i < bus->dev_count; i++) { 2795 struct kvm_io_device *pos = bus->range[i].dev; 2796 2797 kvm_iodevice_destructor(pos); 2798 } 2799 kfree(bus); 2800 } 2801 2802 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 2803 const struct kvm_io_range *r2) 2804 { 2805 if (r1->addr < r2->addr) 2806 return -1; 2807 if (r1->addr + r1->len > r2->addr + r2->len) 2808 return 1; 2809 return 0; 2810 } 2811 2812 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2813 { 2814 return kvm_io_bus_cmp(p1, p2); 2815 } 2816 2817 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2818 gpa_t addr, int len) 2819 { 2820 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2821 .addr = addr, 2822 .len = len, 2823 .dev = dev, 2824 }; 2825 2826 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2827 kvm_io_bus_sort_cmp, NULL); 2828 2829 return 0; 2830 } 2831 2832 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2833 gpa_t addr, int len) 2834 { 2835 struct kvm_io_range *range, key; 2836 int off; 2837 2838 key = (struct kvm_io_range) { 2839 .addr = addr, 2840 .len = len, 2841 }; 2842 2843 range = bsearch(&key, bus->range, bus->dev_count, 2844 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2845 if (range == NULL) 2846 return -ENOENT; 2847 2848 off = range - bus->range; 2849 2850 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 2851 off--; 2852 2853 return off; 2854 } 2855 2856 static int __kvm_io_bus_write(struct kvm_io_bus *bus, 2857 struct kvm_io_range *range, const void *val) 2858 { 2859 int idx; 2860 2861 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2862 if (idx < 0) 2863 return -EOPNOTSUPP; 2864 2865 while (idx < bus->dev_count && 2866 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2867 if (!kvm_iodevice_write(bus->range[idx].dev, range->addr, 2868 range->len, val)) 2869 return idx; 2870 idx++; 2871 } 2872 2873 return -EOPNOTSUPP; 2874 } 2875 2876 /* kvm_io_bus_write - called under kvm->slots_lock */ 2877 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2878 int len, const void *val) 2879 { 2880 struct kvm_io_bus *bus; 2881 struct kvm_io_range range; 2882 int r; 2883 2884 range = (struct kvm_io_range) { 2885 .addr = addr, 2886 .len = len, 2887 }; 2888 2889 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2890 r = __kvm_io_bus_write(bus, &range, val); 2891 return r < 0 ? r : 0; 2892 } 2893 2894 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 2895 int kvm_io_bus_write_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2896 int len, const void *val, long cookie) 2897 { 2898 struct kvm_io_bus *bus; 2899 struct kvm_io_range range; 2900 2901 range = (struct kvm_io_range) { 2902 .addr = addr, 2903 .len = len, 2904 }; 2905 2906 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2907 2908 /* First try the device referenced by cookie. */ 2909 if ((cookie >= 0) && (cookie < bus->dev_count) && 2910 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2911 if (!kvm_iodevice_write(bus->range[cookie].dev, addr, len, 2912 val)) 2913 return cookie; 2914 2915 /* 2916 * cookie contained garbage; fall back to search and return the 2917 * correct cookie value. 2918 */ 2919 return __kvm_io_bus_write(bus, &range, val); 2920 } 2921 2922 static int __kvm_io_bus_read(struct kvm_io_bus *bus, struct kvm_io_range *range, 2923 void *val) 2924 { 2925 int idx; 2926 2927 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 2928 if (idx < 0) 2929 return -EOPNOTSUPP; 2930 2931 while (idx < bus->dev_count && 2932 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 2933 if (!kvm_iodevice_read(bus->range[idx].dev, range->addr, 2934 range->len, val)) 2935 return idx; 2936 idx++; 2937 } 2938 2939 return -EOPNOTSUPP; 2940 } 2941 2942 /* kvm_io_bus_read - called under kvm->slots_lock */ 2943 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2944 int len, void *val) 2945 { 2946 struct kvm_io_bus *bus; 2947 struct kvm_io_range range; 2948 int r; 2949 2950 range = (struct kvm_io_range) { 2951 .addr = addr, 2952 .len = len, 2953 }; 2954 2955 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2956 r = __kvm_io_bus_read(bus, &range, val); 2957 return r < 0 ? r : 0; 2958 } 2959 2960 /* kvm_io_bus_read_cookie - called under kvm->slots_lock */ 2961 int kvm_io_bus_read_cookie(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2962 int len, void *val, long cookie) 2963 { 2964 struct kvm_io_bus *bus; 2965 struct kvm_io_range range; 2966 2967 range = (struct kvm_io_range) { 2968 .addr = addr, 2969 .len = len, 2970 }; 2971 2972 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2973 2974 /* First try the device referenced by cookie. */ 2975 if ((cookie >= 0) && (cookie < bus->dev_count) && 2976 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 2977 if (!kvm_iodevice_read(bus->range[cookie].dev, addr, len, 2978 val)) 2979 return cookie; 2980 2981 /* 2982 * cookie contained garbage; fall back to search and return the 2983 * correct cookie value. 2984 */ 2985 return __kvm_io_bus_read(bus, &range, val); 2986 } 2987 2988 /* Caller must hold slots_lock. */ 2989 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2990 int len, struct kvm_io_device *dev) 2991 { 2992 struct kvm_io_bus *new_bus, *bus; 2993 2994 bus = kvm->buses[bus_idx]; 2995 /* exclude ioeventfd which is limited by maximum fd */ 2996 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 2997 return -ENOSPC; 2998 2999 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 3000 sizeof(struct kvm_io_range)), GFP_KERNEL); 3001 if (!new_bus) 3002 return -ENOMEM; 3003 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 3004 sizeof(struct kvm_io_range))); 3005 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 3006 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3007 synchronize_srcu_expedited(&kvm->srcu); 3008 kfree(bus); 3009 3010 return 0; 3011 } 3012 3013 /* Caller must hold slots_lock. */ 3014 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3015 struct kvm_io_device *dev) 3016 { 3017 int i, r; 3018 struct kvm_io_bus *new_bus, *bus; 3019 3020 bus = kvm->buses[bus_idx]; 3021 r = -ENOENT; 3022 for (i = 0; i < bus->dev_count; i++) 3023 if (bus->range[i].dev == dev) { 3024 r = 0; 3025 break; 3026 } 3027 3028 if (r) 3029 return r; 3030 3031 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 3032 sizeof(struct kvm_io_range)), GFP_KERNEL); 3033 if (!new_bus) 3034 return -ENOMEM; 3035 3036 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3037 new_bus->dev_count--; 3038 memcpy(new_bus->range + i, bus->range + i + 1, 3039 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3040 3041 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3042 synchronize_srcu_expedited(&kvm->srcu); 3043 kfree(bus); 3044 return r; 3045 } 3046 3047 static struct notifier_block kvm_cpu_notifier = { 3048 .notifier_call = kvm_cpu_hotplug, 3049 }; 3050 3051 static int vm_stat_get(void *_offset, u64 *val) 3052 { 3053 unsigned offset = (long)_offset; 3054 struct kvm *kvm; 3055 3056 *val = 0; 3057 raw_spin_lock(&kvm_lock); 3058 list_for_each_entry(kvm, &vm_list, vm_list) 3059 *val += *(u32 *)((void *)kvm + offset); 3060 raw_spin_unlock(&kvm_lock); 3061 return 0; 3062 } 3063 3064 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 3065 3066 static int vcpu_stat_get(void *_offset, u64 *val) 3067 { 3068 unsigned offset = (long)_offset; 3069 struct kvm *kvm; 3070 struct kvm_vcpu *vcpu; 3071 int i; 3072 3073 *val = 0; 3074 raw_spin_lock(&kvm_lock); 3075 list_for_each_entry(kvm, &vm_list, vm_list) 3076 kvm_for_each_vcpu(i, vcpu, kvm) 3077 *val += *(u32 *)((void *)vcpu + offset); 3078 3079 raw_spin_unlock(&kvm_lock); 3080 return 0; 3081 } 3082 3083 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 3084 3085 static const struct file_operations *stat_fops[] = { 3086 [KVM_STAT_VCPU] = &vcpu_stat_fops, 3087 [KVM_STAT_VM] = &vm_stat_fops, 3088 }; 3089 3090 static int kvm_init_debug(void) 3091 { 3092 int r = -EFAULT; 3093 struct kvm_stats_debugfs_item *p; 3094 3095 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 3096 if (kvm_debugfs_dir == NULL) 3097 goto out; 3098 3099 for (p = debugfs_entries; p->name; ++p) { 3100 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 3101 (void *)(long)p->offset, 3102 stat_fops[p->kind]); 3103 if (p->dentry == NULL) 3104 goto out_dir; 3105 } 3106 3107 return 0; 3108 3109 out_dir: 3110 debugfs_remove_recursive(kvm_debugfs_dir); 3111 out: 3112 return r; 3113 } 3114 3115 static void kvm_exit_debug(void) 3116 { 3117 struct kvm_stats_debugfs_item *p; 3118 3119 for (p = debugfs_entries; p->name; ++p) 3120 debugfs_remove(p->dentry); 3121 debugfs_remove(kvm_debugfs_dir); 3122 } 3123 3124 static int kvm_suspend(void) 3125 { 3126 if (kvm_usage_count) 3127 hardware_disable_nolock(NULL); 3128 return 0; 3129 } 3130 3131 static void kvm_resume(void) 3132 { 3133 if (kvm_usage_count) { 3134 WARN_ON(raw_spin_is_locked(&kvm_lock)); 3135 hardware_enable_nolock(NULL); 3136 } 3137 } 3138 3139 static struct syscore_ops kvm_syscore_ops = { 3140 .suspend = kvm_suspend, 3141 .resume = kvm_resume, 3142 }; 3143 3144 static inline 3145 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 3146 { 3147 return container_of(pn, struct kvm_vcpu, preempt_notifier); 3148 } 3149 3150 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 3151 { 3152 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3153 if (vcpu->preempted) 3154 vcpu->preempted = false; 3155 3156 kvm_arch_vcpu_load(vcpu, cpu); 3157 } 3158 3159 static void kvm_sched_out(struct preempt_notifier *pn, 3160 struct task_struct *next) 3161 { 3162 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 3163 3164 if (current->state == TASK_RUNNING) 3165 vcpu->preempted = true; 3166 kvm_arch_vcpu_put(vcpu); 3167 } 3168 3169 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 3170 struct module *module) 3171 { 3172 int r; 3173 int cpu; 3174 3175 r = kvm_arch_init(opaque); 3176 if (r) 3177 goto out_fail; 3178 3179 /* 3180 * kvm_arch_init makes sure there's at most one caller 3181 * for architectures that support multiple implementations, 3182 * like intel and amd on x86. 3183 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 3184 * conflicts in case kvm is already setup for another implementation. 3185 */ 3186 r = kvm_irqfd_init(); 3187 if (r) 3188 goto out_irqfd; 3189 3190 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 3191 r = -ENOMEM; 3192 goto out_free_0; 3193 } 3194 3195 r = kvm_arch_hardware_setup(); 3196 if (r < 0) 3197 goto out_free_0a; 3198 3199 for_each_online_cpu(cpu) { 3200 smp_call_function_single(cpu, 3201 kvm_arch_check_processor_compat, 3202 &r, 1); 3203 if (r < 0) 3204 goto out_free_1; 3205 } 3206 3207 r = register_cpu_notifier(&kvm_cpu_notifier); 3208 if (r) 3209 goto out_free_2; 3210 register_reboot_notifier(&kvm_reboot_notifier); 3211 3212 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 3213 if (!vcpu_align) 3214 vcpu_align = __alignof__(struct kvm_vcpu); 3215 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 3216 0, NULL); 3217 if (!kvm_vcpu_cache) { 3218 r = -ENOMEM; 3219 goto out_free_3; 3220 } 3221 3222 r = kvm_async_pf_init(); 3223 if (r) 3224 goto out_free; 3225 3226 kvm_chardev_ops.owner = module; 3227 kvm_vm_fops.owner = module; 3228 kvm_vcpu_fops.owner = module; 3229 3230 r = misc_register(&kvm_dev); 3231 if (r) { 3232 printk(KERN_ERR "kvm: misc device register failed\n"); 3233 goto out_unreg; 3234 } 3235 3236 register_syscore_ops(&kvm_syscore_ops); 3237 3238 kvm_preempt_ops.sched_in = kvm_sched_in; 3239 kvm_preempt_ops.sched_out = kvm_sched_out; 3240 3241 r = kvm_init_debug(); 3242 if (r) { 3243 printk(KERN_ERR "kvm: create debugfs files failed\n"); 3244 goto out_undebugfs; 3245 } 3246 3247 return 0; 3248 3249 out_undebugfs: 3250 unregister_syscore_ops(&kvm_syscore_ops); 3251 misc_deregister(&kvm_dev); 3252 out_unreg: 3253 kvm_async_pf_deinit(); 3254 out_free: 3255 kmem_cache_destroy(kvm_vcpu_cache); 3256 out_free_3: 3257 unregister_reboot_notifier(&kvm_reboot_notifier); 3258 unregister_cpu_notifier(&kvm_cpu_notifier); 3259 out_free_2: 3260 out_free_1: 3261 kvm_arch_hardware_unsetup(); 3262 out_free_0a: 3263 free_cpumask_var(cpus_hardware_enabled); 3264 out_free_0: 3265 kvm_irqfd_exit(); 3266 out_irqfd: 3267 kvm_arch_exit(); 3268 out_fail: 3269 return r; 3270 } 3271 EXPORT_SYMBOL_GPL(kvm_init); 3272 3273 void kvm_exit(void) 3274 { 3275 kvm_exit_debug(); 3276 misc_deregister(&kvm_dev); 3277 kmem_cache_destroy(kvm_vcpu_cache); 3278 kvm_async_pf_deinit(); 3279 unregister_syscore_ops(&kvm_syscore_ops); 3280 unregister_reboot_notifier(&kvm_reboot_notifier); 3281 unregister_cpu_notifier(&kvm_cpu_notifier); 3282 on_each_cpu(hardware_disable_nolock, NULL, 1); 3283 kvm_arch_hardware_unsetup(); 3284 kvm_arch_exit(); 3285 kvm_irqfd_exit(); 3286 free_cpumask_var(cpus_hardware_enabled); 3287 } 3288 EXPORT_SYMBOL_GPL(kvm_exit); 3289