xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 08283d30)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <kvm/iodev.h>
17 
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 
54 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <linux/uaccess.h>
57 #include <asm/pgtable.h>
58 
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65 
66 /* Worst case buffer size needed for holding an integer. */
67 #define ITOA_MAX_LEN 12
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 /* Architectures should define their poll value according to the halt latency */
73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
74 module_param(halt_poll_ns, uint, 0644);
75 EXPORT_SYMBOL_GPL(halt_poll_ns);
76 
77 /* Default doubles per-vcpu halt_poll_ns. */
78 unsigned int halt_poll_ns_grow = 2;
79 module_param(halt_poll_ns_grow, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
81 
82 /* The start value to grow halt_poll_ns from */
83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
84 module_param(halt_poll_ns_grow_start, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
86 
87 /* Default resets per-vcpu halt_poll_ns . */
88 unsigned int halt_poll_ns_shrink;
89 module_param(halt_poll_ns_shrink, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
91 
92 /*
93  * Ordering of locks:
94  *
95  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
96  */
97 
98 DEFINE_MUTEX(kvm_lock);
99 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
100 LIST_HEAD(vm_list);
101 
102 static cpumask_var_t cpus_hardware_enabled;
103 static int kvm_usage_count;
104 static atomic_t hardware_enable_failed;
105 
106 struct kmem_cache *kvm_vcpu_cache;
107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
108 
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113 
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations *stat_fops_per_vm[];
116 
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118 			   unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121 				  unsigned long arg);
122 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
123 #else
124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
125 				unsigned long arg) { return -EINVAL; }
126 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
127 #endif
128 static int hardware_enable_all(void);
129 static void hardware_disable_all(void);
130 
131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
132 
133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
134 
135 __visible bool kvm_rebooting;
136 EXPORT_SYMBOL_GPL(kvm_rebooting);
137 
138 static bool largepages_enabled = true;
139 
140 #define KVM_EVENT_CREATE_VM 0
141 #define KVM_EVENT_DESTROY_VM 1
142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
143 static unsigned long long kvm_createvm_count;
144 static unsigned long long kvm_active_vms;
145 
146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
147 		unsigned long start, unsigned long end, bool blockable)
148 {
149 	return 0;
150 }
151 
152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
153 {
154 	if (pfn_valid(pfn))
155 		return PageReserved(pfn_to_page(pfn));
156 
157 	return true;
158 }
159 
160 /*
161  * Switches to specified vcpu, until a matching vcpu_put()
162  */
163 void vcpu_load(struct kvm_vcpu *vcpu)
164 {
165 	int cpu = get_cpu();
166 	preempt_notifier_register(&vcpu->preempt_notifier);
167 	kvm_arch_vcpu_load(vcpu, cpu);
168 	put_cpu();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_load);
171 
172 void vcpu_put(struct kvm_vcpu *vcpu)
173 {
174 	preempt_disable();
175 	kvm_arch_vcpu_put(vcpu);
176 	preempt_notifier_unregister(&vcpu->preempt_notifier);
177 	preempt_enable();
178 }
179 EXPORT_SYMBOL_GPL(vcpu_put);
180 
181 /* TODO: merge with kvm_arch_vcpu_should_kick */
182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
183 {
184 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
185 
186 	/*
187 	 * We need to wait for the VCPU to reenable interrupts and get out of
188 	 * READING_SHADOW_PAGE_TABLES mode.
189 	 */
190 	if (req & KVM_REQUEST_WAIT)
191 		return mode != OUTSIDE_GUEST_MODE;
192 
193 	/*
194 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
195 	 */
196 	return mode == IN_GUEST_MODE;
197 }
198 
199 static void ack_flush(void *_completed)
200 {
201 }
202 
203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
204 {
205 	if (unlikely(!cpus))
206 		cpus = cpu_online_mask;
207 
208 	if (cpumask_empty(cpus))
209 		return false;
210 
211 	smp_call_function_many(cpus, ack_flush, NULL, wait);
212 	return true;
213 }
214 
215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
216 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
217 {
218 	int i, cpu, me;
219 	struct kvm_vcpu *vcpu;
220 	bool called;
221 
222 	me = get_cpu();
223 
224 	kvm_for_each_vcpu(i, vcpu, kvm) {
225 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
226 			continue;
227 
228 		kvm_make_request(req, vcpu);
229 		cpu = vcpu->cpu;
230 
231 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
232 			continue;
233 
234 		if (tmp != NULL && cpu != -1 && cpu != me &&
235 		    kvm_request_needs_ipi(vcpu, req))
236 			__cpumask_set_cpu(cpu, tmp);
237 	}
238 
239 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
240 	put_cpu();
241 
242 	return called;
243 }
244 
245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
246 {
247 	cpumask_var_t cpus;
248 	bool called;
249 
250 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
251 
252 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
253 
254 	free_cpumask_var(cpus);
255 	return called;
256 }
257 
258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
259 void kvm_flush_remote_tlbs(struct kvm *kvm)
260 {
261 	/*
262 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
263 	 * kvm_make_all_cpus_request.
264 	 */
265 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
266 
267 	/*
268 	 * We want to publish modifications to the page tables before reading
269 	 * mode. Pairs with a memory barrier in arch-specific code.
270 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
271 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
272 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
273 	 *
274 	 * There is already an smp_mb__after_atomic() before
275 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
276 	 * barrier here.
277 	 */
278 	if (!kvm_arch_flush_remote_tlb(kvm)
279 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
280 		++kvm->stat.remote_tlb_flush;
281 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
282 }
283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
284 #endif
285 
286 void kvm_reload_remote_mmus(struct kvm *kvm)
287 {
288 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
289 }
290 
291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
292 {
293 	struct page *page;
294 	int r;
295 
296 	mutex_init(&vcpu->mutex);
297 	vcpu->cpu = -1;
298 	vcpu->kvm = kvm;
299 	vcpu->vcpu_id = id;
300 	vcpu->pid = NULL;
301 	init_swait_queue_head(&vcpu->wq);
302 	kvm_async_pf_vcpu_init(vcpu);
303 
304 	vcpu->pre_pcpu = -1;
305 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
306 
307 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
308 	if (!page) {
309 		r = -ENOMEM;
310 		goto fail;
311 	}
312 	vcpu->run = page_address(page);
313 
314 	kvm_vcpu_set_in_spin_loop(vcpu, false);
315 	kvm_vcpu_set_dy_eligible(vcpu, false);
316 	vcpu->preempted = false;
317 	vcpu->ready = false;
318 
319 	r = kvm_arch_vcpu_init(vcpu);
320 	if (r < 0)
321 		goto fail_free_run;
322 	return 0;
323 
324 fail_free_run:
325 	free_page((unsigned long)vcpu->run);
326 fail:
327 	return r;
328 }
329 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
330 
331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
332 {
333 	/*
334 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
335 	 * will change the vcpu->pid pointer and on uninit all file
336 	 * descriptors are already gone.
337 	 */
338 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
339 	kvm_arch_vcpu_uninit(vcpu);
340 	free_page((unsigned long)vcpu->run);
341 }
342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
343 
344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
346 {
347 	return container_of(mn, struct kvm, mmu_notifier);
348 }
349 
350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
351 					struct mm_struct *mm,
352 					unsigned long address,
353 					pte_t pte)
354 {
355 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
356 	int idx;
357 
358 	idx = srcu_read_lock(&kvm->srcu);
359 	spin_lock(&kvm->mmu_lock);
360 	kvm->mmu_notifier_seq++;
361 
362 	if (kvm_set_spte_hva(kvm, address, pte))
363 		kvm_flush_remote_tlbs(kvm);
364 
365 	spin_unlock(&kvm->mmu_lock);
366 	srcu_read_unlock(&kvm->srcu, idx);
367 }
368 
369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
370 					const struct mmu_notifier_range *range)
371 {
372 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
373 	int need_tlb_flush = 0, idx;
374 	int ret;
375 
376 	idx = srcu_read_lock(&kvm->srcu);
377 	spin_lock(&kvm->mmu_lock);
378 	/*
379 	 * The count increase must become visible at unlock time as no
380 	 * spte can be established without taking the mmu_lock and
381 	 * count is also read inside the mmu_lock critical section.
382 	 */
383 	kvm->mmu_notifier_count++;
384 	need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
385 	need_tlb_flush |= kvm->tlbs_dirty;
386 	/* we've to flush the tlb before the pages can be freed */
387 	if (need_tlb_flush)
388 		kvm_flush_remote_tlbs(kvm);
389 
390 	spin_unlock(&kvm->mmu_lock);
391 
392 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
393 					range->end,
394 					mmu_notifier_range_blockable(range));
395 
396 	srcu_read_unlock(&kvm->srcu, idx);
397 
398 	return ret;
399 }
400 
401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
402 					const struct mmu_notifier_range *range)
403 {
404 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
405 
406 	spin_lock(&kvm->mmu_lock);
407 	/*
408 	 * This sequence increase will notify the kvm page fault that
409 	 * the page that is going to be mapped in the spte could have
410 	 * been freed.
411 	 */
412 	kvm->mmu_notifier_seq++;
413 	smp_wmb();
414 	/*
415 	 * The above sequence increase must be visible before the
416 	 * below count decrease, which is ensured by the smp_wmb above
417 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
418 	 */
419 	kvm->mmu_notifier_count--;
420 	spin_unlock(&kvm->mmu_lock);
421 
422 	BUG_ON(kvm->mmu_notifier_count < 0);
423 }
424 
425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
426 					      struct mm_struct *mm,
427 					      unsigned long start,
428 					      unsigned long end)
429 {
430 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
431 	int young, idx;
432 
433 	idx = srcu_read_lock(&kvm->srcu);
434 	spin_lock(&kvm->mmu_lock);
435 
436 	young = kvm_age_hva(kvm, start, end);
437 	if (young)
438 		kvm_flush_remote_tlbs(kvm);
439 
440 	spin_unlock(&kvm->mmu_lock);
441 	srcu_read_unlock(&kvm->srcu, idx);
442 
443 	return young;
444 }
445 
446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
447 					struct mm_struct *mm,
448 					unsigned long start,
449 					unsigned long end)
450 {
451 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
452 	int young, idx;
453 
454 	idx = srcu_read_lock(&kvm->srcu);
455 	spin_lock(&kvm->mmu_lock);
456 	/*
457 	 * Even though we do not flush TLB, this will still adversely
458 	 * affect performance on pre-Haswell Intel EPT, where there is
459 	 * no EPT Access Bit to clear so that we have to tear down EPT
460 	 * tables instead. If we find this unacceptable, we can always
461 	 * add a parameter to kvm_age_hva so that it effectively doesn't
462 	 * do anything on clear_young.
463 	 *
464 	 * Also note that currently we never issue secondary TLB flushes
465 	 * from clear_young, leaving this job up to the regular system
466 	 * cadence. If we find this inaccurate, we might come up with a
467 	 * more sophisticated heuristic later.
468 	 */
469 	young = kvm_age_hva(kvm, start, end);
470 	spin_unlock(&kvm->mmu_lock);
471 	srcu_read_unlock(&kvm->srcu, idx);
472 
473 	return young;
474 }
475 
476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
477 				       struct mm_struct *mm,
478 				       unsigned long address)
479 {
480 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
481 	int young, idx;
482 
483 	idx = srcu_read_lock(&kvm->srcu);
484 	spin_lock(&kvm->mmu_lock);
485 	young = kvm_test_age_hva(kvm, address);
486 	spin_unlock(&kvm->mmu_lock);
487 	srcu_read_unlock(&kvm->srcu, idx);
488 
489 	return young;
490 }
491 
492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
493 				     struct mm_struct *mm)
494 {
495 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
496 	int idx;
497 
498 	idx = srcu_read_lock(&kvm->srcu);
499 	kvm_arch_flush_shadow_all(kvm);
500 	srcu_read_unlock(&kvm->srcu, idx);
501 }
502 
503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
504 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
505 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
506 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
507 	.clear_young		= kvm_mmu_notifier_clear_young,
508 	.test_young		= kvm_mmu_notifier_test_young,
509 	.change_pte		= kvm_mmu_notifier_change_pte,
510 	.release		= kvm_mmu_notifier_release,
511 };
512 
513 static int kvm_init_mmu_notifier(struct kvm *kvm)
514 {
515 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
516 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
517 }
518 
519 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
520 
521 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 {
523 	return 0;
524 }
525 
526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
527 
528 static struct kvm_memslots *kvm_alloc_memslots(void)
529 {
530 	int i;
531 	struct kvm_memslots *slots;
532 
533 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
534 	if (!slots)
535 		return NULL;
536 
537 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
538 		slots->id_to_index[i] = slots->memslots[i].id = i;
539 
540 	return slots;
541 }
542 
543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
544 {
545 	if (!memslot->dirty_bitmap)
546 		return;
547 
548 	kvfree(memslot->dirty_bitmap);
549 	memslot->dirty_bitmap = NULL;
550 }
551 
552 /*
553  * Free any memory in @free but not in @dont.
554  */
555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
556 			      struct kvm_memory_slot *dont)
557 {
558 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
559 		kvm_destroy_dirty_bitmap(free);
560 
561 	kvm_arch_free_memslot(kvm, free, dont);
562 
563 	free->npages = 0;
564 }
565 
566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
567 {
568 	struct kvm_memory_slot *memslot;
569 
570 	if (!slots)
571 		return;
572 
573 	kvm_for_each_memslot(memslot, slots)
574 		kvm_free_memslot(kvm, memslot, NULL);
575 
576 	kvfree(slots);
577 }
578 
579 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
580 {
581 	int i;
582 
583 	if (!kvm->debugfs_dentry)
584 		return;
585 
586 	debugfs_remove_recursive(kvm->debugfs_dentry);
587 
588 	if (kvm->debugfs_stat_data) {
589 		for (i = 0; i < kvm_debugfs_num_entries; i++)
590 			kfree(kvm->debugfs_stat_data[i]);
591 		kfree(kvm->debugfs_stat_data);
592 	}
593 }
594 
595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
596 {
597 	char dir_name[ITOA_MAX_LEN * 2];
598 	struct kvm_stat_data *stat_data;
599 	struct kvm_stats_debugfs_item *p;
600 
601 	if (!debugfs_initialized())
602 		return 0;
603 
604 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
605 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
606 
607 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
608 					 sizeof(*kvm->debugfs_stat_data),
609 					 GFP_KERNEL_ACCOUNT);
610 	if (!kvm->debugfs_stat_data)
611 		return -ENOMEM;
612 
613 	for (p = debugfs_entries; p->name; p++) {
614 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
615 		if (!stat_data)
616 			return -ENOMEM;
617 
618 		stat_data->kvm = kvm;
619 		stat_data->offset = p->offset;
620 		stat_data->mode = p->mode ? p->mode : 0644;
621 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
622 		debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
623 				    stat_data, stat_fops_per_vm[p->kind]);
624 	}
625 	return 0;
626 }
627 
628 static struct kvm *kvm_create_vm(unsigned long type)
629 {
630 	struct kvm *kvm = kvm_arch_alloc_vm();
631 	int r = -ENOMEM;
632 	int i;
633 
634 	if (!kvm)
635 		return ERR_PTR(-ENOMEM);
636 
637 	spin_lock_init(&kvm->mmu_lock);
638 	mmgrab(current->mm);
639 	kvm->mm = current->mm;
640 	kvm_eventfd_init(kvm);
641 	mutex_init(&kvm->lock);
642 	mutex_init(&kvm->irq_lock);
643 	mutex_init(&kvm->slots_lock);
644 	INIT_LIST_HEAD(&kvm->devices);
645 
646 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
647 
648 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
649 		struct kvm_memslots *slots = kvm_alloc_memslots();
650 
651 		if (!slots)
652 			goto out_err_no_arch_destroy_vm;
653 		/* Generations must be different for each address space. */
654 		slots->generation = i;
655 		rcu_assign_pointer(kvm->memslots[i], slots);
656 	}
657 
658 	for (i = 0; i < KVM_NR_BUSES; i++) {
659 		rcu_assign_pointer(kvm->buses[i],
660 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
661 		if (!kvm->buses[i])
662 			goto out_err_no_arch_destroy_vm;
663 	}
664 
665 	refcount_set(&kvm->users_count, 1);
666 	r = kvm_arch_init_vm(kvm, type);
667 	if (r)
668 		goto out_err_no_arch_destroy_vm;
669 
670 	r = hardware_enable_all();
671 	if (r)
672 		goto out_err_no_disable;
673 
674 #ifdef CONFIG_HAVE_KVM_IRQFD
675 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
676 #endif
677 
678 	if (init_srcu_struct(&kvm->srcu))
679 		goto out_err_no_srcu;
680 	if (init_srcu_struct(&kvm->irq_srcu))
681 		goto out_err_no_irq_srcu;
682 
683 	r = kvm_init_mmu_notifier(kvm);
684 	if (r)
685 		goto out_err;
686 
687 	mutex_lock(&kvm_lock);
688 	list_add(&kvm->vm_list, &vm_list);
689 	mutex_unlock(&kvm_lock);
690 
691 	preempt_notifier_inc();
692 
693 	return kvm;
694 
695 out_err:
696 	cleanup_srcu_struct(&kvm->irq_srcu);
697 out_err_no_irq_srcu:
698 	cleanup_srcu_struct(&kvm->srcu);
699 out_err_no_srcu:
700 	hardware_disable_all();
701 out_err_no_disable:
702 	kvm_arch_destroy_vm(kvm);
703 	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
704 out_err_no_arch_destroy_vm:
705 	for (i = 0; i < KVM_NR_BUSES; i++)
706 		kfree(kvm_get_bus(kvm, i));
707 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
708 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
709 	kvm_arch_free_vm(kvm);
710 	mmdrop(current->mm);
711 	return ERR_PTR(r);
712 }
713 
714 static void kvm_destroy_devices(struct kvm *kvm)
715 {
716 	struct kvm_device *dev, *tmp;
717 
718 	/*
719 	 * We do not need to take the kvm->lock here, because nobody else
720 	 * has a reference to the struct kvm at this point and therefore
721 	 * cannot access the devices list anyhow.
722 	 */
723 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
724 		list_del(&dev->vm_node);
725 		dev->ops->destroy(dev);
726 	}
727 }
728 
729 static void kvm_destroy_vm(struct kvm *kvm)
730 {
731 	int i;
732 	struct mm_struct *mm = kvm->mm;
733 
734 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
735 	kvm_destroy_vm_debugfs(kvm);
736 	kvm_arch_sync_events(kvm);
737 	mutex_lock(&kvm_lock);
738 	list_del(&kvm->vm_list);
739 	mutex_unlock(&kvm_lock);
740 	kvm_free_irq_routing(kvm);
741 	for (i = 0; i < KVM_NR_BUSES; i++) {
742 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
743 
744 		if (bus)
745 			kvm_io_bus_destroy(bus);
746 		kvm->buses[i] = NULL;
747 	}
748 	kvm_coalesced_mmio_free(kvm);
749 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
750 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
751 #else
752 	kvm_arch_flush_shadow_all(kvm);
753 #endif
754 	kvm_arch_destroy_vm(kvm);
755 	kvm_destroy_devices(kvm);
756 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
757 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
758 	cleanup_srcu_struct(&kvm->irq_srcu);
759 	cleanup_srcu_struct(&kvm->srcu);
760 	kvm_arch_free_vm(kvm);
761 	preempt_notifier_dec();
762 	hardware_disable_all();
763 	mmdrop(mm);
764 }
765 
766 void kvm_get_kvm(struct kvm *kvm)
767 {
768 	refcount_inc(&kvm->users_count);
769 }
770 EXPORT_SYMBOL_GPL(kvm_get_kvm);
771 
772 void kvm_put_kvm(struct kvm *kvm)
773 {
774 	if (refcount_dec_and_test(&kvm->users_count))
775 		kvm_destroy_vm(kvm);
776 }
777 EXPORT_SYMBOL_GPL(kvm_put_kvm);
778 
779 
780 static int kvm_vm_release(struct inode *inode, struct file *filp)
781 {
782 	struct kvm *kvm = filp->private_data;
783 
784 	kvm_irqfd_release(kvm);
785 
786 	kvm_put_kvm(kvm);
787 	return 0;
788 }
789 
790 /*
791  * Allocation size is twice as large as the actual dirty bitmap size.
792  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
793  */
794 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
795 {
796 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
797 
798 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
799 	if (!memslot->dirty_bitmap)
800 		return -ENOMEM;
801 
802 	return 0;
803 }
804 
805 /*
806  * Insert memslot and re-sort memslots based on their GFN,
807  * so binary search could be used to lookup GFN.
808  * Sorting algorithm takes advantage of having initially
809  * sorted array and known changed memslot position.
810  */
811 static void update_memslots(struct kvm_memslots *slots,
812 			    struct kvm_memory_slot *new,
813 			    enum kvm_mr_change change)
814 {
815 	int id = new->id;
816 	int i = slots->id_to_index[id];
817 	struct kvm_memory_slot *mslots = slots->memslots;
818 
819 	WARN_ON(mslots[i].id != id);
820 	switch (change) {
821 	case KVM_MR_CREATE:
822 		slots->used_slots++;
823 		WARN_ON(mslots[i].npages || !new->npages);
824 		break;
825 	case KVM_MR_DELETE:
826 		slots->used_slots--;
827 		WARN_ON(new->npages || !mslots[i].npages);
828 		break;
829 	default:
830 		break;
831 	}
832 
833 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
834 	       new->base_gfn <= mslots[i + 1].base_gfn) {
835 		if (!mslots[i + 1].npages)
836 			break;
837 		mslots[i] = mslots[i + 1];
838 		slots->id_to_index[mslots[i].id] = i;
839 		i++;
840 	}
841 
842 	/*
843 	 * The ">=" is needed when creating a slot with base_gfn == 0,
844 	 * so that it moves before all those with base_gfn == npages == 0.
845 	 *
846 	 * On the other hand, if new->npages is zero, the above loop has
847 	 * already left i pointing to the beginning of the empty part of
848 	 * mslots, and the ">=" would move the hole backwards in this
849 	 * case---which is wrong.  So skip the loop when deleting a slot.
850 	 */
851 	if (new->npages) {
852 		while (i > 0 &&
853 		       new->base_gfn >= mslots[i - 1].base_gfn) {
854 			mslots[i] = mslots[i - 1];
855 			slots->id_to_index[mslots[i].id] = i;
856 			i--;
857 		}
858 	} else
859 		WARN_ON_ONCE(i != slots->used_slots);
860 
861 	mslots[i] = *new;
862 	slots->id_to_index[mslots[i].id] = i;
863 }
864 
865 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
866 {
867 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
868 
869 #ifdef __KVM_HAVE_READONLY_MEM
870 	valid_flags |= KVM_MEM_READONLY;
871 #endif
872 
873 	if (mem->flags & ~valid_flags)
874 		return -EINVAL;
875 
876 	return 0;
877 }
878 
879 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
880 		int as_id, struct kvm_memslots *slots)
881 {
882 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
883 	u64 gen = old_memslots->generation;
884 
885 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
886 	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
887 
888 	rcu_assign_pointer(kvm->memslots[as_id], slots);
889 	synchronize_srcu_expedited(&kvm->srcu);
890 
891 	/*
892 	 * Increment the new memslot generation a second time, dropping the
893 	 * update in-progress flag and incrementing then generation based on
894 	 * the number of address spaces.  This provides a unique and easily
895 	 * identifiable generation number while the memslots are in flux.
896 	 */
897 	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
898 
899 	/*
900 	 * Generations must be unique even across address spaces.  We do not need
901 	 * a global counter for that, instead the generation space is evenly split
902 	 * across address spaces.  For example, with two address spaces, address
903 	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
904 	 * use generations 1, 3, 5, ...
905 	 */
906 	gen += KVM_ADDRESS_SPACE_NUM;
907 
908 	kvm_arch_memslots_updated(kvm, gen);
909 
910 	slots->generation = gen;
911 
912 	return old_memslots;
913 }
914 
915 /*
916  * Allocate some memory and give it an address in the guest physical address
917  * space.
918  *
919  * Discontiguous memory is allowed, mostly for framebuffers.
920  *
921  * Must be called holding kvm->slots_lock for write.
922  */
923 int __kvm_set_memory_region(struct kvm *kvm,
924 			    const struct kvm_userspace_memory_region *mem)
925 {
926 	int r;
927 	gfn_t base_gfn;
928 	unsigned long npages;
929 	struct kvm_memory_slot *slot;
930 	struct kvm_memory_slot old, new;
931 	struct kvm_memslots *slots = NULL, *old_memslots;
932 	int as_id, id;
933 	enum kvm_mr_change change;
934 
935 	r = check_memory_region_flags(mem);
936 	if (r)
937 		goto out;
938 
939 	r = -EINVAL;
940 	as_id = mem->slot >> 16;
941 	id = (u16)mem->slot;
942 
943 	/* General sanity checks */
944 	if (mem->memory_size & (PAGE_SIZE - 1))
945 		goto out;
946 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
947 		goto out;
948 	/* We can read the guest memory with __xxx_user() later on. */
949 	if ((id < KVM_USER_MEM_SLOTS) &&
950 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
951 	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
952 			mem->memory_size)))
953 		goto out;
954 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
955 		goto out;
956 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
957 		goto out;
958 
959 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
960 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
961 	npages = mem->memory_size >> PAGE_SHIFT;
962 
963 	if (npages > KVM_MEM_MAX_NR_PAGES)
964 		goto out;
965 
966 	new = old = *slot;
967 
968 	new.id = id;
969 	new.base_gfn = base_gfn;
970 	new.npages = npages;
971 	new.flags = mem->flags;
972 
973 	if (npages) {
974 		if (!old.npages)
975 			change = KVM_MR_CREATE;
976 		else { /* Modify an existing slot. */
977 			if ((mem->userspace_addr != old.userspace_addr) ||
978 			    (npages != old.npages) ||
979 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
980 				goto out;
981 
982 			if (base_gfn != old.base_gfn)
983 				change = KVM_MR_MOVE;
984 			else if (new.flags != old.flags)
985 				change = KVM_MR_FLAGS_ONLY;
986 			else { /* Nothing to change. */
987 				r = 0;
988 				goto out;
989 			}
990 		}
991 	} else {
992 		if (!old.npages)
993 			goto out;
994 
995 		change = KVM_MR_DELETE;
996 		new.base_gfn = 0;
997 		new.flags = 0;
998 	}
999 
1000 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1001 		/* Check for overlaps */
1002 		r = -EEXIST;
1003 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1004 			if (slot->id == id)
1005 				continue;
1006 			if (!((base_gfn + npages <= slot->base_gfn) ||
1007 			      (base_gfn >= slot->base_gfn + slot->npages)))
1008 				goto out;
1009 		}
1010 	}
1011 
1012 	/* Free page dirty bitmap if unneeded */
1013 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1014 		new.dirty_bitmap = NULL;
1015 
1016 	r = -ENOMEM;
1017 	if (change == KVM_MR_CREATE) {
1018 		new.userspace_addr = mem->userspace_addr;
1019 
1020 		if (kvm_arch_create_memslot(kvm, &new, npages))
1021 			goto out_free;
1022 	}
1023 
1024 	/* Allocate page dirty bitmap if needed */
1025 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1026 		if (kvm_create_dirty_bitmap(&new) < 0)
1027 			goto out_free;
1028 	}
1029 
1030 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1031 	if (!slots)
1032 		goto out_free;
1033 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1034 
1035 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1036 		slot = id_to_memslot(slots, id);
1037 		slot->flags |= KVM_MEMSLOT_INVALID;
1038 
1039 		old_memslots = install_new_memslots(kvm, as_id, slots);
1040 
1041 		/* From this point no new shadow pages pointing to a deleted,
1042 		 * or moved, memslot will be created.
1043 		 *
1044 		 * validation of sp->gfn happens in:
1045 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1046 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1047 		 */
1048 		kvm_arch_flush_shadow_memslot(kvm, slot);
1049 
1050 		/*
1051 		 * We can re-use the old_memslots from above, the only difference
1052 		 * from the currently installed memslots is the invalid flag.  This
1053 		 * will get overwritten by update_memslots anyway.
1054 		 */
1055 		slots = old_memslots;
1056 	}
1057 
1058 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1059 	if (r)
1060 		goto out_slots;
1061 
1062 	/* actual memory is freed via old in kvm_free_memslot below */
1063 	if (change == KVM_MR_DELETE) {
1064 		new.dirty_bitmap = NULL;
1065 		memset(&new.arch, 0, sizeof(new.arch));
1066 	}
1067 
1068 	update_memslots(slots, &new, change);
1069 	old_memslots = install_new_memslots(kvm, as_id, slots);
1070 
1071 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1072 
1073 	kvm_free_memslot(kvm, &old, &new);
1074 	kvfree(old_memslots);
1075 	return 0;
1076 
1077 out_slots:
1078 	kvfree(slots);
1079 out_free:
1080 	kvm_free_memslot(kvm, &new, &old);
1081 out:
1082 	return r;
1083 }
1084 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1085 
1086 int kvm_set_memory_region(struct kvm *kvm,
1087 			  const struct kvm_userspace_memory_region *mem)
1088 {
1089 	int r;
1090 
1091 	mutex_lock(&kvm->slots_lock);
1092 	r = __kvm_set_memory_region(kvm, mem);
1093 	mutex_unlock(&kvm->slots_lock);
1094 	return r;
1095 }
1096 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1097 
1098 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1099 					  struct kvm_userspace_memory_region *mem)
1100 {
1101 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1102 		return -EINVAL;
1103 
1104 	return kvm_set_memory_region(kvm, mem);
1105 }
1106 
1107 int kvm_get_dirty_log(struct kvm *kvm,
1108 			struct kvm_dirty_log *log, int *is_dirty)
1109 {
1110 	struct kvm_memslots *slots;
1111 	struct kvm_memory_slot *memslot;
1112 	int i, as_id, id;
1113 	unsigned long n;
1114 	unsigned long any = 0;
1115 
1116 	as_id = log->slot >> 16;
1117 	id = (u16)log->slot;
1118 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1119 		return -EINVAL;
1120 
1121 	slots = __kvm_memslots(kvm, as_id);
1122 	memslot = id_to_memslot(slots, id);
1123 	if (!memslot->dirty_bitmap)
1124 		return -ENOENT;
1125 
1126 	n = kvm_dirty_bitmap_bytes(memslot);
1127 
1128 	for (i = 0; !any && i < n/sizeof(long); ++i)
1129 		any = memslot->dirty_bitmap[i];
1130 
1131 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1132 		return -EFAULT;
1133 
1134 	if (any)
1135 		*is_dirty = 1;
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1139 
1140 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1141 /**
1142  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1143  *	and reenable dirty page tracking for the corresponding pages.
1144  * @kvm:	pointer to kvm instance
1145  * @log:	slot id and address to which we copy the log
1146  * @flush:	true if TLB flush is needed by caller
1147  *
1148  * We need to keep it in mind that VCPU threads can write to the bitmap
1149  * concurrently. So, to avoid losing track of dirty pages we keep the
1150  * following order:
1151  *
1152  *    1. Take a snapshot of the bit and clear it if needed.
1153  *    2. Write protect the corresponding page.
1154  *    3. Copy the snapshot to the userspace.
1155  *    4. Upon return caller flushes TLB's if needed.
1156  *
1157  * Between 2 and 4, the guest may write to the page using the remaining TLB
1158  * entry.  This is not a problem because the page is reported dirty using
1159  * the snapshot taken before and step 4 ensures that writes done after
1160  * exiting to userspace will be logged for the next call.
1161  *
1162  */
1163 int kvm_get_dirty_log_protect(struct kvm *kvm,
1164 			struct kvm_dirty_log *log, bool *flush)
1165 {
1166 	struct kvm_memslots *slots;
1167 	struct kvm_memory_slot *memslot;
1168 	int i, as_id, id;
1169 	unsigned long n;
1170 	unsigned long *dirty_bitmap;
1171 	unsigned long *dirty_bitmap_buffer;
1172 
1173 	as_id = log->slot >> 16;
1174 	id = (u16)log->slot;
1175 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1176 		return -EINVAL;
1177 
1178 	slots = __kvm_memslots(kvm, as_id);
1179 	memslot = id_to_memslot(slots, id);
1180 
1181 	dirty_bitmap = memslot->dirty_bitmap;
1182 	if (!dirty_bitmap)
1183 		return -ENOENT;
1184 
1185 	n = kvm_dirty_bitmap_bytes(memslot);
1186 	*flush = false;
1187 	if (kvm->manual_dirty_log_protect) {
1188 		/*
1189 		 * Unlike kvm_get_dirty_log, we always return false in *flush,
1190 		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1191 		 * is some code duplication between this function and
1192 		 * kvm_get_dirty_log, but hopefully all architecture
1193 		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1194 		 * can be eliminated.
1195 		 */
1196 		dirty_bitmap_buffer = dirty_bitmap;
1197 	} else {
1198 		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1199 		memset(dirty_bitmap_buffer, 0, n);
1200 
1201 		spin_lock(&kvm->mmu_lock);
1202 		for (i = 0; i < n / sizeof(long); i++) {
1203 			unsigned long mask;
1204 			gfn_t offset;
1205 
1206 			if (!dirty_bitmap[i])
1207 				continue;
1208 
1209 			*flush = true;
1210 			mask = xchg(&dirty_bitmap[i], 0);
1211 			dirty_bitmap_buffer[i] = mask;
1212 
1213 			offset = i * BITS_PER_LONG;
1214 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1215 								offset, mask);
1216 		}
1217 		spin_unlock(&kvm->mmu_lock);
1218 	}
1219 
1220 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1221 		return -EFAULT;
1222 	return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1225 
1226 /**
1227  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1228  *	and reenable dirty page tracking for the corresponding pages.
1229  * @kvm:	pointer to kvm instance
1230  * @log:	slot id and address from which to fetch the bitmap of dirty pages
1231  * @flush:	true if TLB flush is needed by caller
1232  */
1233 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1234 				struct kvm_clear_dirty_log *log, bool *flush)
1235 {
1236 	struct kvm_memslots *slots;
1237 	struct kvm_memory_slot *memslot;
1238 	int as_id, id;
1239 	gfn_t offset;
1240 	unsigned long i, n;
1241 	unsigned long *dirty_bitmap;
1242 	unsigned long *dirty_bitmap_buffer;
1243 
1244 	as_id = log->slot >> 16;
1245 	id = (u16)log->slot;
1246 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1247 		return -EINVAL;
1248 
1249 	if (log->first_page & 63)
1250 		return -EINVAL;
1251 
1252 	slots = __kvm_memslots(kvm, as_id);
1253 	memslot = id_to_memslot(slots, id);
1254 
1255 	dirty_bitmap = memslot->dirty_bitmap;
1256 	if (!dirty_bitmap)
1257 		return -ENOENT;
1258 
1259 	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1260 
1261 	if (log->first_page > memslot->npages ||
1262 	    log->num_pages > memslot->npages - log->first_page ||
1263 	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1264 	    return -EINVAL;
1265 
1266 	*flush = false;
1267 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1268 	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1269 		return -EFAULT;
1270 
1271 	spin_lock(&kvm->mmu_lock);
1272 	for (offset = log->first_page, i = offset / BITS_PER_LONG,
1273 		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1274 	     i++, offset += BITS_PER_LONG) {
1275 		unsigned long mask = *dirty_bitmap_buffer++;
1276 		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1277 		if (!mask)
1278 			continue;
1279 
1280 		mask &= atomic_long_fetch_andnot(mask, p);
1281 
1282 		/*
1283 		 * mask contains the bits that really have been cleared.  This
1284 		 * never includes any bits beyond the length of the memslot (if
1285 		 * the length is not aligned to 64 pages), therefore it is not
1286 		 * a problem if userspace sets them in log->dirty_bitmap.
1287 		*/
1288 		if (mask) {
1289 			*flush = true;
1290 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1291 								offset, mask);
1292 		}
1293 	}
1294 	spin_unlock(&kvm->mmu_lock);
1295 
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1299 #endif
1300 
1301 bool kvm_largepages_enabled(void)
1302 {
1303 	return largepages_enabled;
1304 }
1305 
1306 void kvm_disable_largepages(void)
1307 {
1308 	largepages_enabled = false;
1309 }
1310 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1311 
1312 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1313 {
1314 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1315 }
1316 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1317 
1318 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1319 {
1320 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1321 }
1322 
1323 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1324 {
1325 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1326 
1327 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1328 	      memslot->flags & KVM_MEMSLOT_INVALID)
1329 		return false;
1330 
1331 	return true;
1332 }
1333 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1334 
1335 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1336 {
1337 	struct vm_area_struct *vma;
1338 	unsigned long addr, size;
1339 
1340 	size = PAGE_SIZE;
1341 
1342 	addr = gfn_to_hva(kvm, gfn);
1343 	if (kvm_is_error_hva(addr))
1344 		return PAGE_SIZE;
1345 
1346 	down_read(&current->mm->mmap_sem);
1347 	vma = find_vma(current->mm, addr);
1348 	if (!vma)
1349 		goto out;
1350 
1351 	size = vma_kernel_pagesize(vma);
1352 
1353 out:
1354 	up_read(&current->mm->mmap_sem);
1355 
1356 	return size;
1357 }
1358 
1359 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1360 {
1361 	return slot->flags & KVM_MEM_READONLY;
1362 }
1363 
1364 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1365 				       gfn_t *nr_pages, bool write)
1366 {
1367 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1368 		return KVM_HVA_ERR_BAD;
1369 
1370 	if (memslot_is_readonly(slot) && write)
1371 		return KVM_HVA_ERR_RO_BAD;
1372 
1373 	if (nr_pages)
1374 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1375 
1376 	return __gfn_to_hva_memslot(slot, gfn);
1377 }
1378 
1379 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1380 				     gfn_t *nr_pages)
1381 {
1382 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1383 }
1384 
1385 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1386 					gfn_t gfn)
1387 {
1388 	return gfn_to_hva_many(slot, gfn, NULL);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1391 
1392 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1393 {
1394 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1395 }
1396 EXPORT_SYMBOL_GPL(gfn_to_hva);
1397 
1398 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1399 {
1400 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1401 }
1402 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1403 
1404 /*
1405  * Return the hva of a @gfn and the R/W attribute if possible.
1406  *
1407  * @slot: the kvm_memory_slot which contains @gfn
1408  * @gfn: the gfn to be translated
1409  * @writable: used to return the read/write attribute of the @slot if the hva
1410  * is valid and @writable is not NULL
1411  */
1412 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1413 				      gfn_t gfn, bool *writable)
1414 {
1415 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1416 
1417 	if (!kvm_is_error_hva(hva) && writable)
1418 		*writable = !memslot_is_readonly(slot);
1419 
1420 	return hva;
1421 }
1422 
1423 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1424 {
1425 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1426 
1427 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1428 }
1429 
1430 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1431 {
1432 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1433 
1434 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1435 }
1436 
1437 static inline int check_user_page_hwpoison(unsigned long addr)
1438 {
1439 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1440 
1441 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1442 	return rc == -EHWPOISON;
1443 }
1444 
1445 /*
1446  * The fast path to get the writable pfn which will be stored in @pfn,
1447  * true indicates success, otherwise false is returned.  It's also the
1448  * only part that runs if we can are in atomic context.
1449  */
1450 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1451 			    bool *writable, kvm_pfn_t *pfn)
1452 {
1453 	struct page *page[1];
1454 	int npages;
1455 
1456 	/*
1457 	 * Fast pin a writable pfn only if it is a write fault request
1458 	 * or the caller allows to map a writable pfn for a read fault
1459 	 * request.
1460 	 */
1461 	if (!(write_fault || writable))
1462 		return false;
1463 
1464 	npages = __get_user_pages_fast(addr, 1, 1, page);
1465 	if (npages == 1) {
1466 		*pfn = page_to_pfn(page[0]);
1467 
1468 		if (writable)
1469 			*writable = true;
1470 		return true;
1471 	}
1472 
1473 	return false;
1474 }
1475 
1476 /*
1477  * The slow path to get the pfn of the specified host virtual address,
1478  * 1 indicates success, -errno is returned if error is detected.
1479  */
1480 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1481 			   bool *writable, kvm_pfn_t *pfn)
1482 {
1483 	unsigned int flags = FOLL_HWPOISON;
1484 	struct page *page;
1485 	int npages = 0;
1486 
1487 	might_sleep();
1488 
1489 	if (writable)
1490 		*writable = write_fault;
1491 
1492 	if (write_fault)
1493 		flags |= FOLL_WRITE;
1494 	if (async)
1495 		flags |= FOLL_NOWAIT;
1496 
1497 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1498 	if (npages != 1)
1499 		return npages;
1500 
1501 	/* map read fault as writable if possible */
1502 	if (unlikely(!write_fault) && writable) {
1503 		struct page *wpage;
1504 
1505 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1506 			*writable = true;
1507 			put_page(page);
1508 			page = wpage;
1509 		}
1510 	}
1511 	*pfn = page_to_pfn(page);
1512 	return npages;
1513 }
1514 
1515 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1516 {
1517 	if (unlikely(!(vma->vm_flags & VM_READ)))
1518 		return false;
1519 
1520 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1521 		return false;
1522 
1523 	return true;
1524 }
1525 
1526 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1527 			       unsigned long addr, bool *async,
1528 			       bool write_fault, bool *writable,
1529 			       kvm_pfn_t *p_pfn)
1530 {
1531 	unsigned long pfn;
1532 	int r;
1533 
1534 	r = follow_pfn(vma, addr, &pfn);
1535 	if (r) {
1536 		/*
1537 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1538 		 * not call the fault handler, so do it here.
1539 		 */
1540 		bool unlocked = false;
1541 		r = fixup_user_fault(current, current->mm, addr,
1542 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1543 				     &unlocked);
1544 		if (unlocked)
1545 			return -EAGAIN;
1546 		if (r)
1547 			return r;
1548 
1549 		r = follow_pfn(vma, addr, &pfn);
1550 		if (r)
1551 			return r;
1552 
1553 	}
1554 
1555 	if (writable)
1556 		*writable = true;
1557 
1558 	/*
1559 	 * Get a reference here because callers of *hva_to_pfn* and
1560 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1561 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1562 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1563 	 * simply do nothing for reserved pfns.
1564 	 *
1565 	 * Whoever called remap_pfn_range is also going to call e.g.
1566 	 * unmap_mapping_range before the underlying pages are freed,
1567 	 * causing a call to our MMU notifier.
1568 	 */
1569 	kvm_get_pfn(pfn);
1570 
1571 	*p_pfn = pfn;
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Pin guest page in memory and return its pfn.
1577  * @addr: host virtual address which maps memory to the guest
1578  * @atomic: whether this function can sleep
1579  * @async: whether this function need to wait IO complete if the
1580  *         host page is not in the memory
1581  * @write_fault: whether we should get a writable host page
1582  * @writable: whether it allows to map a writable host page for !@write_fault
1583  *
1584  * The function will map a writable host page for these two cases:
1585  * 1): @write_fault = true
1586  * 2): @write_fault = false && @writable, @writable will tell the caller
1587  *     whether the mapping is writable.
1588  */
1589 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1590 			bool write_fault, bool *writable)
1591 {
1592 	struct vm_area_struct *vma;
1593 	kvm_pfn_t pfn = 0;
1594 	int npages, r;
1595 
1596 	/* we can do it either atomically or asynchronously, not both */
1597 	BUG_ON(atomic && async);
1598 
1599 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1600 		return pfn;
1601 
1602 	if (atomic)
1603 		return KVM_PFN_ERR_FAULT;
1604 
1605 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1606 	if (npages == 1)
1607 		return pfn;
1608 
1609 	down_read(&current->mm->mmap_sem);
1610 	if (npages == -EHWPOISON ||
1611 	      (!async && check_user_page_hwpoison(addr))) {
1612 		pfn = KVM_PFN_ERR_HWPOISON;
1613 		goto exit;
1614 	}
1615 
1616 retry:
1617 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1618 
1619 	if (vma == NULL)
1620 		pfn = KVM_PFN_ERR_FAULT;
1621 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1622 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1623 		if (r == -EAGAIN)
1624 			goto retry;
1625 		if (r < 0)
1626 			pfn = KVM_PFN_ERR_FAULT;
1627 	} else {
1628 		if (async && vma_is_valid(vma, write_fault))
1629 			*async = true;
1630 		pfn = KVM_PFN_ERR_FAULT;
1631 	}
1632 exit:
1633 	up_read(&current->mm->mmap_sem);
1634 	return pfn;
1635 }
1636 
1637 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1638 			       bool atomic, bool *async, bool write_fault,
1639 			       bool *writable)
1640 {
1641 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1642 
1643 	if (addr == KVM_HVA_ERR_RO_BAD) {
1644 		if (writable)
1645 			*writable = false;
1646 		return KVM_PFN_ERR_RO_FAULT;
1647 	}
1648 
1649 	if (kvm_is_error_hva(addr)) {
1650 		if (writable)
1651 			*writable = false;
1652 		return KVM_PFN_NOSLOT;
1653 	}
1654 
1655 	/* Do not map writable pfn in the readonly memslot. */
1656 	if (writable && memslot_is_readonly(slot)) {
1657 		*writable = false;
1658 		writable = NULL;
1659 	}
1660 
1661 	return hva_to_pfn(addr, atomic, async, write_fault,
1662 			  writable);
1663 }
1664 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1665 
1666 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1667 		      bool *writable)
1668 {
1669 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1670 				    write_fault, writable);
1671 }
1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1673 
1674 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1675 {
1676 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1677 }
1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1679 
1680 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1681 {
1682 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1683 }
1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1685 
1686 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1687 {
1688 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1689 }
1690 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1691 
1692 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1693 {
1694 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1695 }
1696 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1697 
1698 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1699 {
1700 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1701 }
1702 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1703 
1704 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1705 {
1706 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1707 }
1708 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1709 
1710 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1711 			    struct page **pages, int nr_pages)
1712 {
1713 	unsigned long addr;
1714 	gfn_t entry = 0;
1715 
1716 	addr = gfn_to_hva_many(slot, gfn, &entry);
1717 	if (kvm_is_error_hva(addr))
1718 		return -1;
1719 
1720 	if (entry < nr_pages)
1721 		return 0;
1722 
1723 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1724 }
1725 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1726 
1727 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1728 {
1729 	if (is_error_noslot_pfn(pfn))
1730 		return KVM_ERR_PTR_BAD_PAGE;
1731 
1732 	if (kvm_is_reserved_pfn(pfn)) {
1733 		WARN_ON(1);
1734 		return KVM_ERR_PTR_BAD_PAGE;
1735 	}
1736 
1737 	return pfn_to_page(pfn);
1738 }
1739 
1740 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1741 {
1742 	kvm_pfn_t pfn;
1743 
1744 	pfn = gfn_to_pfn(kvm, gfn);
1745 
1746 	return kvm_pfn_to_page(pfn);
1747 }
1748 EXPORT_SYMBOL_GPL(gfn_to_page);
1749 
1750 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1751 			 struct kvm_host_map *map)
1752 {
1753 	kvm_pfn_t pfn;
1754 	void *hva = NULL;
1755 	struct page *page = KVM_UNMAPPED_PAGE;
1756 
1757 	if (!map)
1758 		return -EINVAL;
1759 
1760 	pfn = gfn_to_pfn_memslot(slot, gfn);
1761 	if (is_error_noslot_pfn(pfn))
1762 		return -EINVAL;
1763 
1764 	if (pfn_valid(pfn)) {
1765 		page = pfn_to_page(pfn);
1766 		hva = kmap(page);
1767 #ifdef CONFIG_HAS_IOMEM
1768 	} else {
1769 		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1770 #endif
1771 	}
1772 
1773 	if (!hva)
1774 		return -EFAULT;
1775 
1776 	map->page = page;
1777 	map->hva = hva;
1778 	map->pfn = pfn;
1779 	map->gfn = gfn;
1780 
1781 	return 0;
1782 }
1783 
1784 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1785 {
1786 	return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1787 }
1788 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1789 
1790 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1791 		    bool dirty)
1792 {
1793 	if (!map)
1794 		return;
1795 
1796 	if (!map->hva)
1797 		return;
1798 
1799 	if (map->page != KVM_UNMAPPED_PAGE)
1800 		kunmap(map->page);
1801 #ifdef CONFIG_HAS_IOMEM
1802 	else
1803 		memunmap(map->hva);
1804 #endif
1805 
1806 	if (dirty) {
1807 		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1808 		kvm_release_pfn_dirty(map->pfn);
1809 	} else {
1810 		kvm_release_pfn_clean(map->pfn);
1811 	}
1812 
1813 	map->hva = NULL;
1814 	map->page = NULL;
1815 }
1816 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1817 
1818 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1819 {
1820 	kvm_pfn_t pfn;
1821 
1822 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1823 
1824 	return kvm_pfn_to_page(pfn);
1825 }
1826 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1827 
1828 void kvm_release_page_clean(struct page *page)
1829 {
1830 	WARN_ON(is_error_page(page));
1831 
1832 	kvm_release_pfn_clean(page_to_pfn(page));
1833 }
1834 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1835 
1836 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1837 {
1838 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1839 		put_page(pfn_to_page(pfn));
1840 }
1841 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1842 
1843 void kvm_release_page_dirty(struct page *page)
1844 {
1845 	WARN_ON(is_error_page(page));
1846 
1847 	kvm_release_pfn_dirty(page_to_pfn(page));
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1850 
1851 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1852 {
1853 	kvm_set_pfn_dirty(pfn);
1854 	kvm_release_pfn_clean(pfn);
1855 }
1856 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1857 
1858 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1859 {
1860 	if (!kvm_is_reserved_pfn(pfn)) {
1861 		struct page *page = pfn_to_page(pfn);
1862 
1863 		SetPageDirty(page);
1864 	}
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1867 
1868 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1869 {
1870 	if (!kvm_is_reserved_pfn(pfn))
1871 		mark_page_accessed(pfn_to_page(pfn));
1872 }
1873 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1874 
1875 void kvm_get_pfn(kvm_pfn_t pfn)
1876 {
1877 	if (!kvm_is_reserved_pfn(pfn))
1878 		get_page(pfn_to_page(pfn));
1879 }
1880 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1881 
1882 static int next_segment(unsigned long len, int offset)
1883 {
1884 	if (len > PAGE_SIZE - offset)
1885 		return PAGE_SIZE - offset;
1886 	else
1887 		return len;
1888 }
1889 
1890 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1891 				 void *data, int offset, int len)
1892 {
1893 	int r;
1894 	unsigned long addr;
1895 
1896 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1897 	if (kvm_is_error_hva(addr))
1898 		return -EFAULT;
1899 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1900 	if (r)
1901 		return -EFAULT;
1902 	return 0;
1903 }
1904 
1905 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1906 			int len)
1907 {
1908 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1909 
1910 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1913 
1914 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1915 			     int offset, int len)
1916 {
1917 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1918 
1919 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1920 }
1921 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1922 
1923 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1924 {
1925 	gfn_t gfn = gpa >> PAGE_SHIFT;
1926 	int seg;
1927 	int offset = offset_in_page(gpa);
1928 	int ret;
1929 
1930 	while ((seg = next_segment(len, offset)) != 0) {
1931 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1932 		if (ret < 0)
1933 			return ret;
1934 		offset = 0;
1935 		len -= seg;
1936 		data += seg;
1937 		++gfn;
1938 	}
1939 	return 0;
1940 }
1941 EXPORT_SYMBOL_GPL(kvm_read_guest);
1942 
1943 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1944 {
1945 	gfn_t gfn = gpa >> PAGE_SHIFT;
1946 	int seg;
1947 	int offset = offset_in_page(gpa);
1948 	int ret;
1949 
1950 	while ((seg = next_segment(len, offset)) != 0) {
1951 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1952 		if (ret < 0)
1953 			return ret;
1954 		offset = 0;
1955 		len -= seg;
1956 		data += seg;
1957 		++gfn;
1958 	}
1959 	return 0;
1960 }
1961 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1962 
1963 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1964 			           void *data, int offset, unsigned long len)
1965 {
1966 	int r;
1967 	unsigned long addr;
1968 
1969 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1970 	if (kvm_is_error_hva(addr))
1971 		return -EFAULT;
1972 	pagefault_disable();
1973 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1974 	pagefault_enable();
1975 	if (r)
1976 		return -EFAULT;
1977 	return 0;
1978 }
1979 
1980 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1981 			  unsigned long len)
1982 {
1983 	gfn_t gfn = gpa >> PAGE_SHIFT;
1984 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1985 	int offset = offset_in_page(gpa);
1986 
1987 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1988 }
1989 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1990 
1991 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1992 			       void *data, unsigned long len)
1993 {
1994 	gfn_t gfn = gpa >> PAGE_SHIFT;
1995 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1996 	int offset = offset_in_page(gpa);
1997 
1998 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1999 }
2000 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2001 
2002 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2003 			          const void *data, int offset, int len)
2004 {
2005 	int r;
2006 	unsigned long addr;
2007 
2008 	addr = gfn_to_hva_memslot(memslot, gfn);
2009 	if (kvm_is_error_hva(addr))
2010 		return -EFAULT;
2011 	r = __copy_to_user((void __user *)addr + offset, data, len);
2012 	if (r)
2013 		return -EFAULT;
2014 	mark_page_dirty_in_slot(memslot, gfn);
2015 	return 0;
2016 }
2017 
2018 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2019 			 const void *data, int offset, int len)
2020 {
2021 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2022 
2023 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2024 }
2025 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2026 
2027 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2028 			      const void *data, int offset, int len)
2029 {
2030 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2031 
2032 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
2033 }
2034 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2035 
2036 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2037 		    unsigned long len)
2038 {
2039 	gfn_t gfn = gpa >> PAGE_SHIFT;
2040 	int seg;
2041 	int offset = offset_in_page(gpa);
2042 	int ret;
2043 
2044 	while ((seg = next_segment(len, offset)) != 0) {
2045 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2046 		if (ret < 0)
2047 			return ret;
2048 		offset = 0;
2049 		len -= seg;
2050 		data += seg;
2051 		++gfn;
2052 	}
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_write_guest);
2056 
2057 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2058 		         unsigned long len)
2059 {
2060 	gfn_t gfn = gpa >> PAGE_SHIFT;
2061 	int seg;
2062 	int offset = offset_in_page(gpa);
2063 	int ret;
2064 
2065 	while ((seg = next_segment(len, offset)) != 0) {
2066 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2067 		if (ret < 0)
2068 			return ret;
2069 		offset = 0;
2070 		len -= seg;
2071 		data += seg;
2072 		++gfn;
2073 	}
2074 	return 0;
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2077 
2078 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2079 				       struct gfn_to_hva_cache *ghc,
2080 				       gpa_t gpa, unsigned long len)
2081 {
2082 	int offset = offset_in_page(gpa);
2083 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
2084 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2085 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2086 	gfn_t nr_pages_avail;
2087 	int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2088 
2089 	ghc->gpa = gpa;
2090 	ghc->generation = slots->generation;
2091 	ghc->len = len;
2092 	ghc->hva = KVM_HVA_ERR_BAD;
2093 
2094 	/*
2095 	 * If the requested region crosses two memslots, we still
2096 	 * verify that the entire region is valid here.
2097 	 */
2098 	while (!r && start_gfn <= end_gfn) {
2099 		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2100 		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2101 					   &nr_pages_avail);
2102 		if (kvm_is_error_hva(ghc->hva))
2103 			r = -EFAULT;
2104 		start_gfn += nr_pages_avail;
2105 	}
2106 
2107 	/* Use the slow path for cross page reads and writes. */
2108 	if (!r && nr_pages_needed == 1)
2109 		ghc->hva += offset;
2110 	else
2111 		ghc->memslot = NULL;
2112 
2113 	return r;
2114 }
2115 
2116 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2117 			      gpa_t gpa, unsigned long len)
2118 {
2119 	struct kvm_memslots *slots = kvm_memslots(kvm);
2120 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2123 
2124 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2125 				  void *data, unsigned int offset,
2126 				  unsigned long len)
2127 {
2128 	struct kvm_memslots *slots = kvm_memslots(kvm);
2129 	int r;
2130 	gpa_t gpa = ghc->gpa + offset;
2131 
2132 	BUG_ON(len + offset > ghc->len);
2133 
2134 	if (slots->generation != ghc->generation)
2135 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2136 
2137 	if (unlikely(!ghc->memslot))
2138 		return kvm_write_guest(kvm, gpa, data, len);
2139 
2140 	if (kvm_is_error_hva(ghc->hva))
2141 		return -EFAULT;
2142 
2143 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2144 	if (r)
2145 		return -EFAULT;
2146 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2147 
2148 	return 0;
2149 }
2150 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2151 
2152 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2153 			   void *data, unsigned long len)
2154 {
2155 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2156 }
2157 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2158 
2159 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2160 			   void *data, unsigned long len)
2161 {
2162 	struct kvm_memslots *slots = kvm_memslots(kvm);
2163 	int r;
2164 
2165 	BUG_ON(len > ghc->len);
2166 
2167 	if (slots->generation != ghc->generation)
2168 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2169 
2170 	if (unlikely(!ghc->memslot))
2171 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2172 
2173 	if (kvm_is_error_hva(ghc->hva))
2174 		return -EFAULT;
2175 
2176 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2177 	if (r)
2178 		return -EFAULT;
2179 
2180 	return 0;
2181 }
2182 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2183 
2184 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2185 {
2186 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2187 
2188 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2189 }
2190 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2191 
2192 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2193 {
2194 	gfn_t gfn = gpa >> PAGE_SHIFT;
2195 	int seg;
2196 	int offset = offset_in_page(gpa);
2197 	int ret;
2198 
2199 	while ((seg = next_segment(len, offset)) != 0) {
2200 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2201 		if (ret < 0)
2202 			return ret;
2203 		offset = 0;
2204 		len -= seg;
2205 		++gfn;
2206 	}
2207 	return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2210 
2211 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2212 				    gfn_t gfn)
2213 {
2214 	if (memslot && memslot->dirty_bitmap) {
2215 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2216 
2217 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2218 	}
2219 }
2220 
2221 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2222 {
2223 	struct kvm_memory_slot *memslot;
2224 
2225 	memslot = gfn_to_memslot(kvm, gfn);
2226 	mark_page_dirty_in_slot(memslot, gfn);
2227 }
2228 EXPORT_SYMBOL_GPL(mark_page_dirty);
2229 
2230 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2231 {
2232 	struct kvm_memory_slot *memslot;
2233 
2234 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2235 	mark_page_dirty_in_slot(memslot, gfn);
2236 }
2237 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2238 
2239 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2240 {
2241 	if (!vcpu->sigset_active)
2242 		return;
2243 
2244 	/*
2245 	 * This does a lockless modification of ->real_blocked, which is fine
2246 	 * because, only current can change ->real_blocked and all readers of
2247 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2248 	 * of ->blocked.
2249 	 */
2250 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2251 }
2252 
2253 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2254 {
2255 	if (!vcpu->sigset_active)
2256 		return;
2257 
2258 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2259 	sigemptyset(&current->real_blocked);
2260 }
2261 
2262 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2263 {
2264 	unsigned int old, val, grow, grow_start;
2265 
2266 	old = val = vcpu->halt_poll_ns;
2267 	grow_start = READ_ONCE(halt_poll_ns_grow_start);
2268 	grow = READ_ONCE(halt_poll_ns_grow);
2269 	if (!grow)
2270 		goto out;
2271 
2272 	val *= grow;
2273 	if (val < grow_start)
2274 		val = grow_start;
2275 
2276 	if (val > halt_poll_ns)
2277 		val = halt_poll_ns;
2278 
2279 	vcpu->halt_poll_ns = val;
2280 out:
2281 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2282 }
2283 
2284 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2285 {
2286 	unsigned int old, val, shrink;
2287 
2288 	old = val = vcpu->halt_poll_ns;
2289 	shrink = READ_ONCE(halt_poll_ns_shrink);
2290 	if (shrink == 0)
2291 		val = 0;
2292 	else
2293 		val /= shrink;
2294 
2295 	vcpu->halt_poll_ns = val;
2296 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2297 }
2298 
2299 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2300 {
2301 	int ret = -EINTR;
2302 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2303 
2304 	if (kvm_arch_vcpu_runnable(vcpu)) {
2305 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2306 		goto out;
2307 	}
2308 	if (kvm_cpu_has_pending_timer(vcpu))
2309 		goto out;
2310 	if (signal_pending(current))
2311 		goto out;
2312 
2313 	ret = 0;
2314 out:
2315 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2316 	return ret;
2317 }
2318 
2319 /*
2320  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2321  */
2322 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2323 {
2324 	ktime_t start, cur;
2325 	DECLARE_SWAITQUEUE(wait);
2326 	bool waited = false;
2327 	u64 block_ns;
2328 
2329 	kvm_arch_vcpu_blocking(vcpu);
2330 
2331 	start = cur = ktime_get();
2332 	if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2333 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2334 
2335 		++vcpu->stat.halt_attempted_poll;
2336 		do {
2337 			/*
2338 			 * This sets KVM_REQ_UNHALT if an interrupt
2339 			 * arrives.
2340 			 */
2341 			if (kvm_vcpu_check_block(vcpu) < 0) {
2342 				++vcpu->stat.halt_successful_poll;
2343 				if (!vcpu_valid_wakeup(vcpu))
2344 					++vcpu->stat.halt_poll_invalid;
2345 				goto out;
2346 			}
2347 			cur = ktime_get();
2348 		} while (single_task_running() && ktime_before(cur, stop));
2349 	}
2350 
2351 	for (;;) {
2352 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2353 
2354 		if (kvm_vcpu_check_block(vcpu) < 0)
2355 			break;
2356 
2357 		waited = true;
2358 		schedule();
2359 	}
2360 
2361 	finish_swait(&vcpu->wq, &wait);
2362 	cur = ktime_get();
2363 out:
2364 	kvm_arch_vcpu_unblocking(vcpu);
2365 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2366 
2367 	if (!kvm_arch_no_poll(vcpu)) {
2368 		if (!vcpu_valid_wakeup(vcpu)) {
2369 			shrink_halt_poll_ns(vcpu);
2370 		} else if (halt_poll_ns) {
2371 			if (block_ns <= vcpu->halt_poll_ns)
2372 				;
2373 			/* we had a long block, shrink polling */
2374 			else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2375 				shrink_halt_poll_ns(vcpu);
2376 			/* we had a short halt and our poll time is too small */
2377 			else if (vcpu->halt_poll_ns < halt_poll_ns &&
2378 				block_ns < halt_poll_ns)
2379 				grow_halt_poll_ns(vcpu);
2380 		} else {
2381 			vcpu->halt_poll_ns = 0;
2382 		}
2383 	}
2384 
2385 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2386 	kvm_arch_vcpu_block_finish(vcpu);
2387 }
2388 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2389 
2390 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2391 {
2392 	struct swait_queue_head *wqp;
2393 
2394 	wqp = kvm_arch_vcpu_wq(vcpu);
2395 	if (swq_has_sleeper(wqp)) {
2396 		swake_up_one(wqp);
2397 		WRITE_ONCE(vcpu->ready, true);
2398 		++vcpu->stat.halt_wakeup;
2399 		return true;
2400 	}
2401 
2402 	return false;
2403 }
2404 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2405 
2406 #ifndef CONFIG_S390
2407 /*
2408  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2409  */
2410 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2411 {
2412 	int me;
2413 	int cpu = vcpu->cpu;
2414 
2415 	if (kvm_vcpu_wake_up(vcpu))
2416 		return;
2417 
2418 	me = get_cpu();
2419 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2420 		if (kvm_arch_vcpu_should_kick(vcpu))
2421 			smp_send_reschedule(cpu);
2422 	put_cpu();
2423 }
2424 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2425 #endif /* !CONFIG_S390 */
2426 
2427 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2428 {
2429 	struct pid *pid;
2430 	struct task_struct *task = NULL;
2431 	int ret = 0;
2432 
2433 	rcu_read_lock();
2434 	pid = rcu_dereference(target->pid);
2435 	if (pid)
2436 		task = get_pid_task(pid, PIDTYPE_PID);
2437 	rcu_read_unlock();
2438 	if (!task)
2439 		return ret;
2440 	ret = yield_to(task, 1);
2441 	put_task_struct(task);
2442 
2443 	return ret;
2444 }
2445 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2446 
2447 /*
2448  * Helper that checks whether a VCPU is eligible for directed yield.
2449  * Most eligible candidate to yield is decided by following heuristics:
2450  *
2451  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2452  *  (preempted lock holder), indicated by @in_spin_loop.
2453  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2454  *
2455  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2456  *  chance last time (mostly it has become eligible now since we have probably
2457  *  yielded to lockholder in last iteration. This is done by toggling
2458  *  @dy_eligible each time a VCPU checked for eligibility.)
2459  *
2460  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2461  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2462  *  burning. Giving priority for a potential lock-holder increases lock
2463  *  progress.
2464  *
2465  *  Since algorithm is based on heuristics, accessing another VCPU data without
2466  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2467  *  and continue with next VCPU and so on.
2468  */
2469 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2470 {
2471 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2472 	bool eligible;
2473 
2474 	eligible = !vcpu->spin_loop.in_spin_loop ||
2475 		    vcpu->spin_loop.dy_eligible;
2476 
2477 	if (vcpu->spin_loop.in_spin_loop)
2478 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2479 
2480 	return eligible;
2481 #else
2482 	return true;
2483 #endif
2484 }
2485 
2486 /*
2487  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2488  * a vcpu_load/vcpu_put pair.  However, for most architectures
2489  * kvm_arch_vcpu_runnable does not require vcpu_load.
2490  */
2491 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2492 {
2493 	return kvm_arch_vcpu_runnable(vcpu);
2494 }
2495 
2496 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2497 {
2498 	if (kvm_arch_dy_runnable(vcpu))
2499 		return true;
2500 
2501 #ifdef CONFIG_KVM_ASYNC_PF
2502 	if (!list_empty_careful(&vcpu->async_pf.done))
2503 		return true;
2504 #endif
2505 
2506 	return false;
2507 }
2508 
2509 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2510 {
2511 	struct kvm *kvm = me->kvm;
2512 	struct kvm_vcpu *vcpu;
2513 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2514 	int yielded = 0;
2515 	int try = 3;
2516 	int pass;
2517 	int i;
2518 
2519 	kvm_vcpu_set_in_spin_loop(me, true);
2520 	/*
2521 	 * We boost the priority of a VCPU that is runnable but not
2522 	 * currently running, because it got preempted by something
2523 	 * else and called schedule in __vcpu_run.  Hopefully that
2524 	 * VCPU is holding the lock that we need and will release it.
2525 	 * We approximate round-robin by starting at the last boosted VCPU.
2526 	 */
2527 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2528 		kvm_for_each_vcpu(i, vcpu, kvm) {
2529 			if (!pass && i <= last_boosted_vcpu) {
2530 				i = last_boosted_vcpu;
2531 				continue;
2532 			} else if (pass && i > last_boosted_vcpu)
2533 				break;
2534 			if (!READ_ONCE(vcpu->ready))
2535 				continue;
2536 			if (vcpu == me)
2537 				continue;
2538 			if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2539 				continue;
2540 			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2541 				!kvm_arch_vcpu_in_kernel(vcpu))
2542 				continue;
2543 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2544 				continue;
2545 
2546 			yielded = kvm_vcpu_yield_to(vcpu);
2547 			if (yielded > 0) {
2548 				kvm->last_boosted_vcpu = i;
2549 				break;
2550 			} else if (yielded < 0) {
2551 				try--;
2552 				if (!try)
2553 					break;
2554 			}
2555 		}
2556 	}
2557 	kvm_vcpu_set_in_spin_loop(me, false);
2558 
2559 	/* Ensure vcpu is not eligible during next spinloop */
2560 	kvm_vcpu_set_dy_eligible(me, false);
2561 }
2562 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2563 
2564 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2565 {
2566 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2567 	struct page *page;
2568 
2569 	if (vmf->pgoff == 0)
2570 		page = virt_to_page(vcpu->run);
2571 #ifdef CONFIG_X86
2572 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2573 		page = virt_to_page(vcpu->arch.pio_data);
2574 #endif
2575 #ifdef CONFIG_KVM_MMIO
2576 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2577 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2578 #endif
2579 	else
2580 		return kvm_arch_vcpu_fault(vcpu, vmf);
2581 	get_page(page);
2582 	vmf->page = page;
2583 	return 0;
2584 }
2585 
2586 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2587 	.fault = kvm_vcpu_fault,
2588 };
2589 
2590 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2591 {
2592 	vma->vm_ops = &kvm_vcpu_vm_ops;
2593 	return 0;
2594 }
2595 
2596 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2597 {
2598 	struct kvm_vcpu *vcpu = filp->private_data;
2599 
2600 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2601 	kvm_put_kvm(vcpu->kvm);
2602 	return 0;
2603 }
2604 
2605 static struct file_operations kvm_vcpu_fops = {
2606 	.release        = kvm_vcpu_release,
2607 	.unlocked_ioctl = kvm_vcpu_ioctl,
2608 	.mmap           = kvm_vcpu_mmap,
2609 	.llseek		= noop_llseek,
2610 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2611 };
2612 
2613 /*
2614  * Allocates an inode for the vcpu.
2615  */
2616 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2617 {
2618 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2619 
2620 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2621 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2622 }
2623 
2624 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2625 {
2626 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2627 	char dir_name[ITOA_MAX_LEN * 2];
2628 
2629 	if (!debugfs_initialized())
2630 		return;
2631 
2632 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2633 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2634 						  vcpu->kvm->debugfs_dentry);
2635 
2636 	kvm_arch_create_vcpu_debugfs(vcpu);
2637 #endif
2638 }
2639 
2640 /*
2641  * Creates some virtual cpus.  Good luck creating more than one.
2642  */
2643 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2644 {
2645 	int r;
2646 	struct kvm_vcpu *vcpu;
2647 
2648 	if (id >= KVM_MAX_VCPU_ID)
2649 		return -EINVAL;
2650 
2651 	mutex_lock(&kvm->lock);
2652 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2653 		mutex_unlock(&kvm->lock);
2654 		return -EINVAL;
2655 	}
2656 
2657 	kvm->created_vcpus++;
2658 	mutex_unlock(&kvm->lock);
2659 
2660 	vcpu = kvm_arch_vcpu_create(kvm, id);
2661 	if (IS_ERR(vcpu)) {
2662 		r = PTR_ERR(vcpu);
2663 		goto vcpu_decrement;
2664 	}
2665 
2666 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2667 
2668 	r = kvm_arch_vcpu_setup(vcpu);
2669 	if (r)
2670 		goto vcpu_destroy;
2671 
2672 	kvm_create_vcpu_debugfs(vcpu);
2673 
2674 	mutex_lock(&kvm->lock);
2675 	if (kvm_get_vcpu_by_id(kvm, id)) {
2676 		r = -EEXIST;
2677 		goto unlock_vcpu_destroy;
2678 	}
2679 
2680 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2681 
2682 	/* Now it's all set up, let userspace reach it */
2683 	kvm_get_kvm(kvm);
2684 	r = create_vcpu_fd(vcpu);
2685 	if (r < 0) {
2686 		kvm_put_kvm(kvm);
2687 		goto unlock_vcpu_destroy;
2688 	}
2689 
2690 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2691 
2692 	/*
2693 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2694 	 * before kvm->online_vcpu's incremented value.
2695 	 */
2696 	smp_wmb();
2697 	atomic_inc(&kvm->online_vcpus);
2698 
2699 	mutex_unlock(&kvm->lock);
2700 	kvm_arch_vcpu_postcreate(vcpu);
2701 	return r;
2702 
2703 unlock_vcpu_destroy:
2704 	mutex_unlock(&kvm->lock);
2705 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2706 vcpu_destroy:
2707 	kvm_arch_vcpu_destroy(vcpu);
2708 vcpu_decrement:
2709 	mutex_lock(&kvm->lock);
2710 	kvm->created_vcpus--;
2711 	mutex_unlock(&kvm->lock);
2712 	return r;
2713 }
2714 
2715 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2716 {
2717 	if (sigset) {
2718 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2719 		vcpu->sigset_active = 1;
2720 		vcpu->sigset = *sigset;
2721 	} else
2722 		vcpu->sigset_active = 0;
2723 	return 0;
2724 }
2725 
2726 static long kvm_vcpu_ioctl(struct file *filp,
2727 			   unsigned int ioctl, unsigned long arg)
2728 {
2729 	struct kvm_vcpu *vcpu = filp->private_data;
2730 	void __user *argp = (void __user *)arg;
2731 	int r;
2732 	struct kvm_fpu *fpu = NULL;
2733 	struct kvm_sregs *kvm_sregs = NULL;
2734 
2735 	if (vcpu->kvm->mm != current->mm)
2736 		return -EIO;
2737 
2738 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2739 		return -EINVAL;
2740 
2741 	/*
2742 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2743 	 * execution; mutex_lock() would break them.
2744 	 */
2745 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2746 	if (r != -ENOIOCTLCMD)
2747 		return r;
2748 
2749 	if (mutex_lock_killable(&vcpu->mutex))
2750 		return -EINTR;
2751 	switch (ioctl) {
2752 	case KVM_RUN: {
2753 		struct pid *oldpid;
2754 		r = -EINVAL;
2755 		if (arg)
2756 			goto out;
2757 		oldpid = rcu_access_pointer(vcpu->pid);
2758 		if (unlikely(oldpid != task_pid(current))) {
2759 			/* The thread running this VCPU changed. */
2760 			struct pid *newpid;
2761 
2762 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2763 			if (r)
2764 				break;
2765 
2766 			newpid = get_task_pid(current, PIDTYPE_PID);
2767 			rcu_assign_pointer(vcpu->pid, newpid);
2768 			if (oldpid)
2769 				synchronize_rcu();
2770 			put_pid(oldpid);
2771 		}
2772 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2773 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2774 		break;
2775 	}
2776 	case KVM_GET_REGS: {
2777 		struct kvm_regs *kvm_regs;
2778 
2779 		r = -ENOMEM;
2780 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2781 		if (!kvm_regs)
2782 			goto out;
2783 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2784 		if (r)
2785 			goto out_free1;
2786 		r = -EFAULT;
2787 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2788 			goto out_free1;
2789 		r = 0;
2790 out_free1:
2791 		kfree(kvm_regs);
2792 		break;
2793 	}
2794 	case KVM_SET_REGS: {
2795 		struct kvm_regs *kvm_regs;
2796 
2797 		r = -ENOMEM;
2798 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2799 		if (IS_ERR(kvm_regs)) {
2800 			r = PTR_ERR(kvm_regs);
2801 			goto out;
2802 		}
2803 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2804 		kfree(kvm_regs);
2805 		break;
2806 	}
2807 	case KVM_GET_SREGS: {
2808 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2809 				    GFP_KERNEL_ACCOUNT);
2810 		r = -ENOMEM;
2811 		if (!kvm_sregs)
2812 			goto out;
2813 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2814 		if (r)
2815 			goto out;
2816 		r = -EFAULT;
2817 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2818 			goto out;
2819 		r = 0;
2820 		break;
2821 	}
2822 	case KVM_SET_SREGS: {
2823 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2824 		if (IS_ERR(kvm_sregs)) {
2825 			r = PTR_ERR(kvm_sregs);
2826 			kvm_sregs = NULL;
2827 			goto out;
2828 		}
2829 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2830 		break;
2831 	}
2832 	case KVM_GET_MP_STATE: {
2833 		struct kvm_mp_state mp_state;
2834 
2835 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2836 		if (r)
2837 			goto out;
2838 		r = -EFAULT;
2839 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2840 			goto out;
2841 		r = 0;
2842 		break;
2843 	}
2844 	case KVM_SET_MP_STATE: {
2845 		struct kvm_mp_state mp_state;
2846 
2847 		r = -EFAULT;
2848 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2849 			goto out;
2850 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2851 		break;
2852 	}
2853 	case KVM_TRANSLATE: {
2854 		struct kvm_translation tr;
2855 
2856 		r = -EFAULT;
2857 		if (copy_from_user(&tr, argp, sizeof(tr)))
2858 			goto out;
2859 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2860 		if (r)
2861 			goto out;
2862 		r = -EFAULT;
2863 		if (copy_to_user(argp, &tr, sizeof(tr)))
2864 			goto out;
2865 		r = 0;
2866 		break;
2867 	}
2868 	case KVM_SET_GUEST_DEBUG: {
2869 		struct kvm_guest_debug dbg;
2870 
2871 		r = -EFAULT;
2872 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2873 			goto out;
2874 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2875 		break;
2876 	}
2877 	case KVM_SET_SIGNAL_MASK: {
2878 		struct kvm_signal_mask __user *sigmask_arg = argp;
2879 		struct kvm_signal_mask kvm_sigmask;
2880 		sigset_t sigset, *p;
2881 
2882 		p = NULL;
2883 		if (argp) {
2884 			r = -EFAULT;
2885 			if (copy_from_user(&kvm_sigmask, argp,
2886 					   sizeof(kvm_sigmask)))
2887 				goto out;
2888 			r = -EINVAL;
2889 			if (kvm_sigmask.len != sizeof(sigset))
2890 				goto out;
2891 			r = -EFAULT;
2892 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2893 					   sizeof(sigset)))
2894 				goto out;
2895 			p = &sigset;
2896 		}
2897 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2898 		break;
2899 	}
2900 	case KVM_GET_FPU: {
2901 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2902 		r = -ENOMEM;
2903 		if (!fpu)
2904 			goto out;
2905 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2906 		if (r)
2907 			goto out;
2908 		r = -EFAULT;
2909 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2910 			goto out;
2911 		r = 0;
2912 		break;
2913 	}
2914 	case KVM_SET_FPU: {
2915 		fpu = memdup_user(argp, sizeof(*fpu));
2916 		if (IS_ERR(fpu)) {
2917 			r = PTR_ERR(fpu);
2918 			fpu = NULL;
2919 			goto out;
2920 		}
2921 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2922 		break;
2923 	}
2924 	default:
2925 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2926 	}
2927 out:
2928 	mutex_unlock(&vcpu->mutex);
2929 	kfree(fpu);
2930 	kfree(kvm_sregs);
2931 	return r;
2932 }
2933 
2934 #ifdef CONFIG_KVM_COMPAT
2935 static long kvm_vcpu_compat_ioctl(struct file *filp,
2936 				  unsigned int ioctl, unsigned long arg)
2937 {
2938 	struct kvm_vcpu *vcpu = filp->private_data;
2939 	void __user *argp = compat_ptr(arg);
2940 	int r;
2941 
2942 	if (vcpu->kvm->mm != current->mm)
2943 		return -EIO;
2944 
2945 	switch (ioctl) {
2946 	case KVM_SET_SIGNAL_MASK: {
2947 		struct kvm_signal_mask __user *sigmask_arg = argp;
2948 		struct kvm_signal_mask kvm_sigmask;
2949 		sigset_t sigset;
2950 
2951 		if (argp) {
2952 			r = -EFAULT;
2953 			if (copy_from_user(&kvm_sigmask, argp,
2954 					   sizeof(kvm_sigmask)))
2955 				goto out;
2956 			r = -EINVAL;
2957 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2958 				goto out;
2959 			r = -EFAULT;
2960 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2961 				goto out;
2962 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2963 		} else
2964 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2965 		break;
2966 	}
2967 	default:
2968 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2969 	}
2970 
2971 out:
2972 	return r;
2973 }
2974 #endif
2975 
2976 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2977 {
2978 	struct kvm_device *dev = filp->private_data;
2979 
2980 	if (dev->ops->mmap)
2981 		return dev->ops->mmap(dev, vma);
2982 
2983 	return -ENODEV;
2984 }
2985 
2986 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2987 				 int (*accessor)(struct kvm_device *dev,
2988 						 struct kvm_device_attr *attr),
2989 				 unsigned long arg)
2990 {
2991 	struct kvm_device_attr attr;
2992 
2993 	if (!accessor)
2994 		return -EPERM;
2995 
2996 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2997 		return -EFAULT;
2998 
2999 	return accessor(dev, &attr);
3000 }
3001 
3002 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3003 			     unsigned long arg)
3004 {
3005 	struct kvm_device *dev = filp->private_data;
3006 
3007 	if (dev->kvm->mm != current->mm)
3008 		return -EIO;
3009 
3010 	switch (ioctl) {
3011 	case KVM_SET_DEVICE_ATTR:
3012 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3013 	case KVM_GET_DEVICE_ATTR:
3014 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3015 	case KVM_HAS_DEVICE_ATTR:
3016 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3017 	default:
3018 		if (dev->ops->ioctl)
3019 			return dev->ops->ioctl(dev, ioctl, arg);
3020 
3021 		return -ENOTTY;
3022 	}
3023 }
3024 
3025 static int kvm_device_release(struct inode *inode, struct file *filp)
3026 {
3027 	struct kvm_device *dev = filp->private_data;
3028 	struct kvm *kvm = dev->kvm;
3029 
3030 	if (dev->ops->release) {
3031 		mutex_lock(&kvm->lock);
3032 		list_del(&dev->vm_node);
3033 		dev->ops->release(dev);
3034 		mutex_unlock(&kvm->lock);
3035 	}
3036 
3037 	kvm_put_kvm(kvm);
3038 	return 0;
3039 }
3040 
3041 static const struct file_operations kvm_device_fops = {
3042 	.unlocked_ioctl = kvm_device_ioctl,
3043 	.release = kvm_device_release,
3044 	KVM_COMPAT(kvm_device_ioctl),
3045 	.mmap = kvm_device_mmap,
3046 };
3047 
3048 struct kvm_device *kvm_device_from_filp(struct file *filp)
3049 {
3050 	if (filp->f_op != &kvm_device_fops)
3051 		return NULL;
3052 
3053 	return filp->private_data;
3054 }
3055 
3056 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3057 #ifdef CONFIG_KVM_MPIC
3058 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
3059 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
3060 #endif
3061 };
3062 
3063 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3064 {
3065 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
3066 		return -ENOSPC;
3067 
3068 	if (kvm_device_ops_table[type] != NULL)
3069 		return -EEXIST;
3070 
3071 	kvm_device_ops_table[type] = ops;
3072 	return 0;
3073 }
3074 
3075 void kvm_unregister_device_ops(u32 type)
3076 {
3077 	if (kvm_device_ops_table[type] != NULL)
3078 		kvm_device_ops_table[type] = NULL;
3079 }
3080 
3081 static int kvm_ioctl_create_device(struct kvm *kvm,
3082 				   struct kvm_create_device *cd)
3083 {
3084 	struct kvm_device_ops *ops = NULL;
3085 	struct kvm_device *dev;
3086 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3087 	int type;
3088 	int ret;
3089 
3090 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3091 		return -ENODEV;
3092 
3093 	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3094 	ops = kvm_device_ops_table[type];
3095 	if (ops == NULL)
3096 		return -ENODEV;
3097 
3098 	if (test)
3099 		return 0;
3100 
3101 	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3102 	if (!dev)
3103 		return -ENOMEM;
3104 
3105 	dev->ops = ops;
3106 	dev->kvm = kvm;
3107 
3108 	mutex_lock(&kvm->lock);
3109 	ret = ops->create(dev, type);
3110 	if (ret < 0) {
3111 		mutex_unlock(&kvm->lock);
3112 		kfree(dev);
3113 		return ret;
3114 	}
3115 	list_add(&dev->vm_node, &kvm->devices);
3116 	mutex_unlock(&kvm->lock);
3117 
3118 	if (ops->init)
3119 		ops->init(dev);
3120 
3121 	kvm_get_kvm(kvm);
3122 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3123 	if (ret < 0) {
3124 		kvm_put_kvm(kvm);
3125 		mutex_lock(&kvm->lock);
3126 		list_del(&dev->vm_node);
3127 		mutex_unlock(&kvm->lock);
3128 		ops->destroy(dev);
3129 		return ret;
3130 	}
3131 
3132 	cd->fd = ret;
3133 	return 0;
3134 }
3135 
3136 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3137 {
3138 	switch (arg) {
3139 	case KVM_CAP_USER_MEMORY:
3140 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3141 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3142 	case KVM_CAP_INTERNAL_ERROR_DATA:
3143 #ifdef CONFIG_HAVE_KVM_MSI
3144 	case KVM_CAP_SIGNAL_MSI:
3145 #endif
3146 #ifdef CONFIG_HAVE_KVM_IRQFD
3147 	case KVM_CAP_IRQFD:
3148 	case KVM_CAP_IRQFD_RESAMPLE:
3149 #endif
3150 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3151 	case KVM_CAP_CHECK_EXTENSION_VM:
3152 	case KVM_CAP_ENABLE_CAP_VM:
3153 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3154 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3155 #endif
3156 		return 1;
3157 #ifdef CONFIG_KVM_MMIO
3158 	case KVM_CAP_COALESCED_MMIO:
3159 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
3160 	case KVM_CAP_COALESCED_PIO:
3161 		return 1;
3162 #endif
3163 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3164 	case KVM_CAP_IRQ_ROUTING:
3165 		return KVM_MAX_IRQ_ROUTES;
3166 #endif
3167 #if KVM_ADDRESS_SPACE_NUM > 1
3168 	case KVM_CAP_MULTI_ADDRESS_SPACE:
3169 		return KVM_ADDRESS_SPACE_NUM;
3170 #endif
3171 	case KVM_CAP_NR_MEMSLOTS:
3172 		return KVM_USER_MEM_SLOTS;
3173 	default:
3174 		break;
3175 	}
3176 	return kvm_vm_ioctl_check_extension(kvm, arg);
3177 }
3178 
3179 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3180 						  struct kvm_enable_cap *cap)
3181 {
3182 	return -EINVAL;
3183 }
3184 
3185 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3186 					   struct kvm_enable_cap *cap)
3187 {
3188 	switch (cap->cap) {
3189 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3190 	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3191 		if (cap->flags || (cap->args[0] & ~1))
3192 			return -EINVAL;
3193 		kvm->manual_dirty_log_protect = cap->args[0];
3194 		return 0;
3195 #endif
3196 	default:
3197 		return kvm_vm_ioctl_enable_cap(kvm, cap);
3198 	}
3199 }
3200 
3201 static long kvm_vm_ioctl(struct file *filp,
3202 			   unsigned int ioctl, unsigned long arg)
3203 {
3204 	struct kvm *kvm = filp->private_data;
3205 	void __user *argp = (void __user *)arg;
3206 	int r;
3207 
3208 	if (kvm->mm != current->mm)
3209 		return -EIO;
3210 	switch (ioctl) {
3211 	case KVM_CREATE_VCPU:
3212 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3213 		break;
3214 	case KVM_ENABLE_CAP: {
3215 		struct kvm_enable_cap cap;
3216 
3217 		r = -EFAULT;
3218 		if (copy_from_user(&cap, argp, sizeof(cap)))
3219 			goto out;
3220 		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3221 		break;
3222 	}
3223 	case KVM_SET_USER_MEMORY_REGION: {
3224 		struct kvm_userspace_memory_region kvm_userspace_mem;
3225 
3226 		r = -EFAULT;
3227 		if (copy_from_user(&kvm_userspace_mem, argp,
3228 						sizeof(kvm_userspace_mem)))
3229 			goto out;
3230 
3231 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3232 		break;
3233 	}
3234 	case KVM_GET_DIRTY_LOG: {
3235 		struct kvm_dirty_log log;
3236 
3237 		r = -EFAULT;
3238 		if (copy_from_user(&log, argp, sizeof(log)))
3239 			goto out;
3240 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3241 		break;
3242 	}
3243 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3244 	case KVM_CLEAR_DIRTY_LOG: {
3245 		struct kvm_clear_dirty_log log;
3246 
3247 		r = -EFAULT;
3248 		if (copy_from_user(&log, argp, sizeof(log)))
3249 			goto out;
3250 		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3251 		break;
3252 	}
3253 #endif
3254 #ifdef CONFIG_KVM_MMIO
3255 	case KVM_REGISTER_COALESCED_MMIO: {
3256 		struct kvm_coalesced_mmio_zone zone;
3257 
3258 		r = -EFAULT;
3259 		if (copy_from_user(&zone, argp, sizeof(zone)))
3260 			goto out;
3261 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3262 		break;
3263 	}
3264 	case KVM_UNREGISTER_COALESCED_MMIO: {
3265 		struct kvm_coalesced_mmio_zone zone;
3266 
3267 		r = -EFAULT;
3268 		if (copy_from_user(&zone, argp, sizeof(zone)))
3269 			goto out;
3270 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3271 		break;
3272 	}
3273 #endif
3274 	case KVM_IRQFD: {
3275 		struct kvm_irqfd data;
3276 
3277 		r = -EFAULT;
3278 		if (copy_from_user(&data, argp, sizeof(data)))
3279 			goto out;
3280 		r = kvm_irqfd(kvm, &data);
3281 		break;
3282 	}
3283 	case KVM_IOEVENTFD: {
3284 		struct kvm_ioeventfd data;
3285 
3286 		r = -EFAULT;
3287 		if (copy_from_user(&data, argp, sizeof(data)))
3288 			goto out;
3289 		r = kvm_ioeventfd(kvm, &data);
3290 		break;
3291 	}
3292 #ifdef CONFIG_HAVE_KVM_MSI
3293 	case KVM_SIGNAL_MSI: {
3294 		struct kvm_msi msi;
3295 
3296 		r = -EFAULT;
3297 		if (copy_from_user(&msi, argp, sizeof(msi)))
3298 			goto out;
3299 		r = kvm_send_userspace_msi(kvm, &msi);
3300 		break;
3301 	}
3302 #endif
3303 #ifdef __KVM_HAVE_IRQ_LINE
3304 	case KVM_IRQ_LINE_STATUS:
3305 	case KVM_IRQ_LINE: {
3306 		struct kvm_irq_level irq_event;
3307 
3308 		r = -EFAULT;
3309 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3310 			goto out;
3311 
3312 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3313 					ioctl == KVM_IRQ_LINE_STATUS);
3314 		if (r)
3315 			goto out;
3316 
3317 		r = -EFAULT;
3318 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3319 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3320 				goto out;
3321 		}
3322 
3323 		r = 0;
3324 		break;
3325 	}
3326 #endif
3327 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3328 	case KVM_SET_GSI_ROUTING: {
3329 		struct kvm_irq_routing routing;
3330 		struct kvm_irq_routing __user *urouting;
3331 		struct kvm_irq_routing_entry *entries = NULL;
3332 
3333 		r = -EFAULT;
3334 		if (copy_from_user(&routing, argp, sizeof(routing)))
3335 			goto out;
3336 		r = -EINVAL;
3337 		if (!kvm_arch_can_set_irq_routing(kvm))
3338 			goto out;
3339 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3340 			goto out;
3341 		if (routing.flags)
3342 			goto out;
3343 		if (routing.nr) {
3344 			r = -ENOMEM;
3345 			entries = vmalloc(array_size(sizeof(*entries),
3346 						     routing.nr));
3347 			if (!entries)
3348 				goto out;
3349 			r = -EFAULT;
3350 			urouting = argp;
3351 			if (copy_from_user(entries, urouting->entries,
3352 					   routing.nr * sizeof(*entries)))
3353 				goto out_free_irq_routing;
3354 		}
3355 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3356 					routing.flags);
3357 out_free_irq_routing:
3358 		vfree(entries);
3359 		break;
3360 	}
3361 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3362 	case KVM_CREATE_DEVICE: {
3363 		struct kvm_create_device cd;
3364 
3365 		r = -EFAULT;
3366 		if (copy_from_user(&cd, argp, sizeof(cd)))
3367 			goto out;
3368 
3369 		r = kvm_ioctl_create_device(kvm, &cd);
3370 		if (r)
3371 			goto out;
3372 
3373 		r = -EFAULT;
3374 		if (copy_to_user(argp, &cd, sizeof(cd)))
3375 			goto out;
3376 
3377 		r = 0;
3378 		break;
3379 	}
3380 	case KVM_CHECK_EXTENSION:
3381 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3382 		break;
3383 	default:
3384 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3385 	}
3386 out:
3387 	return r;
3388 }
3389 
3390 #ifdef CONFIG_KVM_COMPAT
3391 struct compat_kvm_dirty_log {
3392 	__u32 slot;
3393 	__u32 padding1;
3394 	union {
3395 		compat_uptr_t dirty_bitmap; /* one bit per page */
3396 		__u64 padding2;
3397 	};
3398 };
3399 
3400 static long kvm_vm_compat_ioctl(struct file *filp,
3401 			   unsigned int ioctl, unsigned long arg)
3402 {
3403 	struct kvm *kvm = filp->private_data;
3404 	int r;
3405 
3406 	if (kvm->mm != current->mm)
3407 		return -EIO;
3408 	switch (ioctl) {
3409 	case KVM_GET_DIRTY_LOG: {
3410 		struct compat_kvm_dirty_log compat_log;
3411 		struct kvm_dirty_log log;
3412 
3413 		if (copy_from_user(&compat_log, (void __user *)arg,
3414 				   sizeof(compat_log)))
3415 			return -EFAULT;
3416 		log.slot	 = compat_log.slot;
3417 		log.padding1	 = compat_log.padding1;
3418 		log.padding2	 = compat_log.padding2;
3419 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3420 
3421 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3422 		break;
3423 	}
3424 	default:
3425 		r = kvm_vm_ioctl(filp, ioctl, arg);
3426 	}
3427 	return r;
3428 }
3429 #endif
3430 
3431 static struct file_operations kvm_vm_fops = {
3432 	.release        = kvm_vm_release,
3433 	.unlocked_ioctl = kvm_vm_ioctl,
3434 	.llseek		= noop_llseek,
3435 	KVM_COMPAT(kvm_vm_compat_ioctl),
3436 };
3437 
3438 static int kvm_dev_ioctl_create_vm(unsigned long type)
3439 {
3440 	int r;
3441 	struct kvm *kvm;
3442 	struct file *file;
3443 
3444 	kvm = kvm_create_vm(type);
3445 	if (IS_ERR(kvm))
3446 		return PTR_ERR(kvm);
3447 #ifdef CONFIG_KVM_MMIO
3448 	r = kvm_coalesced_mmio_init(kvm);
3449 	if (r < 0)
3450 		goto put_kvm;
3451 #endif
3452 	r = get_unused_fd_flags(O_CLOEXEC);
3453 	if (r < 0)
3454 		goto put_kvm;
3455 
3456 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3457 	if (IS_ERR(file)) {
3458 		put_unused_fd(r);
3459 		r = PTR_ERR(file);
3460 		goto put_kvm;
3461 	}
3462 
3463 	/*
3464 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3465 	 * already set, with ->release() being kvm_vm_release().  In error
3466 	 * cases it will be called by the final fput(file) and will take
3467 	 * care of doing kvm_put_kvm(kvm).
3468 	 */
3469 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3470 		put_unused_fd(r);
3471 		fput(file);
3472 		return -ENOMEM;
3473 	}
3474 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3475 
3476 	fd_install(r, file);
3477 	return r;
3478 
3479 put_kvm:
3480 	kvm_put_kvm(kvm);
3481 	return r;
3482 }
3483 
3484 static long kvm_dev_ioctl(struct file *filp,
3485 			  unsigned int ioctl, unsigned long arg)
3486 {
3487 	long r = -EINVAL;
3488 
3489 	switch (ioctl) {
3490 	case KVM_GET_API_VERSION:
3491 		if (arg)
3492 			goto out;
3493 		r = KVM_API_VERSION;
3494 		break;
3495 	case KVM_CREATE_VM:
3496 		r = kvm_dev_ioctl_create_vm(arg);
3497 		break;
3498 	case KVM_CHECK_EXTENSION:
3499 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3500 		break;
3501 	case KVM_GET_VCPU_MMAP_SIZE:
3502 		if (arg)
3503 			goto out;
3504 		r = PAGE_SIZE;     /* struct kvm_run */
3505 #ifdef CONFIG_X86
3506 		r += PAGE_SIZE;    /* pio data page */
3507 #endif
3508 #ifdef CONFIG_KVM_MMIO
3509 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3510 #endif
3511 		break;
3512 	case KVM_TRACE_ENABLE:
3513 	case KVM_TRACE_PAUSE:
3514 	case KVM_TRACE_DISABLE:
3515 		r = -EOPNOTSUPP;
3516 		break;
3517 	default:
3518 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3519 	}
3520 out:
3521 	return r;
3522 }
3523 
3524 static struct file_operations kvm_chardev_ops = {
3525 	.unlocked_ioctl = kvm_dev_ioctl,
3526 	.llseek		= noop_llseek,
3527 	KVM_COMPAT(kvm_dev_ioctl),
3528 };
3529 
3530 static struct miscdevice kvm_dev = {
3531 	KVM_MINOR,
3532 	"kvm",
3533 	&kvm_chardev_ops,
3534 };
3535 
3536 static void hardware_enable_nolock(void *junk)
3537 {
3538 	int cpu = raw_smp_processor_id();
3539 	int r;
3540 
3541 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3542 		return;
3543 
3544 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3545 
3546 	r = kvm_arch_hardware_enable();
3547 
3548 	if (r) {
3549 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3550 		atomic_inc(&hardware_enable_failed);
3551 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3552 	}
3553 }
3554 
3555 static int kvm_starting_cpu(unsigned int cpu)
3556 {
3557 	raw_spin_lock(&kvm_count_lock);
3558 	if (kvm_usage_count)
3559 		hardware_enable_nolock(NULL);
3560 	raw_spin_unlock(&kvm_count_lock);
3561 	return 0;
3562 }
3563 
3564 static void hardware_disable_nolock(void *junk)
3565 {
3566 	int cpu = raw_smp_processor_id();
3567 
3568 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3569 		return;
3570 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3571 	kvm_arch_hardware_disable();
3572 }
3573 
3574 static int kvm_dying_cpu(unsigned int cpu)
3575 {
3576 	raw_spin_lock(&kvm_count_lock);
3577 	if (kvm_usage_count)
3578 		hardware_disable_nolock(NULL);
3579 	raw_spin_unlock(&kvm_count_lock);
3580 	return 0;
3581 }
3582 
3583 static void hardware_disable_all_nolock(void)
3584 {
3585 	BUG_ON(!kvm_usage_count);
3586 
3587 	kvm_usage_count--;
3588 	if (!kvm_usage_count)
3589 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3590 }
3591 
3592 static void hardware_disable_all(void)
3593 {
3594 	raw_spin_lock(&kvm_count_lock);
3595 	hardware_disable_all_nolock();
3596 	raw_spin_unlock(&kvm_count_lock);
3597 }
3598 
3599 static int hardware_enable_all(void)
3600 {
3601 	int r = 0;
3602 
3603 	raw_spin_lock(&kvm_count_lock);
3604 
3605 	kvm_usage_count++;
3606 	if (kvm_usage_count == 1) {
3607 		atomic_set(&hardware_enable_failed, 0);
3608 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3609 
3610 		if (atomic_read(&hardware_enable_failed)) {
3611 			hardware_disable_all_nolock();
3612 			r = -EBUSY;
3613 		}
3614 	}
3615 
3616 	raw_spin_unlock(&kvm_count_lock);
3617 
3618 	return r;
3619 }
3620 
3621 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3622 		      void *v)
3623 {
3624 	/*
3625 	 * Some (well, at least mine) BIOSes hang on reboot if
3626 	 * in vmx root mode.
3627 	 *
3628 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3629 	 */
3630 	pr_info("kvm: exiting hardware virtualization\n");
3631 	kvm_rebooting = true;
3632 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3633 	return NOTIFY_OK;
3634 }
3635 
3636 static struct notifier_block kvm_reboot_notifier = {
3637 	.notifier_call = kvm_reboot,
3638 	.priority = 0,
3639 };
3640 
3641 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3642 {
3643 	int i;
3644 
3645 	for (i = 0; i < bus->dev_count; i++) {
3646 		struct kvm_io_device *pos = bus->range[i].dev;
3647 
3648 		kvm_iodevice_destructor(pos);
3649 	}
3650 	kfree(bus);
3651 }
3652 
3653 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3654 				 const struct kvm_io_range *r2)
3655 {
3656 	gpa_t addr1 = r1->addr;
3657 	gpa_t addr2 = r2->addr;
3658 
3659 	if (addr1 < addr2)
3660 		return -1;
3661 
3662 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3663 	 * accept any overlapping write.  Any order is acceptable for
3664 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3665 	 * we process all of them.
3666 	 */
3667 	if (r2->len) {
3668 		addr1 += r1->len;
3669 		addr2 += r2->len;
3670 	}
3671 
3672 	if (addr1 > addr2)
3673 		return 1;
3674 
3675 	return 0;
3676 }
3677 
3678 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3679 {
3680 	return kvm_io_bus_cmp(p1, p2);
3681 }
3682 
3683 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3684 			     gpa_t addr, int len)
3685 {
3686 	struct kvm_io_range *range, key;
3687 	int off;
3688 
3689 	key = (struct kvm_io_range) {
3690 		.addr = addr,
3691 		.len = len,
3692 	};
3693 
3694 	range = bsearch(&key, bus->range, bus->dev_count,
3695 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3696 	if (range == NULL)
3697 		return -ENOENT;
3698 
3699 	off = range - bus->range;
3700 
3701 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3702 		off--;
3703 
3704 	return off;
3705 }
3706 
3707 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3708 			      struct kvm_io_range *range, const void *val)
3709 {
3710 	int idx;
3711 
3712 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3713 	if (idx < 0)
3714 		return -EOPNOTSUPP;
3715 
3716 	while (idx < bus->dev_count &&
3717 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3718 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3719 					range->len, val))
3720 			return idx;
3721 		idx++;
3722 	}
3723 
3724 	return -EOPNOTSUPP;
3725 }
3726 
3727 /* kvm_io_bus_write - called under kvm->slots_lock */
3728 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3729 		     int len, const void *val)
3730 {
3731 	struct kvm_io_bus *bus;
3732 	struct kvm_io_range range;
3733 	int r;
3734 
3735 	range = (struct kvm_io_range) {
3736 		.addr = addr,
3737 		.len = len,
3738 	};
3739 
3740 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3741 	if (!bus)
3742 		return -ENOMEM;
3743 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3744 	return r < 0 ? r : 0;
3745 }
3746 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3747 
3748 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3749 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3750 			    gpa_t addr, int len, const void *val, long cookie)
3751 {
3752 	struct kvm_io_bus *bus;
3753 	struct kvm_io_range range;
3754 
3755 	range = (struct kvm_io_range) {
3756 		.addr = addr,
3757 		.len = len,
3758 	};
3759 
3760 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3761 	if (!bus)
3762 		return -ENOMEM;
3763 
3764 	/* First try the device referenced by cookie. */
3765 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3766 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3767 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3768 					val))
3769 			return cookie;
3770 
3771 	/*
3772 	 * cookie contained garbage; fall back to search and return the
3773 	 * correct cookie value.
3774 	 */
3775 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3776 }
3777 
3778 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3779 			     struct kvm_io_range *range, void *val)
3780 {
3781 	int idx;
3782 
3783 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3784 	if (idx < 0)
3785 		return -EOPNOTSUPP;
3786 
3787 	while (idx < bus->dev_count &&
3788 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3789 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3790 				       range->len, val))
3791 			return idx;
3792 		idx++;
3793 	}
3794 
3795 	return -EOPNOTSUPP;
3796 }
3797 
3798 /* kvm_io_bus_read - called under kvm->slots_lock */
3799 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3800 		    int len, void *val)
3801 {
3802 	struct kvm_io_bus *bus;
3803 	struct kvm_io_range range;
3804 	int r;
3805 
3806 	range = (struct kvm_io_range) {
3807 		.addr = addr,
3808 		.len = len,
3809 	};
3810 
3811 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3812 	if (!bus)
3813 		return -ENOMEM;
3814 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3815 	return r < 0 ? r : 0;
3816 }
3817 
3818 /* Caller must hold slots_lock. */
3819 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3820 			    int len, struct kvm_io_device *dev)
3821 {
3822 	int i;
3823 	struct kvm_io_bus *new_bus, *bus;
3824 	struct kvm_io_range range;
3825 
3826 	bus = kvm_get_bus(kvm, bus_idx);
3827 	if (!bus)
3828 		return -ENOMEM;
3829 
3830 	/* exclude ioeventfd which is limited by maximum fd */
3831 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3832 		return -ENOSPC;
3833 
3834 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3835 			  GFP_KERNEL_ACCOUNT);
3836 	if (!new_bus)
3837 		return -ENOMEM;
3838 
3839 	range = (struct kvm_io_range) {
3840 		.addr = addr,
3841 		.len = len,
3842 		.dev = dev,
3843 	};
3844 
3845 	for (i = 0; i < bus->dev_count; i++)
3846 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3847 			break;
3848 
3849 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3850 	new_bus->dev_count++;
3851 	new_bus->range[i] = range;
3852 	memcpy(new_bus->range + i + 1, bus->range + i,
3853 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3854 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3855 	synchronize_srcu_expedited(&kvm->srcu);
3856 	kfree(bus);
3857 
3858 	return 0;
3859 }
3860 
3861 /* Caller must hold slots_lock. */
3862 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3863 			       struct kvm_io_device *dev)
3864 {
3865 	int i;
3866 	struct kvm_io_bus *new_bus, *bus;
3867 
3868 	bus = kvm_get_bus(kvm, bus_idx);
3869 	if (!bus)
3870 		return;
3871 
3872 	for (i = 0; i < bus->dev_count; i++)
3873 		if (bus->range[i].dev == dev) {
3874 			break;
3875 		}
3876 
3877 	if (i == bus->dev_count)
3878 		return;
3879 
3880 	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3881 			  GFP_KERNEL_ACCOUNT);
3882 	if (!new_bus)  {
3883 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3884 		goto broken;
3885 	}
3886 
3887 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3888 	new_bus->dev_count--;
3889 	memcpy(new_bus->range + i, bus->range + i + 1,
3890 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3891 
3892 broken:
3893 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3894 	synchronize_srcu_expedited(&kvm->srcu);
3895 	kfree(bus);
3896 	return;
3897 }
3898 
3899 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3900 					 gpa_t addr)
3901 {
3902 	struct kvm_io_bus *bus;
3903 	int dev_idx, srcu_idx;
3904 	struct kvm_io_device *iodev = NULL;
3905 
3906 	srcu_idx = srcu_read_lock(&kvm->srcu);
3907 
3908 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3909 	if (!bus)
3910 		goto out_unlock;
3911 
3912 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3913 	if (dev_idx < 0)
3914 		goto out_unlock;
3915 
3916 	iodev = bus->range[dev_idx].dev;
3917 
3918 out_unlock:
3919 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3920 
3921 	return iodev;
3922 }
3923 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3924 
3925 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3926 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3927 			   const char *fmt)
3928 {
3929 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3930 					  inode->i_private;
3931 
3932 	/* The debugfs files are a reference to the kvm struct which
3933 	 * is still valid when kvm_destroy_vm is called.
3934 	 * To avoid the race between open and the removal of the debugfs
3935 	 * directory we test against the users count.
3936 	 */
3937 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3938 		return -ENOENT;
3939 
3940 	if (simple_attr_open(inode, file, get,
3941 			     stat_data->mode & S_IWUGO ? set : NULL,
3942 			     fmt)) {
3943 		kvm_put_kvm(stat_data->kvm);
3944 		return -ENOMEM;
3945 	}
3946 
3947 	return 0;
3948 }
3949 
3950 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3951 {
3952 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3953 					  inode->i_private;
3954 
3955 	simple_attr_release(inode, file);
3956 	kvm_put_kvm(stat_data->kvm);
3957 
3958 	return 0;
3959 }
3960 
3961 static int vm_stat_get_per_vm(void *data, u64 *val)
3962 {
3963 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3964 
3965 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3966 
3967 	return 0;
3968 }
3969 
3970 static int vm_stat_clear_per_vm(void *data, u64 val)
3971 {
3972 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3973 
3974 	if (val)
3975 		return -EINVAL;
3976 
3977 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3978 
3979 	return 0;
3980 }
3981 
3982 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3983 {
3984 	__simple_attr_check_format("%llu\n", 0ull);
3985 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3986 				vm_stat_clear_per_vm, "%llu\n");
3987 }
3988 
3989 static const struct file_operations vm_stat_get_per_vm_fops = {
3990 	.owner   = THIS_MODULE,
3991 	.open    = vm_stat_get_per_vm_open,
3992 	.release = kvm_debugfs_release,
3993 	.read    = simple_attr_read,
3994 	.write   = simple_attr_write,
3995 	.llseek  = no_llseek,
3996 };
3997 
3998 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3999 {
4000 	int i;
4001 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4002 	struct kvm_vcpu *vcpu;
4003 
4004 	*val = 0;
4005 
4006 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4007 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
4008 
4009 	return 0;
4010 }
4011 
4012 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4013 {
4014 	int i;
4015 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4016 	struct kvm_vcpu *vcpu;
4017 
4018 	if (val)
4019 		return -EINVAL;
4020 
4021 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4022 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
4023 
4024 	return 0;
4025 }
4026 
4027 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4028 {
4029 	__simple_attr_check_format("%llu\n", 0ull);
4030 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4031 				 vcpu_stat_clear_per_vm, "%llu\n");
4032 }
4033 
4034 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4035 	.owner   = THIS_MODULE,
4036 	.open    = vcpu_stat_get_per_vm_open,
4037 	.release = kvm_debugfs_release,
4038 	.read    = simple_attr_read,
4039 	.write   = simple_attr_write,
4040 	.llseek  = no_llseek,
4041 };
4042 
4043 static const struct file_operations *stat_fops_per_vm[] = {
4044 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4045 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4046 };
4047 
4048 static int vm_stat_get(void *_offset, u64 *val)
4049 {
4050 	unsigned offset = (long)_offset;
4051 	struct kvm *kvm;
4052 	struct kvm_stat_data stat_tmp = {.offset = offset};
4053 	u64 tmp_val;
4054 
4055 	*val = 0;
4056 	mutex_lock(&kvm_lock);
4057 	list_for_each_entry(kvm, &vm_list, vm_list) {
4058 		stat_tmp.kvm = kvm;
4059 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4060 		*val += tmp_val;
4061 	}
4062 	mutex_unlock(&kvm_lock);
4063 	return 0;
4064 }
4065 
4066 static int vm_stat_clear(void *_offset, u64 val)
4067 {
4068 	unsigned offset = (long)_offset;
4069 	struct kvm *kvm;
4070 	struct kvm_stat_data stat_tmp = {.offset = offset};
4071 
4072 	if (val)
4073 		return -EINVAL;
4074 
4075 	mutex_lock(&kvm_lock);
4076 	list_for_each_entry(kvm, &vm_list, vm_list) {
4077 		stat_tmp.kvm = kvm;
4078 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4079 	}
4080 	mutex_unlock(&kvm_lock);
4081 
4082 	return 0;
4083 }
4084 
4085 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4086 
4087 static int vcpu_stat_get(void *_offset, u64 *val)
4088 {
4089 	unsigned offset = (long)_offset;
4090 	struct kvm *kvm;
4091 	struct kvm_stat_data stat_tmp = {.offset = offset};
4092 	u64 tmp_val;
4093 
4094 	*val = 0;
4095 	mutex_lock(&kvm_lock);
4096 	list_for_each_entry(kvm, &vm_list, vm_list) {
4097 		stat_tmp.kvm = kvm;
4098 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4099 		*val += tmp_val;
4100 	}
4101 	mutex_unlock(&kvm_lock);
4102 	return 0;
4103 }
4104 
4105 static int vcpu_stat_clear(void *_offset, u64 val)
4106 {
4107 	unsigned offset = (long)_offset;
4108 	struct kvm *kvm;
4109 	struct kvm_stat_data stat_tmp = {.offset = offset};
4110 
4111 	if (val)
4112 		return -EINVAL;
4113 
4114 	mutex_lock(&kvm_lock);
4115 	list_for_each_entry(kvm, &vm_list, vm_list) {
4116 		stat_tmp.kvm = kvm;
4117 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4118 	}
4119 	mutex_unlock(&kvm_lock);
4120 
4121 	return 0;
4122 }
4123 
4124 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4125 			"%llu\n");
4126 
4127 static const struct file_operations *stat_fops[] = {
4128 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
4129 	[KVM_STAT_VM]   = &vm_stat_fops,
4130 };
4131 
4132 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4133 {
4134 	struct kobj_uevent_env *env;
4135 	unsigned long long created, active;
4136 
4137 	if (!kvm_dev.this_device || !kvm)
4138 		return;
4139 
4140 	mutex_lock(&kvm_lock);
4141 	if (type == KVM_EVENT_CREATE_VM) {
4142 		kvm_createvm_count++;
4143 		kvm_active_vms++;
4144 	} else if (type == KVM_EVENT_DESTROY_VM) {
4145 		kvm_active_vms--;
4146 	}
4147 	created = kvm_createvm_count;
4148 	active = kvm_active_vms;
4149 	mutex_unlock(&kvm_lock);
4150 
4151 	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4152 	if (!env)
4153 		return;
4154 
4155 	add_uevent_var(env, "CREATED=%llu", created);
4156 	add_uevent_var(env, "COUNT=%llu", active);
4157 
4158 	if (type == KVM_EVENT_CREATE_VM) {
4159 		add_uevent_var(env, "EVENT=create");
4160 		kvm->userspace_pid = task_pid_nr(current);
4161 	} else if (type == KVM_EVENT_DESTROY_VM) {
4162 		add_uevent_var(env, "EVENT=destroy");
4163 	}
4164 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4165 
4166 	if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4167 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4168 
4169 		if (p) {
4170 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4171 			if (!IS_ERR(tmp))
4172 				add_uevent_var(env, "STATS_PATH=%s", tmp);
4173 			kfree(p);
4174 		}
4175 	}
4176 	/* no need for checks, since we are adding at most only 5 keys */
4177 	env->envp[env->envp_idx++] = NULL;
4178 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4179 	kfree(env);
4180 }
4181 
4182 static void kvm_init_debug(void)
4183 {
4184 	struct kvm_stats_debugfs_item *p;
4185 
4186 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4187 
4188 	kvm_debugfs_num_entries = 0;
4189 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4190 		int mode = p->mode ? p->mode : 0644;
4191 		debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4192 				    (void *)(long)p->offset,
4193 				    stat_fops[p->kind]);
4194 	}
4195 }
4196 
4197 static int kvm_suspend(void)
4198 {
4199 	if (kvm_usage_count)
4200 		hardware_disable_nolock(NULL);
4201 	return 0;
4202 }
4203 
4204 static void kvm_resume(void)
4205 {
4206 	if (kvm_usage_count) {
4207 #ifdef CONFIG_LOCKDEP
4208 		WARN_ON(lockdep_is_held(&kvm_count_lock));
4209 #endif
4210 		hardware_enable_nolock(NULL);
4211 	}
4212 }
4213 
4214 static struct syscore_ops kvm_syscore_ops = {
4215 	.suspend = kvm_suspend,
4216 	.resume = kvm_resume,
4217 };
4218 
4219 static inline
4220 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4221 {
4222 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
4223 }
4224 
4225 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4226 {
4227 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4228 
4229 	WRITE_ONCE(vcpu->preempted, false);
4230 	WRITE_ONCE(vcpu->ready, false);
4231 
4232 	kvm_arch_sched_in(vcpu, cpu);
4233 
4234 	kvm_arch_vcpu_load(vcpu, cpu);
4235 }
4236 
4237 static void kvm_sched_out(struct preempt_notifier *pn,
4238 			  struct task_struct *next)
4239 {
4240 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4241 
4242 	if (current->state == TASK_RUNNING) {
4243 		WRITE_ONCE(vcpu->preempted, true);
4244 		WRITE_ONCE(vcpu->ready, true);
4245 	}
4246 	kvm_arch_vcpu_put(vcpu);
4247 }
4248 
4249 static void check_processor_compat(void *rtn)
4250 {
4251 	*(int *)rtn = kvm_arch_check_processor_compat();
4252 }
4253 
4254 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4255 		  struct module *module)
4256 {
4257 	int r;
4258 	int cpu;
4259 
4260 	r = kvm_arch_init(opaque);
4261 	if (r)
4262 		goto out_fail;
4263 
4264 	/*
4265 	 * kvm_arch_init makes sure there's at most one caller
4266 	 * for architectures that support multiple implementations,
4267 	 * like intel and amd on x86.
4268 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4269 	 * conflicts in case kvm is already setup for another implementation.
4270 	 */
4271 	r = kvm_irqfd_init();
4272 	if (r)
4273 		goto out_irqfd;
4274 
4275 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4276 		r = -ENOMEM;
4277 		goto out_free_0;
4278 	}
4279 
4280 	r = kvm_arch_hardware_setup();
4281 	if (r < 0)
4282 		goto out_free_0a;
4283 
4284 	for_each_online_cpu(cpu) {
4285 		smp_call_function_single(cpu, check_processor_compat, &r, 1);
4286 		if (r < 0)
4287 			goto out_free_1;
4288 	}
4289 
4290 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4291 				      kvm_starting_cpu, kvm_dying_cpu);
4292 	if (r)
4293 		goto out_free_2;
4294 	register_reboot_notifier(&kvm_reboot_notifier);
4295 
4296 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4297 	if (!vcpu_align)
4298 		vcpu_align = __alignof__(struct kvm_vcpu);
4299 	kvm_vcpu_cache =
4300 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4301 					   SLAB_ACCOUNT,
4302 					   offsetof(struct kvm_vcpu, arch),
4303 					   sizeof_field(struct kvm_vcpu, arch),
4304 					   NULL);
4305 	if (!kvm_vcpu_cache) {
4306 		r = -ENOMEM;
4307 		goto out_free_3;
4308 	}
4309 
4310 	r = kvm_async_pf_init();
4311 	if (r)
4312 		goto out_free;
4313 
4314 	kvm_chardev_ops.owner = module;
4315 	kvm_vm_fops.owner = module;
4316 	kvm_vcpu_fops.owner = module;
4317 
4318 	r = misc_register(&kvm_dev);
4319 	if (r) {
4320 		pr_err("kvm: misc device register failed\n");
4321 		goto out_unreg;
4322 	}
4323 
4324 	register_syscore_ops(&kvm_syscore_ops);
4325 
4326 	kvm_preempt_ops.sched_in = kvm_sched_in;
4327 	kvm_preempt_ops.sched_out = kvm_sched_out;
4328 
4329 	kvm_init_debug();
4330 
4331 	r = kvm_vfio_ops_init();
4332 	WARN_ON(r);
4333 
4334 	return 0;
4335 
4336 out_unreg:
4337 	kvm_async_pf_deinit();
4338 out_free:
4339 	kmem_cache_destroy(kvm_vcpu_cache);
4340 out_free_3:
4341 	unregister_reboot_notifier(&kvm_reboot_notifier);
4342 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4343 out_free_2:
4344 out_free_1:
4345 	kvm_arch_hardware_unsetup();
4346 out_free_0a:
4347 	free_cpumask_var(cpus_hardware_enabled);
4348 out_free_0:
4349 	kvm_irqfd_exit();
4350 out_irqfd:
4351 	kvm_arch_exit();
4352 out_fail:
4353 	return r;
4354 }
4355 EXPORT_SYMBOL_GPL(kvm_init);
4356 
4357 void kvm_exit(void)
4358 {
4359 	debugfs_remove_recursive(kvm_debugfs_dir);
4360 	misc_deregister(&kvm_dev);
4361 	kmem_cache_destroy(kvm_vcpu_cache);
4362 	kvm_async_pf_deinit();
4363 	unregister_syscore_ops(&kvm_syscore_ops);
4364 	unregister_reboot_notifier(&kvm_reboot_notifier);
4365 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4366 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4367 	kvm_arch_hardware_unsetup();
4368 	kvm_arch_exit();
4369 	kvm_irqfd_exit();
4370 	free_cpumask_var(cpus_hardware_enabled);
4371 	kvm_vfio_ops_exit();
4372 }
4373 EXPORT_SYMBOL_GPL(kvm_exit);
4374