1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 54 #include <asm/processor.h> 55 #include <asm/ioctl.h> 56 #include <linux/uaccess.h> 57 #include <asm/pgtable.h> 58 59 #include "coalesced_mmio.h" 60 #include "async_pf.h" 61 #include "vfio.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/kvm.h> 65 66 /* Worst case buffer size needed for holding an integer. */ 67 #define ITOA_MAX_LEN 12 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 /* Architectures should define their poll value according to the halt latency */ 73 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 74 module_param(halt_poll_ns, uint, 0644); 75 EXPORT_SYMBOL_GPL(halt_poll_ns); 76 77 /* Default doubles per-vcpu halt_poll_ns. */ 78 unsigned int halt_poll_ns_grow = 2; 79 module_param(halt_poll_ns_grow, uint, 0644); 80 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 81 82 /* The start value to grow halt_poll_ns from */ 83 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 84 module_param(halt_poll_ns_grow_start, uint, 0644); 85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 86 87 /* Default resets per-vcpu halt_poll_ns . */ 88 unsigned int halt_poll_ns_shrink; 89 module_param(halt_poll_ns_shrink, uint, 0644); 90 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 91 92 /* 93 * Ordering of locks: 94 * 95 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 96 */ 97 98 DEFINE_MUTEX(kvm_lock); 99 static DEFINE_RAW_SPINLOCK(kvm_count_lock); 100 LIST_HEAD(vm_list); 101 102 static cpumask_var_t cpus_hardware_enabled; 103 static int kvm_usage_count; 104 static atomic_t hardware_enable_failed; 105 106 struct kmem_cache *kvm_vcpu_cache; 107 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 108 109 static __read_mostly struct preempt_ops kvm_preempt_ops; 110 111 struct dentry *kvm_debugfs_dir; 112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 113 114 static int kvm_debugfs_num_entries; 115 static const struct file_operations *stat_fops_per_vm[]; 116 117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 118 unsigned long arg); 119 #ifdef CONFIG_KVM_COMPAT 120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #define KVM_COMPAT(c) .compat_ioctl = (c) 123 #else 124 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 125 unsigned long arg) { return -EINVAL; } 126 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl 127 #endif 128 static int hardware_enable_all(void); 129 static void hardware_disable_all(void); 130 131 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 132 133 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn); 134 135 __visible bool kvm_rebooting; 136 EXPORT_SYMBOL_GPL(kvm_rebooting); 137 138 static bool largepages_enabled = true; 139 140 #define KVM_EVENT_CREATE_VM 0 141 #define KVM_EVENT_DESTROY_VM 1 142 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 143 static unsigned long long kvm_createvm_count; 144 static unsigned long long kvm_active_vms; 145 146 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 147 unsigned long start, unsigned long end, bool blockable) 148 { 149 return 0; 150 } 151 152 bool kvm_is_reserved_pfn(kvm_pfn_t pfn) 153 { 154 if (pfn_valid(pfn)) 155 return PageReserved(pfn_to_page(pfn)); 156 157 return true; 158 } 159 160 /* 161 * Switches to specified vcpu, until a matching vcpu_put() 162 */ 163 void vcpu_load(struct kvm_vcpu *vcpu) 164 { 165 int cpu = get_cpu(); 166 preempt_notifier_register(&vcpu->preempt_notifier); 167 kvm_arch_vcpu_load(vcpu, cpu); 168 put_cpu(); 169 } 170 EXPORT_SYMBOL_GPL(vcpu_load); 171 172 void vcpu_put(struct kvm_vcpu *vcpu) 173 { 174 preempt_disable(); 175 kvm_arch_vcpu_put(vcpu); 176 preempt_notifier_unregister(&vcpu->preempt_notifier); 177 preempt_enable(); 178 } 179 EXPORT_SYMBOL_GPL(vcpu_put); 180 181 /* TODO: merge with kvm_arch_vcpu_should_kick */ 182 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 183 { 184 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 185 186 /* 187 * We need to wait for the VCPU to reenable interrupts and get out of 188 * READING_SHADOW_PAGE_TABLES mode. 189 */ 190 if (req & KVM_REQUEST_WAIT) 191 return mode != OUTSIDE_GUEST_MODE; 192 193 /* 194 * Need to kick a running VCPU, but otherwise there is nothing to do. 195 */ 196 return mode == IN_GUEST_MODE; 197 } 198 199 static void ack_flush(void *_completed) 200 { 201 } 202 203 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait) 204 { 205 if (unlikely(!cpus)) 206 cpus = cpu_online_mask; 207 208 if (cpumask_empty(cpus)) 209 return false; 210 211 smp_call_function_many(cpus, ack_flush, NULL, wait); 212 return true; 213 } 214 215 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 216 unsigned long *vcpu_bitmap, cpumask_var_t tmp) 217 { 218 int i, cpu, me; 219 struct kvm_vcpu *vcpu; 220 bool called; 221 222 me = get_cpu(); 223 224 kvm_for_each_vcpu(i, vcpu, kvm) { 225 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap)) 226 continue; 227 228 kvm_make_request(req, vcpu); 229 cpu = vcpu->cpu; 230 231 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 232 continue; 233 234 if (tmp != NULL && cpu != -1 && cpu != me && 235 kvm_request_needs_ipi(vcpu, req)) 236 __cpumask_set_cpu(cpu, tmp); 237 } 238 239 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT)); 240 put_cpu(); 241 242 return called; 243 } 244 245 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 246 { 247 cpumask_var_t cpus; 248 bool called; 249 250 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 251 252 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus); 253 254 free_cpumask_var(cpus); 255 return called; 256 } 257 258 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 259 void kvm_flush_remote_tlbs(struct kvm *kvm) 260 { 261 /* 262 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in 263 * kvm_make_all_cpus_request. 264 */ 265 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty); 266 267 /* 268 * We want to publish modifications to the page tables before reading 269 * mode. Pairs with a memory barrier in arch-specific code. 270 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 271 * and smp_mb in walk_shadow_page_lockless_begin/end. 272 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 273 * 274 * There is already an smp_mb__after_atomic() before 275 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 276 * barrier here. 277 */ 278 if (!kvm_arch_flush_remote_tlb(kvm) 279 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 280 ++kvm->stat.remote_tlb_flush; 281 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 282 } 283 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 284 #endif 285 286 void kvm_reload_remote_mmus(struct kvm *kvm) 287 { 288 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 289 } 290 291 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 292 { 293 struct page *page; 294 int r; 295 296 mutex_init(&vcpu->mutex); 297 vcpu->cpu = -1; 298 vcpu->kvm = kvm; 299 vcpu->vcpu_id = id; 300 vcpu->pid = NULL; 301 init_swait_queue_head(&vcpu->wq); 302 kvm_async_pf_vcpu_init(vcpu); 303 304 vcpu->pre_pcpu = -1; 305 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list); 306 307 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 308 if (!page) { 309 r = -ENOMEM; 310 goto fail; 311 } 312 vcpu->run = page_address(page); 313 314 kvm_vcpu_set_in_spin_loop(vcpu, false); 315 kvm_vcpu_set_dy_eligible(vcpu, false); 316 vcpu->preempted = false; 317 vcpu->ready = false; 318 319 r = kvm_arch_vcpu_init(vcpu); 320 if (r < 0) 321 goto fail_free_run; 322 return 0; 323 324 fail_free_run: 325 free_page((unsigned long)vcpu->run); 326 fail: 327 return r; 328 } 329 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 330 331 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 332 { 333 /* 334 * no need for rcu_read_lock as VCPU_RUN is the only place that 335 * will change the vcpu->pid pointer and on uninit all file 336 * descriptors are already gone. 337 */ 338 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 339 kvm_arch_vcpu_uninit(vcpu); 340 free_page((unsigned long)vcpu->run); 341 } 342 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 343 344 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 345 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 346 { 347 return container_of(mn, struct kvm, mmu_notifier); 348 } 349 350 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 351 struct mm_struct *mm, 352 unsigned long address, 353 pte_t pte) 354 { 355 struct kvm *kvm = mmu_notifier_to_kvm(mn); 356 int idx; 357 358 idx = srcu_read_lock(&kvm->srcu); 359 spin_lock(&kvm->mmu_lock); 360 kvm->mmu_notifier_seq++; 361 362 if (kvm_set_spte_hva(kvm, address, pte)) 363 kvm_flush_remote_tlbs(kvm); 364 365 spin_unlock(&kvm->mmu_lock); 366 srcu_read_unlock(&kvm->srcu, idx); 367 } 368 369 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 370 const struct mmu_notifier_range *range) 371 { 372 struct kvm *kvm = mmu_notifier_to_kvm(mn); 373 int need_tlb_flush = 0, idx; 374 int ret; 375 376 idx = srcu_read_lock(&kvm->srcu); 377 spin_lock(&kvm->mmu_lock); 378 /* 379 * The count increase must become visible at unlock time as no 380 * spte can be established without taking the mmu_lock and 381 * count is also read inside the mmu_lock critical section. 382 */ 383 kvm->mmu_notifier_count++; 384 need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end); 385 need_tlb_flush |= kvm->tlbs_dirty; 386 /* we've to flush the tlb before the pages can be freed */ 387 if (need_tlb_flush) 388 kvm_flush_remote_tlbs(kvm); 389 390 spin_unlock(&kvm->mmu_lock); 391 392 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start, 393 range->end, 394 mmu_notifier_range_blockable(range)); 395 396 srcu_read_unlock(&kvm->srcu, idx); 397 398 return ret; 399 } 400 401 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 402 const struct mmu_notifier_range *range) 403 { 404 struct kvm *kvm = mmu_notifier_to_kvm(mn); 405 406 spin_lock(&kvm->mmu_lock); 407 /* 408 * This sequence increase will notify the kvm page fault that 409 * the page that is going to be mapped in the spte could have 410 * been freed. 411 */ 412 kvm->mmu_notifier_seq++; 413 smp_wmb(); 414 /* 415 * The above sequence increase must be visible before the 416 * below count decrease, which is ensured by the smp_wmb above 417 * in conjunction with the smp_rmb in mmu_notifier_retry(). 418 */ 419 kvm->mmu_notifier_count--; 420 spin_unlock(&kvm->mmu_lock); 421 422 BUG_ON(kvm->mmu_notifier_count < 0); 423 } 424 425 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 426 struct mm_struct *mm, 427 unsigned long start, 428 unsigned long end) 429 { 430 struct kvm *kvm = mmu_notifier_to_kvm(mn); 431 int young, idx; 432 433 idx = srcu_read_lock(&kvm->srcu); 434 spin_lock(&kvm->mmu_lock); 435 436 young = kvm_age_hva(kvm, start, end); 437 if (young) 438 kvm_flush_remote_tlbs(kvm); 439 440 spin_unlock(&kvm->mmu_lock); 441 srcu_read_unlock(&kvm->srcu, idx); 442 443 return young; 444 } 445 446 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 447 struct mm_struct *mm, 448 unsigned long start, 449 unsigned long end) 450 { 451 struct kvm *kvm = mmu_notifier_to_kvm(mn); 452 int young, idx; 453 454 idx = srcu_read_lock(&kvm->srcu); 455 spin_lock(&kvm->mmu_lock); 456 /* 457 * Even though we do not flush TLB, this will still adversely 458 * affect performance on pre-Haswell Intel EPT, where there is 459 * no EPT Access Bit to clear so that we have to tear down EPT 460 * tables instead. If we find this unacceptable, we can always 461 * add a parameter to kvm_age_hva so that it effectively doesn't 462 * do anything on clear_young. 463 * 464 * Also note that currently we never issue secondary TLB flushes 465 * from clear_young, leaving this job up to the regular system 466 * cadence. If we find this inaccurate, we might come up with a 467 * more sophisticated heuristic later. 468 */ 469 young = kvm_age_hva(kvm, start, end); 470 spin_unlock(&kvm->mmu_lock); 471 srcu_read_unlock(&kvm->srcu, idx); 472 473 return young; 474 } 475 476 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 477 struct mm_struct *mm, 478 unsigned long address) 479 { 480 struct kvm *kvm = mmu_notifier_to_kvm(mn); 481 int young, idx; 482 483 idx = srcu_read_lock(&kvm->srcu); 484 spin_lock(&kvm->mmu_lock); 485 young = kvm_test_age_hva(kvm, address); 486 spin_unlock(&kvm->mmu_lock); 487 srcu_read_unlock(&kvm->srcu, idx); 488 489 return young; 490 } 491 492 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 493 struct mm_struct *mm) 494 { 495 struct kvm *kvm = mmu_notifier_to_kvm(mn); 496 int idx; 497 498 idx = srcu_read_lock(&kvm->srcu); 499 kvm_arch_flush_shadow_all(kvm); 500 srcu_read_unlock(&kvm->srcu, idx); 501 } 502 503 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 504 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 505 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 506 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 507 .clear_young = kvm_mmu_notifier_clear_young, 508 .test_young = kvm_mmu_notifier_test_young, 509 .change_pte = kvm_mmu_notifier_change_pte, 510 .release = kvm_mmu_notifier_release, 511 }; 512 513 static int kvm_init_mmu_notifier(struct kvm *kvm) 514 { 515 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 516 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 517 } 518 519 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 520 521 static int kvm_init_mmu_notifier(struct kvm *kvm) 522 { 523 return 0; 524 } 525 526 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 527 528 static struct kvm_memslots *kvm_alloc_memslots(void) 529 { 530 int i; 531 struct kvm_memslots *slots; 532 533 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 534 if (!slots) 535 return NULL; 536 537 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 538 slots->id_to_index[i] = slots->memslots[i].id = i; 539 540 return slots; 541 } 542 543 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 544 { 545 if (!memslot->dirty_bitmap) 546 return; 547 548 kvfree(memslot->dirty_bitmap); 549 memslot->dirty_bitmap = NULL; 550 } 551 552 /* 553 * Free any memory in @free but not in @dont. 554 */ 555 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free, 556 struct kvm_memory_slot *dont) 557 { 558 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 559 kvm_destroy_dirty_bitmap(free); 560 561 kvm_arch_free_memslot(kvm, free, dont); 562 563 free->npages = 0; 564 } 565 566 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 567 { 568 struct kvm_memory_slot *memslot; 569 570 if (!slots) 571 return; 572 573 kvm_for_each_memslot(memslot, slots) 574 kvm_free_memslot(kvm, memslot, NULL); 575 576 kvfree(slots); 577 } 578 579 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 580 { 581 int i; 582 583 if (!kvm->debugfs_dentry) 584 return; 585 586 debugfs_remove_recursive(kvm->debugfs_dentry); 587 588 if (kvm->debugfs_stat_data) { 589 for (i = 0; i < kvm_debugfs_num_entries; i++) 590 kfree(kvm->debugfs_stat_data[i]); 591 kfree(kvm->debugfs_stat_data); 592 } 593 } 594 595 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd) 596 { 597 char dir_name[ITOA_MAX_LEN * 2]; 598 struct kvm_stat_data *stat_data; 599 struct kvm_stats_debugfs_item *p; 600 601 if (!debugfs_initialized()) 602 return 0; 603 604 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd); 605 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir); 606 607 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 608 sizeof(*kvm->debugfs_stat_data), 609 GFP_KERNEL_ACCOUNT); 610 if (!kvm->debugfs_stat_data) 611 return -ENOMEM; 612 613 for (p = debugfs_entries; p->name; p++) { 614 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 615 if (!stat_data) 616 return -ENOMEM; 617 618 stat_data->kvm = kvm; 619 stat_data->offset = p->offset; 620 stat_data->mode = p->mode ? p->mode : 0644; 621 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data; 622 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry, 623 stat_data, stat_fops_per_vm[p->kind]); 624 } 625 return 0; 626 } 627 628 static struct kvm *kvm_create_vm(unsigned long type) 629 { 630 struct kvm *kvm = kvm_arch_alloc_vm(); 631 int r = -ENOMEM; 632 int i; 633 634 if (!kvm) 635 return ERR_PTR(-ENOMEM); 636 637 spin_lock_init(&kvm->mmu_lock); 638 mmgrab(current->mm); 639 kvm->mm = current->mm; 640 kvm_eventfd_init(kvm); 641 mutex_init(&kvm->lock); 642 mutex_init(&kvm->irq_lock); 643 mutex_init(&kvm->slots_lock); 644 INIT_LIST_HEAD(&kvm->devices); 645 646 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 647 648 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 649 struct kvm_memslots *slots = kvm_alloc_memslots(); 650 651 if (!slots) 652 goto out_err_no_arch_destroy_vm; 653 /* Generations must be different for each address space. */ 654 slots->generation = i; 655 rcu_assign_pointer(kvm->memslots[i], slots); 656 } 657 658 for (i = 0; i < KVM_NR_BUSES; i++) { 659 rcu_assign_pointer(kvm->buses[i], 660 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 661 if (!kvm->buses[i]) 662 goto out_err_no_arch_destroy_vm; 663 } 664 665 refcount_set(&kvm->users_count, 1); 666 r = kvm_arch_init_vm(kvm, type); 667 if (r) 668 goto out_err_no_arch_destroy_vm; 669 670 r = hardware_enable_all(); 671 if (r) 672 goto out_err_no_disable; 673 674 #ifdef CONFIG_HAVE_KVM_IRQFD 675 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 676 #endif 677 678 if (init_srcu_struct(&kvm->srcu)) 679 goto out_err_no_srcu; 680 if (init_srcu_struct(&kvm->irq_srcu)) 681 goto out_err_no_irq_srcu; 682 683 r = kvm_init_mmu_notifier(kvm); 684 if (r) 685 goto out_err; 686 687 mutex_lock(&kvm_lock); 688 list_add(&kvm->vm_list, &vm_list); 689 mutex_unlock(&kvm_lock); 690 691 preempt_notifier_inc(); 692 693 return kvm; 694 695 out_err: 696 cleanup_srcu_struct(&kvm->irq_srcu); 697 out_err_no_irq_srcu: 698 cleanup_srcu_struct(&kvm->srcu); 699 out_err_no_srcu: 700 hardware_disable_all(); 701 out_err_no_disable: 702 kvm_arch_destroy_vm(kvm); 703 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 704 out_err_no_arch_destroy_vm: 705 for (i = 0; i < KVM_NR_BUSES; i++) 706 kfree(kvm_get_bus(kvm, i)); 707 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 708 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 709 kvm_arch_free_vm(kvm); 710 mmdrop(current->mm); 711 return ERR_PTR(r); 712 } 713 714 static void kvm_destroy_devices(struct kvm *kvm) 715 { 716 struct kvm_device *dev, *tmp; 717 718 /* 719 * We do not need to take the kvm->lock here, because nobody else 720 * has a reference to the struct kvm at this point and therefore 721 * cannot access the devices list anyhow. 722 */ 723 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 724 list_del(&dev->vm_node); 725 dev->ops->destroy(dev); 726 } 727 } 728 729 static void kvm_destroy_vm(struct kvm *kvm) 730 { 731 int i; 732 struct mm_struct *mm = kvm->mm; 733 734 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 735 kvm_destroy_vm_debugfs(kvm); 736 kvm_arch_sync_events(kvm); 737 mutex_lock(&kvm_lock); 738 list_del(&kvm->vm_list); 739 mutex_unlock(&kvm_lock); 740 kvm_free_irq_routing(kvm); 741 for (i = 0; i < KVM_NR_BUSES; i++) { 742 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 743 744 if (bus) 745 kvm_io_bus_destroy(bus); 746 kvm->buses[i] = NULL; 747 } 748 kvm_coalesced_mmio_free(kvm); 749 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 750 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 751 #else 752 kvm_arch_flush_shadow_all(kvm); 753 #endif 754 kvm_arch_destroy_vm(kvm); 755 kvm_destroy_devices(kvm); 756 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 757 kvm_free_memslots(kvm, __kvm_memslots(kvm, i)); 758 cleanup_srcu_struct(&kvm->irq_srcu); 759 cleanup_srcu_struct(&kvm->srcu); 760 kvm_arch_free_vm(kvm); 761 preempt_notifier_dec(); 762 hardware_disable_all(); 763 mmdrop(mm); 764 } 765 766 void kvm_get_kvm(struct kvm *kvm) 767 { 768 refcount_inc(&kvm->users_count); 769 } 770 EXPORT_SYMBOL_GPL(kvm_get_kvm); 771 772 void kvm_put_kvm(struct kvm *kvm) 773 { 774 if (refcount_dec_and_test(&kvm->users_count)) 775 kvm_destroy_vm(kvm); 776 } 777 EXPORT_SYMBOL_GPL(kvm_put_kvm); 778 779 780 static int kvm_vm_release(struct inode *inode, struct file *filp) 781 { 782 struct kvm *kvm = filp->private_data; 783 784 kvm_irqfd_release(kvm); 785 786 kvm_put_kvm(kvm); 787 return 0; 788 } 789 790 /* 791 * Allocation size is twice as large as the actual dirty bitmap size. 792 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 793 */ 794 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 795 { 796 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 797 798 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT); 799 if (!memslot->dirty_bitmap) 800 return -ENOMEM; 801 802 return 0; 803 } 804 805 /* 806 * Insert memslot and re-sort memslots based on their GFN, 807 * so binary search could be used to lookup GFN. 808 * Sorting algorithm takes advantage of having initially 809 * sorted array and known changed memslot position. 810 */ 811 static void update_memslots(struct kvm_memslots *slots, 812 struct kvm_memory_slot *new, 813 enum kvm_mr_change change) 814 { 815 int id = new->id; 816 int i = slots->id_to_index[id]; 817 struct kvm_memory_slot *mslots = slots->memslots; 818 819 WARN_ON(mslots[i].id != id); 820 switch (change) { 821 case KVM_MR_CREATE: 822 slots->used_slots++; 823 WARN_ON(mslots[i].npages || !new->npages); 824 break; 825 case KVM_MR_DELETE: 826 slots->used_slots--; 827 WARN_ON(new->npages || !mslots[i].npages); 828 break; 829 default: 830 break; 831 } 832 833 while (i < KVM_MEM_SLOTS_NUM - 1 && 834 new->base_gfn <= mslots[i + 1].base_gfn) { 835 if (!mslots[i + 1].npages) 836 break; 837 mslots[i] = mslots[i + 1]; 838 slots->id_to_index[mslots[i].id] = i; 839 i++; 840 } 841 842 /* 843 * The ">=" is needed when creating a slot with base_gfn == 0, 844 * so that it moves before all those with base_gfn == npages == 0. 845 * 846 * On the other hand, if new->npages is zero, the above loop has 847 * already left i pointing to the beginning of the empty part of 848 * mslots, and the ">=" would move the hole backwards in this 849 * case---which is wrong. So skip the loop when deleting a slot. 850 */ 851 if (new->npages) { 852 while (i > 0 && 853 new->base_gfn >= mslots[i - 1].base_gfn) { 854 mslots[i] = mslots[i - 1]; 855 slots->id_to_index[mslots[i].id] = i; 856 i--; 857 } 858 } else 859 WARN_ON_ONCE(i != slots->used_slots); 860 861 mslots[i] = *new; 862 slots->id_to_index[mslots[i].id] = i; 863 } 864 865 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 866 { 867 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 868 869 #ifdef __KVM_HAVE_READONLY_MEM 870 valid_flags |= KVM_MEM_READONLY; 871 #endif 872 873 if (mem->flags & ~valid_flags) 874 return -EINVAL; 875 876 return 0; 877 } 878 879 static struct kvm_memslots *install_new_memslots(struct kvm *kvm, 880 int as_id, struct kvm_memslots *slots) 881 { 882 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id); 883 u64 gen = old_memslots->generation; 884 885 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 886 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 887 888 rcu_assign_pointer(kvm->memslots[as_id], slots); 889 synchronize_srcu_expedited(&kvm->srcu); 890 891 /* 892 * Increment the new memslot generation a second time, dropping the 893 * update in-progress flag and incrementing then generation based on 894 * the number of address spaces. This provides a unique and easily 895 * identifiable generation number while the memslots are in flux. 896 */ 897 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 898 899 /* 900 * Generations must be unique even across address spaces. We do not need 901 * a global counter for that, instead the generation space is evenly split 902 * across address spaces. For example, with two address spaces, address 903 * space 0 will use generations 0, 2, 4, ... while address space 1 will 904 * use generations 1, 3, 5, ... 905 */ 906 gen += KVM_ADDRESS_SPACE_NUM; 907 908 kvm_arch_memslots_updated(kvm, gen); 909 910 slots->generation = gen; 911 912 return old_memslots; 913 } 914 915 /* 916 * Allocate some memory and give it an address in the guest physical address 917 * space. 918 * 919 * Discontiguous memory is allowed, mostly for framebuffers. 920 * 921 * Must be called holding kvm->slots_lock for write. 922 */ 923 int __kvm_set_memory_region(struct kvm *kvm, 924 const struct kvm_userspace_memory_region *mem) 925 { 926 int r; 927 gfn_t base_gfn; 928 unsigned long npages; 929 struct kvm_memory_slot *slot; 930 struct kvm_memory_slot old, new; 931 struct kvm_memslots *slots = NULL, *old_memslots; 932 int as_id, id; 933 enum kvm_mr_change change; 934 935 r = check_memory_region_flags(mem); 936 if (r) 937 goto out; 938 939 r = -EINVAL; 940 as_id = mem->slot >> 16; 941 id = (u16)mem->slot; 942 943 /* General sanity checks */ 944 if (mem->memory_size & (PAGE_SIZE - 1)) 945 goto out; 946 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 947 goto out; 948 /* We can read the guest memory with __xxx_user() later on. */ 949 if ((id < KVM_USER_MEM_SLOTS) && 950 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 951 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 952 mem->memory_size))) 953 goto out; 954 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 955 goto out; 956 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 957 goto out; 958 959 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id); 960 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 961 npages = mem->memory_size >> PAGE_SHIFT; 962 963 if (npages > KVM_MEM_MAX_NR_PAGES) 964 goto out; 965 966 new = old = *slot; 967 968 new.id = id; 969 new.base_gfn = base_gfn; 970 new.npages = npages; 971 new.flags = mem->flags; 972 973 if (npages) { 974 if (!old.npages) 975 change = KVM_MR_CREATE; 976 else { /* Modify an existing slot. */ 977 if ((mem->userspace_addr != old.userspace_addr) || 978 (npages != old.npages) || 979 ((new.flags ^ old.flags) & KVM_MEM_READONLY)) 980 goto out; 981 982 if (base_gfn != old.base_gfn) 983 change = KVM_MR_MOVE; 984 else if (new.flags != old.flags) 985 change = KVM_MR_FLAGS_ONLY; 986 else { /* Nothing to change. */ 987 r = 0; 988 goto out; 989 } 990 } 991 } else { 992 if (!old.npages) 993 goto out; 994 995 change = KVM_MR_DELETE; 996 new.base_gfn = 0; 997 new.flags = 0; 998 } 999 1000 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { 1001 /* Check for overlaps */ 1002 r = -EEXIST; 1003 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) { 1004 if (slot->id == id) 1005 continue; 1006 if (!((base_gfn + npages <= slot->base_gfn) || 1007 (base_gfn >= slot->base_gfn + slot->npages))) 1008 goto out; 1009 } 1010 } 1011 1012 /* Free page dirty bitmap if unneeded */ 1013 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 1014 new.dirty_bitmap = NULL; 1015 1016 r = -ENOMEM; 1017 if (change == KVM_MR_CREATE) { 1018 new.userspace_addr = mem->userspace_addr; 1019 1020 if (kvm_arch_create_memslot(kvm, &new, npages)) 1021 goto out_free; 1022 } 1023 1024 /* Allocate page dirty bitmap if needed */ 1025 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 1026 if (kvm_create_dirty_bitmap(&new) < 0) 1027 goto out_free; 1028 } 1029 1030 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT); 1031 if (!slots) 1032 goto out_free; 1033 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots)); 1034 1035 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) { 1036 slot = id_to_memslot(slots, id); 1037 slot->flags |= KVM_MEMSLOT_INVALID; 1038 1039 old_memslots = install_new_memslots(kvm, as_id, slots); 1040 1041 /* From this point no new shadow pages pointing to a deleted, 1042 * or moved, memslot will be created. 1043 * 1044 * validation of sp->gfn happens in: 1045 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1046 * - kvm_is_visible_gfn (mmu_check_roots) 1047 */ 1048 kvm_arch_flush_shadow_memslot(kvm, slot); 1049 1050 /* 1051 * We can re-use the old_memslots from above, the only difference 1052 * from the currently installed memslots is the invalid flag. This 1053 * will get overwritten by update_memslots anyway. 1054 */ 1055 slots = old_memslots; 1056 } 1057 1058 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change); 1059 if (r) 1060 goto out_slots; 1061 1062 /* actual memory is freed via old in kvm_free_memslot below */ 1063 if (change == KVM_MR_DELETE) { 1064 new.dirty_bitmap = NULL; 1065 memset(&new.arch, 0, sizeof(new.arch)); 1066 } 1067 1068 update_memslots(slots, &new, change); 1069 old_memslots = install_new_memslots(kvm, as_id, slots); 1070 1071 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change); 1072 1073 kvm_free_memslot(kvm, &old, &new); 1074 kvfree(old_memslots); 1075 return 0; 1076 1077 out_slots: 1078 kvfree(slots); 1079 out_free: 1080 kvm_free_memslot(kvm, &new, &old); 1081 out: 1082 return r; 1083 } 1084 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 1085 1086 int kvm_set_memory_region(struct kvm *kvm, 1087 const struct kvm_userspace_memory_region *mem) 1088 { 1089 int r; 1090 1091 mutex_lock(&kvm->slots_lock); 1092 r = __kvm_set_memory_region(kvm, mem); 1093 mutex_unlock(&kvm->slots_lock); 1094 return r; 1095 } 1096 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 1097 1098 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 1099 struct kvm_userspace_memory_region *mem) 1100 { 1101 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 1102 return -EINVAL; 1103 1104 return kvm_set_memory_region(kvm, mem); 1105 } 1106 1107 int kvm_get_dirty_log(struct kvm *kvm, 1108 struct kvm_dirty_log *log, int *is_dirty) 1109 { 1110 struct kvm_memslots *slots; 1111 struct kvm_memory_slot *memslot; 1112 int i, as_id, id; 1113 unsigned long n; 1114 unsigned long any = 0; 1115 1116 as_id = log->slot >> 16; 1117 id = (u16)log->slot; 1118 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1119 return -EINVAL; 1120 1121 slots = __kvm_memslots(kvm, as_id); 1122 memslot = id_to_memslot(slots, id); 1123 if (!memslot->dirty_bitmap) 1124 return -ENOENT; 1125 1126 n = kvm_dirty_bitmap_bytes(memslot); 1127 1128 for (i = 0; !any && i < n/sizeof(long); ++i) 1129 any = memslot->dirty_bitmap[i]; 1130 1131 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 1132 return -EFAULT; 1133 1134 if (any) 1135 *is_dirty = 1; 1136 return 0; 1137 } 1138 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 1139 1140 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1141 /** 1142 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 1143 * and reenable dirty page tracking for the corresponding pages. 1144 * @kvm: pointer to kvm instance 1145 * @log: slot id and address to which we copy the log 1146 * @flush: true if TLB flush is needed by caller 1147 * 1148 * We need to keep it in mind that VCPU threads can write to the bitmap 1149 * concurrently. So, to avoid losing track of dirty pages we keep the 1150 * following order: 1151 * 1152 * 1. Take a snapshot of the bit and clear it if needed. 1153 * 2. Write protect the corresponding page. 1154 * 3. Copy the snapshot to the userspace. 1155 * 4. Upon return caller flushes TLB's if needed. 1156 * 1157 * Between 2 and 4, the guest may write to the page using the remaining TLB 1158 * entry. This is not a problem because the page is reported dirty using 1159 * the snapshot taken before and step 4 ensures that writes done after 1160 * exiting to userspace will be logged for the next call. 1161 * 1162 */ 1163 int kvm_get_dirty_log_protect(struct kvm *kvm, 1164 struct kvm_dirty_log *log, bool *flush) 1165 { 1166 struct kvm_memslots *slots; 1167 struct kvm_memory_slot *memslot; 1168 int i, as_id, id; 1169 unsigned long n; 1170 unsigned long *dirty_bitmap; 1171 unsigned long *dirty_bitmap_buffer; 1172 1173 as_id = log->slot >> 16; 1174 id = (u16)log->slot; 1175 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1176 return -EINVAL; 1177 1178 slots = __kvm_memslots(kvm, as_id); 1179 memslot = id_to_memslot(slots, id); 1180 1181 dirty_bitmap = memslot->dirty_bitmap; 1182 if (!dirty_bitmap) 1183 return -ENOENT; 1184 1185 n = kvm_dirty_bitmap_bytes(memslot); 1186 *flush = false; 1187 if (kvm->manual_dirty_log_protect) { 1188 /* 1189 * Unlike kvm_get_dirty_log, we always return false in *flush, 1190 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 1191 * is some code duplication between this function and 1192 * kvm_get_dirty_log, but hopefully all architecture 1193 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 1194 * can be eliminated. 1195 */ 1196 dirty_bitmap_buffer = dirty_bitmap; 1197 } else { 1198 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1199 memset(dirty_bitmap_buffer, 0, n); 1200 1201 spin_lock(&kvm->mmu_lock); 1202 for (i = 0; i < n / sizeof(long); i++) { 1203 unsigned long mask; 1204 gfn_t offset; 1205 1206 if (!dirty_bitmap[i]) 1207 continue; 1208 1209 *flush = true; 1210 mask = xchg(&dirty_bitmap[i], 0); 1211 dirty_bitmap_buffer[i] = mask; 1212 1213 offset = i * BITS_PER_LONG; 1214 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1215 offset, mask); 1216 } 1217 spin_unlock(&kvm->mmu_lock); 1218 } 1219 1220 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 1221 return -EFAULT; 1222 return 0; 1223 } 1224 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect); 1225 1226 /** 1227 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 1228 * and reenable dirty page tracking for the corresponding pages. 1229 * @kvm: pointer to kvm instance 1230 * @log: slot id and address from which to fetch the bitmap of dirty pages 1231 * @flush: true if TLB flush is needed by caller 1232 */ 1233 int kvm_clear_dirty_log_protect(struct kvm *kvm, 1234 struct kvm_clear_dirty_log *log, bool *flush) 1235 { 1236 struct kvm_memslots *slots; 1237 struct kvm_memory_slot *memslot; 1238 int as_id, id; 1239 gfn_t offset; 1240 unsigned long i, n; 1241 unsigned long *dirty_bitmap; 1242 unsigned long *dirty_bitmap_buffer; 1243 1244 as_id = log->slot >> 16; 1245 id = (u16)log->slot; 1246 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 1247 return -EINVAL; 1248 1249 if (log->first_page & 63) 1250 return -EINVAL; 1251 1252 slots = __kvm_memslots(kvm, as_id); 1253 memslot = id_to_memslot(slots, id); 1254 1255 dirty_bitmap = memslot->dirty_bitmap; 1256 if (!dirty_bitmap) 1257 return -ENOENT; 1258 1259 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 1260 1261 if (log->first_page > memslot->npages || 1262 log->num_pages > memslot->npages - log->first_page || 1263 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 1264 return -EINVAL; 1265 1266 *flush = false; 1267 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 1268 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 1269 return -EFAULT; 1270 1271 spin_lock(&kvm->mmu_lock); 1272 for (offset = log->first_page, i = offset / BITS_PER_LONG, 1273 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 1274 i++, offset += BITS_PER_LONG) { 1275 unsigned long mask = *dirty_bitmap_buffer++; 1276 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 1277 if (!mask) 1278 continue; 1279 1280 mask &= atomic_long_fetch_andnot(mask, p); 1281 1282 /* 1283 * mask contains the bits that really have been cleared. This 1284 * never includes any bits beyond the length of the memslot (if 1285 * the length is not aligned to 64 pages), therefore it is not 1286 * a problem if userspace sets them in log->dirty_bitmap. 1287 */ 1288 if (mask) { 1289 *flush = true; 1290 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 1291 offset, mask); 1292 } 1293 } 1294 spin_unlock(&kvm->mmu_lock); 1295 1296 return 0; 1297 } 1298 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect); 1299 #endif 1300 1301 bool kvm_largepages_enabled(void) 1302 { 1303 return largepages_enabled; 1304 } 1305 1306 void kvm_disable_largepages(void) 1307 { 1308 largepages_enabled = false; 1309 } 1310 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 1311 1312 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 1313 { 1314 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 1315 } 1316 EXPORT_SYMBOL_GPL(gfn_to_memslot); 1317 1318 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 1319 { 1320 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn); 1321 } 1322 1323 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 1324 { 1325 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 1326 1327 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS || 1328 memslot->flags & KVM_MEMSLOT_INVALID) 1329 return false; 1330 1331 return true; 1332 } 1333 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 1334 1335 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 1336 { 1337 struct vm_area_struct *vma; 1338 unsigned long addr, size; 1339 1340 size = PAGE_SIZE; 1341 1342 addr = gfn_to_hva(kvm, gfn); 1343 if (kvm_is_error_hva(addr)) 1344 return PAGE_SIZE; 1345 1346 down_read(¤t->mm->mmap_sem); 1347 vma = find_vma(current->mm, addr); 1348 if (!vma) 1349 goto out; 1350 1351 size = vma_kernel_pagesize(vma); 1352 1353 out: 1354 up_read(¤t->mm->mmap_sem); 1355 1356 return size; 1357 } 1358 1359 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 1360 { 1361 return slot->flags & KVM_MEM_READONLY; 1362 } 1363 1364 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1365 gfn_t *nr_pages, bool write) 1366 { 1367 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 1368 return KVM_HVA_ERR_BAD; 1369 1370 if (memslot_is_readonly(slot) && write) 1371 return KVM_HVA_ERR_RO_BAD; 1372 1373 if (nr_pages) 1374 *nr_pages = slot->npages - (gfn - slot->base_gfn); 1375 1376 return __gfn_to_hva_memslot(slot, gfn); 1377 } 1378 1379 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 1380 gfn_t *nr_pages) 1381 { 1382 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1383 } 1384 1385 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1386 gfn_t gfn) 1387 { 1388 return gfn_to_hva_many(slot, gfn, NULL); 1389 } 1390 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1391 1392 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1393 { 1394 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1395 } 1396 EXPORT_SYMBOL_GPL(gfn_to_hva); 1397 1398 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 1399 { 1400 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 1401 } 1402 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 1403 1404 /* 1405 * Return the hva of a @gfn and the R/W attribute if possible. 1406 * 1407 * @slot: the kvm_memory_slot which contains @gfn 1408 * @gfn: the gfn to be translated 1409 * @writable: used to return the read/write attribute of the @slot if the hva 1410 * is valid and @writable is not NULL 1411 */ 1412 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 1413 gfn_t gfn, bool *writable) 1414 { 1415 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 1416 1417 if (!kvm_is_error_hva(hva) && writable) 1418 *writable = !memslot_is_readonly(slot); 1419 1420 return hva; 1421 } 1422 1423 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 1424 { 1425 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1426 1427 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1428 } 1429 1430 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 1431 { 1432 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1433 1434 return gfn_to_hva_memslot_prot(slot, gfn, writable); 1435 } 1436 1437 static inline int check_user_page_hwpoison(unsigned long addr) 1438 { 1439 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 1440 1441 rc = get_user_pages(addr, 1, flags, NULL, NULL); 1442 return rc == -EHWPOISON; 1443 } 1444 1445 /* 1446 * The fast path to get the writable pfn which will be stored in @pfn, 1447 * true indicates success, otherwise false is returned. It's also the 1448 * only part that runs if we can are in atomic context. 1449 */ 1450 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 1451 bool *writable, kvm_pfn_t *pfn) 1452 { 1453 struct page *page[1]; 1454 int npages; 1455 1456 /* 1457 * Fast pin a writable pfn only if it is a write fault request 1458 * or the caller allows to map a writable pfn for a read fault 1459 * request. 1460 */ 1461 if (!(write_fault || writable)) 1462 return false; 1463 1464 npages = __get_user_pages_fast(addr, 1, 1, page); 1465 if (npages == 1) { 1466 *pfn = page_to_pfn(page[0]); 1467 1468 if (writable) 1469 *writable = true; 1470 return true; 1471 } 1472 1473 return false; 1474 } 1475 1476 /* 1477 * The slow path to get the pfn of the specified host virtual address, 1478 * 1 indicates success, -errno is returned if error is detected. 1479 */ 1480 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1481 bool *writable, kvm_pfn_t *pfn) 1482 { 1483 unsigned int flags = FOLL_HWPOISON; 1484 struct page *page; 1485 int npages = 0; 1486 1487 might_sleep(); 1488 1489 if (writable) 1490 *writable = write_fault; 1491 1492 if (write_fault) 1493 flags |= FOLL_WRITE; 1494 if (async) 1495 flags |= FOLL_NOWAIT; 1496 1497 npages = get_user_pages_unlocked(addr, 1, &page, flags); 1498 if (npages != 1) 1499 return npages; 1500 1501 /* map read fault as writable if possible */ 1502 if (unlikely(!write_fault) && writable) { 1503 struct page *wpage; 1504 1505 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) { 1506 *writable = true; 1507 put_page(page); 1508 page = wpage; 1509 } 1510 } 1511 *pfn = page_to_pfn(page); 1512 return npages; 1513 } 1514 1515 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1516 { 1517 if (unlikely(!(vma->vm_flags & VM_READ))) 1518 return false; 1519 1520 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1521 return false; 1522 1523 return true; 1524 } 1525 1526 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 1527 unsigned long addr, bool *async, 1528 bool write_fault, bool *writable, 1529 kvm_pfn_t *p_pfn) 1530 { 1531 unsigned long pfn; 1532 int r; 1533 1534 r = follow_pfn(vma, addr, &pfn); 1535 if (r) { 1536 /* 1537 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 1538 * not call the fault handler, so do it here. 1539 */ 1540 bool unlocked = false; 1541 r = fixup_user_fault(current, current->mm, addr, 1542 (write_fault ? FAULT_FLAG_WRITE : 0), 1543 &unlocked); 1544 if (unlocked) 1545 return -EAGAIN; 1546 if (r) 1547 return r; 1548 1549 r = follow_pfn(vma, addr, &pfn); 1550 if (r) 1551 return r; 1552 1553 } 1554 1555 if (writable) 1556 *writable = true; 1557 1558 /* 1559 * Get a reference here because callers of *hva_to_pfn* and 1560 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 1561 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 1562 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will 1563 * simply do nothing for reserved pfns. 1564 * 1565 * Whoever called remap_pfn_range is also going to call e.g. 1566 * unmap_mapping_range before the underlying pages are freed, 1567 * causing a call to our MMU notifier. 1568 */ 1569 kvm_get_pfn(pfn); 1570 1571 *p_pfn = pfn; 1572 return 0; 1573 } 1574 1575 /* 1576 * Pin guest page in memory and return its pfn. 1577 * @addr: host virtual address which maps memory to the guest 1578 * @atomic: whether this function can sleep 1579 * @async: whether this function need to wait IO complete if the 1580 * host page is not in the memory 1581 * @write_fault: whether we should get a writable host page 1582 * @writable: whether it allows to map a writable host page for !@write_fault 1583 * 1584 * The function will map a writable host page for these two cases: 1585 * 1): @write_fault = true 1586 * 2): @write_fault = false && @writable, @writable will tell the caller 1587 * whether the mapping is writable. 1588 */ 1589 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1590 bool write_fault, bool *writable) 1591 { 1592 struct vm_area_struct *vma; 1593 kvm_pfn_t pfn = 0; 1594 int npages, r; 1595 1596 /* we can do it either atomically or asynchronously, not both */ 1597 BUG_ON(atomic && async); 1598 1599 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 1600 return pfn; 1601 1602 if (atomic) 1603 return KVM_PFN_ERR_FAULT; 1604 1605 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1606 if (npages == 1) 1607 return pfn; 1608 1609 down_read(¤t->mm->mmap_sem); 1610 if (npages == -EHWPOISON || 1611 (!async && check_user_page_hwpoison(addr))) { 1612 pfn = KVM_PFN_ERR_HWPOISON; 1613 goto exit; 1614 } 1615 1616 retry: 1617 vma = find_vma_intersection(current->mm, addr, addr + 1); 1618 1619 if (vma == NULL) 1620 pfn = KVM_PFN_ERR_FAULT; 1621 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 1622 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn); 1623 if (r == -EAGAIN) 1624 goto retry; 1625 if (r < 0) 1626 pfn = KVM_PFN_ERR_FAULT; 1627 } else { 1628 if (async && vma_is_valid(vma, write_fault)) 1629 *async = true; 1630 pfn = KVM_PFN_ERR_FAULT; 1631 } 1632 exit: 1633 up_read(¤t->mm->mmap_sem); 1634 return pfn; 1635 } 1636 1637 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 1638 bool atomic, bool *async, bool write_fault, 1639 bool *writable) 1640 { 1641 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1642 1643 if (addr == KVM_HVA_ERR_RO_BAD) { 1644 if (writable) 1645 *writable = false; 1646 return KVM_PFN_ERR_RO_FAULT; 1647 } 1648 1649 if (kvm_is_error_hva(addr)) { 1650 if (writable) 1651 *writable = false; 1652 return KVM_PFN_NOSLOT; 1653 } 1654 1655 /* Do not map writable pfn in the readonly memslot. */ 1656 if (writable && memslot_is_readonly(slot)) { 1657 *writable = false; 1658 writable = NULL; 1659 } 1660 1661 return hva_to_pfn(addr, atomic, async, write_fault, 1662 writable); 1663 } 1664 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 1665 1666 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1667 bool *writable) 1668 { 1669 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL, 1670 write_fault, writable); 1671 } 1672 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1673 1674 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1675 { 1676 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1677 } 1678 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 1679 1680 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1681 { 1682 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1683 } 1684 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1685 1686 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1687 { 1688 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn); 1689 } 1690 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1691 1692 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 1693 { 1694 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1695 } 1696 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 1697 1698 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1699 { 1700 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 1701 } 1702 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1703 1704 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 1705 { 1706 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 1707 } 1708 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 1709 1710 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1711 struct page **pages, int nr_pages) 1712 { 1713 unsigned long addr; 1714 gfn_t entry = 0; 1715 1716 addr = gfn_to_hva_many(slot, gfn, &entry); 1717 if (kvm_is_error_hva(addr)) 1718 return -1; 1719 1720 if (entry < nr_pages) 1721 return 0; 1722 1723 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1724 } 1725 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1726 1727 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn) 1728 { 1729 if (is_error_noslot_pfn(pfn)) 1730 return KVM_ERR_PTR_BAD_PAGE; 1731 1732 if (kvm_is_reserved_pfn(pfn)) { 1733 WARN_ON(1); 1734 return KVM_ERR_PTR_BAD_PAGE; 1735 } 1736 1737 return pfn_to_page(pfn); 1738 } 1739 1740 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1741 { 1742 kvm_pfn_t pfn; 1743 1744 pfn = gfn_to_pfn(kvm, gfn); 1745 1746 return kvm_pfn_to_page(pfn); 1747 } 1748 EXPORT_SYMBOL_GPL(gfn_to_page); 1749 1750 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn, 1751 struct kvm_host_map *map) 1752 { 1753 kvm_pfn_t pfn; 1754 void *hva = NULL; 1755 struct page *page = KVM_UNMAPPED_PAGE; 1756 1757 if (!map) 1758 return -EINVAL; 1759 1760 pfn = gfn_to_pfn_memslot(slot, gfn); 1761 if (is_error_noslot_pfn(pfn)) 1762 return -EINVAL; 1763 1764 if (pfn_valid(pfn)) { 1765 page = pfn_to_page(pfn); 1766 hva = kmap(page); 1767 #ifdef CONFIG_HAS_IOMEM 1768 } else { 1769 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 1770 #endif 1771 } 1772 1773 if (!hva) 1774 return -EFAULT; 1775 1776 map->page = page; 1777 map->hva = hva; 1778 map->pfn = pfn; 1779 map->gfn = gfn; 1780 1781 return 0; 1782 } 1783 1784 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 1785 { 1786 return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map); 1787 } 1788 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 1789 1790 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 1791 bool dirty) 1792 { 1793 if (!map) 1794 return; 1795 1796 if (!map->hva) 1797 return; 1798 1799 if (map->page != KVM_UNMAPPED_PAGE) 1800 kunmap(map->page); 1801 #ifdef CONFIG_HAS_IOMEM 1802 else 1803 memunmap(map->hva); 1804 #endif 1805 1806 if (dirty) { 1807 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 1808 kvm_release_pfn_dirty(map->pfn); 1809 } else { 1810 kvm_release_pfn_clean(map->pfn); 1811 } 1812 1813 map->hva = NULL; 1814 map->page = NULL; 1815 } 1816 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 1817 1818 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn) 1819 { 1820 kvm_pfn_t pfn; 1821 1822 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn); 1823 1824 return kvm_pfn_to_page(pfn); 1825 } 1826 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page); 1827 1828 void kvm_release_page_clean(struct page *page) 1829 { 1830 WARN_ON(is_error_page(page)); 1831 1832 kvm_release_pfn_clean(page_to_pfn(page)); 1833 } 1834 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1835 1836 void kvm_release_pfn_clean(kvm_pfn_t pfn) 1837 { 1838 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn)) 1839 put_page(pfn_to_page(pfn)); 1840 } 1841 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1842 1843 void kvm_release_page_dirty(struct page *page) 1844 { 1845 WARN_ON(is_error_page(page)); 1846 1847 kvm_release_pfn_dirty(page_to_pfn(page)); 1848 } 1849 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1850 1851 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 1852 { 1853 kvm_set_pfn_dirty(pfn); 1854 kvm_release_pfn_clean(pfn); 1855 } 1856 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1857 1858 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 1859 { 1860 if (!kvm_is_reserved_pfn(pfn)) { 1861 struct page *page = pfn_to_page(pfn); 1862 1863 SetPageDirty(page); 1864 } 1865 } 1866 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1867 1868 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 1869 { 1870 if (!kvm_is_reserved_pfn(pfn)) 1871 mark_page_accessed(pfn_to_page(pfn)); 1872 } 1873 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1874 1875 void kvm_get_pfn(kvm_pfn_t pfn) 1876 { 1877 if (!kvm_is_reserved_pfn(pfn)) 1878 get_page(pfn_to_page(pfn)); 1879 } 1880 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1881 1882 static int next_segment(unsigned long len, int offset) 1883 { 1884 if (len > PAGE_SIZE - offset) 1885 return PAGE_SIZE - offset; 1886 else 1887 return len; 1888 } 1889 1890 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 1891 void *data, int offset, int len) 1892 { 1893 int r; 1894 unsigned long addr; 1895 1896 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1897 if (kvm_is_error_hva(addr)) 1898 return -EFAULT; 1899 r = __copy_from_user(data, (void __user *)addr + offset, len); 1900 if (r) 1901 return -EFAULT; 1902 return 0; 1903 } 1904 1905 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1906 int len) 1907 { 1908 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1909 1910 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1911 } 1912 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1913 1914 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 1915 int offset, int len) 1916 { 1917 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1918 1919 return __kvm_read_guest_page(slot, gfn, data, offset, len); 1920 } 1921 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 1922 1923 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1924 { 1925 gfn_t gfn = gpa >> PAGE_SHIFT; 1926 int seg; 1927 int offset = offset_in_page(gpa); 1928 int ret; 1929 1930 while ((seg = next_segment(len, offset)) != 0) { 1931 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1932 if (ret < 0) 1933 return ret; 1934 offset = 0; 1935 len -= seg; 1936 data += seg; 1937 ++gfn; 1938 } 1939 return 0; 1940 } 1941 EXPORT_SYMBOL_GPL(kvm_read_guest); 1942 1943 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 1944 { 1945 gfn_t gfn = gpa >> PAGE_SHIFT; 1946 int seg; 1947 int offset = offset_in_page(gpa); 1948 int ret; 1949 1950 while ((seg = next_segment(len, offset)) != 0) { 1951 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 1952 if (ret < 0) 1953 return ret; 1954 offset = 0; 1955 len -= seg; 1956 data += seg; 1957 ++gfn; 1958 } 1959 return 0; 1960 } 1961 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 1962 1963 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 1964 void *data, int offset, unsigned long len) 1965 { 1966 int r; 1967 unsigned long addr; 1968 1969 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 1970 if (kvm_is_error_hva(addr)) 1971 return -EFAULT; 1972 pagefault_disable(); 1973 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 1974 pagefault_enable(); 1975 if (r) 1976 return -EFAULT; 1977 return 0; 1978 } 1979 1980 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1981 unsigned long len) 1982 { 1983 gfn_t gfn = gpa >> PAGE_SHIFT; 1984 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 1985 int offset = offset_in_page(gpa); 1986 1987 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1988 } 1989 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic); 1990 1991 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 1992 void *data, unsigned long len) 1993 { 1994 gfn_t gfn = gpa >> PAGE_SHIFT; 1995 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1996 int offset = offset_in_page(gpa); 1997 1998 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 1999 } 2000 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 2001 2002 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn, 2003 const void *data, int offset, int len) 2004 { 2005 int r; 2006 unsigned long addr; 2007 2008 addr = gfn_to_hva_memslot(memslot, gfn); 2009 if (kvm_is_error_hva(addr)) 2010 return -EFAULT; 2011 r = __copy_to_user((void __user *)addr + offset, data, len); 2012 if (r) 2013 return -EFAULT; 2014 mark_page_dirty_in_slot(memslot, gfn); 2015 return 0; 2016 } 2017 2018 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 2019 const void *data, int offset, int len) 2020 { 2021 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2022 2023 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2024 } 2025 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 2026 2027 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 2028 const void *data, int offset, int len) 2029 { 2030 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2031 2032 return __kvm_write_guest_page(slot, gfn, data, offset, len); 2033 } 2034 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 2035 2036 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 2037 unsigned long len) 2038 { 2039 gfn_t gfn = gpa >> PAGE_SHIFT; 2040 int seg; 2041 int offset = offset_in_page(gpa); 2042 int ret; 2043 2044 while ((seg = next_segment(len, offset)) != 0) { 2045 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 2046 if (ret < 0) 2047 return ret; 2048 offset = 0; 2049 len -= seg; 2050 data += seg; 2051 ++gfn; 2052 } 2053 return 0; 2054 } 2055 EXPORT_SYMBOL_GPL(kvm_write_guest); 2056 2057 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 2058 unsigned long len) 2059 { 2060 gfn_t gfn = gpa >> PAGE_SHIFT; 2061 int seg; 2062 int offset = offset_in_page(gpa); 2063 int ret; 2064 2065 while ((seg = next_segment(len, offset)) != 0) { 2066 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 2067 if (ret < 0) 2068 return ret; 2069 offset = 0; 2070 len -= seg; 2071 data += seg; 2072 ++gfn; 2073 } 2074 return 0; 2075 } 2076 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 2077 2078 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 2079 struct gfn_to_hva_cache *ghc, 2080 gpa_t gpa, unsigned long len) 2081 { 2082 int offset = offset_in_page(gpa); 2083 gfn_t start_gfn = gpa >> PAGE_SHIFT; 2084 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 2085 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 2086 gfn_t nr_pages_avail; 2087 int r = start_gfn <= end_gfn ? 0 : -EINVAL; 2088 2089 ghc->gpa = gpa; 2090 ghc->generation = slots->generation; 2091 ghc->len = len; 2092 ghc->hva = KVM_HVA_ERR_BAD; 2093 2094 /* 2095 * If the requested region crosses two memslots, we still 2096 * verify that the entire region is valid here. 2097 */ 2098 while (!r && start_gfn <= end_gfn) { 2099 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 2100 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 2101 &nr_pages_avail); 2102 if (kvm_is_error_hva(ghc->hva)) 2103 r = -EFAULT; 2104 start_gfn += nr_pages_avail; 2105 } 2106 2107 /* Use the slow path for cross page reads and writes. */ 2108 if (!r && nr_pages_needed == 1) 2109 ghc->hva += offset; 2110 else 2111 ghc->memslot = NULL; 2112 2113 return r; 2114 } 2115 2116 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2117 gpa_t gpa, unsigned long len) 2118 { 2119 struct kvm_memslots *slots = kvm_memslots(kvm); 2120 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 2121 } 2122 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 2123 2124 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2125 void *data, unsigned int offset, 2126 unsigned long len) 2127 { 2128 struct kvm_memslots *slots = kvm_memslots(kvm); 2129 int r; 2130 gpa_t gpa = ghc->gpa + offset; 2131 2132 BUG_ON(len + offset > ghc->len); 2133 2134 if (slots->generation != ghc->generation) 2135 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2136 2137 if (unlikely(!ghc->memslot)) 2138 return kvm_write_guest(kvm, gpa, data, len); 2139 2140 if (kvm_is_error_hva(ghc->hva)) 2141 return -EFAULT; 2142 2143 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 2144 if (r) 2145 return -EFAULT; 2146 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT); 2147 2148 return 0; 2149 } 2150 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 2151 2152 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2153 void *data, unsigned long len) 2154 { 2155 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 2156 } 2157 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 2158 2159 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 2160 void *data, unsigned long len) 2161 { 2162 struct kvm_memslots *slots = kvm_memslots(kvm); 2163 int r; 2164 2165 BUG_ON(len > ghc->len); 2166 2167 if (slots->generation != ghc->generation) 2168 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len); 2169 2170 if (unlikely(!ghc->memslot)) 2171 return kvm_read_guest(kvm, ghc->gpa, data, len); 2172 2173 if (kvm_is_error_hva(ghc->hva)) 2174 return -EFAULT; 2175 2176 r = __copy_from_user(data, (void __user *)ghc->hva, len); 2177 if (r) 2178 return -EFAULT; 2179 2180 return 0; 2181 } 2182 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 2183 2184 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 2185 { 2186 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 2187 2188 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 2189 } 2190 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 2191 2192 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 2193 { 2194 gfn_t gfn = gpa >> PAGE_SHIFT; 2195 int seg; 2196 int offset = offset_in_page(gpa); 2197 int ret; 2198 2199 while ((seg = next_segment(len, offset)) != 0) { 2200 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 2201 if (ret < 0) 2202 return ret; 2203 offset = 0; 2204 len -= seg; 2205 ++gfn; 2206 } 2207 return 0; 2208 } 2209 EXPORT_SYMBOL_GPL(kvm_clear_guest); 2210 2211 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, 2212 gfn_t gfn) 2213 { 2214 if (memslot && memslot->dirty_bitmap) { 2215 unsigned long rel_gfn = gfn - memslot->base_gfn; 2216 2217 set_bit_le(rel_gfn, memslot->dirty_bitmap); 2218 } 2219 } 2220 2221 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 2222 { 2223 struct kvm_memory_slot *memslot; 2224 2225 memslot = gfn_to_memslot(kvm, gfn); 2226 mark_page_dirty_in_slot(memslot, gfn); 2227 } 2228 EXPORT_SYMBOL_GPL(mark_page_dirty); 2229 2230 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 2231 { 2232 struct kvm_memory_slot *memslot; 2233 2234 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2235 mark_page_dirty_in_slot(memslot, gfn); 2236 } 2237 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 2238 2239 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 2240 { 2241 if (!vcpu->sigset_active) 2242 return; 2243 2244 /* 2245 * This does a lockless modification of ->real_blocked, which is fine 2246 * because, only current can change ->real_blocked and all readers of 2247 * ->real_blocked don't care as long ->real_blocked is always a subset 2248 * of ->blocked. 2249 */ 2250 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 2251 } 2252 2253 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 2254 { 2255 if (!vcpu->sigset_active) 2256 return; 2257 2258 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 2259 sigemptyset(¤t->real_blocked); 2260 } 2261 2262 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 2263 { 2264 unsigned int old, val, grow, grow_start; 2265 2266 old = val = vcpu->halt_poll_ns; 2267 grow_start = READ_ONCE(halt_poll_ns_grow_start); 2268 grow = READ_ONCE(halt_poll_ns_grow); 2269 if (!grow) 2270 goto out; 2271 2272 val *= grow; 2273 if (val < grow_start) 2274 val = grow_start; 2275 2276 if (val > halt_poll_ns) 2277 val = halt_poll_ns; 2278 2279 vcpu->halt_poll_ns = val; 2280 out: 2281 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 2282 } 2283 2284 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 2285 { 2286 unsigned int old, val, shrink; 2287 2288 old = val = vcpu->halt_poll_ns; 2289 shrink = READ_ONCE(halt_poll_ns_shrink); 2290 if (shrink == 0) 2291 val = 0; 2292 else 2293 val /= shrink; 2294 2295 vcpu->halt_poll_ns = val; 2296 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 2297 } 2298 2299 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 2300 { 2301 int ret = -EINTR; 2302 int idx = srcu_read_lock(&vcpu->kvm->srcu); 2303 2304 if (kvm_arch_vcpu_runnable(vcpu)) { 2305 kvm_make_request(KVM_REQ_UNHALT, vcpu); 2306 goto out; 2307 } 2308 if (kvm_cpu_has_pending_timer(vcpu)) 2309 goto out; 2310 if (signal_pending(current)) 2311 goto out; 2312 2313 ret = 0; 2314 out: 2315 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2316 return ret; 2317 } 2318 2319 /* 2320 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 2321 */ 2322 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 2323 { 2324 ktime_t start, cur; 2325 DECLARE_SWAITQUEUE(wait); 2326 bool waited = false; 2327 u64 block_ns; 2328 2329 kvm_arch_vcpu_blocking(vcpu); 2330 2331 start = cur = ktime_get(); 2332 if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) { 2333 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns); 2334 2335 ++vcpu->stat.halt_attempted_poll; 2336 do { 2337 /* 2338 * This sets KVM_REQ_UNHALT if an interrupt 2339 * arrives. 2340 */ 2341 if (kvm_vcpu_check_block(vcpu) < 0) { 2342 ++vcpu->stat.halt_successful_poll; 2343 if (!vcpu_valid_wakeup(vcpu)) 2344 ++vcpu->stat.halt_poll_invalid; 2345 goto out; 2346 } 2347 cur = ktime_get(); 2348 } while (single_task_running() && ktime_before(cur, stop)); 2349 } 2350 2351 for (;;) { 2352 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 2353 2354 if (kvm_vcpu_check_block(vcpu) < 0) 2355 break; 2356 2357 waited = true; 2358 schedule(); 2359 } 2360 2361 finish_swait(&vcpu->wq, &wait); 2362 cur = ktime_get(); 2363 out: 2364 kvm_arch_vcpu_unblocking(vcpu); 2365 block_ns = ktime_to_ns(cur) - ktime_to_ns(start); 2366 2367 if (!kvm_arch_no_poll(vcpu)) { 2368 if (!vcpu_valid_wakeup(vcpu)) { 2369 shrink_halt_poll_ns(vcpu); 2370 } else if (halt_poll_ns) { 2371 if (block_ns <= vcpu->halt_poll_ns) 2372 ; 2373 /* we had a long block, shrink polling */ 2374 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns) 2375 shrink_halt_poll_ns(vcpu); 2376 /* we had a short halt and our poll time is too small */ 2377 else if (vcpu->halt_poll_ns < halt_poll_ns && 2378 block_ns < halt_poll_ns) 2379 grow_halt_poll_ns(vcpu); 2380 } else { 2381 vcpu->halt_poll_ns = 0; 2382 } 2383 } 2384 2385 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu)); 2386 kvm_arch_vcpu_block_finish(vcpu); 2387 } 2388 EXPORT_SYMBOL_GPL(kvm_vcpu_block); 2389 2390 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 2391 { 2392 struct swait_queue_head *wqp; 2393 2394 wqp = kvm_arch_vcpu_wq(vcpu); 2395 if (swq_has_sleeper(wqp)) { 2396 swake_up_one(wqp); 2397 WRITE_ONCE(vcpu->ready, true); 2398 ++vcpu->stat.halt_wakeup; 2399 return true; 2400 } 2401 2402 return false; 2403 } 2404 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 2405 2406 #ifndef CONFIG_S390 2407 /* 2408 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 2409 */ 2410 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 2411 { 2412 int me; 2413 int cpu = vcpu->cpu; 2414 2415 if (kvm_vcpu_wake_up(vcpu)) 2416 return; 2417 2418 me = get_cpu(); 2419 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 2420 if (kvm_arch_vcpu_should_kick(vcpu)) 2421 smp_send_reschedule(cpu); 2422 put_cpu(); 2423 } 2424 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 2425 #endif /* !CONFIG_S390 */ 2426 2427 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 2428 { 2429 struct pid *pid; 2430 struct task_struct *task = NULL; 2431 int ret = 0; 2432 2433 rcu_read_lock(); 2434 pid = rcu_dereference(target->pid); 2435 if (pid) 2436 task = get_pid_task(pid, PIDTYPE_PID); 2437 rcu_read_unlock(); 2438 if (!task) 2439 return ret; 2440 ret = yield_to(task, 1); 2441 put_task_struct(task); 2442 2443 return ret; 2444 } 2445 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 2446 2447 /* 2448 * Helper that checks whether a VCPU is eligible for directed yield. 2449 * Most eligible candidate to yield is decided by following heuristics: 2450 * 2451 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 2452 * (preempted lock holder), indicated by @in_spin_loop. 2453 * Set at the beiginning and cleared at the end of interception/PLE handler. 2454 * 2455 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 2456 * chance last time (mostly it has become eligible now since we have probably 2457 * yielded to lockholder in last iteration. This is done by toggling 2458 * @dy_eligible each time a VCPU checked for eligibility.) 2459 * 2460 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 2461 * to preempted lock-holder could result in wrong VCPU selection and CPU 2462 * burning. Giving priority for a potential lock-holder increases lock 2463 * progress. 2464 * 2465 * Since algorithm is based on heuristics, accessing another VCPU data without 2466 * locking does not harm. It may result in trying to yield to same VCPU, fail 2467 * and continue with next VCPU and so on. 2468 */ 2469 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 2470 { 2471 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 2472 bool eligible; 2473 2474 eligible = !vcpu->spin_loop.in_spin_loop || 2475 vcpu->spin_loop.dy_eligible; 2476 2477 if (vcpu->spin_loop.in_spin_loop) 2478 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 2479 2480 return eligible; 2481 #else 2482 return true; 2483 #endif 2484 } 2485 2486 /* 2487 * Unlike kvm_arch_vcpu_runnable, this function is called outside 2488 * a vcpu_load/vcpu_put pair. However, for most architectures 2489 * kvm_arch_vcpu_runnable does not require vcpu_load. 2490 */ 2491 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 2492 { 2493 return kvm_arch_vcpu_runnable(vcpu); 2494 } 2495 2496 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 2497 { 2498 if (kvm_arch_dy_runnable(vcpu)) 2499 return true; 2500 2501 #ifdef CONFIG_KVM_ASYNC_PF 2502 if (!list_empty_careful(&vcpu->async_pf.done)) 2503 return true; 2504 #endif 2505 2506 return false; 2507 } 2508 2509 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 2510 { 2511 struct kvm *kvm = me->kvm; 2512 struct kvm_vcpu *vcpu; 2513 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 2514 int yielded = 0; 2515 int try = 3; 2516 int pass; 2517 int i; 2518 2519 kvm_vcpu_set_in_spin_loop(me, true); 2520 /* 2521 * We boost the priority of a VCPU that is runnable but not 2522 * currently running, because it got preempted by something 2523 * else and called schedule in __vcpu_run. Hopefully that 2524 * VCPU is holding the lock that we need and will release it. 2525 * We approximate round-robin by starting at the last boosted VCPU. 2526 */ 2527 for (pass = 0; pass < 2 && !yielded && try; pass++) { 2528 kvm_for_each_vcpu(i, vcpu, kvm) { 2529 if (!pass && i <= last_boosted_vcpu) { 2530 i = last_boosted_vcpu; 2531 continue; 2532 } else if (pass && i > last_boosted_vcpu) 2533 break; 2534 if (!READ_ONCE(vcpu->ready)) 2535 continue; 2536 if (vcpu == me) 2537 continue; 2538 if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu)) 2539 continue; 2540 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 2541 !kvm_arch_vcpu_in_kernel(vcpu)) 2542 continue; 2543 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 2544 continue; 2545 2546 yielded = kvm_vcpu_yield_to(vcpu); 2547 if (yielded > 0) { 2548 kvm->last_boosted_vcpu = i; 2549 break; 2550 } else if (yielded < 0) { 2551 try--; 2552 if (!try) 2553 break; 2554 } 2555 } 2556 } 2557 kvm_vcpu_set_in_spin_loop(me, false); 2558 2559 /* Ensure vcpu is not eligible during next spinloop */ 2560 kvm_vcpu_set_dy_eligible(me, false); 2561 } 2562 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 2563 2564 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 2565 { 2566 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 2567 struct page *page; 2568 2569 if (vmf->pgoff == 0) 2570 page = virt_to_page(vcpu->run); 2571 #ifdef CONFIG_X86 2572 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 2573 page = virt_to_page(vcpu->arch.pio_data); 2574 #endif 2575 #ifdef CONFIG_KVM_MMIO 2576 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 2577 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 2578 #endif 2579 else 2580 return kvm_arch_vcpu_fault(vcpu, vmf); 2581 get_page(page); 2582 vmf->page = page; 2583 return 0; 2584 } 2585 2586 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 2587 .fault = kvm_vcpu_fault, 2588 }; 2589 2590 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 2591 { 2592 vma->vm_ops = &kvm_vcpu_vm_ops; 2593 return 0; 2594 } 2595 2596 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 2597 { 2598 struct kvm_vcpu *vcpu = filp->private_data; 2599 2600 debugfs_remove_recursive(vcpu->debugfs_dentry); 2601 kvm_put_kvm(vcpu->kvm); 2602 return 0; 2603 } 2604 2605 static struct file_operations kvm_vcpu_fops = { 2606 .release = kvm_vcpu_release, 2607 .unlocked_ioctl = kvm_vcpu_ioctl, 2608 .mmap = kvm_vcpu_mmap, 2609 .llseek = noop_llseek, 2610 KVM_COMPAT(kvm_vcpu_compat_ioctl), 2611 }; 2612 2613 /* 2614 * Allocates an inode for the vcpu. 2615 */ 2616 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 2617 { 2618 char name[8 + 1 + ITOA_MAX_LEN + 1]; 2619 2620 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 2621 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 2622 } 2623 2624 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2625 { 2626 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 2627 char dir_name[ITOA_MAX_LEN * 2]; 2628 2629 if (!debugfs_initialized()) 2630 return; 2631 2632 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 2633 vcpu->debugfs_dentry = debugfs_create_dir(dir_name, 2634 vcpu->kvm->debugfs_dentry); 2635 2636 kvm_arch_create_vcpu_debugfs(vcpu); 2637 #endif 2638 } 2639 2640 /* 2641 * Creates some virtual cpus. Good luck creating more than one. 2642 */ 2643 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 2644 { 2645 int r; 2646 struct kvm_vcpu *vcpu; 2647 2648 if (id >= KVM_MAX_VCPU_ID) 2649 return -EINVAL; 2650 2651 mutex_lock(&kvm->lock); 2652 if (kvm->created_vcpus == KVM_MAX_VCPUS) { 2653 mutex_unlock(&kvm->lock); 2654 return -EINVAL; 2655 } 2656 2657 kvm->created_vcpus++; 2658 mutex_unlock(&kvm->lock); 2659 2660 vcpu = kvm_arch_vcpu_create(kvm, id); 2661 if (IS_ERR(vcpu)) { 2662 r = PTR_ERR(vcpu); 2663 goto vcpu_decrement; 2664 } 2665 2666 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 2667 2668 r = kvm_arch_vcpu_setup(vcpu); 2669 if (r) 2670 goto vcpu_destroy; 2671 2672 kvm_create_vcpu_debugfs(vcpu); 2673 2674 mutex_lock(&kvm->lock); 2675 if (kvm_get_vcpu_by_id(kvm, id)) { 2676 r = -EEXIST; 2677 goto unlock_vcpu_destroy; 2678 } 2679 2680 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 2681 2682 /* Now it's all set up, let userspace reach it */ 2683 kvm_get_kvm(kvm); 2684 r = create_vcpu_fd(vcpu); 2685 if (r < 0) { 2686 kvm_put_kvm(kvm); 2687 goto unlock_vcpu_destroy; 2688 } 2689 2690 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 2691 2692 /* 2693 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus 2694 * before kvm->online_vcpu's incremented value. 2695 */ 2696 smp_wmb(); 2697 atomic_inc(&kvm->online_vcpus); 2698 2699 mutex_unlock(&kvm->lock); 2700 kvm_arch_vcpu_postcreate(vcpu); 2701 return r; 2702 2703 unlock_vcpu_destroy: 2704 mutex_unlock(&kvm->lock); 2705 debugfs_remove_recursive(vcpu->debugfs_dentry); 2706 vcpu_destroy: 2707 kvm_arch_vcpu_destroy(vcpu); 2708 vcpu_decrement: 2709 mutex_lock(&kvm->lock); 2710 kvm->created_vcpus--; 2711 mutex_unlock(&kvm->lock); 2712 return r; 2713 } 2714 2715 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 2716 { 2717 if (sigset) { 2718 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2719 vcpu->sigset_active = 1; 2720 vcpu->sigset = *sigset; 2721 } else 2722 vcpu->sigset_active = 0; 2723 return 0; 2724 } 2725 2726 static long kvm_vcpu_ioctl(struct file *filp, 2727 unsigned int ioctl, unsigned long arg) 2728 { 2729 struct kvm_vcpu *vcpu = filp->private_data; 2730 void __user *argp = (void __user *)arg; 2731 int r; 2732 struct kvm_fpu *fpu = NULL; 2733 struct kvm_sregs *kvm_sregs = NULL; 2734 2735 if (vcpu->kvm->mm != current->mm) 2736 return -EIO; 2737 2738 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 2739 return -EINVAL; 2740 2741 /* 2742 * Some architectures have vcpu ioctls that are asynchronous to vcpu 2743 * execution; mutex_lock() would break them. 2744 */ 2745 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 2746 if (r != -ENOIOCTLCMD) 2747 return r; 2748 2749 if (mutex_lock_killable(&vcpu->mutex)) 2750 return -EINTR; 2751 switch (ioctl) { 2752 case KVM_RUN: { 2753 struct pid *oldpid; 2754 r = -EINVAL; 2755 if (arg) 2756 goto out; 2757 oldpid = rcu_access_pointer(vcpu->pid); 2758 if (unlikely(oldpid != task_pid(current))) { 2759 /* The thread running this VCPU changed. */ 2760 struct pid *newpid; 2761 2762 r = kvm_arch_vcpu_run_pid_change(vcpu); 2763 if (r) 2764 break; 2765 2766 newpid = get_task_pid(current, PIDTYPE_PID); 2767 rcu_assign_pointer(vcpu->pid, newpid); 2768 if (oldpid) 2769 synchronize_rcu(); 2770 put_pid(oldpid); 2771 } 2772 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 2773 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 2774 break; 2775 } 2776 case KVM_GET_REGS: { 2777 struct kvm_regs *kvm_regs; 2778 2779 r = -ENOMEM; 2780 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 2781 if (!kvm_regs) 2782 goto out; 2783 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 2784 if (r) 2785 goto out_free1; 2786 r = -EFAULT; 2787 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 2788 goto out_free1; 2789 r = 0; 2790 out_free1: 2791 kfree(kvm_regs); 2792 break; 2793 } 2794 case KVM_SET_REGS: { 2795 struct kvm_regs *kvm_regs; 2796 2797 r = -ENOMEM; 2798 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 2799 if (IS_ERR(kvm_regs)) { 2800 r = PTR_ERR(kvm_regs); 2801 goto out; 2802 } 2803 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 2804 kfree(kvm_regs); 2805 break; 2806 } 2807 case KVM_GET_SREGS: { 2808 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 2809 GFP_KERNEL_ACCOUNT); 2810 r = -ENOMEM; 2811 if (!kvm_sregs) 2812 goto out; 2813 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 2814 if (r) 2815 goto out; 2816 r = -EFAULT; 2817 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 2818 goto out; 2819 r = 0; 2820 break; 2821 } 2822 case KVM_SET_SREGS: { 2823 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 2824 if (IS_ERR(kvm_sregs)) { 2825 r = PTR_ERR(kvm_sregs); 2826 kvm_sregs = NULL; 2827 goto out; 2828 } 2829 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 2830 break; 2831 } 2832 case KVM_GET_MP_STATE: { 2833 struct kvm_mp_state mp_state; 2834 2835 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 2836 if (r) 2837 goto out; 2838 r = -EFAULT; 2839 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 2840 goto out; 2841 r = 0; 2842 break; 2843 } 2844 case KVM_SET_MP_STATE: { 2845 struct kvm_mp_state mp_state; 2846 2847 r = -EFAULT; 2848 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 2849 goto out; 2850 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 2851 break; 2852 } 2853 case KVM_TRANSLATE: { 2854 struct kvm_translation tr; 2855 2856 r = -EFAULT; 2857 if (copy_from_user(&tr, argp, sizeof(tr))) 2858 goto out; 2859 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 2860 if (r) 2861 goto out; 2862 r = -EFAULT; 2863 if (copy_to_user(argp, &tr, sizeof(tr))) 2864 goto out; 2865 r = 0; 2866 break; 2867 } 2868 case KVM_SET_GUEST_DEBUG: { 2869 struct kvm_guest_debug dbg; 2870 2871 r = -EFAULT; 2872 if (copy_from_user(&dbg, argp, sizeof(dbg))) 2873 goto out; 2874 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2875 break; 2876 } 2877 case KVM_SET_SIGNAL_MASK: { 2878 struct kvm_signal_mask __user *sigmask_arg = argp; 2879 struct kvm_signal_mask kvm_sigmask; 2880 sigset_t sigset, *p; 2881 2882 p = NULL; 2883 if (argp) { 2884 r = -EFAULT; 2885 if (copy_from_user(&kvm_sigmask, argp, 2886 sizeof(kvm_sigmask))) 2887 goto out; 2888 r = -EINVAL; 2889 if (kvm_sigmask.len != sizeof(sigset)) 2890 goto out; 2891 r = -EFAULT; 2892 if (copy_from_user(&sigset, sigmask_arg->sigset, 2893 sizeof(sigset))) 2894 goto out; 2895 p = &sigset; 2896 } 2897 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2898 break; 2899 } 2900 case KVM_GET_FPU: { 2901 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 2902 r = -ENOMEM; 2903 if (!fpu) 2904 goto out; 2905 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2906 if (r) 2907 goto out; 2908 r = -EFAULT; 2909 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2910 goto out; 2911 r = 0; 2912 break; 2913 } 2914 case KVM_SET_FPU: { 2915 fpu = memdup_user(argp, sizeof(*fpu)); 2916 if (IS_ERR(fpu)) { 2917 r = PTR_ERR(fpu); 2918 fpu = NULL; 2919 goto out; 2920 } 2921 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2922 break; 2923 } 2924 default: 2925 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2926 } 2927 out: 2928 mutex_unlock(&vcpu->mutex); 2929 kfree(fpu); 2930 kfree(kvm_sregs); 2931 return r; 2932 } 2933 2934 #ifdef CONFIG_KVM_COMPAT 2935 static long kvm_vcpu_compat_ioctl(struct file *filp, 2936 unsigned int ioctl, unsigned long arg) 2937 { 2938 struct kvm_vcpu *vcpu = filp->private_data; 2939 void __user *argp = compat_ptr(arg); 2940 int r; 2941 2942 if (vcpu->kvm->mm != current->mm) 2943 return -EIO; 2944 2945 switch (ioctl) { 2946 case KVM_SET_SIGNAL_MASK: { 2947 struct kvm_signal_mask __user *sigmask_arg = argp; 2948 struct kvm_signal_mask kvm_sigmask; 2949 sigset_t sigset; 2950 2951 if (argp) { 2952 r = -EFAULT; 2953 if (copy_from_user(&kvm_sigmask, argp, 2954 sizeof(kvm_sigmask))) 2955 goto out; 2956 r = -EINVAL; 2957 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 2958 goto out; 2959 r = -EFAULT; 2960 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset)) 2961 goto out; 2962 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2963 } else 2964 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2965 break; 2966 } 2967 default: 2968 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2969 } 2970 2971 out: 2972 return r; 2973 } 2974 #endif 2975 2976 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 2977 { 2978 struct kvm_device *dev = filp->private_data; 2979 2980 if (dev->ops->mmap) 2981 return dev->ops->mmap(dev, vma); 2982 2983 return -ENODEV; 2984 } 2985 2986 static int kvm_device_ioctl_attr(struct kvm_device *dev, 2987 int (*accessor)(struct kvm_device *dev, 2988 struct kvm_device_attr *attr), 2989 unsigned long arg) 2990 { 2991 struct kvm_device_attr attr; 2992 2993 if (!accessor) 2994 return -EPERM; 2995 2996 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2997 return -EFAULT; 2998 2999 return accessor(dev, &attr); 3000 } 3001 3002 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 3003 unsigned long arg) 3004 { 3005 struct kvm_device *dev = filp->private_data; 3006 3007 if (dev->kvm->mm != current->mm) 3008 return -EIO; 3009 3010 switch (ioctl) { 3011 case KVM_SET_DEVICE_ATTR: 3012 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 3013 case KVM_GET_DEVICE_ATTR: 3014 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 3015 case KVM_HAS_DEVICE_ATTR: 3016 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 3017 default: 3018 if (dev->ops->ioctl) 3019 return dev->ops->ioctl(dev, ioctl, arg); 3020 3021 return -ENOTTY; 3022 } 3023 } 3024 3025 static int kvm_device_release(struct inode *inode, struct file *filp) 3026 { 3027 struct kvm_device *dev = filp->private_data; 3028 struct kvm *kvm = dev->kvm; 3029 3030 if (dev->ops->release) { 3031 mutex_lock(&kvm->lock); 3032 list_del(&dev->vm_node); 3033 dev->ops->release(dev); 3034 mutex_unlock(&kvm->lock); 3035 } 3036 3037 kvm_put_kvm(kvm); 3038 return 0; 3039 } 3040 3041 static const struct file_operations kvm_device_fops = { 3042 .unlocked_ioctl = kvm_device_ioctl, 3043 .release = kvm_device_release, 3044 KVM_COMPAT(kvm_device_ioctl), 3045 .mmap = kvm_device_mmap, 3046 }; 3047 3048 struct kvm_device *kvm_device_from_filp(struct file *filp) 3049 { 3050 if (filp->f_op != &kvm_device_fops) 3051 return NULL; 3052 3053 return filp->private_data; 3054 } 3055 3056 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 3057 #ifdef CONFIG_KVM_MPIC 3058 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 3059 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 3060 #endif 3061 }; 3062 3063 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type) 3064 { 3065 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 3066 return -ENOSPC; 3067 3068 if (kvm_device_ops_table[type] != NULL) 3069 return -EEXIST; 3070 3071 kvm_device_ops_table[type] = ops; 3072 return 0; 3073 } 3074 3075 void kvm_unregister_device_ops(u32 type) 3076 { 3077 if (kvm_device_ops_table[type] != NULL) 3078 kvm_device_ops_table[type] = NULL; 3079 } 3080 3081 static int kvm_ioctl_create_device(struct kvm *kvm, 3082 struct kvm_create_device *cd) 3083 { 3084 struct kvm_device_ops *ops = NULL; 3085 struct kvm_device *dev; 3086 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 3087 int type; 3088 int ret; 3089 3090 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 3091 return -ENODEV; 3092 3093 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 3094 ops = kvm_device_ops_table[type]; 3095 if (ops == NULL) 3096 return -ENODEV; 3097 3098 if (test) 3099 return 0; 3100 3101 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 3102 if (!dev) 3103 return -ENOMEM; 3104 3105 dev->ops = ops; 3106 dev->kvm = kvm; 3107 3108 mutex_lock(&kvm->lock); 3109 ret = ops->create(dev, type); 3110 if (ret < 0) { 3111 mutex_unlock(&kvm->lock); 3112 kfree(dev); 3113 return ret; 3114 } 3115 list_add(&dev->vm_node, &kvm->devices); 3116 mutex_unlock(&kvm->lock); 3117 3118 if (ops->init) 3119 ops->init(dev); 3120 3121 kvm_get_kvm(kvm); 3122 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 3123 if (ret < 0) { 3124 kvm_put_kvm(kvm); 3125 mutex_lock(&kvm->lock); 3126 list_del(&dev->vm_node); 3127 mutex_unlock(&kvm->lock); 3128 ops->destroy(dev); 3129 return ret; 3130 } 3131 3132 cd->fd = ret; 3133 return 0; 3134 } 3135 3136 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 3137 { 3138 switch (arg) { 3139 case KVM_CAP_USER_MEMORY: 3140 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 3141 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 3142 case KVM_CAP_INTERNAL_ERROR_DATA: 3143 #ifdef CONFIG_HAVE_KVM_MSI 3144 case KVM_CAP_SIGNAL_MSI: 3145 #endif 3146 #ifdef CONFIG_HAVE_KVM_IRQFD 3147 case KVM_CAP_IRQFD: 3148 case KVM_CAP_IRQFD_RESAMPLE: 3149 #endif 3150 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 3151 case KVM_CAP_CHECK_EXTENSION_VM: 3152 case KVM_CAP_ENABLE_CAP_VM: 3153 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3154 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3155 #endif 3156 return 1; 3157 #ifdef CONFIG_KVM_MMIO 3158 case KVM_CAP_COALESCED_MMIO: 3159 return KVM_COALESCED_MMIO_PAGE_OFFSET; 3160 case KVM_CAP_COALESCED_PIO: 3161 return 1; 3162 #endif 3163 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3164 case KVM_CAP_IRQ_ROUTING: 3165 return KVM_MAX_IRQ_ROUTES; 3166 #endif 3167 #if KVM_ADDRESS_SPACE_NUM > 1 3168 case KVM_CAP_MULTI_ADDRESS_SPACE: 3169 return KVM_ADDRESS_SPACE_NUM; 3170 #endif 3171 case KVM_CAP_NR_MEMSLOTS: 3172 return KVM_USER_MEM_SLOTS; 3173 default: 3174 break; 3175 } 3176 return kvm_vm_ioctl_check_extension(kvm, arg); 3177 } 3178 3179 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3180 struct kvm_enable_cap *cap) 3181 { 3182 return -EINVAL; 3183 } 3184 3185 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 3186 struct kvm_enable_cap *cap) 3187 { 3188 switch (cap->cap) { 3189 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3190 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 3191 if (cap->flags || (cap->args[0] & ~1)) 3192 return -EINVAL; 3193 kvm->manual_dirty_log_protect = cap->args[0]; 3194 return 0; 3195 #endif 3196 default: 3197 return kvm_vm_ioctl_enable_cap(kvm, cap); 3198 } 3199 } 3200 3201 static long kvm_vm_ioctl(struct file *filp, 3202 unsigned int ioctl, unsigned long arg) 3203 { 3204 struct kvm *kvm = filp->private_data; 3205 void __user *argp = (void __user *)arg; 3206 int r; 3207 3208 if (kvm->mm != current->mm) 3209 return -EIO; 3210 switch (ioctl) { 3211 case KVM_CREATE_VCPU: 3212 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 3213 break; 3214 case KVM_ENABLE_CAP: { 3215 struct kvm_enable_cap cap; 3216 3217 r = -EFAULT; 3218 if (copy_from_user(&cap, argp, sizeof(cap))) 3219 goto out; 3220 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 3221 break; 3222 } 3223 case KVM_SET_USER_MEMORY_REGION: { 3224 struct kvm_userspace_memory_region kvm_userspace_mem; 3225 3226 r = -EFAULT; 3227 if (copy_from_user(&kvm_userspace_mem, argp, 3228 sizeof(kvm_userspace_mem))) 3229 goto out; 3230 3231 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 3232 break; 3233 } 3234 case KVM_GET_DIRTY_LOG: { 3235 struct kvm_dirty_log log; 3236 3237 r = -EFAULT; 3238 if (copy_from_user(&log, argp, sizeof(log))) 3239 goto out; 3240 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3241 break; 3242 } 3243 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 3244 case KVM_CLEAR_DIRTY_LOG: { 3245 struct kvm_clear_dirty_log log; 3246 3247 r = -EFAULT; 3248 if (copy_from_user(&log, argp, sizeof(log))) 3249 goto out; 3250 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 3251 break; 3252 } 3253 #endif 3254 #ifdef CONFIG_KVM_MMIO 3255 case KVM_REGISTER_COALESCED_MMIO: { 3256 struct kvm_coalesced_mmio_zone zone; 3257 3258 r = -EFAULT; 3259 if (copy_from_user(&zone, argp, sizeof(zone))) 3260 goto out; 3261 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 3262 break; 3263 } 3264 case KVM_UNREGISTER_COALESCED_MMIO: { 3265 struct kvm_coalesced_mmio_zone zone; 3266 3267 r = -EFAULT; 3268 if (copy_from_user(&zone, argp, sizeof(zone))) 3269 goto out; 3270 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 3271 break; 3272 } 3273 #endif 3274 case KVM_IRQFD: { 3275 struct kvm_irqfd data; 3276 3277 r = -EFAULT; 3278 if (copy_from_user(&data, argp, sizeof(data))) 3279 goto out; 3280 r = kvm_irqfd(kvm, &data); 3281 break; 3282 } 3283 case KVM_IOEVENTFD: { 3284 struct kvm_ioeventfd data; 3285 3286 r = -EFAULT; 3287 if (copy_from_user(&data, argp, sizeof(data))) 3288 goto out; 3289 r = kvm_ioeventfd(kvm, &data); 3290 break; 3291 } 3292 #ifdef CONFIG_HAVE_KVM_MSI 3293 case KVM_SIGNAL_MSI: { 3294 struct kvm_msi msi; 3295 3296 r = -EFAULT; 3297 if (copy_from_user(&msi, argp, sizeof(msi))) 3298 goto out; 3299 r = kvm_send_userspace_msi(kvm, &msi); 3300 break; 3301 } 3302 #endif 3303 #ifdef __KVM_HAVE_IRQ_LINE 3304 case KVM_IRQ_LINE_STATUS: 3305 case KVM_IRQ_LINE: { 3306 struct kvm_irq_level irq_event; 3307 3308 r = -EFAULT; 3309 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 3310 goto out; 3311 3312 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 3313 ioctl == KVM_IRQ_LINE_STATUS); 3314 if (r) 3315 goto out; 3316 3317 r = -EFAULT; 3318 if (ioctl == KVM_IRQ_LINE_STATUS) { 3319 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 3320 goto out; 3321 } 3322 3323 r = 0; 3324 break; 3325 } 3326 #endif 3327 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 3328 case KVM_SET_GSI_ROUTING: { 3329 struct kvm_irq_routing routing; 3330 struct kvm_irq_routing __user *urouting; 3331 struct kvm_irq_routing_entry *entries = NULL; 3332 3333 r = -EFAULT; 3334 if (copy_from_user(&routing, argp, sizeof(routing))) 3335 goto out; 3336 r = -EINVAL; 3337 if (!kvm_arch_can_set_irq_routing(kvm)) 3338 goto out; 3339 if (routing.nr > KVM_MAX_IRQ_ROUTES) 3340 goto out; 3341 if (routing.flags) 3342 goto out; 3343 if (routing.nr) { 3344 r = -ENOMEM; 3345 entries = vmalloc(array_size(sizeof(*entries), 3346 routing.nr)); 3347 if (!entries) 3348 goto out; 3349 r = -EFAULT; 3350 urouting = argp; 3351 if (copy_from_user(entries, urouting->entries, 3352 routing.nr * sizeof(*entries))) 3353 goto out_free_irq_routing; 3354 } 3355 r = kvm_set_irq_routing(kvm, entries, routing.nr, 3356 routing.flags); 3357 out_free_irq_routing: 3358 vfree(entries); 3359 break; 3360 } 3361 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 3362 case KVM_CREATE_DEVICE: { 3363 struct kvm_create_device cd; 3364 3365 r = -EFAULT; 3366 if (copy_from_user(&cd, argp, sizeof(cd))) 3367 goto out; 3368 3369 r = kvm_ioctl_create_device(kvm, &cd); 3370 if (r) 3371 goto out; 3372 3373 r = -EFAULT; 3374 if (copy_to_user(argp, &cd, sizeof(cd))) 3375 goto out; 3376 3377 r = 0; 3378 break; 3379 } 3380 case KVM_CHECK_EXTENSION: 3381 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 3382 break; 3383 default: 3384 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 3385 } 3386 out: 3387 return r; 3388 } 3389 3390 #ifdef CONFIG_KVM_COMPAT 3391 struct compat_kvm_dirty_log { 3392 __u32 slot; 3393 __u32 padding1; 3394 union { 3395 compat_uptr_t dirty_bitmap; /* one bit per page */ 3396 __u64 padding2; 3397 }; 3398 }; 3399 3400 static long kvm_vm_compat_ioctl(struct file *filp, 3401 unsigned int ioctl, unsigned long arg) 3402 { 3403 struct kvm *kvm = filp->private_data; 3404 int r; 3405 3406 if (kvm->mm != current->mm) 3407 return -EIO; 3408 switch (ioctl) { 3409 case KVM_GET_DIRTY_LOG: { 3410 struct compat_kvm_dirty_log compat_log; 3411 struct kvm_dirty_log log; 3412 3413 if (copy_from_user(&compat_log, (void __user *)arg, 3414 sizeof(compat_log))) 3415 return -EFAULT; 3416 log.slot = compat_log.slot; 3417 log.padding1 = compat_log.padding1; 3418 log.padding2 = compat_log.padding2; 3419 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 3420 3421 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 3422 break; 3423 } 3424 default: 3425 r = kvm_vm_ioctl(filp, ioctl, arg); 3426 } 3427 return r; 3428 } 3429 #endif 3430 3431 static struct file_operations kvm_vm_fops = { 3432 .release = kvm_vm_release, 3433 .unlocked_ioctl = kvm_vm_ioctl, 3434 .llseek = noop_llseek, 3435 KVM_COMPAT(kvm_vm_compat_ioctl), 3436 }; 3437 3438 static int kvm_dev_ioctl_create_vm(unsigned long type) 3439 { 3440 int r; 3441 struct kvm *kvm; 3442 struct file *file; 3443 3444 kvm = kvm_create_vm(type); 3445 if (IS_ERR(kvm)) 3446 return PTR_ERR(kvm); 3447 #ifdef CONFIG_KVM_MMIO 3448 r = kvm_coalesced_mmio_init(kvm); 3449 if (r < 0) 3450 goto put_kvm; 3451 #endif 3452 r = get_unused_fd_flags(O_CLOEXEC); 3453 if (r < 0) 3454 goto put_kvm; 3455 3456 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 3457 if (IS_ERR(file)) { 3458 put_unused_fd(r); 3459 r = PTR_ERR(file); 3460 goto put_kvm; 3461 } 3462 3463 /* 3464 * Don't call kvm_put_kvm anymore at this point; file->f_op is 3465 * already set, with ->release() being kvm_vm_release(). In error 3466 * cases it will be called by the final fput(file) and will take 3467 * care of doing kvm_put_kvm(kvm). 3468 */ 3469 if (kvm_create_vm_debugfs(kvm, r) < 0) { 3470 put_unused_fd(r); 3471 fput(file); 3472 return -ENOMEM; 3473 } 3474 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 3475 3476 fd_install(r, file); 3477 return r; 3478 3479 put_kvm: 3480 kvm_put_kvm(kvm); 3481 return r; 3482 } 3483 3484 static long kvm_dev_ioctl(struct file *filp, 3485 unsigned int ioctl, unsigned long arg) 3486 { 3487 long r = -EINVAL; 3488 3489 switch (ioctl) { 3490 case KVM_GET_API_VERSION: 3491 if (arg) 3492 goto out; 3493 r = KVM_API_VERSION; 3494 break; 3495 case KVM_CREATE_VM: 3496 r = kvm_dev_ioctl_create_vm(arg); 3497 break; 3498 case KVM_CHECK_EXTENSION: 3499 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 3500 break; 3501 case KVM_GET_VCPU_MMAP_SIZE: 3502 if (arg) 3503 goto out; 3504 r = PAGE_SIZE; /* struct kvm_run */ 3505 #ifdef CONFIG_X86 3506 r += PAGE_SIZE; /* pio data page */ 3507 #endif 3508 #ifdef CONFIG_KVM_MMIO 3509 r += PAGE_SIZE; /* coalesced mmio ring page */ 3510 #endif 3511 break; 3512 case KVM_TRACE_ENABLE: 3513 case KVM_TRACE_PAUSE: 3514 case KVM_TRACE_DISABLE: 3515 r = -EOPNOTSUPP; 3516 break; 3517 default: 3518 return kvm_arch_dev_ioctl(filp, ioctl, arg); 3519 } 3520 out: 3521 return r; 3522 } 3523 3524 static struct file_operations kvm_chardev_ops = { 3525 .unlocked_ioctl = kvm_dev_ioctl, 3526 .llseek = noop_llseek, 3527 KVM_COMPAT(kvm_dev_ioctl), 3528 }; 3529 3530 static struct miscdevice kvm_dev = { 3531 KVM_MINOR, 3532 "kvm", 3533 &kvm_chardev_ops, 3534 }; 3535 3536 static void hardware_enable_nolock(void *junk) 3537 { 3538 int cpu = raw_smp_processor_id(); 3539 int r; 3540 3541 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3542 return; 3543 3544 cpumask_set_cpu(cpu, cpus_hardware_enabled); 3545 3546 r = kvm_arch_hardware_enable(); 3547 3548 if (r) { 3549 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3550 atomic_inc(&hardware_enable_failed); 3551 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu); 3552 } 3553 } 3554 3555 static int kvm_starting_cpu(unsigned int cpu) 3556 { 3557 raw_spin_lock(&kvm_count_lock); 3558 if (kvm_usage_count) 3559 hardware_enable_nolock(NULL); 3560 raw_spin_unlock(&kvm_count_lock); 3561 return 0; 3562 } 3563 3564 static void hardware_disable_nolock(void *junk) 3565 { 3566 int cpu = raw_smp_processor_id(); 3567 3568 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 3569 return; 3570 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 3571 kvm_arch_hardware_disable(); 3572 } 3573 3574 static int kvm_dying_cpu(unsigned int cpu) 3575 { 3576 raw_spin_lock(&kvm_count_lock); 3577 if (kvm_usage_count) 3578 hardware_disable_nolock(NULL); 3579 raw_spin_unlock(&kvm_count_lock); 3580 return 0; 3581 } 3582 3583 static void hardware_disable_all_nolock(void) 3584 { 3585 BUG_ON(!kvm_usage_count); 3586 3587 kvm_usage_count--; 3588 if (!kvm_usage_count) 3589 on_each_cpu(hardware_disable_nolock, NULL, 1); 3590 } 3591 3592 static void hardware_disable_all(void) 3593 { 3594 raw_spin_lock(&kvm_count_lock); 3595 hardware_disable_all_nolock(); 3596 raw_spin_unlock(&kvm_count_lock); 3597 } 3598 3599 static int hardware_enable_all(void) 3600 { 3601 int r = 0; 3602 3603 raw_spin_lock(&kvm_count_lock); 3604 3605 kvm_usage_count++; 3606 if (kvm_usage_count == 1) { 3607 atomic_set(&hardware_enable_failed, 0); 3608 on_each_cpu(hardware_enable_nolock, NULL, 1); 3609 3610 if (atomic_read(&hardware_enable_failed)) { 3611 hardware_disable_all_nolock(); 3612 r = -EBUSY; 3613 } 3614 } 3615 3616 raw_spin_unlock(&kvm_count_lock); 3617 3618 return r; 3619 } 3620 3621 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 3622 void *v) 3623 { 3624 /* 3625 * Some (well, at least mine) BIOSes hang on reboot if 3626 * in vmx root mode. 3627 * 3628 * And Intel TXT required VMX off for all cpu when system shutdown. 3629 */ 3630 pr_info("kvm: exiting hardware virtualization\n"); 3631 kvm_rebooting = true; 3632 on_each_cpu(hardware_disable_nolock, NULL, 1); 3633 return NOTIFY_OK; 3634 } 3635 3636 static struct notifier_block kvm_reboot_notifier = { 3637 .notifier_call = kvm_reboot, 3638 .priority = 0, 3639 }; 3640 3641 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 3642 { 3643 int i; 3644 3645 for (i = 0; i < bus->dev_count; i++) { 3646 struct kvm_io_device *pos = bus->range[i].dev; 3647 3648 kvm_iodevice_destructor(pos); 3649 } 3650 kfree(bus); 3651 } 3652 3653 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 3654 const struct kvm_io_range *r2) 3655 { 3656 gpa_t addr1 = r1->addr; 3657 gpa_t addr2 = r2->addr; 3658 3659 if (addr1 < addr2) 3660 return -1; 3661 3662 /* If r2->len == 0, match the exact address. If r2->len != 0, 3663 * accept any overlapping write. Any order is acceptable for 3664 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 3665 * we process all of them. 3666 */ 3667 if (r2->len) { 3668 addr1 += r1->len; 3669 addr2 += r2->len; 3670 } 3671 3672 if (addr1 > addr2) 3673 return 1; 3674 3675 return 0; 3676 } 3677 3678 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 3679 { 3680 return kvm_io_bus_cmp(p1, p2); 3681 } 3682 3683 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 3684 gpa_t addr, int len) 3685 { 3686 struct kvm_io_range *range, key; 3687 int off; 3688 3689 key = (struct kvm_io_range) { 3690 .addr = addr, 3691 .len = len, 3692 }; 3693 3694 range = bsearch(&key, bus->range, bus->dev_count, 3695 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 3696 if (range == NULL) 3697 return -ENOENT; 3698 3699 off = range - bus->range; 3700 3701 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 3702 off--; 3703 3704 return off; 3705 } 3706 3707 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3708 struct kvm_io_range *range, const void *val) 3709 { 3710 int idx; 3711 3712 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3713 if (idx < 0) 3714 return -EOPNOTSUPP; 3715 3716 while (idx < bus->dev_count && 3717 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3718 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 3719 range->len, val)) 3720 return idx; 3721 idx++; 3722 } 3723 3724 return -EOPNOTSUPP; 3725 } 3726 3727 /* kvm_io_bus_write - called under kvm->slots_lock */ 3728 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3729 int len, const void *val) 3730 { 3731 struct kvm_io_bus *bus; 3732 struct kvm_io_range range; 3733 int r; 3734 3735 range = (struct kvm_io_range) { 3736 .addr = addr, 3737 .len = len, 3738 }; 3739 3740 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3741 if (!bus) 3742 return -ENOMEM; 3743 r = __kvm_io_bus_write(vcpu, bus, &range, val); 3744 return r < 0 ? r : 0; 3745 } 3746 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 3747 3748 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 3749 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 3750 gpa_t addr, int len, const void *val, long cookie) 3751 { 3752 struct kvm_io_bus *bus; 3753 struct kvm_io_range range; 3754 3755 range = (struct kvm_io_range) { 3756 .addr = addr, 3757 .len = len, 3758 }; 3759 3760 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3761 if (!bus) 3762 return -ENOMEM; 3763 3764 /* First try the device referenced by cookie. */ 3765 if ((cookie >= 0) && (cookie < bus->dev_count) && 3766 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 3767 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 3768 val)) 3769 return cookie; 3770 3771 /* 3772 * cookie contained garbage; fall back to search and return the 3773 * correct cookie value. 3774 */ 3775 return __kvm_io_bus_write(vcpu, bus, &range, val); 3776 } 3777 3778 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 3779 struct kvm_io_range *range, void *val) 3780 { 3781 int idx; 3782 3783 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 3784 if (idx < 0) 3785 return -EOPNOTSUPP; 3786 3787 while (idx < bus->dev_count && 3788 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 3789 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 3790 range->len, val)) 3791 return idx; 3792 idx++; 3793 } 3794 3795 return -EOPNOTSUPP; 3796 } 3797 3798 /* kvm_io_bus_read - called under kvm->slots_lock */ 3799 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 3800 int len, void *val) 3801 { 3802 struct kvm_io_bus *bus; 3803 struct kvm_io_range range; 3804 int r; 3805 3806 range = (struct kvm_io_range) { 3807 .addr = addr, 3808 .len = len, 3809 }; 3810 3811 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 3812 if (!bus) 3813 return -ENOMEM; 3814 r = __kvm_io_bus_read(vcpu, bus, &range, val); 3815 return r < 0 ? r : 0; 3816 } 3817 3818 /* Caller must hold slots_lock. */ 3819 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 3820 int len, struct kvm_io_device *dev) 3821 { 3822 int i; 3823 struct kvm_io_bus *new_bus, *bus; 3824 struct kvm_io_range range; 3825 3826 bus = kvm_get_bus(kvm, bus_idx); 3827 if (!bus) 3828 return -ENOMEM; 3829 3830 /* exclude ioeventfd which is limited by maximum fd */ 3831 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 3832 return -ENOSPC; 3833 3834 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 3835 GFP_KERNEL_ACCOUNT); 3836 if (!new_bus) 3837 return -ENOMEM; 3838 3839 range = (struct kvm_io_range) { 3840 .addr = addr, 3841 .len = len, 3842 .dev = dev, 3843 }; 3844 3845 for (i = 0; i < bus->dev_count; i++) 3846 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 3847 break; 3848 3849 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3850 new_bus->dev_count++; 3851 new_bus->range[i] = range; 3852 memcpy(new_bus->range + i + 1, bus->range + i, 3853 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 3854 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3855 synchronize_srcu_expedited(&kvm->srcu); 3856 kfree(bus); 3857 3858 return 0; 3859 } 3860 3861 /* Caller must hold slots_lock. */ 3862 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3863 struct kvm_io_device *dev) 3864 { 3865 int i; 3866 struct kvm_io_bus *new_bus, *bus; 3867 3868 bus = kvm_get_bus(kvm, bus_idx); 3869 if (!bus) 3870 return; 3871 3872 for (i = 0; i < bus->dev_count; i++) 3873 if (bus->range[i].dev == dev) { 3874 break; 3875 } 3876 3877 if (i == bus->dev_count) 3878 return; 3879 3880 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 3881 GFP_KERNEL_ACCOUNT); 3882 if (!new_bus) { 3883 pr_err("kvm: failed to shrink bus, removing it completely\n"); 3884 goto broken; 3885 } 3886 3887 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 3888 new_bus->dev_count--; 3889 memcpy(new_bus->range + i, bus->range + i + 1, 3890 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 3891 3892 broken: 3893 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 3894 synchronize_srcu_expedited(&kvm->srcu); 3895 kfree(bus); 3896 return; 3897 } 3898 3899 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 3900 gpa_t addr) 3901 { 3902 struct kvm_io_bus *bus; 3903 int dev_idx, srcu_idx; 3904 struct kvm_io_device *iodev = NULL; 3905 3906 srcu_idx = srcu_read_lock(&kvm->srcu); 3907 3908 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 3909 if (!bus) 3910 goto out_unlock; 3911 3912 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 3913 if (dev_idx < 0) 3914 goto out_unlock; 3915 3916 iodev = bus->range[dev_idx].dev; 3917 3918 out_unlock: 3919 srcu_read_unlock(&kvm->srcu, srcu_idx); 3920 3921 return iodev; 3922 } 3923 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 3924 3925 static int kvm_debugfs_open(struct inode *inode, struct file *file, 3926 int (*get)(void *, u64 *), int (*set)(void *, u64), 3927 const char *fmt) 3928 { 3929 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3930 inode->i_private; 3931 3932 /* The debugfs files are a reference to the kvm struct which 3933 * is still valid when kvm_destroy_vm is called. 3934 * To avoid the race between open and the removal of the debugfs 3935 * directory we test against the users count. 3936 */ 3937 if (!refcount_inc_not_zero(&stat_data->kvm->users_count)) 3938 return -ENOENT; 3939 3940 if (simple_attr_open(inode, file, get, 3941 stat_data->mode & S_IWUGO ? set : NULL, 3942 fmt)) { 3943 kvm_put_kvm(stat_data->kvm); 3944 return -ENOMEM; 3945 } 3946 3947 return 0; 3948 } 3949 3950 static int kvm_debugfs_release(struct inode *inode, struct file *file) 3951 { 3952 struct kvm_stat_data *stat_data = (struct kvm_stat_data *) 3953 inode->i_private; 3954 3955 simple_attr_release(inode, file); 3956 kvm_put_kvm(stat_data->kvm); 3957 3958 return 0; 3959 } 3960 3961 static int vm_stat_get_per_vm(void *data, u64 *val) 3962 { 3963 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3964 3965 *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset); 3966 3967 return 0; 3968 } 3969 3970 static int vm_stat_clear_per_vm(void *data, u64 val) 3971 { 3972 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 3973 3974 if (val) 3975 return -EINVAL; 3976 3977 *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0; 3978 3979 return 0; 3980 } 3981 3982 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file) 3983 { 3984 __simple_attr_check_format("%llu\n", 0ull); 3985 return kvm_debugfs_open(inode, file, vm_stat_get_per_vm, 3986 vm_stat_clear_per_vm, "%llu\n"); 3987 } 3988 3989 static const struct file_operations vm_stat_get_per_vm_fops = { 3990 .owner = THIS_MODULE, 3991 .open = vm_stat_get_per_vm_open, 3992 .release = kvm_debugfs_release, 3993 .read = simple_attr_read, 3994 .write = simple_attr_write, 3995 .llseek = no_llseek, 3996 }; 3997 3998 static int vcpu_stat_get_per_vm(void *data, u64 *val) 3999 { 4000 int i; 4001 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4002 struct kvm_vcpu *vcpu; 4003 4004 *val = 0; 4005 4006 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4007 *val += *(u64 *)((void *)vcpu + stat_data->offset); 4008 4009 return 0; 4010 } 4011 4012 static int vcpu_stat_clear_per_vm(void *data, u64 val) 4013 { 4014 int i; 4015 struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data; 4016 struct kvm_vcpu *vcpu; 4017 4018 if (val) 4019 return -EINVAL; 4020 4021 kvm_for_each_vcpu(i, vcpu, stat_data->kvm) 4022 *(u64 *)((void *)vcpu + stat_data->offset) = 0; 4023 4024 return 0; 4025 } 4026 4027 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file) 4028 { 4029 __simple_attr_check_format("%llu\n", 0ull); 4030 return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm, 4031 vcpu_stat_clear_per_vm, "%llu\n"); 4032 } 4033 4034 static const struct file_operations vcpu_stat_get_per_vm_fops = { 4035 .owner = THIS_MODULE, 4036 .open = vcpu_stat_get_per_vm_open, 4037 .release = kvm_debugfs_release, 4038 .read = simple_attr_read, 4039 .write = simple_attr_write, 4040 .llseek = no_llseek, 4041 }; 4042 4043 static const struct file_operations *stat_fops_per_vm[] = { 4044 [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops, 4045 [KVM_STAT_VM] = &vm_stat_get_per_vm_fops, 4046 }; 4047 4048 static int vm_stat_get(void *_offset, u64 *val) 4049 { 4050 unsigned offset = (long)_offset; 4051 struct kvm *kvm; 4052 struct kvm_stat_data stat_tmp = {.offset = offset}; 4053 u64 tmp_val; 4054 4055 *val = 0; 4056 mutex_lock(&kvm_lock); 4057 list_for_each_entry(kvm, &vm_list, vm_list) { 4058 stat_tmp.kvm = kvm; 4059 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4060 *val += tmp_val; 4061 } 4062 mutex_unlock(&kvm_lock); 4063 return 0; 4064 } 4065 4066 static int vm_stat_clear(void *_offset, u64 val) 4067 { 4068 unsigned offset = (long)_offset; 4069 struct kvm *kvm; 4070 struct kvm_stat_data stat_tmp = {.offset = offset}; 4071 4072 if (val) 4073 return -EINVAL; 4074 4075 mutex_lock(&kvm_lock); 4076 list_for_each_entry(kvm, &vm_list, vm_list) { 4077 stat_tmp.kvm = kvm; 4078 vm_stat_clear_per_vm((void *)&stat_tmp, 0); 4079 } 4080 mutex_unlock(&kvm_lock); 4081 4082 return 0; 4083 } 4084 4085 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 4086 4087 static int vcpu_stat_get(void *_offset, u64 *val) 4088 { 4089 unsigned offset = (long)_offset; 4090 struct kvm *kvm; 4091 struct kvm_stat_data stat_tmp = {.offset = offset}; 4092 u64 tmp_val; 4093 4094 *val = 0; 4095 mutex_lock(&kvm_lock); 4096 list_for_each_entry(kvm, &vm_list, vm_list) { 4097 stat_tmp.kvm = kvm; 4098 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val); 4099 *val += tmp_val; 4100 } 4101 mutex_unlock(&kvm_lock); 4102 return 0; 4103 } 4104 4105 static int vcpu_stat_clear(void *_offset, u64 val) 4106 { 4107 unsigned offset = (long)_offset; 4108 struct kvm *kvm; 4109 struct kvm_stat_data stat_tmp = {.offset = offset}; 4110 4111 if (val) 4112 return -EINVAL; 4113 4114 mutex_lock(&kvm_lock); 4115 list_for_each_entry(kvm, &vm_list, vm_list) { 4116 stat_tmp.kvm = kvm; 4117 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0); 4118 } 4119 mutex_unlock(&kvm_lock); 4120 4121 return 0; 4122 } 4123 4124 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 4125 "%llu\n"); 4126 4127 static const struct file_operations *stat_fops[] = { 4128 [KVM_STAT_VCPU] = &vcpu_stat_fops, 4129 [KVM_STAT_VM] = &vm_stat_fops, 4130 }; 4131 4132 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 4133 { 4134 struct kobj_uevent_env *env; 4135 unsigned long long created, active; 4136 4137 if (!kvm_dev.this_device || !kvm) 4138 return; 4139 4140 mutex_lock(&kvm_lock); 4141 if (type == KVM_EVENT_CREATE_VM) { 4142 kvm_createvm_count++; 4143 kvm_active_vms++; 4144 } else if (type == KVM_EVENT_DESTROY_VM) { 4145 kvm_active_vms--; 4146 } 4147 created = kvm_createvm_count; 4148 active = kvm_active_vms; 4149 mutex_unlock(&kvm_lock); 4150 4151 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 4152 if (!env) 4153 return; 4154 4155 add_uevent_var(env, "CREATED=%llu", created); 4156 add_uevent_var(env, "COUNT=%llu", active); 4157 4158 if (type == KVM_EVENT_CREATE_VM) { 4159 add_uevent_var(env, "EVENT=create"); 4160 kvm->userspace_pid = task_pid_nr(current); 4161 } else if (type == KVM_EVENT_DESTROY_VM) { 4162 add_uevent_var(env, "EVENT=destroy"); 4163 } 4164 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 4165 4166 if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) { 4167 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 4168 4169 if (p) { 4170 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 4171 if (!IS_ERR(tmp)) 4172 add_uevent_var(env, "STATS_PATH=%s", tmp); 4173 kfree(p); 4174 } 4175 } 4176 /* no need for checks, since we are adding at most only 5 keys */ 4177 env->envp[env->envp_idx++] = NULL; 4178 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 4179 kfree(env); 4180 } 4181 4182 static void kvm_init_debug(void) 4183 { 4184 struct kvm_stats_debugfs_item *p; 4185 4186 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 4187 4188 kvm_debugfs_num_entries = 0; 4189 for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) { 4190 int mode = p->mode ? p->mode : 0644; 4191 debugfs_create_file(p->name, mode, kvm_debugfs_dir, 4192 (void *)(long)p->offset, 4193 stat_fops[p->kind]); 4194 } 4195 } 4196 4197 static int kvm_suspend(void) 4198 { 4199 if (kvm_usage_count) 4200 hardware_disable_nolock(NULL); 4201 return 0; 4202 } 4203 4204 static void kvm_resume(void) 4205 { 4206 if (kvm_usage_count) { 4207 #ifdef CONFIG_LOCKDEP 4208 WARN_ON(lockdep_is_held(&kvm_count_lock)); 4209 #endif 4210 hardware_enable_nolock(NULL); 4211 } 4212 } 4213 4214 static struct syscore_ops kvm_syscore_ops = { 4215 .suspend = kvm_suspend, 4216 .resume = kvm_resume, 4217 }; 4218 4219 static inline 4220 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 4221 { 4222 return container_of(pn, struct kvm_vcpu, preempt_notifier); 4223 } 4224 4225 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 4226 { 4227 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4228 4229 WRITE_ONCE(vcpu->preempted, false); 4230 WRITE_ONCE(vcpu->ready, false); 4231 4232 kvm_arch_sched_in(vcpu, cpu); 4233 4234 kvm_arch_vcpu_load(vcpu, cpu); 4235 } 4236 4237 static void kvm_sched_out(struct preempt_notifier *pn, 4238 struct task_struct *next) 4239 { 4240 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 4241 4242 if (current->state == TASK_RUNNING) { 4243 WRITE_ONCE(vcpu->preempted, true); 4244 WRITE_ONCE(vcpu->ready, true); 4245 } 4246 kvm_arch_vcpu_put(vcpu); 4247 } 4248 4249 static void check_processor_compat(void *rtn) 4250 { 4251 *(int *)rtn = kvm_arch_check_processor_compat(); 4252 } 4253 4254 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 4255 struct module *module) 4256 { 4257 int r; 4258 int cpu; 4259 4260 r = kvm_arch_init(opaque); 4261 if (r) 4262 goto out_fail; 4263 4264 /* 4265 * kvm_arch_init makes sure there's at most one caller 4266 * for architectures that support multiple implementations, 4267 * like intel and amd on x86. 4268 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating 4269 * conflicts in case kvm is already setup for another implementation. 4270 */ 4271 r = kvm_irqfd_init(); 4272 if (r) 4273 goto out_irqfd; 4274 4275 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 4276 r = -ENOMEM; 4277 goto out_free_0; 4278 } 4279 4280 r = kvm_arch_hardware_setup(); 4281 if (r < 0) 4282 goto out_free_0a; 4283 4284 for_each_online_cpu(cpu) { 4285 smp_call_function_single(cpu, check_processor_compat, &r, 1); 4286 if (r < 0) 4287 goto out_free_1; 4288 } 4289 4290 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting", 4291 kvm_starting_cpu, kvm_dying_cpu); 4292 if (r) 4293 goto out_free_2; 4294 register_reboot_notifier(&kvm_reboot_notifier); 4295 4296 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 4297 if (!vcpu_align) 4298 vcpu_align = __alignof__(struct kvm_vcpu); 4299 kvm_vcpu_cache = 4300 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 4301 SLAB_ACCOUNT, 4302 offsetof(struct kvm_vcpu, arch), 4303 sizeof_field(struct kvm_vcpu, arch), 4304 NULL); 4305 if (!kvm_vcpu_cache) { 4306 r = -ENOMEM; 4307 goto out_free_3; 4308 } 4309 4310 r = kvm_async_pf_init(); 4311 if (r) 4312 goto out_free; 4313 4314 kvm_chardev_ops.owner = module; 4315 kvm_vm_fops.owner = module; 4316 kvm_vcpu_fops.owner = module; 4317 4318 r = misc_register(&kvm_dev); 4319 if (r) { 4320 pr_err("kvm: misc device register failed\n"); 4321 goto out_unreg; 4322 } 4323 4324 register_syscore_ops(&kvm_syscore_ops); 4325 4326 kvm_preempt_ops.sched_in = kvm_sched_in; 4327 kvm_preempt_ops.sched_out = kvm_sched_out; 4328 4329 kvm_init_debug(); 4330 4331 r = kvm_vfio_ops_init(); 4332 WARN_ON(r); 4333 4334 return 0; 4335 4336 out_unreg: 4337 kvm_async_pf_deinit(); 4338 out_free: 4339 kmem_cache_destroy(kvm_vcpu_cache); 4340 out_free_3: 4341 unregister_reboot_notifier(&kvm_reboot_notifier); 4342 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4343 out_free_2: 4344 out_free_1: 4345 kvm_arch_hardware_unsetup(); 4346 out_free_0a: 4347 free_cpumask_var(cpus_hardware_enabled); 4348 out_free_0: 4349 kvm_irqfd_exit(); 4350 out_irqfd: 4351 kvm_arch_exit(); 4352 out_fail: 4353 return r; 4354 } 4355 EXPORT_SYMBOL_GPL(kvm_init); 4356 4357 void kvm_exit(void) 4358 { 4359 debugfs_remove_recursive(kvm_debugfs_dir); 4360 misc_deregister(&kvm_dev); 4361 kmem_cache_destroy(kvm_vcpu_cache); 4362 kvm_async_pf_deinit(); 4363 unregister_syscore_ops(&kvm_syscore_ops); 4364 unregister_reboot_notifier(&kvm_reboot_notifier); 4365 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING); 4366 on_each_cpu(hardware_disable_nolock, NULL, 1); 4367 kvm_arch_hardware_unsetup(); 4368 kvm_arch_exit(); 4369 kvm_irqfd_exit(); 4370 free_cpumask_var(cpus_hardware_enabled); 4371 kvm_vfio_ops_exit(); 4372 } 4373 EXPORT_SYMBOL_GPL(kvm_exit); 4374