xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <kvm/iodev.h>
20 
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54 
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60 
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67 
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78 
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83 
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88 
89 /*
90  * Ordering of locks:
91  *
92  *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94 
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98 
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102 
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105 
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107 
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110 
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113 
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115 			   unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118 				  unsigned long arg);
119 #define KVM_COMPAT(c)	.compat_ioctl	= (c)
120 #else
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 				unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl
124 #endif
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
127 
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
129 
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
131 
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
134 
135 static bool largepages_enabled = true;
136 
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
142 
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 		unsigned long start, unsigned long end, bool blockable)
145 {
146 	return 0;
147 }
148 
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
150 {
151 	if (pfn_valid(pfn))
152 		return PageReserved(pfn_to_page(pfn));
153 
154 	return true;
155 }
156 
157 /*
158  * Switches to specified vcpu, until a matching vcpu_put()
159  */
160 void vcpu_load(struct kvm_vcpu *vcpu)
161 {
162 	int cpu = get_cpu();
163 	preempt_notifier_register(&vcpu->preempt_notifier);
164 	kvm_arch_vcpu_load(vcpu, cpu);
165 	put_cpu();
166 }
167 EXPORT_SYMBOL_GPL(vcpu_load);
168 
169 void vcpu_put(struct kvm_vcpu *vcpu)
170 {
171 	preempt_disable();
172 	kvm_arch_vcpu_put(vcpu);
173 	preempt_notifier_unregister(&vcpu->preempt_notifier);
174 	preempt_enable();
175 }
176 EXPORT_SYMBOL_GPL(vcpu_put);
177 
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
180 {
181 	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
182 
183 	/*
184 	 * We need to wait for the VCPU to reenable interrupts and get out of
185 	 * READING_SHADOW_PAGE_TABLES mode.
186 	 */
187 	if (req & KVM_REQUEST_WAIT)
188 		return mode != OUTSIDE_GUEST_MODE;
189 
190 	/*
191 	 * Need to kick a running VCPU, but otherwise there is nothing to do.
192 	 */
193 	return mode == IN_GUEST_MODE;
194 }
195 
196 static void ack_flush(void *_completed)
197 {
198 }
199 
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
201 {
202 	if (unlikely(!cpus))
203 		cpus = cpu_online_mask;
204 
205 	if (cpumask_empty(cpus))
206 		return false;
207 
208 	smp_call_function_many(cpus, ack_flush, NULL, wait);
209 	return true;
210 }
211 
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 				 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
214 {
215 	int i, cpu, me;
216 	struct kvm_vcpu *vcpu;
217 	bool called;
218 
219 	me = get_cpu();
220 
221 	kvm_for_each_vcpu(i, vcpu, kvm) {
222 		if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
223 			continue;
224 
225 		kvm_make_request(req, vcpu);
226 		cpu = vcpu->cpu;
227 
228 		if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
229 			continue;
230 
231 		if (tmp != NULL && cpu != -1 && cpu != me &&
232 		    kvm_request_needs_ipi(vcpu, req))
233 			__cpumask_set_cpu(cpu, tmp);
234 	}
235 
236 	called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
237 	put_cpu();
238 
239 	return called;
240 }
241 
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
243 {
244 	cpumask_var_t cpus;
245 	bool called;
246 
247 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
248 
249 	called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
250 
251 	free_cpumask_var(cpus);
252 	return called;
253 }
254 
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
257 {
258 	/*
259 	 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260 	 * kvm_make_all_cpus_request.
261 	 */
262 	long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
263 
264 	/*
265 	 * We want to publish modifications to the page tables before reading
266 	 * mode. Pairs with a memory barrier in arch-specific code.
267 	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268 	 * and smp_mb in walk_shadow_page_lockless_begin/end.
269 	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
270 	 *
271 	 * There is already an smp_mb__after_atomic() before
272 	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
273 	 * barrier here.
274 	 */
275 	if (!kvm_arch_flush_remote_tlb(kvm)
276 	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 		++kvm->stat.remote_tlb_flush;
278 	cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
279 }
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
281 #endif
282 
283 void kvm_reload_remote_mmus(struct kvm *kvm)
284 {
285 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
286 }
287 
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
289 {
290 	struct page *page;
291 	int r;
292 
293 	mutex_init(&vcpu->mutex);
294 	vcpu->cpu = -1;
295 	vcpu->kvm = kvm;
296 	vcpu->vcpu_id = id;
297 	vcpu->pid = NULL;
298 	init_swait_queue_head(&vcpu->wq);
299 	kvm_async_pf_vcpu_init(vcpu);
300 
301 	vcpu->pre_pcpu = -1;
302 	INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
303 
304 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
305 	if (!page) {
306 		r = -ENOMEM;
307 		goto fail;
308 	}
309 	vcpu->run = page_address(page);
310 
311 	kvm_vcpu_set_in_spin_loop(vcpu, false);
312 	kvm_vcpu_set_dy_eligible(vcpu, false);
313 	vcpu->preempted = false;
314 
315 	r = kvm_arch_vcpu_init(vcpu);
316 	if (r < 0)
317 		goto fail_free_run;
318 	return 0;
319 
320 fail_free_run:
321 	free_page((unsigned long)vcpu->run);
322 fail:
323 	return r;
324 }
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
326 
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
328 {
329 	/*
330 	 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 	 * will change the vcpu->pid pointer and on uninit all file
332 	 * descriptors are already gone.
333 	 */
334 	put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 	kvm_arch_vcpu_uninit(vcpu);
336 	free_page((unsigned long)vcpu->run);
337 }
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
339 
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
342 {
343 	return container_of(mn, struct kvm, mmu_notifier);
344 }
345 
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 					struct mm_struct *mm,
348 					unsigned long address,
349 					pte_t pte)
350 {
351 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
352 	int idx;
353 
354 	idx = srcu_read_lock(&kvm->srcu);
355 	spin_lock(&kvm->mmu_lock);
356 	kvm->mmu_notifier_seq++;
357 	kvm_set_spte_hva(kvm, address, pte);
358 	spin_unlock(&kvm->mmu_lock);
359 	srcu_read_unlock(&kvm->srcu, idx);
360 }
361 
362 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
363 						    struct mm_struct *mm,
364 						    unsigned long start,
365 						    unsigned long end,
366 						    bool blockable)
367 {
368 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
369 	int need_tlb_flush = 0, idx;
370 	int ret;
371 
372 	idx = srcu_read_lock(&kvm->srcu);
373 	spin_lock(&kvm->mmu_lock);
374 	/*
375 	 * The count increase must become visible at unlock time as no
376 	 * spte can be established without taking the mmu_lock and
377 	 * count is also read inside the mmu_lock critical section.
378 	 */
379 	kvm->mmu_notifier_count++;
380 	need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
381 	need_tlb_flush |= kvm->tlbs_dirty;
382 	/* we've to flush the tlb before the pages can be freed */
383 	if (need_tlb_flush)
384 		kvm_flush_remote_tlbs(kvm);
385 
386 	spin_unlock(&kvm->mmu_lock);
387 
388 	ret = kvm_arch_mmu_notifier_invalidate_range(kvm, start, end, blockable);
389 
390 	srcu_read_unlock(&kvm->srcu, idx);
391 
392 	return ret;
393 }
394 
395 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
396 						  struct mm_struct *mm,
397 						  unsigned long start,
398 						  unsigned long end)
399 {
400 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
401 
402 	spin_lock(&kvm->mmu_lock);
403 	/*
404 	 * This sequence increase will notify the kvm page fault that
405 	 * the page that is going to be mapped in the spte could have
406 	 * been freed.
407 	 */
408 	kvm->mmu_notifier_seq++;
409 	smp_wmb();
410 	/*
411 	 * The above sequence increase must be visible before the
412 	 * below count decrease, which is ensured by the smp_wmb above
413 	 * in conjunction with the smp_rmb in mmu_notifier_retry().
414 	 */
415 	kvm->mmu_notifier_count--;
416 	spin_unlock(&kvm->mmu_lock);
417 
418 	BUG_ON(kvm->mmu_notifier_count < 0);
419 }
420 
421 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
422 					      struct mm_struct *mm,
423 					      unsigned long start,
424 					      unsigned long end)
425 {
426 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
427 	int young, idx;
428 
429 	idx = srcu_read_lock(&kvm->srcu);
430 	spin_lock(&kvm->mmu_lock);
431 
432 	young = kvm_age_hva(kvm, start, end);
433 	if (young)
434 		kvm_flush_remote_tlbs(kvm);
435 
436 	spin_unlock(&kvm->mmu_lock);
437 	srcu_read_unlock(&kvm->srcu, idx);
438 
439 	return young;
440 }
441 
442 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
443 					struct mm_struct *mm,
444 					unsigned long start,
445 					unsigned long end)
446 {
447 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
448 	int young, idx;
449 
450 	idx = srcu_read_lock(&kvm->srcu);
451 	spin_lock(&kvm->mmu_lock);
452 	/*
453 	 * Even though we do not flush TLB, this will still adversely
454 	 * affect performance on pre-Haswell Intel EPT, where there is
455 	 * no EPT Access Bit to clear so that we have to tear down EPT
456 	 * tables instead. If we find this unacceptable, we can always
457 	 * add a parameter to kvm_age_hva so that it effectively doesn't
458 	 * do anything on clear_young.
459 	 *
460 	 * Also note that currently we never issue secondary TLB flushes
461 	 * from clear_young, leaving this job up to the regular system
462 	 * cadence. If we find this inaccurate, we might come up with a
463 	 * more sophisticated heuristic later.
464 	 */
465 	young = kvm_age_hva(kvm, start, end);
466 	spin_unlock(&kvm->mmu_lock);
467 	srcu_read_unlock(&kvm->srcu, idx);
468 
469 	return young;
470 }
471 
472 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
473 				       struct mm_struct *mm,
474 				       unsigned long address)
475 {
476 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
477 	int young, idx;
478 
479 	idx = srcu_read_lock(&kvm->srcu);
480 	spin_lock(&kvm->mmu_lock);
481 	young = kvm_test_age_hva(kvm, address);
482 	spin_unlock(&kvm->mmu_lock);
483 	srcu_read_unlock(&kvm->srcu, idx);
484 
485 	return young;
486 }
487 
488 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
489 				     struct mm_struct *mm)
490 {
491 	struct kvm *kvm = mmu_notifier_to_kvm(mn);
492 	int idx;
493 
494 	idx = srcu_read_lock(&kvm->srcu);
495 	kvm_arch_flush_shadow_all(kvm);
496 	srcu_read_unlock(&kvm->srcu, idx);
497 }
498 
499 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
500 	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
501 	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
502 	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
503 	.clear_young		= kvm_mmu_notifier_clear_young,
504 	.test_young		= kvm_mmu_notifier_test_young,
505 	.change_pte		= kvm_mmu_notifier_change_pte,
506 	.release		= kvm_mmu_notifier_release,
507 };
508 
509 static int kvm_init_mmu_notifier(struct kvm *kvm)
510 {
511 	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
512 	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
513 }
514 
515 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
516 
517 static int kvm_init_mmu_notifier(struct kvm *kvm)
518 {
519 	return 0;
520 }
521 
522 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
523 
524 static struct kvm_memslots *kvm_alloc_memslots(void)
525 {
526 	int i;
527 	struct kvm_memslots *slots;
528 
529 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
530 	if (!slots)
531 		return NULL;
532 
533 	for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
534 		slots->id_to_index[i] = slots->memslots[i].id = i;
535 
536 	return slots;
537 }
538 
539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
540 {
541 	if (!memslot->dirty_bitmap)
542 		return;
543 
544 	kvfree(memslot->dirty_bitmap);
545 	memslot->dirty_bitmap = NULL;
546 }
547 
548 /*
549  * Free any memory in @free but not in @dont.
550  */
551 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
552 			      struct kvm_memory_slot *dont)
553 {
554 	if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
555 		kvm_destroy_dirty_bitmap(free);
556 
557 	kvm_arch_free_memslot(kvm, free, dont);
558 
559 	free->npages = 0;
560 }
561 
562 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
563 {
564 	struct kvm_memory_slot *memslot;
565 
566 	if (!slots)
567 		return;
568 
569 	kvm_for_each_memslot(memslot, slots)
570 		kvm_free_memslot(kvm, memslot, NULL);
571 
572 	kvfree(slots);
573 }
574 
575 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
576 {
577 	int i;
578 
579 	if (!kvm->debugfs_dentry)
580 		return;
581 
582 	debugfs_remove_recursive(kvm->debugfs_dentry);
583 
584 	if (kvm->debugfs_stat_data) {
585 		for (i = 0; i < kvm_debugfs_num_entries; i++)
586 			kfree(kvm->debugfs_stat_data[i]);
587 		kfree(kvm->debugfs_stat_data);
588 	}
589 }
590 
591 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
592 {
593 	char dir_name[ITOA_MAX_LEN * 2];
594 	struct kvm_stat_data *stat_data;
595 	struct kvm_stats_debugfs_item *p;
596 
597 	if (!debugfs_initialized())
598 		return 0;
599 
600 	snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
601 	kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
602 
603 	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604 					 sizeof(*kvm->debugfs_stat_data),
605 					 GFP_KERNEL);
606 	if (!kvm->debugfs_stat_data)
607 		return -ENOMEM;
608 
609 	for (p = debugfs_entries; p->name; p++) {
610 		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
611 		if (!stat_data)
612 			return -ENOMEM;
613 
614 		stat_data->kvm = kvm;
615 		stat_data->offset = p->offset;
616 		kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
617 		debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
618 				    stat_data, stat_fops_per_vm[p->kind]);
619 	}
620 	return 0;
621 }
622 
623 static struct kvm *kvm_create_vm(unsigned long type)
624 {
625 	int r, i;
626 	struct kvm *kvm = kvm_arch_alloc_vm();
627 
628 	if (!kvm)
629 		return ERR_PTR(-ENOMEM);
630 
631 	spin_lock_init(&kvm->mmu_lock);
632 	mmgrab(current->mm);
633 	kvm->mm = current->mm;
634 	kvm_eventfd_init(kvm);
635 	mutex_init(&kvm->lock);
636 	mutex_init(&kvm->irq_lock);
637 	mutex_init(&kvm->slots_lock);
638 	refcount_set(&kvm->users_count, 1);
639 	INIT_LIST_HEAD(&kvm->devices);
640 
641 	r = kvm_arch_init_vm(kvm, type);
642 	if (r)
643 		goto out_err_no_disable;
644 
645 	r = hardware_enable_all();
646 	if (r)
647 		goto out_err_no_disable;
648 
649 #ifdef CONFIG_HAVE_KVM_IRQFD
650 	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
651 #endif
652 
653 	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
654 
655 	r = -ENOMEM;
656 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
657 		struct kvm_memslots *slots = kvm_alloc_memslots();
658 		if (!slots)
659 			goto out_err_no_srcu;
660 		/*
661 		 * Generations must be different for each address space.
662 		 * Init kvm generation close to the maximum to easily test the
663 		 * code of handling generation number wrap-around.
664 		 */
665 		slots->generation = i * 2 - 150;
666 		rcu_assign_pointer(kvm->memslots[i], slots);
667 	}
668 
669 	if (init_srcu_struct(&kvm->srcu))
670 		goto out_err_no_srcu;
671 	if (init_srcu_struct(&kvm->irq_srcu))
672 		goto out_err_no_irq_srcu;
673 	for (i = 0; i < KVM_NR_BUSES; i++) {
674 		rcu_assign_pointer(kvm->buses[i],
675 			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
676 		if (!kvm->buses[i])
677 			goto out_err;
678 	}
679 
680 	r = kvm_init_mmu_notifier(kvm);
681 	if (r)
682 		goto out_err;
683 
684 	spin_lock(&kvm_lock);
685 	list_add(&kvm->vm_list, &vm_list);
686 	spin_unlock(&kvm_lock);
687 
688 	preempt_notifier_inc();
689 
690 	return kvm;
691 
692 out_err:
693 	cleanup_srcu_struct(&kvm->irq_srcu);
694 out_err_no_irq_srcu:
695 	cleanup_srcu_struct(&kvm->srcu);
696 out_err_no_srcu:
697 	hardware_disable_all();
698 out_err_no_disable:
699 	refcount_set(&kvm->users_count, 0);
700 	for (i = 0; i < KVM_NR_BUSES; i++)
701 		kfree(kvm_get_bus(kvm, i));
702 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
703 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
704 	kvm_arch_free_vm(kvm);
705 	mmdrop(current->mm);
706 	return ERR_PTR(r);
707 }
708 
709 static void kvm_destroy_devices(struct kvm *kvm)
710 {
711 	struct kvm_device *dev, *tmp;
712 
713 	/*
714 	 * We do not need to take the kvm->lock here, because nobody else
715 	 * has a reference to the struct kvm at this point and therefore
716 	 * cannot access the devices list anyhow.
717 	 */
718 	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719 		list_del(&dev->vm_node);
720 		dev->ops->destroy(dev);
721 	}
722 }
723 
724 static void kvm_destroy_vm(struct kvm *kvm)
725 {
726 	int i;
727 	struct mm_struct *mm = kvm->mm;
728 
729 	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
730 	kvm_destroy_vm_debugfs(kvm);
731 	kvm_arch_sync_events(kvm);
732 	spin_lock(&kvm_lock);
733 	list_del(&kvm->vm_list);
734 	spin_unlock(&kvm_lock);
735 	kvm_free_irq_routing(kvm);
736 	for (i = 0; i < KVM_NR_BUSES; i++) {
737 		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
738 
739 		if (bus)
740 			kvm_io_bus_destroy(bus);
741 		kvm->buses[i] = NULL;
742 	}
743 	kvm_coalesced_mmio_free(kvm);
744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745 	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
746 #else
747 	kvm_arch_flush_shadow_all(kvm);
748 #endif
749 	kvm_arch_destroy_vm(kvm);
750 	kvm_destroy_devices(kvm);
751 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
752 		kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
753 	cleanup_srcu_struct(&kvm->irq_srcu);
754 	cleanup_srcu_struct(&kvm->srcu);
755 	kvm_arch_free_vm(kvm);
756 	preempt_notifier_dec();
757 	hardware_disable_all();
758 	mmdrop(mm);
759 }
760 
761 void kvm_get_kvm(struct kvm *kvm)
762 {
763 	refcount_inc(&kvm->users_count);
764 }
765 EXPORT_SYMBOL_GPL(kvm_get_kvm);
766 
767 void kvm_put_kvm(struct kvm *kvm)
768 {
769 	if (refcount_dec_and_test(&kvm->users_count))
770 		kvm_destroy_vm(kvm);
771 }
772 EXPORT_SYMBOL_GPL(kvm_put_kvm);
773 
774 
775 static int kvm_vm_release(struct inode *inode, struct file *filp)
776 {
777 	struct kvm *kvm = filp->private_data;
778 
779 	kvm_irqfd_release(kvm);
780 
781 	kvm_put_kvm(kvm);
782 	return 0;
783 }
784 
785 /*
786  * Allocation size is twice as large as the actual dirty bitmap size.
787  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
788  */
789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
790 {
791 	unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
792 
793 	memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
794 	if (!memslot->dirty_bitmap)
795 		return -ENOMEM;
796 
797 	return 0;
798 }
799 
800 /*
801  * Insert memslot and re-sort memslots based on their GFN,
802  * so binary search could be used to lookup GFN.
803  * Sorting algorithm takes advantage of having initially
804  * sorted array and known changed memslot position.
805  */
806 static void update_memslots(struct kvm_memslots *slots,
807 			    struct kvm_memory_slot *new,
808 			    enum kvm_mr_change change)
809 {
810 	int id = new->id;
811 	int i = slots->id_to_index[id];
812 	struct kvm_memory_slot *mslots = slots->memslots;
813 
814 	WARN_ON(mslots[i].id != id);
815 	switch (change) {
816 	case KVM_MR_CREATE:
817 		slots->used_slots++;
818 		WARN_ON(mslots[i].npages || !new->npages);
819 		break;
820 	case KVM_MR_DELETE:
821 		slots->used_slots--;
822 		WARN_ON(new->npages || !mslots[i].npages);
823 		break;
824 	default:
825 		break;
826 	}
827 
828 	while (i < KVM_MEM_SLOTS_NUM - 1 &&
829 	       new->base_gfn <= mslots[i + 1].base_gfn) {
830 		if (!mslots[i + 1].npages)
831 			break;
832 		mslots[i] = mslots[i + 1];
833 		slots->id_to_index[mslots[i].id] = i;
834 		i++;
835 	}
836 
837 	/*
838 	 * The ">=" is needed when creating a slot with base_gfn == 0,
839 	 * so that it moves before all those with base_gfn == npages == 0.
840 	 *
841 	 * On the other hand, if new->npages is zero, the above loop has
842 	 * already left i pointing to the beginning of the empty part of
843 	 * mslots, and the ">=" would move the hole backwards in this
844 	 * case---which is wrong.  So skip the loop when deleting a slot.
845 	 */
846 	if (new->npages) {
847 		while (i > 0 &&
848 		       new->base_gfn >= mslots[i - 1].base_gfn) {
849 			mslots[i] = mslots[i - 1];
850 			slots->id_to_index[mslots[i].id] = i;
851 			i--;
852 		}
853 	} else
854 		WARN_ON_ONCE(i != slots->used_slots);
855 
856 	mslots[i] = *new;
857 	slots->id_to_index[mslots[i].id] = i;
858 }
859 
860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
861 {
862 	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
863 
864 #ifdef __KVM_HAVE_READONLY_MEM
865 	valid_flags |= KVM_MEM_READONLY;
866 #endif
867 
868 	if (mem->flags & ~valid_flags)
869 		return -EINVAL;
870 
871 	return 0;
872 }
873 
874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
875 		int as_id, struct kvm_memslots *slots)
876 {
877 	struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
878 
879 	/*
880 	 * Set the low bit in the generation, which disables SPTE caching
881 	 * until the end of synchronize_srcu_expedited.
882 	 */
883 	WARN_ON(old_memslots->generation & 1);
884 	slots->generation = old_memslots->generation + 1;
885 
886 	rcu_assign_pointer(kvm->memslots[as_id], slots);
887 	synchronize_srcu_expedited(&kvm->srcu);
888 
889 	/*
890 	 * Increment the new memslot generation a second time. This prevents
891 	 * vm exits that race with memslot updates from caching a memslot
892 	 * generation that will (potentially) be valid forever.
893 	 *
894 	 * Generations must be unique even across address spaces.  We do not need
895 	 * a global counter for that, instead the generation space is evenly split
896 	 * across address spaces.  For example, with two address spaces, address
897 	 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
898 	 * use generations 2, 6, 10, 14, ...
899 	 */
900 	slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
901 
902 	kvm_arch_memslots_updated(kvm, slots);
903 
904 	return old_memslots;
905 }
906 
907 /*
908  * Allocate some memory and give it an address in the guest physical address
909  * space.
910  *
911  * Discontiguous memory is allowed, mostly for framebuffers.
912  *
913  * Must be called holding kvm->slots_lock for write.
914  */
915 int __kvm_set_memory_region(struct kvm *kvm,
916 			    const struct kvm_userspace_memory_region *mem)
917 {
918 	int r;
919 	gfn_t base_gfn;
920 	unsigned long npages;
921 	struct kvm_memory_slot *slot;
922 	struct kvm_memory_slot old, new;
923 	struct kvm_memslots *slots = NULL, *old_memslots;
924 	int as_id, id;
925 	enum kvm_mr_change change;
926 
927 	r = check_memory_region_flags(mem);
928 	if (r)
929 		goto out;
930 
931 	r = -EINVAL;
932 	as_id = mem->slot >> 16;
933 	id = (u16)mem->slot;
934 
935 	/* General sanity checks */
936 	if (mem->memory_size & (PAGE_SIZE - 1))
937 		goto out;
938 	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
939 		goto out;
940 	/* We can read the guest memory with __xxx_user() later on. */
941 	if ((id < KVM_USER_MEM_SLOTS) &&
942 	    ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
943 	     !access_ok(VERIFY_WRITE,
944 			(void __user *)(unsigned long)mem->userspace_addr,
945 			mem->memory_size)))
946 		goto out;
947 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
948 		goto out;
949 	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
950 		goto out;
951 
952 	slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
953 	base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
954 	npages = mem->memory_size >> PAGE_SHIFT;
955 
956 	if (npages > KVM_MEM_MAX_NR_PAGES)
957 		goto out;
958 
959 	new = old = *slot;
960 
961 	new.id = id;
962 	new.base_gfn = base_gfn;
963 	new.npages = npages;
964 	new.flags = mem->flags;
965 
966 	if (npages) {
967 		if (!old.npages)
968 			change = KVM_MR_CREATE;
969 		else { /* Modify an existing slot. */
970 			if ((mem->userspace_addr != old.userspace_addr) ||
971 			    (npages != old.npages) ||
972 			    ((new.flags ^ old.flags) & KVM_MEM_READONLY))
973 				goto out;
974 
975 			if (base_gfn != old.base_gfn)
976 				change = KVM_MR_MOVE;
977 			else if (new.flags != old.flags)
978 				change = KVM_MR_FLAGS_ONLY;
979 			else { /* Nothing to change. */
980 				r = 0;
981 				goto out;
982 			}
983 		}
984 	} else {
985 		if (!old.npages)
986 			goto out;
987 
988 		change = KVM_MR_DELETE;
989 		new.base_gfn = 0;
990 		new.flags = 0;
991 	}
992 
993 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
994 		/* Check for overlaps */
995 		r = -EEXIST;
996 		kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
997 			if (slot->id == id)
998 				continue;
999 			if (!((base_gfn + npages <= slot->base_gfn) ||
1000 			      (base_gfn >= slot->base_gfn + slot->npages)))
1001 				goto out;
1002 		}
1003 	}
1004 
1005 	/* Free page dirty bitmap if unneeded */
1006 	if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1007 		new.dirty_bitmap = NULL;
1008 
1009 	r = -ENOMEM;
1010 	if (change == KVM_MR_CREATE) {
1011 		new.userspace_addr = mem->userspace_addr;
1012 
1013 		if (kvm_arch_create_memslot(kvm, &new, npages))
1014 			goto out_free;
1015 	}
1016 
1017 	/* Allocate page dirty bitmap if needed */
1018 	if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1019 		if (kvm_create_dirty_bitmap(&new) < 0)
1020 			goto out_free;
1021 	}
1022 
1023 	slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1024 	if (!slots)
1025 		goto out_free;
1026 	memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1027 
1028 	if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1029 		slot = id_to_memslot(slots, id);
1030 		slot->flags |= KVM_MEMSLOT_INVALID;
1031 
1032 		old_memslots = install_new_memslots(kvm, as_id, slots);
1033 
1034 		/* From this point no new shadow pages pointing to a deleted,
1035 		 * or moved, memslot will be created.
1036 		 *
1037 		 * validation of sp->gfn happens in:
1038 		 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1039 		 *	- kvm_is_visible_gfn (mmu_check_roots)
1040 		 */
1041 		kvm_arch_flush_shadow_memslot(kvm, slot);
1042 
1043 		/*
1044 		 * We can re-use the old_memslots from above, the only difference
1045 		 * from the currently installed memslots is the invalid flag.  This
1046 		 * will get overwritten by update_memslots anyway.
1047 		 */
1048 		slots = old_memslots;
1049 	}
1050 
1051 	r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1052 	if (r)
1053 		goto out_slots;
1054 
1055 	/* actual memory is freed via old in kvm_free_memslot below */
1056 	if (change == KVM_MR_DELETE) {
1057 		new.dirty_bitmap = NULL;
1058 		memset(&new.arch, 0, sizeof(new.arch));
1059 	}
1060 
1061 	update_memslots(slots, &new, change);
1062 	old_memslots = install_new_memslots(kvm, as_id, slots);
1063 
1064 	kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1065 
1066 	kvm_free_memslot(kvm, &old, &new);
1067 	kvfree(old_memslots);
1068 	return 0;
1069 
1070 out_slots:
1071 	kvfree(slots);
1072 out_free:
1073 	kvm_free_memslot(kvm, &new, &old);
1074 out:
1075 	return r;
1076 }
1077 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1078 
1079 int kvm_set_memory_region(struct kvm *kvm,
1080 			  const struct kvm_userspace_memory_region *mem)
1081 {
1082 	int r;
1083 
1084 	mutex_lock(&kvm->slots_lock);
1085 	r = __kvm_set_memory_region(kvm, mem);
1086 	mutex_unlock(&kvm->slots_lock);
1087 	return r;
1088 }
1089 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1090 
1091 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1092 					  struct kvm_userspace_memory_region *mem)
1093 {
1094 	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1095 		return -EINVAL;
1096 
1097 	return kvm_set_memory_region(kvm, mem);
1098 }
1099 
1100 int kvm_get_dirty_log(struct kvm *kvm,
1101 			struct kvm_dirty_log *log, int *is_dirty)
1102 {
1103 	struct kvm_memslots *slots;
1104 	struct kvm_memory_slot *memslot;
1105 	int i, as_id, id;
1106 	unsigned long n;
1107 	unsigned long any = 0;
1108 
1109 	as_id = log->slot >> 16;
1110 	id = (u16)log->slot;
1111 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1112 		return -EINVAL;
1113 
1114 	slots = __kvm_memslots(kvm, as_id);
1115 	memslot = id_to_memslot(slots, id);
1116 	if (!memslot->dirty_bitmap)
1117 		return -ENOENT;
1118 
1119 	n = kvm_dirty_bitmap_bytes(memslot);
1120 
1121 	for (i = 0; !any && i < n/sizeof(long); ++i)
1122 		any = memslot->dirty_bitmap[i];
1123 
1124 	if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1125 		return -EFAULT;
1126 
1127 	if (any)
1128 		*is_dirty = 1;
1129 	return 0;
1130 }
1131 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1132 
1133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1134 /**
1135  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1136  *	are dirty write protect them for next write.
1137  * @kvm:	pointer to kvm instance
1138  * @log:	slot id and address to which we copy the log
1139  * @is_dirty:	flag set if any page is dirty
1140  *
1141  * We need to keep it in mind that VCPU threads can write to the bitmap
1142  * concurrently. So, to avoid losing track of dirty pages we keep the
1143  * following order:
1144  *
1145  *    1. Take a snapshot of the bit and clear it if needed.
1146  *    2. Write protect the corresponding page.
1147  *    3. Copy the snapshot to the userspace.
1148  *    4. Upon return caller flushes TLB's if needed.
1149  *
1150  * Between 2 and 4, the guest may write to the page using the remaining TLB
1151  * entry.  This is not a problem because the page is reported dirty using
1152  * the snapshot taken before and step 4 ensures that writes done after
1153  * exiting to userspace will be logged for the next call.
1154  *
1155  */
1156 int kvm_get_dirty_log_protect(struct kvm *kvm,
1157 			struct kvm_dirty_log *log, bool *is_dirty)
1158 {
1159 	struct kvm_memslots *slots;
1160 	struct kvm_memory_slot *memslot;
1161 	int i, as_id, id;
1162 	unsigned long n;
1163 	unsigned long *dirty_bitmap;
1164 	unsigned long *dirty_bitmap_buffer;
1165 
1166 	as_id = log->slot >> 16;
1167 	id = (u16)log->slot;
1168 	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1169 		return -EINVAL;
1170 
1171 	slots = __kvm_memslots(kvm, as_id);
1172 	memslot = id_to_memslot(slots, id);
1173 
1174 	dirty_bitmap = memslot->dirty_bitmap;
1175 	if (!dirty_bitmap)
1176 		return -ENOENT;
1177 
1178 	n = kvm_dirty_bitmap_bytes(memslot);
1179 
1180 	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1181 	memset(dirty_bitmap_buffer, 0, n);
1182 
1183 	spin_lock(&kvm->mmu_lock);
1184 	*is_dirty = false;
1185 	for (i = 0; i < n / sizeof(long); i++) {
1186 		unsigned long mask;
1187 		gfn_t offset;
1188 
1189 		if (!dirty_bitmap[i])
1190 			continue;
1191 
1192 		*is_dirty = true;
1193 
1194 		mask = xchg(&dirty_bitmap[i], 0);
1195 		dirty_bitmap_buffer[i] = mask;
1196 
1197 		if (mask) {
1198 			offset = i * BITS_PER_LONG;
1199 			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1200 								offset, mask);
1201 		}
1202 	}
1203 
1204 	spin_unlock(&kvm->mmu_lock);
1205 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1206 		return -EFAULT;
1207 	return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1210 #endif
1211 
1212 bool kvm_largepages_enabled(void)
1213 {
1214 	return largepages_enabled;
1215 }
1216 
1217 void kvm_disable_largepages(void)
1218 {
1219 	largepages_enabled = false;
1220 }
1221 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1222 
1223 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1224 {
1225 	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1226 }
1227 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1228 
1229 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1230 {
1231 	return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1232 }
1233 
1234 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1235 {
1236 	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1237 
1238 	if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1239 	      memslot->flags & KVM_MEMSLOT_INVALID)
1240 		return false;
1241 
1242 	return true;
1243 }
1244 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1245 
1246 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1247 {
1248 	struct vm_area_struct *vma;
1249 	unsigned long addr, size;
1250 
1251 	size = PAGE_SIZE;
1252 
1253 	addr = gfn_to_hva(kvm, gfn);
1254 	if (kvm_is_error_hva(addr))
1255 		return PAGE_SIZE;
1256 
1257 	down_read(&current->mm->mmap_sem);
1258 	vma = find_vma(current->mm, addr);
1259 	if (!vma)
1260 		goto out;
1261 
1262 	size = vma_kernel_pagesize(vma);
1263 
1264 out:
1265 	up_read(&current->mm->mmap_sem);
1266 
1267 	return size;
1268 }
1269 
1270 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1271 {
1272 	return slot->flags & KVM_MEM_READONLY;
1273 }
1274 
1275 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1276 				       gfn_t *nr_pages, bool write)
1277 {
1278 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279 		return KVM_HVA_ERR_BAD;
1280 
1281 	if (memslot_is_readonly(slot) && write)
1282 		return KVM_HVA_ERR_RO_BAD;
1283 
1284 	if (nr_pages)
1285 		*nr_pages = slot->npages - (gfn - slot->base_gfn);
1286 
1287 	return __gfn_to_hva_memslot(slot, gfn);
1288 }
1289 
1290 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1291 				     gfn_t *nr_pages)
1292 {
1293 	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1294 }
1295 
1296 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1297 					gfn_t gfn)
1298 {
1299 	return gfn_to_hva_many(slot, gfn, NULL);
1300 }
1301 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1302 
1303 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1304 {
1305 	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1306 }
1307 EXPORT_SYMBOL_GPL(gfn_to_hva);
1308 
1309 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1310 {
1311 	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1312 }
1313 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1314 
1315 /*
1316  * Return the hva of a @gfn and the R/W attribute if possible.
1317  *
1318  * @slot: the kvm_memory_slot which contains @gfn
1319  * @gfn: the gfn to be translated
1320  * @writable: used to return the read/write attribute of the @slot if the hva
1321  * is valid and @writable is not NULL
1322  */
1323 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1324 				      gfn_t gfn, bool *writable)
1325 {
1326 	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1327 
1328 	if (!kvm_is_error_hva(hva) && writable)
1329 		*writable = !memslot_is_readonly(slot);
1330 
1331 	return hva;
1332 }
1333 
1334 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1335 {
1336 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1337 
1338 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1339 }
1340 
1341 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1342 {
1343 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1344 
1345 	return gfn_to_hva_memslot_prot(slot, gfn, writable);
1346 }
1347 
1348 static inline int check_user_page_hwpoison(unsigned long addr)
1349 {
1350 	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1351 
1352 	rc = get_user_pages(addr, 1, flags, NULL, NULL);
1353 	return rc == -EHWPOISON;
1354 }
1355 
1356 /*
1357  * The fast path to get the writable pfn which will be stored in @pfn,
1358  * true indicates success, otherwise false is returned.  It's also the
1359  * only part that runs if we can are in atomic context.
1360  */
1361 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1362 			    bool *writable, kvm_pfn_t *pfn)
1363 {
1364 	struct page *page[1];
1365 	int npages;
1366 
1367 	/*
1368 	 * Fast pin a writable pfn only if it is a write fault request
1369 	 * or the caller allows to map a writable pfn for a read fault
1370 	 * request.
1371 	 */
1372 	if (!(write_fault || writable))
1373 		return false;
1374 
1375 	npages = __get_user_pages_fast(addr, 1, 1, page);
1376 	if (npages == 1) {
1377 		*pfn = page_to_pfn(page[0]);
1378 
1379 		if (writable)
1380 			*writable = true;
1381 		return true;
1382 	}
1383 
1384 	return false;
1385 }
1386 
1387 /*
1388  * The slow path to get the pfn of the specified host virtual address,
1389  * 1 indicates success, -errno is returned if error is detected.
1390  */
1391 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1392 			   bool *writable, kvm_pfn_t *pfn)
1393 {
1394 	unsigned int flags = FOLL_HWPOISON;
1395 	struct page *page;
1396 	int npages = 0;
1397 
1398 	might_sleep();
1399 
1400 	if (writable)
1401 		*writable = write_fault;
1402 
1403 	if (write_fault)
1404 		flags |= FOLL_WRITE;
1405 	if (async)
1406 		flags |= FOLL_NOWAIT;
1407 
1408 	npages = get_user_pages_unlocked(addr, 1, &page, flags);
1409 	if (npages != 1)
1410 		return npages;
1411 
1412 	/* map read fault as writable if possible */
1413 	if (unlikely(!write_fault) && writable) {
1414 		struct page *wpage;
1415 
1416 		if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1417 			*writable = true;
1418 			put_page(page);
1419 			page = wpage;
1420 		}
1421 	}
1422 	*pfn = page_to_pfn(page);
1423 	return npages;
1424 }
1425 
1426 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1427 {
1428 	if (unlikely(!(vma->vm_flags & VM_READ)))
1429 		return false;
1430 
1431 	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1432 		return false;
1433 
1434 	return true;
1435 }
1436 
1437 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1438 			       unsigned long addr, bool *async,
1439 			       bool write_fault, bool *writable,
1440 			       kvm_pfn_t *p_pfn)
1441 {
1442 	unsigned long pfn;
1443 	int r;
1444 
1445 	r = follow_pfn(vma, addr, &pfn);
1446 	if (r) {
1447 		/*
1448 		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1449 		 * not call the fault handler, so do it here.
1450 		 */
1451 		bool unlocked = false;
1452 		r = fixup_user_fault(current, current->mm, addr,
1453 				     (write_fault ? FAULT_FLAG_WRITE : 0),
1454 				     &unlocked);
1455 		if (unlocked)
1456 			return -EAGAIN;
1457 		if (r)
1458 			return r;
1459 
1460 		r = follow_pfn(vma, addr, &pfn);
1461 		if (r)
1462 			return r;
1463 
1464 	}
1465 
1466 	if (writable)
1467 		*writable = true;
1468 
1469 	/*
1470 	 * Get a reference here because callers of *hva_to_pfn* and
1471 	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1472 	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1473 	 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1474 	 * simply do nothing for reserved pfns.
1475 	 *
1476 	 * Whoever called remap_pfn_range is also going to call e.g.
1477 	 * unmap_mapping_range before the underlying pages are freed,
1478 	 * causing a call to our MMU notifier.
1479 	 */
1480 	kvm_get_pfn(pfn);
1481 
1482 	*p_pfn = pfn;
1483 	return 0;
1484 }
1485 
1486 /*
1487  * Pin guest page in memory and return its pfn.
1488  * @addr: host virtual address which maps memory to the guest
1489  * @atomic: whether this function can sleep
1490  * @async: whether this function need to wait IO complete if the
1491  *         host page is not in the memory
1492  * @write_fault: whether we should get a writable host page
1493  * @writable: whether it allows to map a writable host page for !@write_fault
1494  *
1495  * The function will map a writable host page for these two cases:
1496  * 1): @write_fault = true
1497  * 2): @write_fault = false && @writable, @writable will tell the caller
1498  *     whether the mapping is writable.
1499  */
1500 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1501 			bool write_fault, bool *writable)
1502 {
1503 	struct vm_area_struct *vma;
1504 	kvm_pfn_t pfn = 0;
1505 	int npages, r;
1506 
1507 	/* we can do it either atomically or asynchronously, not both */
1508 	BUG_ON(atomic && async);
1509 
1510 	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1511 		return pfn;
1512 
1513 	if (atomic)
1514 		return KVM_PFN_ERR_FAULT;
1515 
1516 	npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1517 	if (npages == 1)
1518 		return pfn;
1519 
1520 	down_read(&current->mm->mmap_sem);
1521 	if (npages == -EHWPOISON ||
1522 	      (!async && check_user_page_hwpoison(addr))) {
1523 		pfn = KVM_PFN_ERR_HWPOISON;
1524 		goto exit;
1525 	}
1526 
1527 retry:
1528 	vma = find_vma_intersection(current->mm, addr, addr + 1);
1529 
1530 	if (vma == NULL)
1531 		pfn = KVM_PFN_ERR_FAULT;
1532 	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1533 		r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1534 		if (r == -EAGAIN)
1535 			goto retry;
1536 		if (r < 0)
1537 			pfn = KVM_PFN_ERR_FAULT;
1538 	} else {
1539 		if (async && vma_is_valid(vma, write_fault))
1540 			*async = true;
1541 		pfn = KVM_PFN_ERR_FAULT;
1542 	}
1543 exit:
1544 	up_read(&current->mm->mmap_sem);
1545 	return pfn;
1546 }
1547 
1548 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1549 			       bool atomic, bool *async, bool write_fault,
1550 			       bool *writable)
1551 {
1552 	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1553 
1554 	if (addr == KVM_HVA_ERR_RO_BAD) {
1555 		if (writable)
1556 			*writable = false;
1557 		return KVM_PFN_ERR_RO_FAULT;
1558 	}
1559 
1560 	if (kvm_is_error_hva(addr)) {
1561 		if (writable)
1562 			*writable = false;
1563 		return KVM_PFN_NOSLOT;
1564 	}
1565 
1566 	/* Do not map writable pfn in the readonly memslot. */
1567 	if (writable && memslot_is_readonly(slot)) {
1568 		*writable = false;
1569 		writable = NULL;
1570 	}
1571 
1572 	return hva_to_pfn(addr, atomic, async, write_fault,
1573 			  writable);
1574 }
1575 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1576 
1577 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1578 		      bool *writable)
1579 {
1580 	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1581 				    write_fault, writable);
1582 }
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1584 
1585 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1586 {
1587 	return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1588 }
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1590 
1591 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1592 {
1593 	return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1594 }
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1596 
1597 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1598 {
1599 	return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1600 }
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1602 
1603 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1604 {
1605 	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1606 }
1607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1608 
1609 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1610 {
1611 	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1612 }
1613 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1614 
1615 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1616 {
1617 	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1620 
1621 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1622 			    struct page **pages, int nr_pages)
1623 {
1624 	unsigned long addr;
1625 	gfn_t entry = 0;
1626 
1627 	addr = gfn_to_hva_many(slot, gfn, &entry);
1628 	if (kvm_is_error_hva(addr))
1629 		return -1;
1630 
1631 	if (entry < nr_pages)
1632 		return 0;
1633 
1634 	return __get_user_pages_fast(addr, nr_pages, 1, pages);
1635 }
1636 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1637 
1638 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1639 {
1640 	if (is_error_noslot_pfn(pfn))
1641 		return KVM_ERR_PTR_BAD_PAGE;
1642 
1643 	if (kvm_is_reserved_pfn(pfn)) {
1644 		WARN_ON(1);
1645 		return KVM_ERR_PTR_BAD_PAGE;
1646 	}
1647 
1648 	return pfn_to_page(pfn);
1649 }
1650 
1651 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1652 {
1653 	kvm_pfn_t pfn;
1654 
1655 	pfn = gfn_to_pfn(kvm, gfn);
1656 
1657 	return kvm_pfn_to_page(pfn);
1658 }
1659 EXPORT_SYMBOL_GPL(gfn_to_page);
1660 
1661 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1662 {
1663 	kvm_pfn_t pfn;
1664 
1665 	pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1666 
1667 	return kvm_pfn_to_page(pfn);
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1670 
1671 void kvm_release_page_clean(struct page *page)
1672 {
1673 	WARN_ON(is_error_page(page));
1674 
1675 	kvm_release_pfn_clean(page_to_pfn(page));
1676 }
1677 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1678 
1679 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1680 {
1681 	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1682 		put_page(pfn_to_page(pfn));
1683 }
1684 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1685 
1686 void kvm_release_page_dirty(struct page *page)
1687 {
1688 	WARN_ON(is_error_page(page));
1689 
1690 	kvm_release_pfn_dirty(page_to_pfn(page));
1691 }
1692 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1693 
1694 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1695 {
1696 	kvm_set_pfn_dirty(pfn);
1697 	kvm_release_pfn_clean(pfn);
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1700 
1701 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1702 {
1703 	if (!kvm_is_reserved_pfn(pfn)) {
1704 		struct page *page = pfn_to_page(pfn);
1705 
1706 		if (!PageReserved(page))
1707 			SetPageDirty(page);
1708 	}
1709 }
1710 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1711 
1712 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1713 {
1714 	if (!kvm_is_reserved_pfn(pfn))
1715 		mark_page_accessed(pfn_to_page(pfn));
1716 }
1717 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1718 
1719 void kvm_get_pfn(kvm_pfn_t pfn)
1720 {
1721 	if (!kvm_is_reserved_pfn(pfn))
1722 		get_page(pfn_to_page(pfn));
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1725 
1726 static int next_segment(unsigned long len, int offset)
1727 {
1728 	if (len > PAGE_SIZE - offset)
1729 		return PAGE_SIZE - offset;
1730 	else
1731 		return len;
1732 }
1733 
1734 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1735 				 void *data, int offset, int len)
1736 {
1737 	int r;
1738 	unsigned long addr;
1739 
1740 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1741 	if (kvm_is_error_hva(addr))
1742 		return -EFAULT;
1743 	r = __copy_from_user(data, (void __user *)addr + offset, len);
1744 	if (r)
1745 		return -EFAULT;
1746 	return 0;
1747 }
1748 
1749 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1750 			int len)
1751 {
1752 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1753 
1754 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1757 
1758 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1759 			     int offset, int len)
1760 {
1761 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1762 
1763 	return __kvm_read_guest_page(slot, gfn, data, offset, len);
1764 }
1765 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1766 
1767 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1768 {
1769 	gfn_t gfn = gpa >> PAGE_SHIFT;
1770 	int seg;
1771 	int offset = offset_in_page(gpa);
1772 	int ret;
1773 
1774 	while ((seg = next_segment(len, offset)) != 0) {
1775 		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1776 		if (ret < 0)
1777 			return ret;
1778 		offset = 0;
1779 		len -= seg;
1780 		data += seg;
1781 		++gfn;
1782 	}
1783 	return 0;
1784 }
1785 EXPORT_SYMBOL_GPL(kvm_read_guest);
1786 
1787 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1788 {
1789 	gfn_t gfn = gpa >> PAGE_SHIFT;
1790 	int seg;
1791 	int offset = offset_in_page(gpa);
1792 	int ret;
1793 
1794 	while ((seg = next_segment(len, offset)) != 0) {
1795 		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1796 		if (ret < 0)
1797 			return ret;
1798 		offset = 0;
1799 		len -= seg;
1800 		data += seg;
1801 		++gfn;
1802 	}
1803 	return 0;
1804 }
1805 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1806 
1807 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1808 			           void *data, int offset, unsigned long len)
1809 {
1810 	int r;
1811 	unsigned long addr;
1812 
1813 	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1814 	if (kvm_is_error_hva(addr))
1815 		return -EFAULT;
1816 	pagefault_disable();
1817 	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1818 	pagefault_enable();
1819 	if (r)
1820 		return -EFAULT;
1821 	return 0;
1822 }
1823 
1824 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1825 			  unsigned long len)
1826 {
1827 	gfn_t gfn = gpa >> PAGE_SHIFT;
1828 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1829 	int offset = offset_in_page(gpa);
1830 
1831 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1834 
1835 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1836 			       void *data, unsigned long len)
1837 {
1838 	gfn_t gfn = gpa >> PAGE_SHIFT;
1839 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1840 	int offset = offset_in_page(gpa);
1841 
1842 	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1845 
1846 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1847 			          const void *data, int offset, int len)
1848 {
1849 	int r;
1850 	unsigned long addr;
1851 
1852 	addr = gfn_to_hva_memslot(memslot, gfn);
1853 	if (kvm_is_error_hva(addr))
1854 		return -EFAULT;
1855 	r = __copy_to_user((void __user *)addr + offset, data, len);
1856 	if (r)
1857 		return -EFAULT;
1858 	mark_page_dirty_in_slot(memslot, gfn);
1859 	return 0;
1860 }
1861 
1862 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1863 			 const void *data, int offset, int len)
1864 {
1865 	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1866 
1867 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1870 
1871 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1872 			      const void *data, int offset, int len)
1873 {
1874 	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1875 
1876 	return __kvm_write_guest_page(slot, gfn, data, offset, len);
1877 }
1878 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1879 
1880 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1881 		    unsigned long len)
1882 {
1883 	gfn_t gfn = gpa >> PAGE_SHIFT;
1884 	int seg;
1885 	int offset = offset_in_page(gpa);
1886 	int ret;
1887 
1888 	while ((seg = next_segment(len, offset)) != 0) {
1889 		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1890 		if (ret < 0)
1891 			return ret;
1892 		offset = 0;
1893 		len -= seg;
1894 		data += seg;
1895 		++gfn;
1896 	}
1897 	return 0;
1898 }
1899 EXPORT_SYMBOL_GPL(kvm_write_guest);
1900 
1901 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1902 		         unsigned long len)
1903 {
1904 	gfn_t gfn = gpa >> PAGE_SHIFT;
1905 	int seg;
1906 	int offset = offset_in_page(gpa);
1907 	int ret;
1908 
1909 	while ((seg = next_segment(len, offset)) != 0) {
1910 		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1911 		if (ret < 0)
1912 			return ret;
1913 		offset = 0;
1914 		len -= seg;
1915 		data += seg;
1916 		++gfn;
1917 	}
1918 	return 0;
1919 }
1920 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1921 
1922 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1923 				       struct gfn_to_hva_cache *ghc,
1924 				       gpa_t gpa, unsigned long len)
1925 {
1926 	int offset = offset_in_page(gpa);
1927 	gfn_t start_gfn = gpa >> PAGE_SHIFT;
1928 	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1929 	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1930 	gfn_t nr_pages_avail;
1931 
1932 	ghc->gpa = gpa;
1933 	ghc->generation = slots->generation;
1934 	ghc->len = len;
1935 	ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1936 	ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1937 	if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1938 		ghc->hva += offset;
1939 	} else {
1940 		/*
1941 		 * If the requested region crosses two memslots, we still
1942 		 * verify that the entire region is valid here.
1943 		 */
1944 		while (start_gfn <= end_gfn) {
1945 			nr_pages_avail = 0;
1946 			ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1947 			ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1948 						   &nr_pages_avail);
1949 			if (kvm_is_error_hva(ghc->hva))
1950 				return -EFAULT;
1951 			start_gfn += nr_pages_avail;
1952 		}
1953 		/* Use the slow path for cross page reads and writes. */
1954 		ghc->memslot = NULL;
1955 	}
1956 	return 0;
1957 }
1958 
1959 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1960 			      gpa_t gpa, unsigned long len)
1961 {
1962 	struct kvm_memslots *slots = kvm_memslots(kvm);
1963 	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1966 
1967 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1968 			   void *data, int offset, unsigned long len)
1969 {
1970 	struct kvm_memslots *slots = kvm_memslots(kvm);
1971 	int r;
1972 	gpa_t gpa = ghc->gpa + offset;
1973 
1974 	BUG_ON(len + offset > ghc->len);
1975 
1976 	if (slots->generation != ghc->generation)
1977 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1978 
1979 	if (unlikely(!ghc->memslot))
1980 		return kvm_write_guest(kvm, gpa, data, len);
1981 
1982 	if (kvm_is_error_hva(ghc->hva))
1983 		return -EFAULT;
1984 
1985 	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1986 	if (r)
1987 		return -EFAULT;
1988 	mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1989 
1990 	return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1993 
1994 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1995 			   void *data, unsigned long len)
1996 {
1997 	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2000 
2001 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002 			   void *data, unsigned long len)
2003 {
2004 	struct kvm_memslots *slots = kvm_memslots(kvm);
2005 	int r;
2006 
2007 	BUG_ON(len > ghc->len);
2008 
2009 	if (slots->generation != ghc->generation)
2010 		__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2011 
2012 	if (unlikely(!ghc->memslot))
2013 		return kvm_read_guest(kvm, ghc->gpa, data, len);
2014 
2015 	if (kvm_is_error_hva(ghc->hva))
2016 		return -EFAULT;
2017 
2018 	r = __copy_from_user(data, (void __user *)ghc->hva, len);
2019 	if (r)
2020 		return -EFAULT;
2021 
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2025 
2026 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2027 {
2028 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2029 
2030 	return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2033 
2034 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2035 {
2036 	gfn_t gfn = gpa >> PAGE_SHIFT;
2037 	int seg;
2038 	int offset = offset_in_page(gpa);
2039 	int ret;
2040 
2041 	while ((seg = next_segment(len, offset)) != 0) {
2042 		ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2043 		if (ret < 0)
2044 			return ret;
2045 		offset = 0;
2046 		len -= seg;
2047 		++gfn;
2048 	}
2049 	return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2052 
2053 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2054 				    gfn_t gfn)
2055 {
2056 	if (memslot && memslot->dirty_bitmap) {
2057 		unsigned long rel_gfn = gfn - memslot->base_gfn;
2058 
2059 		set_bit_le(rel_gfn, memslot->dirty_bitmap);
2060 	}
2061 }
2062 
2063 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2064 {
2065 	struct kvm_memory_slot *memslot;
2066 
2067 	memslot = gfn_to_memslot(kvm, gfn);
2068 	mark_page_dirty_in_slot(memslot, gfn);
2069 }
2070 EXPORT_SYMBOL_GPL(mark_page_dirty);
2071 
2072 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2073 {
2074 	struct kvm_memory_slot *memslot;
2075 
2076 	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2077 	mark_page_dirty_in_slot(memslot, gfn);
2078 }
2079 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2080 
2081 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2082 {
2083 	if (!vcpu->sigset_active)
2084 		return;
2085 
2086 	/*
2087 	 * This does a lockless modification of ->real_blocked, which is fine
2088 	 * because, only current can change ->real_blocked and all readers of
2089 	 * ->real_blocked don't care as long ->real_blocked is always a subset
2090 	 * of ->blocked.
2091 	 */
2092 	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2093 }
2094 
2095 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2096 {
2097 	if (!vcpu->sigset_active)
2098 		return;
2099 
2100 	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2101 	sigemptyset(&current->real_blocked);
2102 }
2103 
2104 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2105 {
2106 	unsigned int old, val, grow;
2107 
2108 	old = val = vcpu->halt_poll_ns;
2109 	grow = READ_ONCE(halt_poll_ns_grow);
2110 	/* 10us base */
2111 	if (val == 0 && grow)
2112 		val = 10000;
2113 	else
2114 		val *= grow;
2115 
2116 	if (val > halt_poll_ns)
2117 		val = halt_poll_ns;
2118 
2119 	vcpu->halt_poll_ns = val;
2120 	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2121 }
2122 
2123 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2124 {
2125 	unsigned int old, val, shrink;
2126 
2127 	old = val = vcpu->halt_poll_ns;
2128 	shrink = READ_ONCE(halt_poll_ns_shrink);
2129 	if (shrink == 0)
2130 		val = 0;
2131 	else
2132 		val /= shrink;
2133 
2134 	vcpu->halt_poll_ns = val;
2135 	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2136 }
2137 
2138 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2139 {
2140 	int ret = -EINTR;
2141 	int idx = srcu_read_lock(&vcpu->kvm->srcu);
2142 
2143 	if (kvm_arch_vcpu_runnable(vcpu)) {
2144 		kvm_make_request(KVM_REQ_UNHALT, vcpu);
2145 		goto out;
2146 	}
2147 	if (kvm_cpu_has_pending_timer(vcpu))
2148 		goto out;
2149 	if (signal_pending(current))
2150 		goto out;
2151 
2152 	ret = 0;
2153 out:
2154 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2155 	return ret;
2156 }
2157 
2158 /*
2159  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2160  */
2161 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2162 {
2163 	ktime_t start, cur;
2164 	DECLARE_SWAITQUEUE(wait);
2165 	bool waited = false;
2166 	u64 block_ns;
2167 
2168 	start = cur = ktime_get();
2169 	if (vcpu->halt_poll_ns) {
2170 		ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2171 
2172 		++vcpu->stat.halt_attempted_poll;
2173 		do {
2174 			/*
2175 			 * This sets KVM_REQ_UNHALT if an interrupt
2176 			 * arrives.
2177 			 */
2178 			if (kvm_vcpu_check_block(vcpu) < 0) {
2179 				++vcpu->stat.halt_successful_poll;
2180 				if (!vcpu_valid_wakeup(vcpu))
2181 					++vcpu->stat.halt_poll_invalid;
2182 				goto out;
2183 			}
2184 			cur = ktime_get();
2185 		} while (single_task_running() && ktime_before(cur, stop));
2186 	}
2187 
2188 	kvm_arch_vcpu_blocking(vcpu);
2189 
2190 	for (;;) {
2191 		prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2192 
2193 		if (kvm_vcpu_check_block(vcpu) < 0)
2194 			break;
2195 
2196 		waited = true;
2197 		schedule();
2198 	}
2199 
2200 	finish_swait(&vcpu->wq, &wait);
2201 	cur = ktime_get();
2202 
2203 	kvm_arch_vcpu_unblocking(vcpu);
2204 out:
2205 	block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2206 
2207 	if (!vcpu_valid_wakeup(vcpu))
2208 		shrink_halt_poll_ns(vcpu);
2209 	else if (halt_poll_ns) {
2210 		if (block_ns <= vcpu->halt_poll_ns)
2211 			;
2212 		/* we had a long block, shrink polling */
2213 		else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2214 			shrink_halt_poll_ns(vcpu);
2215 		/* we had a short halt and our poll time is too small */
2216 		else if (vcpu->halt_poll_ns < halt_poll_ns &&
2217 			block_ns < halt_poll_ns)
2218 			grow_halt_poll_ns(vcpu);
2219 	} else
2220 		vcpu->halt_poll_ns = 0;
2221 
2222 	trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2223 	kvm_arch_vcpu_block_finish(vcpu);
2224 }
2225 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2226 
2227 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2228 {
2229 	struct swait_queue_head *wqp;
2230 
2231 	wqp = kvm_arch_vcpu_wq(vcpu);
2232 	if (swq_has_sleeper(wqp)) {
2233 		swake_up_one(wqp);
2234 		++vcpu->stat.halt_wakeup;
2235 		return true;
2236 	}
2237 
2238 	return false;
2239 }
2240 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2241 
2242 #ifndef CONFIG_S390
2243 /*
2244  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2245  */
2246 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2247 {
2248 	int me;
2249 	int cpu = vcpu->cpu;
2250 
2251 	if (kvm_vcpu_wake_up(vcpu))
2252 		return;
2253 
2254 	me = get_cpu();
2255 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2256 		if (kvm_arch_vcpu_should_kick(vcpu))
2257 			smp_send_reschedule(cpu);
2258 	put_cpu();
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2261 #endif /* !CONFIG_S390 */
2262 
2263 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2264 {
2265 	struct pid *pid;
2266 	struct task_struct *task = NULL;
2267 	int ret = 0;
2268 
2269 	rcu_read_lock();
2270 	pid = rcu_dereference(target->pid);
2271 	if (pid)
2272 		task = get_pid_task(pid, PIDTYPE_PID);
2273 	rcu_read_unlock();
2274 	if (!task)
2275 		return ret;
2276 	ret = yield_to(task, 1);
2277 	put_task_struct(task);
2278 
2279 	return ret;
2280 }
2281 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2282 
2283 /*
2284  * Helper that checks whether a VCPU is eligible for directed yield.
2285  * Most eligible candidate to yield is decided by following heuristics:
2286  *
2287  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2288  *  (preempted lock holder), indicated by @in_spin_loop.
2289  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2290  *
2291  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2292  *  chance last time (mostly it has become eligible now since we have probably
2293  *  yielded to lockholder in last iteration. This is done by toggling
2294  *  @dy_eligible each time a VCPU checked for eligibility.)
2295  *
2296  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2297  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2298  *  burning. Giving priority for a potential lock-holder increases lock
2299  *  progress.
2300  *
2301  *  Since algorithm is based on heuristics, accessing another VCPU data without
2302  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2303  *  and continue with next VCPU and so on.
2304  */
2305 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2306 {
2307 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2308 	bool eligible;
2309 
2310 	eligible = !vcpu->spin_loop.in_spin_loop ||
2311 		    vcpu->spin_loop.dy_eligible;
2312 
2313 	if (vcpu->spin_loop.in_spin_loop)
2314 		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2315 
2316 	return eligible;
2317 #else
2318 	return true;
2319 #endif
2320 }
2321 
2322 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2323 {
2324 	struct kvm *kvm = me->kvm;
2325 	struct kvm_vcpu *vcpu;
2326 	int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2327 	int yielded = 0;
2328 	int try = 3;
2329 	int pass;
2330 	int i;
2331 
2332 	kvm_vcpu_set_in_spin_loop(me, true);
2333 	/*
2334 	 * We boost the priority of a VCPU that is runnable but not
2335 	 * currently running, because it got preempted by something
2336 	 * else and called schedule in __vcpu_run.  Hopefully that
2337 	 * VCPU is holding the lock that we need and will release it.
2338 	 * We approximate round-robin by starting at the last boosted VCPU.
2339 	 */
2340 	for (pass = 0; pass < 2 && !yielded && try; pass++) {
2341 		kvm_for_each_vcpu(i, vcpu, kvm) {
2342 			if (!pass && i <= last_boosted_vcpu) {
2343 				i = last_boosted_vcpu;
2344 				continue;
2345 			} else if (pass && i > last_boosted_vcpu)
2346 				break;
2347 			if (!READ_ONCE(vcpu->preempted))
2348 				continue;
2349 			if (vcpu == me)
2350 				continue;
2351 			if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2352 				continue;
2353 			if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2354 				continue;
2355 			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2356 				continue;
2357 
2358 			yielded = kvm_vcpu_yield_to(vcpu);
2359 			if (yielded > 0) {
2360 				kvm->last_boosted_vcpu = i;
2361 				break;
2362 			} else if (yielded < 0) {
2363 				try--;
2364 				if (!try)
2365 					break;
2366 			}
2367 		}
2368 	}
2369 	kvm_vcpu_set_in_spin_loop(me, false);
2370 
2371 	/* Ensure vcpu is not eligible during next spinloop */
2372 	kvm_vcpu_set_dy_eligible(me, false);
2373 }
2374 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2375 
2376 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2377 {
2378 	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2379 	struct page *page;
2380 
2381 	if (vmf->pgoff == 0)
2382 		page = virt_to_page(vcpu->run);
2383 #ifdef CONFIG_X86
2384 	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2385 		page = virt_to_page(vcpu->arch.pio_data);
2386 #endif
2387 #ifdef CONFIG_KVM_MMIO
2388 	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2389 		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2390 #endif
2391 	else
2392 		return kvm_arch_vcpu_fault(vcpu, vmf);
2393 	get_page(page);
2394 	vmf->page = page;
2395 	return 0;
2396 }
2397 
2398 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2399 	.fault = kvm_vcpu_fault,
2400 };
2401 
2402 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2403 {
2404 	vma->vm_ops = &kvm_vcpu_vm_ops;
2405 	return 0;
2406 }
2407 
2408 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2409 {
2410 	struct kvm_vcpu *vcpu = filp->private_data;
2411 
2412 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2413 	kvm_put_kvm(vcpu->kvm);
2414 	return 0;
2415 }
2416 
2417 static struct file_operations kvm_vcpu_fops = {
2418 	.release        = kvm_vcpu_release,
2419 	.unlocked_ioctl = kvm_vcpu_ioctl,
2420 	.mmap           = kvm_vcpu_mmap,
2421 	.llseek		= noop_llseek,
2422 	KVM_COMPAT(kvm_vcpu_compat_ioctl),
2423 };
2424 
2425 /*
2426  * Allocates an inode for the vcpu.
2427  */
2428 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2429 {
2430 	char name[8 + 1 + ITOA_MAX_LEN + 1];
2431 
2432 	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2433 	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2434 }
2435 
2436 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2437 {
2438 	char dir_name[ITOA_MAX_LEN * 2];
2439 	int ret;
2440 
2441 	if (!kvm_arch_has_vcpu_debugfs())
2442 		return 0;
2443 
2444 	if (!debugfs_initialized())
2445 		return 0;
2446 
2447 	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2448 	vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2449 								vcpu->kvm->debugfs_dentry);
2450 	if (!vcpu->debugfs_dentry)
2451 		return -ENOMEM;
2452 
2453 	ret = kvm_arch_create_vcpu_debugfs(vcpu);
2454 	if (ret < 0) {
2455 		debugfs_remove_recursive(vcpu->debugfs_dentry);
2456 		return ret;
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 /*
2463  * Creates some virtual cpus.  Good luck creating more than one.
2464  */
2465 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2466 {
2467 	int r;
2468 	struct kvm_vcpu *vcpu;
2469 
2470 	if (id >= KVM_MAX_VCPU_ID)
2471 		return -EINVAL;
2472 
2473 	mutex_lock(&kvm->lock);
2474 	if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2475 		mutex_unlock(&kvm->lock);
2476 		return -EINVAL;
2477 	}
2478 
2479 	kvm->created_vcpus++;
2480 	mutex_unlock(&kvm->lock);
2481 
2482 	vcpu = kvm_arch_vcpu_create(kvm, id);
2483 	if (IS_ERR(vcpu)) {
2484 		r = PTR_ERR(vcpu);
2485 		goto vcpu_decrement;
2486 	}
2487 
2488 	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2489 
2490 	r = kvm_arch_vcpu_setup(vcpu);
2491 	if (r)
2492 		goto vcpu_destroy;
2493 
2494 	r = kvm_create_vcpu_debugfs(vcpu);
2495 	if (r)
2496 		goto vcpu_destroy;
2497 
2498 	mutex_lock(&kvm->lock);
2499 	if (kvm_get_vcpu_by_id(kvm, id)) {
2500 		r = -EEXIST;
2501 		goto unlock_vcpu_destroy;
2502 	}
2503 
2504 	BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2505 
2506 	/* Now it's all set up, let userspace reach it */
2507 	kvm_get_kvm(kvm);
2508 	r = create_vcpu_fd(vcpu);
2509 	if (r < 0) {
2510 		kvm_put_kvm(kvm);
2511 		goto unlock_vcpu_destroy;
2512 	}
2513 
2514 	kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2515 
2516 	/*
2517 	 * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2518 	 * before kvm->online_vcpu's incremented value.
2519 	 */
2520 	smp_wmb();
2521 	atomic_inc(&kvm->online_vcpus);
2522 
2523 	mutex_unlock(&kvm->lock);
2524 	kvm_arch_vcpu_postcreate(vcpu);
2525 	return r;
2526 
2527 unlock_vcpu_destroy:
2528 	mutex_unlock(&kvm->lock);
2529 	debugfs_remove_recursive(vcpu->debugfs_dentry);
2530 vcpu_destroy:
2531 	kvm_arch_vcpu_destroy(vcpu);
2532 vcpu_decrement:
2533 	mutex_lock(&kvm->lock);
2534 	kvm->created_vcpus--;
2535 	mutex_unlock(&kvm->lock);
2536 	return r;
2537 }
2538 
2539 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2540 {
2541 	if (sigset) {
2542 		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2543 		vcpu->sigset_active = 1;
2544 		vcpu->sigset = *sigset;
2545 	} else
2546 		vcpu->sigset_active = 0;
2547 	return 0;
2548 }
2549 
2550 static long kvm_vcpu_ioctl(struct file *filp,
2551 			   unsigned int ioctl, unsigned long arg)
2552 {
2553 	struct kvm_vcpu *vcpu = filp->private_data;
2554 	void __user *argp = (void __user *)arg;
2555 	int r;
2556 	struct kvm_fpu *fpu = NULL;
2557 	struct kvm_sregs *kvm_sregs = NULL;
2558 
2559 	if (vcpu->kvm->mm != current->mm)
2560 		return -EIO;
2561 
2562 	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2563 		return -EINVAL;
2564 
2565 	/*
2566 	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2567 	 * execution; mutex_lock() would break them.
2568 	 */
2569 	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2570 	if (r != -ENOIOCTLCMD)
2571 		return r;
2572 
2573 	if (mutex_lock_killable(&vcpu->mutex))
2574 		return -EINTR;
2575 	switch (ioctl) {
2576 	case KVM_RUN: {
2577 		struct pid *oldpid;
2578 		r = -EINVAL;
2579 		if (arg)
2580 			goto out;
2581 		oldpid = rcu_access_pointer(vcpu->pid);
2582 		if (unlikely(oldpid != task_pid(current))) {
2583 			/* The thread running this VCPU changed. */
2584 			struct pid *newpid;
2585 
2586 			r = kvm_arch_vcpu_run_pid_change(vcpu);
2587 			if (r)
2588 				break;
2589 
2590 			newpid = get_task_pid(current, PIDTYPE_PID);
2591 			rcu_assign_pointer(vcpu->pid, newpid);
2592 			if (oldpid)
2593 				synchronize_rcu();
2594 			put_pid(oldpid);
2595 		}
2596 		r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2597 		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2598 		break;
2599 	}
2600 	case KVM_GET_REGS: {
2601 		struct kvm_regs *kvm_regs;
2602 
2603 		r = -ENOMEM;
2604 		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2605 		if (!kvm_regs)
2606 			goto out;
2607 		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2608 		if (r)
2609 			goto out_free1;
2610 		r = -EFAULT;
2611 		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2612 			goto out_free1;
2613 		r = 0;
2614 out_free1:
2615 		kfree(kvm_regs);
2616 		break;
2617 	}
2618 	case KVM_SET_REGS: {
2619 		struct kvm_regs *kvm_regs;
2620 
2621 		r = -ENOMEM;
2622 		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2623 		if (IS_ERR(kvm_regs)) {
2624 			r = PTR_ERR(kvm_regs);
2625 			goto out;
2626 		}
2627 		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2628 		kfree(kvm_regs);
2629 		break;
2630 	}
2631 	case KVM_GET_SREGS: {
2632 		kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2633 		r = -ENOMEM;
2634 		if (!kvm_sregs)
2635 			goto out;
2636 		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2637 		if (r)
2638 			goto out;
2639 		r = -EFAULT;
2640 		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2641 			goto out;
2642 		r = 0;
2643 		break;
2644 	}
2645 	case KVM_SET_SREGS: {
2646 		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2647 		if (IS_ERR(kvm_sregs)) {
2648 			r = PTR_ERR(kvm_sregs);
2649 			kvm_sregs = NULL;
2650 			goto out;
2651 		}
2652 		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2653 		break;
2654 	}
2655 	case KVM_GET_MP_STATE: {
2656 		struct kvm_mp_state mp_state;
2657 
2658 		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2659 		if (r)
2660 			goto out;
2661 		r = -EFAULT;
2662 		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2663 			goto out;
2664 		r = 0;
2665 		break;
2666 	}
2667 	case KVM_SET_MP_STATE: {
2668 		struct kvm_mp_state mp_state;
2669 
2670 		r = -EFAULT;
2671 		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2672 			goto out;
2673 		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2674 		break;
2675 	}
2676 	case KVM_TRANSLATE: {
2677 		struct kvm_translation tr;
2678 
2679 		r = -EFAULT;
2680 		if (copy_from_user(&tr, argp, sizeof(tr)))
2681 			goto out;
2682 		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2683 		if (r)
2684 			goto out;
2685 		r = -EFAULT;
2686 		if (copy_to_user(argp, &tr, sizeof(tr)))
2687 			goto out;
2688 		r = 0;
2689 		break;
2690 	}
2691 	case KVM_SET_GUEST_DEBUG: {
2692 		struct kvm_guest_debug dbg;
2693 
2694 		r = -EFAULT;
2695 		if (copy_from_user(&dbg, argp, sizeof(dbg)))
2696 			goto out;
2697 		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2698 		break;
2699 	}
2700 	case KVM_SET_SIGNAL_MASK: {
2701 		struct kvm_signal_mask __user *sigmask_arg = argp;
2702 		struct kvm_signal_mask kvm_sigmask;
2703 		sigset_t sigset, *p;
2704 
2705 		p = NULL;
2706 		if (argp) {
2707 			r = -EFAULT;
2708 			if (copy_from_user(&kvm_sigmask, argp,
2709 					   sizeof(kvm_sigmask)))
2710 				goto out;
2711 			r = -EINVAL;
2712 			if (kvm_sigmask.len != sizeof(sigset))
2713 				goto out;
2714 			r = -EFAULT;
2715 			if (copy_from_user(&sigset, sigmask_arg->sigset,
2716 					   sizeof(sigset)))
2717 				goto out;
2718 			p = &sigset;
2719 		}
2720 		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2721 		break;
2722 	}
2723 	case KVM_GET_FPU: {
2724 		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2725 		r = -ENOMEM;
2726 		if (!fpu)
2727 			goto out;
2728 		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2729 		if (r)
2730 			goto out;
2731 		r = -EFAULT;
2732 		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2733 			goto out;
2734 		r = 0;
2735 		break;
2736 	}
2737 	case KVM_SET_FPU: {
2738 		fpu = memdup_user(argp, sizeof(*fpu));
2739 		if (IS_ERR(fpu)) {
2740 			r = PTR_ERR(fpu);
2741 			fpu = NULL;
2742 			goto out;
2743 		}
2744 		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2745 		break;
2746 	}
2747 	default:
2748 		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2749 	}
2750 out:
2751 	mutex_unlock(&vcpu->mutex);
2752 	kfree(fpu);
2753 	kfree(kvm_sregs);
2754 	return r;
2755 }
2756 
2757 #ifdef CONFIG_KVM_COMPAT
2758 static long kvm_vcpu_compat_ioctl(struct file *filp,
2759 				  unsigned int ioctl, unsigned long arg)
2760 {
2761 	struct kvm_vcpu *vcpu = filp->private_data;
2762 	void __user *argp = compat_ptr(arg);
2763 	int r;
2764 
2765 	if (vcpu->kvm->mm != current->mm)
2766 		return -EIO;
2767 
2768 	switch (ioctl) {
2769 	case KVM_SET_SIGNAL_MASK: {
2770 		struct kvm_signal_mask __user *sigmask_arg = argp;
2771 		struct kvm_signal_mask kvm_sigmask;
2772 		sigset_t sigset;
2773 
2774 		if (argp) {
2775 			r = -EFAULT;
2776 			if (copy_from_user(&kvm_sigmask, argp,
2777 					   sizeof(kvm_sigmask)))
2778 				goto out;
2779 			r = -EINVAL;
2780 			if (kvm_sigmask.len != sizeof(compat_sigset_t))
2781 				goto out;
2782 			r = -EFAULT;
2783 			if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2784 				goto out;
2785 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2786 		} else
2787 			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2788 		break;
2789 	}
2790 	default:
2791 		r = kvm_vcpu_ioctl(filp, ioctl, arg);
2792 	}
2793 
2794 out:
2795 	return r;
2796 }
2797 #endif
2798 
2799 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2800 				 int (*accessor)(struct kvm_device *dev,
2801 						 struct kvm_device_attr *attr),
2802 				 unsigned long arg)
2803 {
2804 	struct kvm_device_attr attr;
2805 
2806 	if (!accessor)
2807 		return -EPERM;
2808 
2809 	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2810 		return -EFAULT;
2811 
2812 	return accessor(dev, &attr);
2813 }
2814 
2815 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2816 			     unsigned long arg)
2817 {
2818 	struct kvm_device *dev = filp->private_data;
2819 
2820 	switch (ioctl) {
2821 	case KVM_SET_DEVICE_ATTR:
2822 		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2823 	case KVM_GET_DEVICE_ATTR:
2824 		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2825 	case KVM_HAS_DEVICE_ATTR:
2826 		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2827 	default:
2828 		if (dev->ops->ioctl)
2829 			return dev->ops->ioctl(dev, ioctl, arg);
2830 
2831 		return -ENOTTY;
2832 	}
2833 }
2834 
2835 static int kvm_device_release(struct inode *inode, struct file *filp)
2836 {
2837 	struct kvm_device *dev = filp->private_data;
2838 	struct kvm *kvm = dev->kvm;
2839 
2840 	kvm_put_kvm(kvm);
2841 	return 0;
2842 }
2843 
2844 static const struct file_operations kvm_device_fops = {
2845 	.unlocked_ioctl = kvm_device_ioctl,
2846 	.release = kvm_device_release,
2847 	KVM_COMPAT(kvm_device_ioctl),
2848 };
2849 
2850 struct kvm_device *kvm_device_from_filp(struct file *filp)
2851 {
2852 	if (filp->f_op != &kvm_device_fops)
2853 		return NULL;
2854 
2855 	return filp->private_data;
2856 }
2857 
2858 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2859 #ifdef CONFIG_KVM_MPIC
2860 	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
2861 	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
2862 #endif
2863 };
2864 
2865 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2866 {
2867 	if (type >= ARRAY_SIZE(kvm_device_ops_table))
2868 		return -ENOSPC;
2869 
2870 	if (kvm_device_ops_table[type] != NULL)
2871 		return -EEXIST;
2872 
2873 	kvm_device_ops_table[type] = ops;
2874 	return 0;
2875 }
2876 
2877 void kvm_unregister_device_ops(u32 type)
2878 {
2879 	if (kvm_device_ops_table[type] != NULL)
2880 		kvm_device_ops_table[type] = NULL;
2881 }
2882 
2883 static int kvm_ioctl_create_device(struct kvm *kvm,
2884 				   struct kvm_create_device *cd)
2885 {
2886 	struct kvm_device_ops *ops = NULL;
2887 	struct kvm_device *dev;
2888 	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2889 	int ret;
2890 
2891 	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2892 		return -ENODEV;
2893 
2894 	ops = kvm_device_ops_table[cd->type];
2895 	if (ops == NULL)
2896 		return -ENODEV;
2897 
2898 	if (test)
2899 		return 0;
2900 
2901 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2902 	if (!dev)
2903 		return -ENOMEM;
2904 
2905 	dev->ops = ops;
2906 	dev->kvm = kvm;
2907 
2908 	mutex_lock(&kvm->lock);
2909 	ret = ops->create(dev, cd->type);
2910 	if (ret < 0) {
2911 		mutex_unlock(&kvm->lock);
2912 		kfree(dev);
2913 		return ret;
2914 	}
2915 	list_add(&dev->vm_node, &kvm->devices);
2916 	mutex_unlock(&kvm->lock);
2917 
2918 	if (ops->init)
2919 		ops->init(dev);
2920 
2921 	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2922 	if (ret < 0) {
2923 		mutex_lock(&kvm->lock);
2924 		list_del(&dev->vm_node);
2925 		mutex_unlock(&kvm->lock);
2926 		ops->destroy(dev);
2927 		return ret;
2928 	}
2929 
2930 	kvm_get_kvm(kvm);
2931 	cd->fd = ret;
2932 	return 0;
2933 }
2934 
2935 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2936 {
2937 	switch (arg) {
2938 	case KVM_CAP_USER_MEMORY:
2939 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2940 	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2941 	case KVM_CAP_INTERNAL_ERROR_DATA:
2942 #ifdef CONFIG_HAVE_KVM_MSI
2943 	case KVM_CAP_SIGNAL_MSI:
2944 #endif
2945 #ifdef CONFIG_HAVE_KVM_IRQFD
2946 	case KVM_CAP_IRQFD:
2947 	case KVM_CAP_IRQFD_RESAMPLE:
2948 #endif
2949 	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2950 	case KVM_CAP_CHECK_EXTENSION_VM:
2951 		return 1;
2952 #ifdef CONFIG_KVM_MMIO
2953 	case KVM_CAP_COALESCED_MMIO:
2954 		return KVM_COALESCED_MMIO_PAGE_OFFSET;
2955 	case KVM_CAP_COALESCED_PIO:
2956 		return 1;
2957 #endif
2958 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2959 	case KVM_CAP_IRQ_ROUTING:
2960 		return KVM_MAX_IRQ_ROUTES;
2961 #endif
2962 #if KVM_ADDRESS_SPACE_NUM > 1
2963 	case KVM_CAP_MULTI_ADDRESS_SPACE:
2964 		return KVM_ADDRESS_SPACE_NUM;
2965 #endif
2966 	case KVM_CAP_MAX_VCPU_ID:
2967 		return KVM_MAX_VCPU_ID;
2968 	default:
2969 		break;
2970 	}
2971 	return kvm_vm_ioctl_check_extension(kvm, arg);
2972 }
2973 
2974 static long kvm_vm_ioctl(struct file *filp,
2975 			   unsigned int ioctl, unsigned long arg)
2976 {
2977 	struct kvm *kvm = filp->private_data;
2978 	void __user *argp = (void __user *)arg;
2979 	int r;
2980 
2981 	if (kvm->mm != current->mm)
2982 		return -EIO;
2983 	switch (ioctl) {
2984 	case KVM_CREATE_VCPU:
2985 		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2986 		break;
2987 	case KVM_SET_USER_MEMORY_REGION: {
2988 		struct kvm_userspace_memory_region kvm_userspace_mem;
2989 
2990 		r = -EFAULT;
2991 		if (copy_from_user(&kvm_userspace_mem, argp,
2992 						sizeof(kvm_userspace_mem)))
2993 			goto out;
2994 
2995 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2996 		break;
2997 	}
2998 	case KVM_GET_DIRTY_LOG: {
2999 		struct kvm_dirty_log log;
3000 
3001 		r = -EFAULT;
3002 		if (copy_from_user(&log, argp, sizeof(log)))
3003 			goto out;
3004 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3005 		break;
3006 	}
3007 #ifdef CONFIG_KVM_MMIO
3008 	case KVM_REGISTER_COALESCED_MMIO: {
3009 		struct kvm_coalesced_mmio_zone zone;
3010 
3011 		r = -EFAULT;
3012 		if (copy_from_user(&zone, argp, sizeof(zone)))
3013 			goto out;
3014 		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3015 		break;
3016 	}
3017 	case KVM_UNREGISTER_COALESCED_MMIO: {
3018 		struct kvm_coalesced_mmio_zone zone;
3019 
3020 		r = -EFAULT;
3021 		if (copy_from_user(&zone, argp, sizeof(zone)))
3022 			goto out;
3023 		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3024 		break;
3025 	}
3026 #endif
3027 	case KVM_IRQFD: {
3028 		struct kvm_irqfd data;
3029 
3030 		r = -EFAULT;
3031 		if (copy_from_user(&data, argp, sizeof(data)))
3032 			goto out;
3033 		r = kvm_irqfd(kvm, &data);
3034 		break;
3035 	}
3036 	case KVM_IOEVENTFD: {
3037 		struct kvm_ioeventfd data;
3038 
3039 		r = -EFAULT;
3040 		if (copy_from_user(&data, argp, sizeof(data)))
3041 			goto out;
3042 		r = kvm_ioeventfd(kvm, &data);
3043 		break;
3044 	}
3045 #ifdef CONFIG_HAVE_KVM_MSI
3046 	case KVM_SIGNAL_MSI: {
3047 		struct kvm_msi msi;
3048 
3049 		r = -EFAULT;
3050 		if (copy_from_user(&msi, argp, sizeof(msi)))
3051 			goto out;
3052 		r = kvm_send_userspace_msi(kvm, &msi);
3053 		break;
3054 	}
3055 #endif
3056 #ifdef __KVM_HAVE_IRQ_LINE
3057 	case KVM_IRQ_LINE_STATUS:
3058 	case KVM_IRQ_LINE: {
3059 		struct kvm_irq_level irq_event;
3060 
3061 		r = -EFAULT;
3062 		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3063 			goto out;
3064 
3065 		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3066 					ioctl == KVM_IRQ_LINE_STATUS);
3067 		if (r)
3068 			goto out;
3069 
3070 		r = -EFAULT;
3071 		if (ioctl == KVM_IRQ_LINE_STATUS) {
3072 			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3073 				goto out;
3074 		}
3075 
3076 		r = 0;
3077 		break;
3078 	}
3079 #endif
3080 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3081 	case KVM_SET_GSI_ROUTING: {
3082 		struct kvm_irq_routing routing;
3083 		struct kvm_irq_routing __user *urouting;
3084 		struct kvm_irq_routing_entry *entries = NULL;
3085 
3086 		r = -EFAULT;
3087 		if (copy_from_user(&routing, argp, sizeof(routing)))
3088 			goto out;
3089 		r = -EINVAL;
3090 		if (!kvm_arch_can_set_irq_routing(kvm))
3091 			goto out;
3092 		if (routing.nr > KVM_MAX_IRQ_ROUTES)
3093 			goto out;
3094 		if (routing.flags)
3095 			goto out;
3096 		if (routing.nr) {
3097 			r = -ENOMEM;
3098 			entries = vmalloc(array_size(sizeof(*entries),
3099 						     routing.nr));
3100 			if (!entries)
3101 				goto out;
3102 			r = -EFAULT;
3103 			urouting = argp;
3104 			if (copy_from_user(entries, urouting->entries,
3105 					   routing.nr * sizeof(*entries)))
3106 				goto out_free_irq_routing;
3107 		}
3108 		r = kvm_set_irq_routing(kvm, entries, routing.nr,
3109 					routing.flags);
3110 out_free_irq_routing:
3111 		vfree(entries);
3112 		break;
3113 	}
3114 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3115 	case KVM_CREATE_DEVICE: {
3116 		struct kvm_create_device cd;
3117 
3118 		r = -EFAULT;
3119 		if (copy_from_user(&cd, argp, sizeof(cd)))
3120 			goto out;
3121 
3122 		r = kvm_ioctl_create_device(kvm, &cd);
3123 		if (r)
3124 			goto out;
3125 
3126 		r = -EFAULT;
3127 		if (copy_to_user(argp, &cd, sizeof(cd)))
3128 			goto out;
3129 
3130 		r = 0;
3131 		break;
3132 	}
3133 	case KVM_CHECK_EXTENSION:
3134 		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3135 		break;
3136 	default:
3137 		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3138 	}
3139 out:
3140 	return r;
3141 }
3142 
3143 #ifdef CONFIG_KVM_COMPAT
3144 struct compat_kvm_dirty_log {
3145 	__u32 slot;
3146 	__u32 padding1;
3147 	union {
3148 		compat_uptr_t dirty_bitmap; /* one bit per page */
3149 		__u64 padding2;
3150 	};
3151 };
3152 
3153 static long kvm_vm_compat_ioctl(struct file *filp,
3154 			   unsigned int ioctl, unsigned long arg)
3155 {
3156 	struct kvm *kvm = filp->private_data;
3157 	int r;
3158 
3159 	if (kvm->mm != current->mm)
3160 		return -EIO;
3161 	switch (ioctl) {
3162 	case KVM_GET_DIRTY_LOG: {
3163 		struct compat_kvm_dirty_log compat_log;
3164 		struct kvm_dirty_log log;
3165 
3166 		if (copy_from_user(&compat_log, (void __user *)arg,
3167 				   sizeof(compat_log)))
3168 			return -EFAULT;
3169 		log.slot	 = compat_log.slot;
3170 		log.padding1	 = compat_log.padding1;
3171 		log.padding2	 = compat_log.padding2;
3172 		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3173 
3174 		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3175 		break;
3176 	}
3177 	default:
3178 		r = kvm_vm_ioctl(filp, ioctl, arg);
3179 	}
3180 	return r;
3181 }
3182 #endif
3183 
3184 static struct file_operations kvm_vm_fops = {
3185 	.release        = kvm_vm_release,
3186 	.unlocked_ioctl = kvm_vm_ioctl,
3187 	.llseek		= noop_llseek,
3188 	KVM_COMPAT(kvm_vm_compat_ioctl),
3189 };
3190 
3191 static int kvm_dev_ioctl_create_vm(unsigned long type)
3192 {
3193 	int r;
3194 	struct kvm *kvm;
3195 	struct file *file;
3196 
3197 	kvm = kvm_create_vm(type);
3198 	if (IS_ERR(kvm))
3199 		return PTR_ERR(kvm);
3200 #ifdef CONFIG_KVM_MMIO
3201 	r = kvm_coalesced_mmio_init(kvm);
3202 	if (r < 0)
3203 		goto put_kvm;
3204 #endif
3205 	r = get_unused_fd_flags(O_CLOEXEC);
3206 	if (r < 0)
3207 		goto put_kvm;
3208 
3209 	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3210 	if (IS_ERR(file)) {
3211 		put_unused_fd(r);
3212 		r = PTR_ERR(file);
3213 		goto put_kvm;
3214 	}
3215 
3216 	/*
3217 	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3218 	 * already set, with ->release() being kvm_vm_release().  In error
3219 	 * cases it will be called by the final fput(file) and will take
3220 	 * care of doing kvm_put_kvm(kvm).
3221 	 */
3222 	if (kvm_create_vm_debugfs(kvm, r) < 0) {
3223 		put_unused_fd(r);
3224 		fput(file);
3225 		return -ENOMEM;
3226 	}
3227 	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3228 
3229 	fd_install(r, file);
3230 	return r;
3231 
3232 put_kvm:
3233 	kvm_put_kvm(kvm);
3234 	return r;
3235 }
3236 
3237 static long kvm_dev_ioctl(struct file *filp,
3238 			  unsigned int ioctl, unsigned long arg)
3239 {
3240 	long r = -EINVAL;
3241 
3242 	switch (ioctl) {
3243 	case KVM_GET_API_VERSION:
3244 		if (arg)
3245 			goto out;
3246 		r = KVM_API_VERSION;
3247 		break;
3248 	case KVM_CREATE_VM:
3249 		r = kvm_dev_ioctl_create_vm(arg);
3250 		break;
3251 	case KVM_CHECK_EXTENSION:
3252 		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3253 		break;
3254 	case KVM_GET_VCPU_MMAP_SIZE:
3255 		if (arg)
3256 			goto out;
3257 		r = PAGE_SIZE;     /* struct kvm_run */
3258 #ifdef CONFIG_X86
3259 		r += PAGE_SIZE;    /* pio data page */
3260 #endif
3261 #ifdef CONFIG_KVM_MMIO
3262 		r += PAGE_SIZE;    /* coalesced mmio ring page */
3263 #endif
3264 		break;
3265 	case KVM_TRACE_ENABLE:
3266 	case KVM_TRACE_PAUSE:
3267 	case KVM_TRACE_DISABLE:
3268 		r = -EOPNOTSUPP;
3269 		break;
3270 	default:
3271 		return kvm_arch_dev_ioctl(filp, ioctl, arg);
3272 	}
3273 out:
3274 	return r;
3275 }
3276 
3277 static struct file_operations kvm_chardev_ops = {
3278 	.unlocked_ioctl = kvm_dev_ioctl,
3279 	.llseek		= noop_llseek,
3280 	KVM_COMPAT(kvm_dev_ioctl),
3281 };
3282 
3283 static struct miscdevice kvm_dev = {
3284 	KVM_MINOR,
3285 	"kvm",
3286 	&kvm_chardev_ops,
3287 };
3288 
3289 static void hardware_enable_nolock(void *junk)
3290 {
3291 	int cpu = raw_smp_processor_id();
3292 	int r;
3293 
3294 	if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3295 		return;
3296 
3297 	cpumask_set_cpu(cpu, cpus_hardware_enabled);
3298 
3299 	r = kvm_arch_hardware_enable();
3300 
3301 	if (r) {
3302 		cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3303 		atomic_inc(&hardware_enable_failed);
3304 		pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3305 	}
3306 }
3307 
3308 static int kvm_starting_cpu(unsigned int cpu)
3309 {
3310 	raw_spin_lock(&kvm_count_lock);
3311 	if (kvm_usage_count)
3312 		hardware_enable_nolock(NULL);
3313 	raw_spin_unlock(&kvm_count_lock);
3314 	return 0;
3315 }
3316 
3317 static void hardware_disable_nolock(void *junk)
3318 {
3319 	int cpu = raw_smp_processor_id();
3320 
3321 	if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3322 		return;
3323 	cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3324 	kvm_arch_hardware_disable();
3325 }
3326 
3327 static int kvm_dying_cpu(unsigned int cpu)
3328 {
3329 	raw_spin_lock(&kvm_count_lock);
3330 	if (kvm_usage_count)
3331 		hardware_disable_nolock(NULL);
3332 	raw_spin_unlock(&kvm_count_lock);
3333 	return 0;
3334 }
3335 
3336 static void hardware_disable_all_nolock(void)
3337 {
3338 	BUG_ON(!kvm_usage_count);
3339 
3340 	kvm_usage_count--;
3341 	if (!kvm_usage_count)
3342 		on_each_cpu(hardware_disable_nolock, NULL, 1);
3343 }
3344 
3345 static void hardware_disable_all(void)
3346 {
3347 	raw_spin_lock(&kvm_count_lock);
3348 	hardware_disable_all_nolock();
3349 	raw_spin_unlock(&kvm_count_lock);
3350 }
3351 
3352 static int hardware_enable_all(void)
3353 {
3354 	int r = 0;
3355 
3356 	raw_spin_lock(&kvm_count_lock);
3357 
3358 	kvm_usage_count++;
3359 	if (kvm_usage_count == 1) {
3360 		atomic_set(&hardware_enable_failed, 0);
3361 		on_each_cpu(hardware_enable_nolock, NULL, 1);
3362 
3363 		if (atomic_read(&hardware_enable_failed)) {
3364 			hardware_disable_all_nolock();
3365 			r = -EBUSY;
3366 		}
3367 	}
3368 
3369 	raw_spin_unlock(&kvm_count_lock);
3370 
3371 	return r;
3372 }
3373 
3374 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3375 		      void *v)
3376 {
3377 	/*
3378 	 * Some (well, at least mine) BIOSes hang on reboot if
3379 	 * in vmx root mode.
3380 	 *
3381 	 * And Intel TXT required VMX off for all cpu when system shutdown.
3382 	 */
3383 	pr_info("kvm: exiting hardware virtualization\n");
3384 	kvm_rebooting = true;
3385 	on_each_cpu(hardware_disable_nolock, NULL, 1);
3386 	return NOTIFY_OK;
3387 }
3388 
3389 static struct notifier_block kvm_reboot_notifier = {
3390 	.notifier_call = kvm_reboot,
3391 	.priority = 0,
3392 };
3393 
3394 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3395 {
3396 	int i;
3397 
3398 	for (i = 0; i < bus->dev_count; i++) {
3399 		struct kvm_io_device *pos = bus->range[i].dev;
3400 
3401 		kvm_iodevice_destructor(pos);
3402 	}
3403 	kfree(bus);
3404 }
3405 
3406 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3407 				 const struct kvm_io_range *r2)
3408 {
3409 	gpa_t addr1 = r1->addr;
3410 	gpa_t addr2 = r2->addr;
3411 
3412 	if (addr1 < addr2)
3413 		return -1;
3414 
3415 	/* If r2->len == 0, match the exact address.  If r2->len != 0,
3416 	 * accept any overlapping write.  Any order is acceptable for
3417 	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3418 	 * we process all of them.
3419 	 */
3420 	if (r2->len) {
3421 		addr1 += r1->len;
3422 		addr2 += r2->len;
3423 	}
3424 
3425 	if (addr1 > addr2)
3426 		return 1;
3427 
3428 	return 0;
3429 }
3430 
3431 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3432 {
3433 	return kvm_io_bus_cmp(p1, p2);
3434 }
3435 
3436 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3437 			     gpa_t addr, int len)
3438 {
3439 	struct kvm_io_range *range, key;
3440 	int off;
3441 
3442 	key = (struct kvm_io_range) {
3443 		.addr = addr,
3444 		.len = len,
3445 	};
3446 
3447 	range = bsearch(&key, bus->range, bus->dev_count,
3448 			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3449 	if (range == NULL)
3450 		return -ENOENT;
3451 
3452 	off = range - bus->range;
3453 
3454 	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3455 		off--;
3456 
3457 	return off;
3458 }
3459 
3460 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3461 			      struct kvm_io_range *range, const void *val)
3462 {
3463 	int idx;
3464 
3465 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3466 	if (idx < 0)
3467 		return -EOPNOTSUPP;
3468 
3469 	while (idx < bus->dev_count &&
3470 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3471 		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3472 					range->len, val))
3473 			return idx;
3474 		idx++;
3475 	}
3476 
3477 	return -EOPNOTSUPP;
3478 }
3479 
3480 /* kvm_io_bus_write - called under kvm->slots_lock */
3481 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3482 		     int len, const void *val)
3483 {
3484 	struct kvm_io_bus *bus;
3485 	struct kvm_io_range range;
3486 	int r;
3487 
3488 	range = (struct kvm_io_range) {
3489 		.addr = addr,
3490 		.len = len,
3491 	};
3492 
3493 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3494 	if (!bus)
3495 		return -ENOMEM;
3496 	r = __kvm_io_bus_write(vcpu, bus, &range, val);
3497 	return r < 0 ? r : 0;
3498 }
3499 
3500 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3501 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3502 			    gpa_t addr, int len, const void *val, long cookie)
3503 {
3504 	struct kvm_io_bus *bus;
3505 	struct kvm_io_range range;
3506 
3507 	range = (struct kvm_io_range) {
3508 		.addr = addr,
3509 		.len = len,
3510 	};
3511 
3512 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3513 	if (!bus)
3514 		return -ENOMEM;
3515 
3516 	/* First try the device referenced by cookie. */
3517 	if ((cookie >= 0) && (cookie < bus->dev_count) &&
3518 	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3519 		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3520 					val))
3521 			return cookie;
3522 
3523 	/*
3524 	 * cookie contained garbage; fall back to search and return the
3525 	 * correct cookie value.
3526 	 */
3527 	return __kvm_io_bus_write(vcpu, bus, &range, val);
3528 }
3529 
3530 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3531 			     struct kvm_io_range *range, void *val)
3532 {
3533 	int idx;
3534 
3535 	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3536 	if (idx < 0)
3537 		return -EOPNOTSUPP;
3538 
3539 	while (idx < bus->dev_count &&
3540 		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3541 		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3542 				       range->len, val))
3543 			return idx;
3544 		idx++;
3545 	}
3546 
3547 	return -EOPNOTSUPP;
3548 }
3549 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3550 
3551 /* kvm_io_bus_read - called under kvm->slots_lock */
3552 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3553 		    int len, void *val)
3554 {
3555 	struct kvm_io_bus *bus;
3556 	struct kvm_io_range range;
3557 	int r;
3558 
3559 	range = (struct kvm_io_range) {
3560 		.addr = addr,
3561 		.len = len,
3562 	};
3563 
3564 	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3565 	if (!bus)
3566 		return -ENOMEM;
3567 	r = __kvm_io_bus_read(vcpu, bus, &range, val);
3568 	return r < 0 ? r : 0;
3569 }
3570 
3571 
3572 /* Caller must hold slots_lock. */
3573 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3574 			    int len, struct kvm_io_device *dev)
3575 {
3576 	int i;
3577 	struct kvm_io_bus *new_bus, *bus;
3578 	struct kvm_io_range range;
3579 
3580 	bus = kvm_get_bus(kvm, bus_idx);
3581 	if (!bus)
3582 		return -ENOMEM;
3583 
3584 	/* exclude ioeventfd which is limited by maximum fd */
3585 	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3586 		return -ENOSPC;
3587 
3588 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3589 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3590 	if (!new_bus)
3591 		return -ENOMEM;
3592 
3593 	range = (struct kvm_io_range) {
3594 		.addr = addr,
3595 		.len = len,
3596 		.dev = dev,
3597 	};
3598 
3599 	for (i = 0; i < bus->dev_count; i++)
3600 		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3601 			break;
3602 
3603 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3604 	new_bus->dev_count++;
3605 	new_bus->range[i] = range;
3606 	memcpy(new_bus->range + i + 1, bus->range + i,
3607 		(bus->dev_count - i) * sizeof(struct kvm_io_range));
3608 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3609 	synchronize_srcu_expedited(&kvm->srcu);
3610 	kfree(bus);
3611 
3612 	return 0;
3613 }
3614 
3615 /* Caller must hold slots_lock. */
3616 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3617 			       struct kvm_io_device *dev)
3618 {
3619 	int i;
3620 	struct kvm_io_bus *new_bus, *bus;
3621 
3622 	bus = kvm_get_bus(kvm, bus_idx);
3623 	if (!bus)
3624 		return;
3625 
3626 	for (i = 0; i < bus->dev_count; i++)
3627 		if (bus->range[i].dev == dev) {
3628 			break;
3629 		}
3630 
3631 	if (i == bus->dev_count)
3632 		return;
3633 
3634 	new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3635 			  sizeof(struct kvm_io_range)), GFP_KERNEL);
3636 	if (!new_bus)  {
3637 		pr_err("kvm: failed to shrink bus, removing it completely\n");
3638 		goto broken;
3639 	}
3640 
3641 	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3642 	new_bus->dev_count--;
3643 	memcpy(new_bus->range + i, bus->range + i + 1,
3644 	       (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3645 
3646 broken:
3647 	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3648 	synchronize_srcu_expedited(&kvm->srcu);
3649 	kfree(bus);
3650 	return;
3651 }
3652 
3653 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3654 					 gpa_t addr)
3655 {
3656 	struct kvm_io_bus *bus;
3657 	int dev_idx, srcu_idx;
3658 	struct kvm_io_device *iodev = NULL;
3659 
3660 	srcu_idx = srcu_read_lock(&kvm->srcu);
3661 
3662 	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3663 	if (!bus)
3664 		goto out_unlock;
3665 
3666 	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3667 	if (dev_idx < 0)
3668 		goto out_unlock;
3669 
3670 	iodev = bus->range[dev_idx].dev;
3671 
3672 out_unlock:
3673 	srcu_read_unlock(&kvm->srcu, srcu_idx);
3674 
3675 	return iodev;
3676 }
3677 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3678 
3679 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3680 			   int (*get)(void *, u64 *), int (*set)(void *, u64),
3681 			   const char *fmt)
3682 {
3683 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3684 					  inode->i_private;
3685 
3686 	/* The debugfs files are a reference to the kvm struct which
3687 	 * is still valid when kvm_destroy_vm is called.
3688 	 * To avoid the race between open and the removal of the debugfs
3689 	 * directory we test against the users count.
3690 	 */
3691 	if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3692 		return -ENOENT;
3693 
3694 	if (simple_attr_open(inode, file, get, set, fmt)) {
3695 		kvm_put_kvm(stat_data->kvm);
3696 		return -ENOMEM;
3697 	}
3698 
3699 	return 0;
3700 }
3701 
3702 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3703 {
3704 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3705 					  inode->i_private;
3706 
3707 	simple_attr_release(inode, file);
3708 	kvm_put_kvm(stat_data->kvm);
3709 
3710 	return 0;
3711 }
3712 
3713 static int vm_stat_get_per_vm(void *data, u64 *val)
3714 {
3715 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3716 
3717 	*val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3718 
3719 	return 0;
3720 }
3721 
3722 static int vm_stat_clear_per_vm(void *data, u64 val)
3723 {
3724 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3725 
3726 	if (val)
3727 		return -EINVAL;
3728 
3729 	*(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3730 
3731 	return 0;
3732 }
3733 
3734 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3735 {
3736 	__simple_attr_check_format("%llu\n", 0ull);
3737 	return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3738 				vm_stat_clear_per_vm, "%llu\n");
3739 }
3740 
3741 static const struct file_operations vm_stat_get_per_vm_fops = {
3742 	.owner   = THIS_MODULE,
3743 	.open    = vm_stat_get_per_vm_open,
3744 	.release = kvm_debugfs_release,
3745 	.read    = simple_attr_read,
3746 	.write   = simple_attr_write,
3747 	.llseek  = no_llseek,
3748 };
3749 
3750 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3751 {
3752 	int i;
3753 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3754 	struct kvm_vcpu *vcpu;
3755 
3756 	*val = 0;
3757 
3758 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3759 		*val += *(u64 *)((void *)vcpu + stat_data->offset);
3760 
3761 	return 0;
3762 }
3763 
3764 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3765 {
3766 	int i;
3767 	struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3768 	struct kvm_vcpu *vcpu;
3769 
3770 	if (val)
3771 		return -EINVAL;
3772 
3773 	kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3774 		*(u64 *)((void *)vcpu + stat_data->offset) = 0;
3775 
3776 	return 0;
3777 }
3778 
3779 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3780 {
3781 	__simple_attr_check_format("%llu\n", 0ull);
3782 	return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3783 				 vcpu_stat_clear_per_vm, "%llu\n");
3784 }
3785 
3786 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3787 	.owner   = THIS_MODULE,
3788 	.open    = vcpu_stat_get_per_vm_open,
3789 	.release = kvm_debugfs_release,
3790 	.read    = simple_attr_read,
3791 	.write   = simple_attr_write,
3792 	.llseek  = no_llseek,
3793 };
3794 
3795 static const struct file_operations *stat_fops_per_vm[] = {
3796 	[KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3797 	[KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3798 };
3799 
3800 static int vm_stat_get(void *_offset, u64 *val)
3801 {
3802 	unsigned offset = (long)_offset;
3803 	struct kvm *kvm;
3804 	struct kvm_stat_data stat_tmp = {.offset = offset};
3805 	u64 tmp_val;
3806 
3807 	*val = 0;
3808 	spin_lock(&kvm_lock);
3809 	list_for_each_entry(kvm, &vm_list, vm_list) {
3810 		stat_tmp.kvm = kvm;
3811 		vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3812 		*val += tmp_val;
3813 	}
3814 	spin_unlock(&kvm_lock);
3815 	return 0;
3816 }
3817 
3818 static int vm_stat_clear(void *_offset, u64 val)
3819 {
3820 	unsigned offset = (long)_offset;
3821 	struct kvm *kvm;
3822 	struct kvm_stat_data stat_tmp = {.offset = offset};
3823 
3824 	if (val)
3825 		return -EINVAL;
3826 
3827 	spin_lock(&kvm_lock);
3828 	list_for_each_entry(kvm, &vm_list, vm_list) {
3829 		stat_tmp.kvm = kvm;
3830 		vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3831 	}
3832 	spin_unlock(&kvm_lock);
3833 
3834 	return 0;
3835 }
3836 
3837 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3838 
3839 static int vcpu_stat_get(void *_offset, u64 *val)
3840 {
3841 	unsigned offset = (long)_offset;
3842 	struct kvm *kvm;
3843 	struct kvm_stat_data stat_tmp = {.offset = offset};
3844 	u64 tmp_val;
3845 
3846 	*val = 0;
3847 	spin_lock(&kvm_lock);
3848 	list_for_each_entry(kvm, &vm_list, vm_list) {
3849 		stat_tmp.kvm = kvm;
3850 		vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3851 		*val += tmp_val;
3852 	}
3853 	spin_unlock(&kvm_lock);
3854 	return 0;
3855 }
3856 
3857 static int vcpu_stat_clear(void *_offset, u64 val)
3858 {
3859 	unsigned offset = (long)_offset;
3860 	struct kvm *kvm;
3861 	struct kvm_stat_data stat_tmp = {.offset = offset};
3862 
3863 	if (val)
3864 		return -EINVAL;
3865 
3866 	spin_lock(&kvm_lock);
3867 	list_for_each_entry(kvm, &vm_list, vm_list) {
3868 		stat_tmp.kvm = kvm;
3869 		vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3870 	}
3871 	spin_unlock(&kvm_lock);
3872 
3873 	return 0;
3874 }
3875 
3876 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3877 			"%llu\n");
3878 
3879 static const struct file_operations *stat_fops[] = {
3880 	[KVM_STAT_VCPU] = &vcpu_stat_fops,
3881 	[KVM_STAT_VM]   = &vm_stat_fops,
3882 };
3883 
3884 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3885 {
3886 	struct kobj_uevent_env *env;
3887 	unsigned long long created, active;
3888 
3889 	if (!kvm_dev.this_device || !kvm)
3890 		return;
3891 
3892 	spin_lock(&kvm_lock);
3893 	if (type == KVM_EVENT_CREATE_VM) {
3894 		kvm_createvm_count++;
3895 		kvm_active_vms++;
3896 	} else if (type == KVM_EVENT_DESTROY_VM) {
3897 		kvm_active_vms--;
3898 	}
3899 	created = kvm_createvm_count;
3900 	active = kvm_active_vms;
3901 	spin_unlock(&kvm_lock);
3902 
3903 	env = kzalloc(sizeof(*env), GFP_KERNEL);
3904 	if (!env)
3905 		return;
3906 
3907 	add_uevent_var(env, "CREATED=%llu", created);
3908 	add_uevent_var(env, "COUNT=%llu", active);
3909 
3910 	if (type == KVM_EVENT_CREATE_VM) {
3911 		add_uevent_var(env, "EVENT=create");
3912 		kvm->userspace_pid = task_pid_nr(current);
3913 	} else if (type == KVM_EVENT_DESTROY_VM) {
3914 		add_uevent_var(env, "EVENT=destroy");
3915 	}
3916 	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3917 
3918 	if (kvm->debugfs_dentry) {
3919 		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3920 
3921 		if (p) {
3922 			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3923 			if (!IS_ERR(tmp))
3924 				add_uevent_var(env, "STATS_PATH=%s", tmp);
3925 			kfree(p);
3926 		}
3927 	}
3928 	/* no need for checks, since we are adding at most only 5 keys */
3929 	env->envp[env->envp_idx++] = NULL;
3930 	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3931 	kfree(env);
3932 }
3933 
3934 static void kvm_init_debug(void)
3935 {
3936 	struct kvm_stats_debugfs_item *p;
3937 
3938 	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3939 
3940 	kvm_debugfs_num_entries = 0;
3941 	for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3942 		debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3943 				    (void *)(long)p->offset,
3944 				    stat_fops[p->kind]);
3945 	}
3946 }
3947 
3948 static int kvm_suspend(void)
3949 {
3950 	if (kvm_usage_count)
3951 		hardware_disable_nolock(NULL);
3952 	return 0;
3953 }
3954 
3955 static void kvm_resume(void)
3956 {
3957 	if (kvm_usage_count) {
3958 		WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3959 		hardware_enable_nolock(NULL);
3960 	}
3961 }
3962 
3963 static struct syscore_ops kvm_syscore_ops = {
3964 	.suspend = kvm_suspend,
3965 	.resume = kvm_resume,
3966 };
3967 
3968 static inline
3969 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3970 {
3971 	return container_of(pn, struct kvm_vcpu, preempt_notifier);
3972 }
3973 
3974 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3975 {
3976 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3977 
3978 	if (vcpu->preempted)
3979 		vcpu->preempted = false;
3980 
3981 	kvm_arch_sched_in(vcpu, cpu);
3982 
3983 	kvm_arch_vcpu_load(vcpu, cpu);
3984 }
3985 
3986 static void kvm_sched_out(struct preempt_notifier *pn,
3987 			  struct task_struct *next)
3988 {
3989 	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3990 
3991 	if (current->state == TASK_RUNNING)
3992 		vcpu->preempted = true;
3993 	kvm_arch_vcpu_put(vcpu);
3994 }
3995 
3996 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3997 		  struct module *module)
3998 {
3999 	int r;
4000 	int cpu;
4001 
4002 	r = kvm_arch_init(opaque);
4003 	if (r)
4004 		goto out_fail;
4005 
4006 	/*
4007 	 * kvm_arch_init makes sure there's at most one caller
4008 	 * for architectures that support multiple implementations,
4009 	 * like intel and amd on x86.
4010 	 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4011 	 * conflicts in case kvm is already setup for another implementation.
4012 	 */
4013 	r = kvm_irqfd_init();
4014 	if (r)
4015 		goto out_irqfd;
4016 
4017 	if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4018 		r = -ENOMEM;
4019 		goto out_free_0;
4020 	}
4021 
4022 	r = kvm_arch_hardware_setup();
4023 	if (r < 0)
4024 		goto out_free_0a;
4025 
4026 	for_each_online_cpu(cpu) {
4027 		smp_call_function_single(cpu,
4028 				kvm_arch_check_processor_compat,
4029 				&r, 1);
4030 		if (r < 0)
4031 			goto out_free_1;
4032 	}
4033 
4034 	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4035 				      kvm_starting_cpu, kvm_dying_cpu);
4036 	if (r)
4037 		goto out_free_2;
4038 	register_reboot_notifier(&kvm_reboot_notifier);
4039 
4040 	/* A kmem cache lets us meet the alignment requirements of fx_save. */
4041 	if (!vcpu_align)
4042 		vcpu_align = __alignof__(struct kvm_vcpu);
4043 	kvm_vcpu_cache =
4044 		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4045 					   SLAB_ACCOUNT,
4046 					   offsetof(struct kvm_vcpu, arch),
4047 					   sizeof_field(struct kvm_vcpu, arch),
4048 					   NULL);
4049 	if (!kvm_vcpu_cache) {
4050 		r = -ENOMEM;
4051 		goto out_free_3;
4052 	}
4053 
4054 	r = kvm_async_pf_init();
4055 	if (r)
4056 		goto out_free;
4057 
4058 	kvm_chardev_ops.owner = module;
4059 	kvm_vm_fops.owner = module;
4060 	kvm_vcpu_fops.owner = module;
4061 
4062 	r = misc_register(&kvm_dev);
4063 	if (r) {
4064 		pr_err("kvm: misc device register failed\n");
4065 		goto out_unreg;
4066 	}
4067 
4068 	register_syscore_ops(&kvm_syscore_ops);
4069 
4070 	kvm_preempt_ops.sched_in = kvm_sched_in;
4071 	kvm_preempt_ops.sched_out = kvm_sched_out;
4072 
4073 	kvm_init_debug();
4074 
4075 	r = kvm_vfio_ops_init();
4076 	WARN_ON(r);
4077 
4078 	return 0;
4079 
4080 out_unreg:
4081 	kvm_async_pf_deinit();
4082 out_free:
4083 	kmem_cache_destroy(kvm_vcpu_cache);
4084 out_free_3:
4085 	unregister_reboot_notifier(&kvm_reboot_notifier);
4086 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4087 out_free_2:
4088 out_free_1:
4089 	kvm_arch_hardware_unsetup();
4090 out_free_0a:
4091 	free_cpumask_var(cpus_hardware_enabled);
4092 out_free_0:
4093 	kvm_irqfd_exit();
4094 out_irqfd:
4095 	kvm_arch_exit();
4096 out_fail:
4097 	return r;
4098 }
4099 EXPORT_SYMBOL_GPL(kvm_init);
4100 
4101 void kvm_exit(void)
4102 {
4103 	debugfs_remove_recursive(kvm_debugfs_dir);
4104 	misc_deregister(&kvm_dev);
4105 	kmem_cache_destroy(kvm_vcpu_cache);
4106 	kvm_async_pf_deinit();
4107 	unregister_syscore_ops(&kvm_syscore_ops);
4108 	unregister_reboot_notifier(&kvm_reboot_notifier);
4109 	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4110 	on_each_cpu(hardware_disable_nolock, NULL, 1);
4111 	kvm_arch_hardware_unsetup();
4112 	kvm_arch_exit();
4113 	kvm_irqfd_exit();
4114 	free_cpumask_var(cpus_hardware_enabled);
4115 	kvm_vfio_ops_exit();
4116 }
4117 EXPORT_SYMBOL_GPL(kvm_exit);
4118