1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include "iodev.h" 20 21 #include <linux/kvm_host.h> 22 #include <linux/kvm.h> 23 #include <linux/module.h> 24 #include <linux/errno.h> 25 #include <linux/percpu.h> 26 #include <linux/mm.h> 27 #include <linux/miscdevice.h> 28 #include <linux/vmalloc.h> 29 #include <linux/reboot.h> 30 #include <linux/debugfs.h> 31 #include <linux/highmem.h> 32 #include <linux/file.h> 33 #include <linux/syscore_ops.h> 34 #include <linux/cpu.h> 35 #include <linux/sched.h> 36 #include <linux/cpumask.h> 37 #include <linux/smp.h> 38 #include <linux/anon_inodes.h> 39 #include <linux/profile.h> 40 #include <linux/kvm_para.h> 41 #include <linux/pagemap.h> 42 #include <linux/mman.h> 43 #include <linux/swap.h> 44 #include <linux/bitops.h> 45 #include <linux/spinlock.h> 46 #include <linux/compat.h> 47 #include <linux/srcu.h> 48 #include <linux/hugetlb.h> 49 #include <linux/slab.h> 50 #include <linux/sort.h> 51 #include <linux/bsearch.h> 52 53 #include <asm/processor.h> 54 #include <asm/io.h> 55 #include <asm/uaccess.h> 56 #include <asm/pgtable.h> 57 58 #include "coalesced_mmio.h" 59 #include "async_pf.h" 60 61 #define CREATE_TRACE_POINTS 62 #include <trace/events/kvm.h> 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 /* 68 * Ordering of locks: 69 * 70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 71 */ 72 73 DEFINE_RAW_SPINLOCK(kvm_lock); 74 LIST_HEAD(vm_list); 75 76 static cpumask_var_t cpus_hardware_enabled; 77 static int kvm_usage_count = 0; 78 static atomic_t hardware_enable_failed; 79 80 struct kmem_cache *kvm_vcpu_cache; 81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache); 82 83 static __read_mostly struct preempt_ops kvm_preempt_ops; 84 85 struct dentry *kvm_debugfs_dir; 86 87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 88 unsigned long arg); 89 #ifdef CONFIG_COMPAT 90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 91 unsigned long arg); 92 #endif 93 static int hardware_enable_all(void); 94 static void hardware_disable_all(void); 95 96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 97 98 bool kvm_rebooting; 99 EXPORT_SYMBOL_GPL(kvm_rebooting); 100 101 static bool largepages_enabled = true; 102 103 bool kvm_is_mmio_pfn(pfn_t pfn) 104 { 105 if (pfn_valid(pfn)) { 106 int reserved; 107 struct page *tail = pfn_to_page(pfn); 108 struct page *head = compound_trans_head(tail); 109 reserved = PageReserved(head); 110 if (head != tail) { 111 /* 112 * "head" is not a dangling pointer 113 * (compound_trans_head takes care of that) 114 * but the hugepage may have been splitted 115 * from under us (and we may not hold a 116 * reference count on the head page so it can 117 * be reused before we run PageReferenced), so 118 * we've to check PageTail before returning 119 * what we just read. 120 */ 121 smp_rmb(); 122 if (PageTail(tail)) 123 return reserved; 124 } 125 return PageReserved(tail); 126 } 127 128 return true; 129 } 130 131 /* 132 * Switches to specified vcpu, until a matching vcpu_put() 133 */ 134 int vcpu_load(struct kvm_vcpu *vcpu) 135 { 136 int cpu; 137 138 if (mutex_lock_killable(&vcpu->mutex)) 139 return -EINTR; 140 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { 141 /* The thread running this VCPU changed. */ 142 struct pid *oldpid = vcpu->pid; 143 struct pid *newpid = get_task_pid(current, PIDTYPE_PID); 144 rcu_assign_pointer(vcpu->pid, newpid); 145 synchronize_rcu(); 146 put_pid(oldpid); 147 } 148 cpu = get_cpu(); 149 preempt_notifier_register(&vcpu->preempt_notifier); 150 kvm_arch_vcpu_load(vcpu, cpu); 151 put_cpu(); 152 return 0; 153 } 154 155 void vcpu_put(struct kvm_vcpu *vcpu) 156 { 157 preempt_disable(); 158 kvm_arch_vcpu_put(vcpu); 159 preempt_notifier_unregister(&vcpu->preempt_notifier); 160 preempt_enable(); 161 mutex_unlock(&vcpu->mutex); 162 } 163 164 static void ack_flush(void *_completed) 165 { 166 } 167 168 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) 169 { 170 int i, cpu, me; 171 cpumask_var_t cpus; 172 bool called = true; 173 struct kvm_vcpu *vcpu; 174 175 zalloc_cpumask_var(&cpus, GFP_ATOMIC); 176 177 me = get_cpu(); 178 kvm_for_each_vcpu(i, vcpu, kvm) { 179 kvm_make_request(req, vcpu); 180 cpu = vcpu->cpu; 181 182 /* Set ->requests bit before we read ->mode */ 183 smp_mb(); 184 185 if (cpus != NULL && cpu != -1 && cpu != me && 186 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) 187 cpumask_set_cpu(cpu, cpus); 188 } 189 if (unlikely(cpus == NULL)) 190 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); 191 else if (!cpumask_empty(cpus)) 192 smp_call_function_many(cpus, ack_flush, NULL, 1); 193 else 194 called = false; 195 put_cpu(); 196 free_cpumask_var(cpus); 197 return called; 198 } 199 200 void kvm_flush_remote_tlbs(struct kvm *kvm) 201 { 202 long dirty_count = kvm->tlbs_dirty; 203 204 smp_mb(); 205 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 206 ++kvm->stat.remote_tlb_flush; 207 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); 208 } 209 210 void kvm_reload_remote_mmus(struct kvm *kvm) 211 { 212 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); 213 } 214 215 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 216 { 217 struct page *page; 218 int r; 219 220 mutex_init(&vcpu->mutex); 221 vcpu->cpu = -1; 222 vcpu->kvm = kvm; 223 vcpu->vcpu_id = id; 224 vcpu->pid = NULL; 225 init_waitqueue_head(&vcpu->wq); 226 kvm_async_pf_vcpu_init(vcpu); 227 228 page = alloc_page(GFP_KERNEL | __GFP_ZERO); 229 if (!page) { 230 r = -ENOMEM; 231 goto fail; 232 } 233 vcpu->run = page_address(page); 234 235 kvm_vcpu_set_in_spin_loop(vcpu, false); 236 kvm_vcpu_set_dy_eligible(vcpu, false); 237 238 r = kvm_arch_vcpu_init(vcpu); 239 if (r < 0) 240 goto fail_free_run; 241 return 0; 242 243 fail_free_run: 244 free_page((unsigned long)vcpu->run); 245 fail: 246 return r; 247 } 248 EXPORT_SYMBOL_GPL(kvm_vcpu_init); 249 250 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) 251 { 252 put_pid(vcpu->pid); 253 kvm_arch_vcpu_uninit(vcpu); 254 free_page((unsigned long)vcpu->run); 255 } 256 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); 257 258 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 259 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 260 { 261 return container_of(mn, struct kvm, mmu_notifier); 262 } 263 264 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, 265 struct mm_struct *mm, 266 unsigned long address) 267 { 268 struct kvm *kvm = mmu_notifier_to_kvm(mn); 269 int need_tlb_flush, idx; 270 271 /* 272 * When ->invalidate_page runs, the linux pte has been zapped 273 * already but the page is still allocated until 274 * ->invalidate_page returns. So if we increase the sequence 275 * here the kvm page fault will notice if the spte can't be 276 * established because the page is going to be freed. If 277 * instead the kvm page fault establishes the spte before 278 * ->invalidate_page runs, kvm_unmap_hva will release it 279 * before returning. 280 * 281 * The sequence increase only need to be seen at spin_unlock 282 * time, and not at spin_lock time. 283 * 284 * Increasing the sequence after the spin_unlock would be 285 * unsafe because the kvm page fault could then establish the 286 * pte after kvm_unmap_hva returned, without noticing the page 287 * is going to be freed. 288 */ 289 idx = srcu_read_lock(&kvm->srcu); 290 spin_lock(&kvm->mmu_lock); 291 292 kvm->mmu_notifier_seq++; 293 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; 294 /* we've to flush the tlb before the pages can be freed */ 295 if (need_tlb_flush) 296 kvm_flush_remote_tlbs(kvm); 297 298 spin_unlock(&kvm->mmu_lock); 299 srcu_read_unlock(&kvm->srcu, idx); 300 } 301 302 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 303 struct mm_struct *mm, 304 unsigned long address, 305 pte_t pte) 306 { 307 struct kvm *kvm = mmu_notifier_to_kvm(mn); 308 int idx; 309 310 idx = srcu_read_lock(&kvm->srcu); 311 spin_lock(&kvm->mmu_lock); 312 kvm->mmu_notifier_seq++; 313 kvm_set_spte_hva(kvm, address, pte); 314 spin_unlock(&kvm->mmu_lock); 315 srcu_read_unlock(&kvm->srcu, idx); 316 } 317 318 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 319 struct mm_struct *mm, 320 unsigned long start, 321 unsigned long end) 322 { 323 struct kvm *kvm = mmu_notifier_to_kvm(mn); 324 int need_tlb_flush = 0, idx; 325 326 idx = srcu_read_lock(&kvm->srcu); 327 spin_lock(&kvm->mmu_lock); 328 /* 329 * The count increase must become visible at unlock time as no 330 * spte can be established without taking the mmu_lock and 331 * count is also read inside the mmu_lock critical section. 332 */ 333 kvm->mmu_notifier_count++; 334 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end); 335 need_tlb_flush |= kvm->tlbs_dirty; 336 /* we've to flush the tlb before the pages can be freed */ 337 if (need_tlb_flush) 338 kvm_flush_remote_tlbs(kvm); 339 340 spin_unlock(&kvm->mmu_lock); 341 srcu_read_unlock(&kvm->srcu, idx); 342 } 343 344 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 345 struct mm_struct *mm, 346 unsigned long start, 347 unsigned long end) 348 { 349 struct kvm *kvm = mmu_notifier_to_kvm(mn); 350 351 spin_lock(&kvm->mmu_lock); 352 /* 353 * This sequence increase will notify the kvm page fault that 354 * the page that is going to be mapped in the spte could have 355 * been freed. 356 */ 357 kvm->mmu_notifier_seq++; 358 smp_wmb(); 359 /* 360 * The above sequence increase must be visible before the 361 * below count decrease, which is ensured by the smp_wmb above 362 * in conjunction with the smp_rmb in mmu_notifier_retry(). 363 */ 364 kvm->mmu_notifier_count--; 365 spin_unlock(&kvm->mmu_lock); 366 367 BUG_ON(kvm->mmu_notifier_count < 0); 368 } 369 370 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 371 struct mm_struct *mm, 372 unsigned long address) 373 { 374 struct kvm *kvm = mmu_notifier_to_kvm(mn); 375 int young, idx; 376 377 idx = srcu_read_lock(&kvm->srcu); 378 spin_lock(&kvm->mmu_lock); 379 380 young = kvm_age_hva(kvm, address); 381 if (young) 382 kvm_flush_remote_tlbs(kvm); 383 384 spin_unlock(&kvm->mmu_lock); 385 srcu_read_unlock(&kvm->srcu, idx); 386 387 return young; 388 } 389 390 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 391 struct mm_struct *mm, 392 unsigned long address) 393 { 394 struct kvm *kvm = mmu_notifier_to_kvm(mn); 395 int young, idx; 396 397 idx = srcu_read_lock(&kvm->srcu); 398 spin_lock(&kvm->mmu_lock); 399 young = kvm_test_age_hva(kvm, address); 400 spin_unlock(&kvm->mmu_lock); 401 srcu_read_unlock(&kvm->srcu, idx); 402 403 return young; 404 } 405 406 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 407 struct mm_struct *mm) 408 { 409 struct kvm *kvm = mmu_notifier_to_kvm(mn); 410 int idx; 411 412 idx = srcu_read_lock(&kvm->srcu); 413 kvm_arch_flush_shadow_all(kvm); 414 srcu_read_unlock(&kvm->srcu, idx); 415 } 416 417 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 418 .invalidate_page = kvm_mmu_notifier_invalidate_page, 419 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 420 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 421 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 422 .test_young = kvm_mmu_notifier_test_young, 423 .change_pte = kvm_mmu_notifier_change_pte, 424 .release = kvm_mmu_notifier_release, 425 }; 426 427 static int kvm_init_mmu_notifier(struct kvm *kvm) 428 { 429 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 430 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 431 } 432 433 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 434 435 static int kvm_init_mmu_notifier(struct kvm *kvm) 436 { 437 return 0; 438 } 439 440 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 441 442 static void kvm_init_memslots_id(struct kvm *kvm) 443 { 444 int i; 445 struct kvm_memslots *slots = kvm->memslots; 446 447 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 448 slots->id_to_index[i] = slots->memslots[i].id = i; 449 } 450 451 static struct kvm *kvm_create_vm(unsigned long type) 452 { 453 int r, i; 454 struct kvm *kvm = kvm_arch_alloc_vm(); 455 456 if (!kvm) 457 return ERR_PTR(-ENOMEM); 458 459 r = kvm_arch_init_vm(kvm, type); 460 if (r) 461 goto out_err_nodisable; 462 463 r = hardware_enable_all(); 464 if (r) 465 goto out_err_nodisable; 466 467 #ifdef CONFIG_HAVE_KVM_IRQCHIP 468 INIT_HLIST_HEAD(&kvm->mask_notifier_list); 469 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 470 #endif 471 472 r = -ENOMEM; 473 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); 474 if (!kvm->memslots) 475 goto out_err_nosrcu; 476 kvm_init_memslots_id(kvm); 477 if (init_srcu_struct(&kvm->srcu)) 478 goto out_err_nosrcu; 479 for (i = 0; i < KVM_NR_BUSES; i++) { 480 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), 481 GFP_KERNEL); 482 if (!kvm->buses[i]) 483 goto out_err; 484 } 485 486 spin_lock_init(&kvm->mmu_lock); 487 kvm->mm = current->mm; 488 atomic_inc(&kvm->mm->mm_count); 489 kvm_eventfd_init(kvm); 490 mutex_init(&kvm->lock); 491 mutex_init(&kvm->irq_lock); 492 mutex_init(&kvm->slots_lock); 493 atomic_set(&kvm->users_count, 1); 494 495 r = kvm_init_mmu_notifier(kvm); 496 if (r) 497 goto out_err; 498 499 raw_spin_lock(&kvm_lock); 500 list_add(&kvm->vm_list, &vm_list); 501 raw_spin_unlock(&kvm_lock); 502 503 return kvm; 504 505 out_err: 506 cleanup_srcu_struct(&kvm->srcu); 507 out_err_nosrcu: 508 hardware_disable_all(); 509 out_err_nodisable: 510 for (i = 0; i < KVM_NR_BUSES; i++) 511 kfree(kvm->buses[i]); 512 kfree(kvm->memslots); 513 kvm_arch_free_vm(kvm); 514 return ERR_PTR(r); 515 } 516 517 /* 518 * Avoid using vmalloc for a small buffer. 519 * Should not be used when the size is statically known. 520 */ 521 void *kvm_kvzalloc(unsigned long size) 522 { 523 if (size > PAGE_SIZE) 524 return vzalloc(size); 525 else 526 return kzalloc(size, GFP_KERNEL); 527 } 528 529 void kvm_kvfree(const void *addr) 530 { 531 if (is_vmalloc_addr(addr)) 532 vfree(addr); 533 else 534 kfree(addr); 535 } 536 537 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 538 { 539 if (!memslot->dirty_bitmap) 540 return; 541 542 kvm_kvfree(memslot->dirty_bitmap); 543 memslot->dirty_bitmap = NULL; 544 } 545 546 /* 547 * Free any memory in @free but not in @dont. 548 */ 549 static void kvm_free_physmem_slot(struct kvm_memory_slot *free, 550 struct kvm_memory_slot *dont) 551 { 552 if (!dont || free->dirty_bitmap != dont->dirty_bitmap) 553 kvm_destroy_dirty_bitmap(free); 554 555 kvm_arch_free_memslot(free, dont); 556 557 free->npages = 0; 558 } 559 560 void kvm_free_physmem(struct kvm *kvm) 561 { 562 struct kvm_memslots *slots = kvm->memslots; 563 struct kvm_memory_slot *memslot; 564 565 kvm_for_each_memslot(memslot, slots) 566 kvm_free_physmem_slot(memslot, NULL); 567 568 kfree(kvm->memslots); 569 } 570 571 static void kvm_destroy_vm(struct kvm *kvm) 572 { 573 int i; 574 struct mm_struct *mm = kvm->mm; 575 576 kvm_arch_sync_events(kvm); 577 raw_spin_lock(&kvm_lock); 578 list_del(&kvm->vm_list); 579 raw_spin_unlock(&kvm_lock); 580 kvm_free_irq_routing(kvm); 581 for (i = 0; i < KVM_NR_BUSES; i++) 582 kvm_io_bus_destroy(kvm->buses[i]); 583 kvm_coalesced_mmio_free(kvm); 584 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 585 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 586 #else 587 kvm_arch_flush_shadow_all(kvm); 588 #endif 589 kvm_arch_destroy_vm(kvm); 590 kvm_free_physmem(kvm); 591 cleanup_srcu_struct(&kvm->srcu); 592 kvm_arch_free_vm(kvm); 593 hardware_disable_all(); 594 mmdrop(mm); 595 } 596 597 void kvm_get_kvm(struct kvm *kvm) 598 { 599 atomic_inc(&kvm->users_count); 600 } 601 EXPORT_SYMBOL_GPL(kvm_get_kvm); 602 603 void kvm_put_kvm(struct kvm *kvm) 604 { 605 if (atomic_dec_and_test(&kvm->users_count)) 606 kvm_destroy_vm(kvm); 607 } 608 EXPORT_SYMBOL_GPL(kvm_put_kvm); 609 610 611 static int kvm_vm_release(struct inode *inode, struct file *filp) 612 { 613 struct kvm *kvm = filp->private_data; 614 615 kvm_irqfd_release(kvm); 616 617 kvm_put_kvm(kvm); 618 return 0; 619 } 620 621 /* 622 * Allocation size is twice as large as the actual dirty bitmap size. 623 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed. 624 */ 625 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) 626 { 627 #ifndef CONFIG_S390 628 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); 629 630 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes); 631 if (!memslot->dirty_bitmap) 632 return -ENOMEM; 633 634 #endif /* !CONFIG_S390 */ 635 return 0; 636 } 637 638 static int cmp_memslot(const void *slot1, const void *slot2) 639 { 640 struct kvm_memory_slot *s1, *s2; 641 642 s1 = (struct kvm_memory_slot *)slot1; 643 s2 = (struct kvm_memory_slot *)slot2; 644 645 if (s1->npages < s2->npages) 646 return 1; 647 if (s1->npages > s2->npages) 648 return -1; 649 650 return 0; 651 } 652 653 /* 654 * Sort the memslots base on its size, so the larger slots 655 * will get better fit. 656 */ 657 static void sort_memslots(struct kvm_memslots *slots) 658 { 659 int i; 660 661 sort(slots->memslots, KVM_MEM_SLOTS_NUM, 662 sizeof(struct kvm_memory_slot), cmp_memslot, NULL); 663 664 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) 665 slots->id_to_index[slots->memslots[i].id] = i; 666 } 667 668 void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new) 669 { 670 if (new) { 671 int id = new->id; 672 struct kvm_memory_slot *old = id_to_memslot(slots, id); 673 unsigned long npages = old->npages; 674 675 *old = *new; 676 if (new->npages != npages) 677 sort_memslots(slots); 678 } 679 680 slots->generation++; 681 } 682 683 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem) 684 { 685 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 686 687 #ifdef KVM_CAP_READONLY_MEM 688 valid_flags |= KVM_MEM_READONLY; 689 #endif 690 691 if (mem->flags & ~valid_flags) 692 return -EINVAL; 693 694 return 0; 695 } 696 697 /* 698 * Allocate some memory and give it an address in the guest physical address 699 * space. 700 * 701 * Discontiguous memory is allowed, mostly for framebuffers. 702 * 703 * Must be called holding mmap_sem for write. 704 */ 705 int __kvm_set_memory_region(struct kvm *kvm, 706 struct kvm_userspace_memory_region *mem, 707 int user_alloc) 708 { 709 int r; 710 gfn_t base_gfn; 711 unsigned long npages; 712 unsigned long i; 713 struct kvm_memory_slot *memslot; 714 struct kvm_memory_slot old, new; 715 struct kvm_memslots *slots, *old_memslots; 716 717 r = check_memory_region_flags(mem); 718 if (r) 719 goto out; 720 721 r = -EINVAL; 722 /* General sanity checks */ 723 if (mem->memory_size & (PAGE_SIZE - 1)) 724 goto out; 725 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 726 goto out; 727 /* We can read the guest memory with __xxx_user() later on. */ 728 if (user_alloc && 729 ((mem->userspace_addr & (PAGE_SIZE - 1)) || 730 !access_ok(VERIFY_WRITE, 731 (void __user *)(unsigned long)mem->userspace_addr, 732 mem->memory_size))) 733 goto out; 734 if (mem->slot >= KVM_MEM_SLOTS_NUM) 735 goto out; 736 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 737 goto out; 738 739 memslot = id_to_memslot(kvm->memslots, mem->slot); 740 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; 741 npages = mem->memory_size >> PAGE_SHIFT; 742 743 r = -EINVAL; 744 if (npages > KVM_MEM_MAX_NR_PAGES) 745 goto out; 746 747 if (!npages) 748 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; 749 750 new = old = *memslot; 751 752 new.id = mem->slot; 753 new.base_gfn = base_gfn; 754 new.npages = npages; 755 new.flags = mem->flags; 756 757 /* Disallow changing a memory slot's size. */ 758 r = -EINVAL; 759 if (npages && old.npages && npages != old.npages) 760 goto out_free; 761 762 /* Check for overlaps */ 763 r = -EEXIST; 764 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { 765 struct kvm_memory_slot *s = &kvm->memslots->memslots[i]; 766 767 if (s == memslot || !s->npages) 768 continue; 769 if (!((base_gfn + npages <= s->base_gfn) || 770 (base_gfn >= s->base_gfn + s->npages))) 771 goto out_free; 772 } 773 774 /* Free page dirty bitmap if unneeded */ 775 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) 776 new.dirty_bitmap = NULL; 777 778 r = -ENOMEM; 779 780 /* Allocate if a slot is being created */ 781 if (npages && !old.npages) { 782 new.user_alloc = user_alloc; 783 new.userspace_addr = mem->userspace_addr; 784 785 if (kvm_arch_create_memslot(&new, npages)) 786 goto out_free; 787 } 788 789 /* Allocate page dirty bitmap if needed */ 790 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { 791 if (kvm_create_dirty_bitmap(&new) < 0) 792 goto out_free; 793 /* destroy any largepage mappings for dirty tracking */ 794 } 795 796 if (!npages || base_gfn != old.base_gfn) { 797 struct kvm_memory_slot *slot; 798 799 r = -ENOMEM; 800 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 801 GFP_KERNEL); 802 if (!slots) 803 goto out_free; 804 slot = id_to_memslot(slots, mem->slot); 805 slot->flags |= KVM_MEMSLOT_INVALID; 806 807 update_memslots(slots, NULL); 808 809 old_memslots = kvm->memslots; 810 rcu_assign_pointer(kvm->memslots, slots); 811 synchronize_srcu_expedited(&kvm->srcu); 812 /* From this point no new shadow pages pointing to a deleted, 813 * or moved, memslot will be created. 814 * 815 * validation of sp->gfn happens in: 816 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 817 * - kvm_is_visible_gfn (mmu_check_roots) 818 */ 819 kvm_arch_flush_shadow_memslot(kvm, slot); 820 kfree(old_memslots); 821 } 822 823 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc); 824 if (r) 825 goto out_free; 826 827 /* map/unmap the pages in iommu page table */ 828 if (npages) { 829 r = kvm_iommu_map_pages(kvm, &new); 830 if (r) 831 goto out_free; 832 } else 833 kvm_iommu_unmap_pages(kvm, &old); 834 835 r = -ENOMEM; 836 slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), 837 GFP_KERNEL); 838 if (!slots) 839 goto out_free; 840 841 /* actual memory is freed via old in kvm_free_physmem_slot below */ 842 if (!npages) { 843 new.dirty_bitmap = NULL; 844 memset(&new.arch, 0, sizeof(new.arch)); 845 } 846 847 update_memslots(slots, &new); 848 old_memslots = kvm->memslots; 849 rcu_assign_pointer(kvm->memslots, slots); 850 synchronize_srcu_expedited(&kvm->srcu); 851 852 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc); 853 854 kvm_free_physmem_slot(&old, &new); 855 kfree(old_memslots); 856 857 return 0; 858 859 out_free: 860 kvm_free_physmem_slot(&new, &old); 861 out: 862 return r; 863 864 } 865 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 866 867 int kvm_set_memory_region(struct kvm *kvm, 868 struct kvm_userspace_memory_region *mem, 869 int user_alloc) 870 { 871 int r; 872 873 mutex_lock(&kvm->slots_lock); 874 r = __kvm_set_memory_region(kvm, mem, user_alloc); 875 mutex_unlock(&kvm->slots_lock); 876 return r; 877 } 878 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 879 880 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 881 struct 882 kvm_userspace_memory_region *mem, 883 int user_alloc) 884 { 885 if (mem->slot >= KVM_MEMORY_SLOTS) 886 return -EINVAL; 887 return kvm_set_memory_region(kvm, mem, user_alloc); 888 } 889 890 int kvm_get_dirty_log(struct kvm *kvm, 891 struct kvm_dirty_log *log, int *is_dirty) 892 { 893 struct kvm_memory_slot *memslot; 894 int r, i; 895 unsigned long n; 896 unsigned long any = 0; 897 898 r = -EINVAL; 899 if (log->slot >= KVM_MEMORY_SLOTS) 900 goto out; 901 902 memslot = id_to_memslot(kvm->memslots, log->slot); 903 r = -ENOENT; 904 if (!memslot->dirty_bitmap) 905 goto out; 906 907 n = kvm_dirty_bitmap_bytes(memslot); 908 909 for (i = 0; !any && i < n/sizeof(long); ++i) 910 any = memslot->dirty_bitmap[i]; 911 912 r = -EFAULT; 913 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) 914 goto out; 915 916 if (any) 917 *is_dirty = 1; 918 919 r = 0; 920 out: 921 return r; 922 } 923 924 bool kvm_largepages_enabled(void) 925 { 926 return largepages_enabled; 927 } 928 929 void kvm_disable_largepages(void) 930 { 931 largepages_enabled = false; 932 } 933 EXPORT_SYMBOL_GPL(kvm_disable_largepages); 934 935 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 936 { 937 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 938 } 939 EXPORT_SYMBOL_GPL(gfn_to_memslot); 940 941 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 942 { 943 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 944 945 if (!memslot || memslot->id >= KVM_MEMORY_SLOTS || 946 memslot->flags & KVM_MEMSLOT_INVALID) 947 return 0; 948 949 return 1; 950 } 951 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 952 953 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) 954 { 955 struct vm_area_struct *vma; 956 unsigned long addr, size; 957 958 size = PAGE_SIZE; 959 960 addr = gfn_to_hva(kvm, gfn); 961 if (kvm_is_error_hva(addr)) 962 return PAGE_SIZE; 963 964 down_read(¤t->mm->mmap_sem); 965 vma = find_vma(current->mm, addr); 966 if (!vma) 967 goto out; 968 969 size = vma_kernel_pagesize(vma); 970 971 out: 972 up_read(¤t->mm->mmap_sem); 973 974 return size; 975 } 976 977 static bool memslot_is_readonly(struct kvm_memory_slot *slot) 978 { 979 return slot->flags & KVM_MEM_READONLY; 980 } 981 982 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 983 gfn_t *nr_pages, bool write) 984 { 985 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 986 return KVM_HVA_ERR_BAD; 987 988 if (memslot_is_readonly(slot) && write) 989 return KVM_HVA_ERR_RO_BAD; 990 991 if (nr_pages) 992 *nr_pages = slot->npages - (gfn - slot->base_gfn); 993 994 return __gfn_to_hva_memslot(slot, gfn); 995 } 996 997 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 998 gfn_t *nr_pages) 999 { 1000 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 1001 } 1002 1003 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 1004 gfn_t gfn) 1005 { 1006 return gfn_to_hva_many(slot, gfn, NULL); 1007 } 1008 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 1009 1010 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 1011 { 1012 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 1013 } 1014 EXPORT_SYMBOL_GPL(gfn_to_hva); 1015 1016 /* 1017 * The hva returned by this function is only allowed to be read. 1018 * It should pair with kvm_read_hva() or kvm_read_hva_atomic(). 1019 */ 1020 static unsigned long gfn_to_hva_read(struct kvm *kvm, gfn_t gfn) 1021 { 1022 return __gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL, false); 1023 } 1024 1025 static int kvm_read_hva(void *data, void __user *hva, int len) 1026 { 1027 return __copy_from_user(data, hva, len); 1028 } 1029 1030 static int kvm_read_hva_atomic(void *data, void __user *hva, int len) 1031 { 1032 return __copy_from_user_inatomic(data, hva, len); 1033 } 1034 1035 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, 1036 unsigned long start, int write, struct page **page) 1037 { 1038 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; 1039 1040 if (write) 1041 flags |= FOLL_WRITE; 1042 1043 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); 1044 } 1045 1046 static inline int check_user_page_hwpoison(unsigned long addr) 1047 { 1048 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; 1049 1050 rc = __get_user_pages(current, current->mm, addr, 1, 1051 flags, NULL, NULL, NULL); 1052 return rc == -EHWPOISON; 1053 } 1054 1055 /* 1056 * The atomic path to get the writable pfn which will be stored in @pfn, 1057 * true indicates success, otherwise false is returned. 1058 */ 1059 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async, 1060 bool write_fault, bool *writable, pfn_t *pfn) 1061 { 1062 struct page *page[1]; 1063 int npages; 1064 1065 if (!(async || atomic)) 1066 return false; 1067 1068 /* 1069 * Fast pin a writable pfn only if it is a write fault request 1070 * or the caller allows to map a writable pfn for a read fault 1071 * request. 1072 */ 1073 if (!(write_fault || writable)) 1074 return false; 1075 1076 npages = __get_user_pages_fast(addr, 1, 1, page); 1077 if (npages == 1) { 1078 *pfn = page_to_pfn(page[0]); 1079 1080 if (writable) 1081 *writable = true; 1082 return true; 1083 } 1084 1085 return false; 1086 } 1087 1088 /* 1089 * The slow path to get the pfn of the specified host virtual address, 1090 * 1 indicates success, -errno is returned if error is detected. 1091 */ 1092 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 1093 bool *writable, pfn_t *pfn) 1094 { 1095 struct page *page[1]; 1096 int npages = 0; 1097 1098 might_sleep(); 1099 1100 if (writable) 1101 *writable = write_fault; 1102 1103 if (async) { 1104 down_read(¤t->mm->mmap_sem); 1105 npages = get_user_page_nowait(current, current->mm, 1106 addr, write_fault, page); 1107 up_read(¤t->mm->mmap_sem); 1108 } else 1109 npages = get_user_pages_fast(addr, 1, write_fault, 1110 page); 1111 if (npages != 1) 1112 return npages; 1113 1114 /* map read fault as writable if possible */ 1115 if (unlikely(!write_fault) && writable) { 1116 struct page *wpage[1]; 1117 1118 npages = __get_user_pages_fast(addr, 1, 1, wpage); 1119 if (npages == 1) { 1120 *writable = true; 1121 put_page(page[0]); 1122 page[0] = wpage[0]; 1123 } 1124 1125 npages = 1; 1126 } 1127 *pfn = page_to_pfn(page[0]); 1128 return npages; 1129 } 1130 1131 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 1132 { 1133 if (unlikely(!(vma->vm_flags & VM_READ))) 1134 return false; 1135 1136 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 1137 return false; 1138 1139 return true; 1140 } 1141 1142 /* 1143 * Pin guest page in memory and return its pfn. 1144 * @addr: host virtual address which maps memory to the guest 1145 * @atomic: whether this function can sleep 1146 * @async: whether this function need to wait IO complete if the 1147 * host page is not in the memory 1148 * @write_fault: whether we should get a writable host page 1149 * @writable: whether it allows to map a writable host page for !@write_fault 1150 * 1151 * The function will map a writable host page for these two cases: 1152 * 1): @write_fault = true 1153 * 2): @write_fault = false && @writable, @writable will tell the caller 1154 * whether the mapping is writable. 1155 */ 1156 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async, 1157 bool write_fault, bool *writable) 1158 { 1159 struct vm_area_struct *vma; 1160 pfn_t pfn = 0; 1161 int npages; 1162 1163 /* we can do it either atomically or asynchronously, not both */ 1164 BUG_ON(atomic && async); 1165 1166 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn)) 1167 return pfn; 1168 1169 if (atomic) 1170 return KVM_PFN_ERR_FAULT; 1171 1172 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn); 1173 if (npages == 1) 1174 return pfn; 1175 1176 down_read(¤t->mm->mmap_sem); 1177 if (npages == -EHWPOISON || 1178 (!async && check_user_page_hwpoison(addr))) { 1179 pfn = KVM_PFN_ERR_HWPOISON; 1180 goto exit; 1181 } 1182 1183 vma = find_vma_intersection(current->mm, addr, addr + 1); 1184 1185 if (vma == NULL) 1186 pfn = KVM_PFN_ERR_FAULT; 1187 else if ((vma->vm_flags & VM_PFNMAP)) { 1188 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + 1189 vma->vm_pgoff; 1190 BUG_ON(!kvm_is_mmio_pfn(pfn)); 1191 } else { 1192 if (async && vma_is_valid(vma, write_fault)) 1193 *async = true; 1194 pfn = KVM_PFN_ERR_FAULT; 1195 } 1196 exit: 1197 up_read(¤t->mm->mmap_sem); 1198 return pfn; 1199 } 1200 1201 static pfn_t 1202 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic, 1203 bool *async, bool write_fault, bool *writable) 1204 { 1205 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 1206 1207 if (addr == KVM_HVA_ERR_RO_BAD) 1208 return KVM_PFN_ERR_RO_FAULT; 1209 1210 if (kvm_is_error_hva(addr)) 1211 return KVM_PFN_ERR_BAD; 1212 1213 /* Do not map writable pfn in the readonly memslot. */ 1214 if (writable && memslot_is_readonly(slot)) { 1215 *writable = false; 1216 writable = NULL; 1217 } 1218 1219 return hva_to_pfn(addr, atomic, async, write_fault, 1220 writable); 1221 } 1222 1223 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, 1224 bool write_fault, bool *writable) 1225 { 1226 struct kvm_memory_slot *slot; 1227 1228 if (async) 1229 *async = false; 1230 1231 slot = gfn_to_memslot(kvm, gfn); 1232 1233 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault, 1234 writable); 1235 } 1236 1237 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) 1238 { 1239 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); 1240 } 1241 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); 1242 1243 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, 1244 bool write_fault, bool *writable) 1245 { 1246 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); 1247 } 1248 EXPORT_SYMBOL_GPL(gfn_to_pfn_async); 1249 1250 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 1251 { 1252 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); 1253 } 1254 EXPORT_SYMBOL_GPL(gfn_to_pfn); 1255 1256 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 1257 bool *writable) 1258 { 1259 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); 1260 } 1261 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 1262 1263 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1264 { 1265 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL); 1266 } 1267 1268 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn) 1269 { 1270 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL); 1271 } 1272 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 1273 1274 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, 1275 int nr_pages) 1276 { 1277 unsigned long addr; 1278 gfn_t entry; 1279 1280 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); 1281 if (kvm_is_error_hva(addr)) 1282 return -1; 1283 1284 if (entry < nr_pages) 1285 return 0; 1286 1287 return __get_user_pages_fast(addr, nr_pages, 1, pages); 1288 } 1289 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 1290 1291 static struct page *kvm_pfn_to_page(pfn_t pfn) 1292 { 1293 if (is_error_pfn(pfn)) 1294 return KVM_ERR_PTR_BAD_PAGE; 1295 1296 if (kvm_is_mmio_pfn(pfn)) { 1297 WARN_ON(1); 1298 return KVM_ERR_PTR_BAD_PAGE; 1299 } 1300 1301 return pfn_to_page(pfn); 1302 } 1303 1304 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 1305 { 1306 pfn_t pfn; 1307 1308 pfn = gfn_to_pfn(kvm, gfn); 1309 1310 return kvm_pfn_to_page(pfn); 1311 } 1312 1313 EXPORT_SYMBOL_GPL(gfn_to_page); 1314 1315 void kvm_release_page_clean(struct page *page) 1316 { 1317 WARN_ON(is_error_page(page)); 1318 1319 kvm_release_pfn_clean(page_to_pfn(page)); 1320 } 1321 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 1322 1323 void kvm_release_pfn_clean(pfn_t pfn) 1324 { 1325 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn)) 1326 put_page(pfn_to_page(pfn)); 1327 } 1328 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 1329 1330 void kvm_release_page_dirty(struct page *page) 1331 { 1332 WARN_ON(is_error_page(page)); 1333 1334 kvm_release_pfn_dirty(page_to_pfn(page)); 1335 } 1336 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 1337 1338 void kvm_release_pfn_dirty(pfn_t pfn) 1339 { 1340 kvm_set_pfn_dirty(pfn); 1341 kvm_release_pfn_clean(pfn); 1342 } 1343 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 1344 1345 void kvm_set_page_dirty(struct page *page) 1346 { 1347 kvm_set_pfn_dirty(page_to_pfn(page)); 1348 } 1349 EXPORT_SYMBOL_GPL(kvm_set_page_dirty); 1350 1351 void kvm_set_pfn_dirty(pfn_t pfn) 1352 { 1353 if (!kvm_is_mmio_pfn(pfn)) { 1354 struct page *page = pfn_to_page(pfn); 1355 if (!PageReserved(page)) 1356 SetPageDirty(page); 1357 } 1358 } 1359 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 1360 1361 void kvm_set_pfn_accessed(pfn_t pfn) 1362 { 1363 if (!kvm_is_mmio_pfn(pfn)) 1364 mark_page_accessed(pfn_to_page(pfn)); 1365 } 1366 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 1367 1368 void kvm_get_pfn(pfn_t pfn) 1369 { 1370 if (!kvm_is_mmio_pfn(pfn)) 1371 get_page(pfn_to_page(pfn)); 1372 } 1373 EXPORT_SYMBOL_GPL(kvm_get_pfn); 1374 1375 static int next_segment(unsigned long len, int offset) 1376 { 1377 if (len > PAGE_SIZE - offset) 1378 return PAGE_SIZE - offset; 1379 else 1380 return len; 1381 } 1382 1383 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 1384 int len) 1385 { 1386 int r; 1387 unsigned long addr; 1388 1389 addr = gfn_to_hva_read(kvm, gfn); 1390 if (kvm_is_error_hva(addr)) 1391 return -EFAULT; 1392 r = kvm_read_hva(data, (void __user *)addr + offset, len); 1393 if (r) 1394 return -EFAULT; 1395 return 0; 1396 } 1397 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 1398 1399 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 1400 { 1401 gfn_t gfn = gpa >> PAGE_SHIFT; 1402 int seg; 1403 int offset = offset_in_page(gpa); 1404 int ret; 1405 1406 while ((seg = next_segment(len, offset)) != 0) { 1407 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 1408 if (ret < 0) 1409 return ret; 1410 offset = 0; 1411 len -= seg; 1412 data += seg; 1413 ++gfn; 1414 } 1415 return 0; 1416 } 1417 EXPORT_SYMBOL_GPL(kvm_read_guest); 1418 1419 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, 1420 unsigned long len) 1421 { 1422 int r; 1423 unsigned long addr; 1424 gfn_t gfn = gpa >> PAGE_SHIFT; 1425 int offset = offset_in_page(gpa); 1426 1427 addr = gfn_to_hva_read(kvm, gfn); 1428 if (kvm_is_error_hva(addr)) 1429 return -EFAULT; 1430 pagefault_disable(); 1431 r = kvm_read_hva_atomic(data, (void __user *)addr + offset, len); 1432 pagefault_enable(); 1433 if (r) 1434 return -EFAULT; 1435 return 0; 1436 } 1437 EXPORT_SYMBOL(kvm_read_guest_atomic); 1438 1439 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 1440 int offset, int len) 1441 { 1442 int r; 1443 unsigned long addr; 1444 1445 addr = gfn_to_hva(kvm, gfn); 1446 if (kvm_is_error_hva(addr)) 1447 return -EFAULT; 1448 r = __copy_to_user((void __user *)addr + offset, data, len); 1449 if (r) 1450 return -EFAULT; 1451 mark_page_dirty(kvm, gfn); 1452 return 0; 1453 } 1454 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 1455 1456 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 1457 unsigned long len) 1458 { 1459 gfn_t gfn = gpa >> PAGE_SHIFT; 1460 int seg; 1461 int offset = offset_in_page(gpa); 1462 int ret; 1463 1464 while ((seg = next_segment(len, offset)) != 0) { 1465 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 1466 if (ret < 0) 1467 return ret; 1468 offset = 0; 1469 len -= seg; 1470 data += seg; 1471 ++gfn; 1472 } 1473 return 0; 1474 } 1475 1476 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1477 gpa_t gpa) 1478 { 1479 struct kvm_memslots *slots = kvm_memslots(kvm); 1480 int offset = offset_in_page(gpa); 1481 gfn_t gfn = gpa >> PAGE_SHIFT; 1482 1483 ghc->gpa = gpa; 1484 ghc->generation = slots->generation; 1485 ghc->memslot = gfn_to_memslot(kvm, gfn); 1486 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL); 1487 if (!kvm_is_error_hva(ghc->hva)) 1488 ghc->hva += offset; 1489 else 1490 return -EFAULT; 1491 1492 return 0; 1493 } 1494 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 1495 1496 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1497 void *data, unsigned long len) 1498 { 1499 struct kvm_memslots *slots = kvm_memslots(kvm); 1500 int r; 1501 1502 if (slots->generation != ghc->generation) 1503 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); 1504 1505 if (kvm_is_error_hva(ghc->hva)) 1506 return -EFAULT; 1507 1508 r = __copy_to_user((void __user *)ghc->hva, data, len); 1509 if (r) 1510 return -EFAULT; 1511 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); 1512 1513 return 0; 1514 } 1515 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 1516 1517 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 1518 void *data, unsigned long len) 1519 { 1520 struct kvm_memslots *slots = kvm_memslots(kvm); 1521 int r; 1522 1523 if (slots->generation != ghc->generation) 1524 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa); 1525 1526 if (kvm_is_error_hva(ghc->hva)) 1527 return -EFAULT; 1528 1529 r = __copy_from_user(data, (void __user *)ghc->hva, len); 1530 if (r) 1531 return -EFAULT; 1532 1533 return 0; 1534 } 1535 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 1536 1537 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) 1538 { 1539 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, 1540 offset, len); 1541 } 1542 EXPORT_SYMBOL_GPL(kvm_clear_guest_page); 1543 1544 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 1545 { 1546 gfn_t gfn = gpa >> PAGE_SHIFT; 1547 int seg; 1548 int offset = offset_in_page(gpa); 1549 int ret; 1550 1551 while ((seg = next_segment(len, offset)) != 0) { 1552 ret = kvm_clear_guest_page(kvm, gfn, offset, seg); 1553 if (ret < 0) 1554 return ret; 1555 offset = 0; 1556 len -= seg; 1557 ++gfn; 1558 } 1559 return 0; 1560 } 1561 EXPORT_SYMBOL_GPL(kvm_clear_guest); 1562 1563 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, 1564 gfn_t gfn) 1565 { 1566 if (memslot && memslot->dirty_bitmap) { 1567 unsigned long rel_gfn = gfn - memslot->base_gfn; 1568 1569 set_bit_le(rel_gfn, memslot->dirty_bitmap); 1570 } 1571 } 1572 1573 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 1574 { 1575 struct kvm_memory_slot *memslot; 1576 1577 memslot = gfn_to_memslot(kvm, gfn); 1578 mark_page_dirty_in_slot(kvm, memslot, gfn); 1579 } 1580 1581 /* 1582 * The vCPU has executed a HLT instruction with in-kernel mode enabled. 1583 */ 1584 void kvm_vcpu_block(struct kvm_vcpu *vcpu) 1585 { 1586 DEFINE_WAIT(wait); 1587 1588 for (;;) { 1589 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); 1590 1591 if (kvm_arch_vcpu_runnable(vcpu)) { 1592 kvm_make_request(KVM_REQ_UNHALT, vcpu); 1593 break; 1594 } 1595 if (kvm_cpu_has_pending_timer(vcpu)) 1596 break; 1597 if (signal_pending(current)) 1598 break; 1599 1600 schedule(); 1601 } 1602 1603 finish_wait(&vcpu->wq, &wait); 1604 } 1605 1606 #ifndef CONFIG_S390 1607 /* 1608 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 1609 */ 1610 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 1611 { 1612 int me; 1613 int cpu = vcpu->cpu; 1614 wait_queue_head_t *wqp; 1615 1616 wqp = kvm_arch_vcpu_wq(vcpu); 1617 if (waitqueue_active(wqp)) { 1618 wake_up_interruptible(wqp); 1619 ++vcpu->stat.halt_wakeup; 1620 } 1621 1622 me = get_cpu(); 1623 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 1624 if (kvm_arch_vcpu_should_kick(vcpu)) 1625 smp_send_reschedule(cpu); 1626 put_cpu(); 1627 } 1628 #endif /* !CONFIG_S390 */ 1629 1630 void kvm_resched(struct kvm_vcpu *vcpu) 1631 { 1632 if (!need_resched()) 1633 return; 1634 cond_resched(); 1635 } 1636 EXPORT_SYMBOL_GPL(kvm_resched); 1637 1638 bool kvm_vcpu_yield_to(struct kvm_vcpu *target) 1639 { 1640 struct pid *pid; 1641 struct task_struct *task = NULL; 1642 1643 rcu_read_lock(); 1644 pid = rcu_dereference(target->pid); 1645 if (pid) 1646 task = get_pid_task(target->pid, PIDTYPE_PID); 1647 rcu_read_unlock(); 1648 if (!task) 1649 return false; 1650 if (task->flags & PF_VCPU) { 1651 put_task_struct(task); 1652 return false; 1653 } 1654 if (yield_to(task, 1)) { 1655 put_task_struct(task); 1656 return true; 1657 } 1658 put_task_struct(task); 1659 return false; 1660 } 1661 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 1662 1663 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1664 /* 1665 * Helper that checks whether a VCPU is eligible for directed yield. 1666 * Most eligible candidate to yield is decided by following heuristics: 1667 * 1668 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 1669 * (preempted lock holder), indicated by @in_spin_loop. 1670 * Set at the beiginning and cleared at the end of interception/PLE handler. 1671 * 1672 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 1673 * chance last time (mostly it has become eligible now since we have probably 1674 * yielded to lockholder in last iteration. This is done by toggling 1675 * @dy_eligible each time a VCPU checked for eligibility.) 1676 * 1677 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 1678 * to preempted lock-holder could result in wrong VCPU selection and CPU 1679 * burning. Giving priority for a potential lock-holder increases lock 1680 * progress. 1681 * 1682 * Since algorithm is based on heuristics, accessing another VCPU data without 1683 * locking does not harm. It may result in trying to yield to same VCPU, fail 1684 * and continue with next VCPU and so on. 1685 */ 1686 bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 1687 { 1688 bool eligible; 1689 1690 eligible = !vcpu->spin_loop.in_spin_loop || 1691 (vcpu->spin_loop.in_spin_loop && 1692 vcpu->spin_loop.dy_eligible); 1693 1694 if (vcpu->spin_loop.in_spin_loop) 1695 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 1696 1697 return eligible; 1698 } 1699 #endif 1700 void kvm_vcpu_on_spin(struct kvm_vcpu *me) 1701 { 1702 struct kvm *kvm = me->kvm; 1703 struct kvm_vcpu *vcpu; 1704 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 1705 int yielded = 0; 1706 int pass; 1707 int i; 1708 1709 kvm_vcpu_set_in_spin_loop(me, true); 1710 /* 1711 * We boost the priority of a VCPU that is runnable but not 1712 * currently running, because it got preempted by something 1713 * else and called schedule in __vcpu_run. Hopefully that 1714 * VCPU is holding the lock that we need and will release it. 1715 * We approximate round-robin by starting at the last boosted VCPU. 1716 */ 1717 for (pass = 0; pass < 2 && !yielded; pass++) { 1718 kvm_for_each_vcpu(i, vcpu, kvm) { 1719 if (!pass && i <= last_boosted_vcpu) { 1720 i = last_boosted_vcpu; 1721 continue; 1722 } else if (pass && i > last_boosted_vcpu) 1723 break; 1724 if (vcpu == me) 1725 continue; 1726 if (waitqueue_active(&vcpu->wq)) 1727 continue; 1728 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 1729 continue; 1730 if (kvm_vcpu_yield_to(vcpu)) { 1731 kvm->last_boosted_vcpu = i; 1732 yielded = 1; 1733 break; 1734 } 1735 } 1736 } 1737 kvm_vcpu_set_in_spin_loop(me, false); 1738 1739 /* Ensure vcpu is not eligible during next spinloop */ 1740 kvm_vcpu_set_dy_eligible(me, false); 1741 } 1742 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 1743 1744 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1745 { 1746 struct kvm_vcpu *vcpu = vma->vm_file->private_data; 1747 struct page *page; 1748 1749 if (vmf->pgoff == 0) 1750 page = virt_to_page(vcpu->run); 1751 #ifdef CONFIG_X86 1752 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 1753 page = virt_to_page(vcpu->arch.pio_data); 1754 #endif 1755 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 1756 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 1757 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 1758 #endif 1759 else 1760 return kvm_arch_vcpu_fault(vcpu, vmf); 1761 get_page(page); 1762 vmf->page = page; 1763 return 0; 1764 } 1765 1766 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 1767 .fault = kvm_vcpu_fault, 1768 }; 1769 1770 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 1771 { 1772 vma->vm_ops = &kvm_vcpu_vm_ops; 1773 return 0; 1774 } 1775 1776 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 1777 { 1778 struct kvm_vcpu *vcpu = filp->private_data; 1779 1780 kvm_put_kvm(vcpu->kvm); 1781 return 0; 1782 } 1783 1784 static struct file_operations kvm_vcpu_fops = { 1785 .release = kvm_vcpu_release, 1786 .unlocked_ioctl = kvm_vcpu_ioctl, 1787 #ifdef CONFIG_COMPAT 1788 .compat_ioctl = kvm_vcpu_compat_ioctl, 1789 #endif 1790 .mmap = kvm_vcpu_mmap, 1791 .llseek = noop_llseek, 1792 }; 1793 1794 /* 1795 * Allocates an inode for the vcpu. 1796 */ 1797 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 1798 { 1799 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); 1800 } 1801 1802 /* 1803 * Creates some virtual cpus. Good luck creating more than one. 1804 */ 1805 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 1806 { 1807 int r; 1808 struct kvm_vcpu *vcpu, *v; 1809 1810 vcpu = kvm_arch_vcpu_create(kvm, id); 1811 if (IS_ERR(vcpu)) 1812 return PTR_ERR(vcpu); 1813 1814 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 1815 1816 r = kvm_arch_vcpu_setup(vcpu); 1817 if (r) 1818 goto vcpu_destroy; 1819 1820 mutex_lock(&kvm->lock); 1821 if (!kvm_vcpu_compatible(vcpu)) { 1822 r = -EINVAL; 1823 goto unlock_vcpu_destroy; 1824 } 1825 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { 1826 r = -EINVAL; 1827 goto unlock_vcpu_destroy; 1828 } 1829 1830 kvm_for_each_vcpu(r, v, kvm) 1831 if (v->vcpu_id == id) { 1832 r = -EEXIST; 1833 goto unlock_vcpu_destroy; 1834 } 1835 1836 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); 1837 1838 /* Now it's all set up, let userspace reach it */ 1839 kvm_get_kvm(kvm); 1840 r = create_vcpu_fd(vcpu); 1841 if (r < 0) { 1842 kvm_put_kvm(kvm); 1843 goto unlock_vcpu_destroy; 1844 } 1845 1846 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; 1847 smp_wmb(); 1848 atomic_inc(&kvm->online_vcpus); 1849 1850 mutex_unlock(&kvm->lock); 1851 return r; 1852 1853 unlock_vcpu_destroy: 1854 mutex_unlock(&kvm->lock); 1855 vcpu_destroy: 1856 kvm_arch_vcpu_destroy(vcpu); 1857 return r; 1858 } 1859 1860 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 1861 { 1862 if (sigset) { 1863 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1864 vcpu->sigset_active = 1; 1865 vcpu->sigset = *sigset; 1866 } else 1867 vcpu->sigset_active = 0; 1868 return 0; 1869 } 1870 1871 static long kvm_vcpu_ioctl(struct file *filp, 1872 unsigned int ioctl, unsigned long arg) 1873 { 1874 struct kvm_vcpu *vcpu = filp->private_data; 1875 void __user *argp = (void __user *)arg; 1876 int r; 1877 struct kvm_fpu *fpu = NULL; 1878 struct kvm_sregs *kvm_sregs = NULL; 1879 1880 if (vcpu->kvm->mm != current->mm) 1881 return -EIO; 1882 1883 #if defined(CONFIG_S390) || defined(CONFIG_PPC) 1884 /* 1885 * Special cases: vcpu ioctls that are asynchronous to vcpu execution, 1886 * so vcpu_load() would break it. 1887 */ 1888 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) 1889 return kvm_arch_vcpu_ioctl(filp, ioctl, arg); 1890 #endif 1891 1892 1893 r = vcpu_load(vcpu); 1894 if (r) 1895 return r; 1896 switch (ioctl) { 1897 case KVM_RUN: 1898 r = -EINVAL; 1899 if (arg) 1900 goto out; 1901 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); 1902 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 1903 break; 1904 case KVM_GET_REGS: { 1905 struct kvm_regs *kvm_regs; 1906 1907 r = -ENOMEM; 1908 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); 1909 if (!kvm_regs) 1910 goto out; 1911 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 1912 if (r) 1913 goto out_free1; 1914 r = -EFAULT; 1915 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 1916 goto out_free1; 1917 r = 0; 1918 out_free1: 1919 kfree(kvm_regs); 1920 break; 1921 } 1922 case KVM_SET_REGS: { 1923 struct kvm_regs *kvm_regs; 1924 1925 r = -ENOMEM; 1926 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 1927 if (IS_ERR(kvm_regs)) { 1928 r = PTR_ERR(kvm_regs); 1929 goto out; 1930 } 1931 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 1932 if (r) 1933 goto out_free2; 1934 r = 0; 1935 out_free2: 1936 kfree(kvm_regs); 1937 break; 1938 } 1939 case KVM_GET_SREGS: { 1940 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); 1941 r = -ENOMEM; 1942 if (!kvm_sregs) 1943 goto out; 1944 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 1945 if (r) 1946 goto out; 1947 r = -EFAULT; 1948 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 1949 goto out; 1950 r = 0; 1951 break; 1952 } 1953 case KVM_SET_SREGS: { 1954 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 1955 if (IS_ERR(kvm_sregs)) { 1956 r = PTR_ERR(kvm_sregs); 1957 goto out; 1958 } 1959 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 1960 if (r) 1961 goto out; 1962 r = 0; 1963 break; 1964 } 1965 case KVM_GET_MP_STATE: { 1966 struct kvm_mp_state mp_state; 1967 1968 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 1969 if (r) 1970 goto out; 1971 r = -EFAULT; 1972 if (copy_to_user(argp, &mp_state, sizeof mp_state)) 1973 goto out; 1974 r = 0; 1975 break; 1976 } 1977 case KVM_SET_MP_STATE: { 1978 struct kvm_mp_state mp_state; 1979 1980 r = -EFAULT; 1981 if (copy_from_user(&mp_state, argp, sizeof mp_state)) 1982 goto out; 1983 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 1984 if (r) 1985 goto out; 1986 r = 0; 1987 break; 1988 } 1989 case KVM_TRANSLATE: { 1990 struct kvm_translation tr; 1991 1992 r = -EFAULT; 1993 if (copy_from_user(&tr, argp, sizeof tr)) 1994 goto out; 1995 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 1996 if (r) 1997 goto out; 1998 r = -EFAULT; 1999 if (copy_to_user(argp, &tr, sizeof tr)) 2000 goto out; 2001 r = 0; 2002 break; 2003 } 2004 case KVM_SET_GUEST_DEBUG: { 2005 struct kvm_guest_debug dbg; 2006 2007 r = -EFAULT; 2008 if (copy_from_user(&dbg, argp, sizeof dbg)) 2009 goto out; 2010 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 2011 if (r) 2012 goto out; 2013 r = 0; 2014 break; 2015 } 2016 case KVM_SET_SIGNAL_MASK: { 2017 struct kvm_signal_mask __user *sigmask_arg = argp; 2018 struct kvm_signal_mask kvm_sigmask; 2019 sigset_t sigset, *p; 2020 2021 p = NULL; 2022 if (argp) { 2023 r = -EFAULT; 2024 if (copy_from_user(&kvm_sigmask, argp, 2025 sizeof kvm_sigmask)) 2026 goto out; 2027 r = -EINVAL; 2028 if (kvm_sigmask.len != sizeof sigset) 2029 goto out; 2030 r = -EFAULT; 2031 if (copy_from_user(&sigset, sigmask_arg->sigset, 2032 sizeof sigset)) 2033 goto out; 2034 p = &sigset; 2035 } 2036 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 2037 break; 2038 } 2039 case KVM_GET_FPU: { 2040 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); 2041 r = -ENOMEM; 2042 if (!fpu) 2043 goto out; 2044 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 2045 if (r) 2046 goto out; 2047 r = -EFAULT; 2048 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 2049 goto out; 2050 r = 0; 2051 break; 2052 } 2053 case KVM_SET_FPU: { 2054 fpu = memdup_user(argp, sizeof(*fpu)); 2055 if (IS_ERR(fpu)) { 2056 r = PTR_ERR(fpu); 2057 goto out; 2058 } 2059 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 2060 if (r) 2061 goto out; 2062 r = 0; 2063 break; 2064 } 2065 default: 2066 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 2067 } 2068 out: 2069 vcpu_put(vcpu); 2070 kfree(fpu); 2071 kfree(kvm_sregs); 2072 return r; 2073 } 2074 2075 #ifdef CONFIG_COMPAT 2076 static long kvm_vcpu_compat_ioctl(struct file *filp, 2077 unsigned int ioctl, unsigned long arg) 2078 { 2079 struct kvm_vcpu *vcpu = filp->private_data; 2080 void __user *argp = compat_ptr(arg); 2081 int r; 2082 2083 if (vcpu->kvm->mm != current->mm) 2084 return -EIO; 2085 2086 switch (ioctl) { 2087 case KVM_SET_SIGNAL_MASK: { 2088 struct kvm_signal_mask __user *sigmask_arg = argp; 2089 struct kvm_signal_mask kvm_sigmask; 2090 compat_sigset_t csigset; 2091 sigset_t sigset; 2092 2093 if (argp) { 2094 r = -EFAULT; 2095 if (copy_from_user(&kvm_sigmask, argp, 2096 sizeof kvm_sigmask)) 2097 goto out; 2098 r = -EINVAL; 2099 if (kvm_sigmask.len != sizeof csigset) 2100 goto out; 2101 r = -EFAULT; 2102 if (copy_from_user(&csigset, sigmask_arg->sigset, 2103 sizeof csigset)) 2104 goto out; 2105 sigset_from_compat(&sigset, &csigset); 2106 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 2107 } else 2108 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 2109 break; 2110 } 2111 default: 2112 r = kvm_vcpu_ioctl(filp, ioctl, arg); 2113 } 2114 2115 out: 2116 return r; 2117 } 2118 #endif 2119 2120 static long kvm_vm_ioctl(struct file *filp, 2121 unsigned int ioctl, unsigned long arg) 2122 { 2123 struct kvm *kvm = filp->private_data; 2124 void __user *argp = (void __user *)arg; 2125 int r; 2126 2127 if (kvm->mm != current->mm) 2128 return -EIO; 2129 switch (ioctl) { 2130 case KVM_CREATE_VCPU: 2131 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 2132 if (r < 0) 2133 goto out; 2134 break; 2135 case KVM_SET_USER_MEMORY_REGION: { 2136 struct kvm_userspace_memory_region kvm_userspace_mem; 2137 2138 r = -EFAULT; 2139 if (copy_from_user(&kvm_userspace_mem, argp, 2140 sizeof kvm_userspace_mem)) 2141 goto out; 2142 2143 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1); 2144 if (r) 2145 goto out; 2146 break; 2147 } 2148 case KVM_GET_DIRTY_LOG: { 2149 struct kvm_dirty_log log; 2150 2151 r = -EFAULT; 2152 if (copy_from_user(&log, argp, sizeof log)) 2153 goto out; 2154 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2155 if (r) 2156 goto out; 2157 break; 2158 } 2159 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2160 case KVM_REGISTER_COALESCED_MMIO: { 2161 struct kvm_coalesced_mmio_zone zone; 2162 r = -EFAULT; 2163 if (copy_from_user(&zone, argp, sizeof zone)) 2164 goto out; 2165 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 2166 if (r) 2167 goto out; 2168 r = 0; 2169 break; 2170 } 2171 case KVM_UNREGISTER_COALESCED_MMIO: { 2172 struct kvm_coalesced_mmio_zone zone; 2173 r = -EFAULT; 2174 if (copy_from_user(&zone, argp, sizeof zone)) 2175 goto out; 2176 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 2177 if (r) 2178 goto out; 2179 r = 0; 2180 break; 2181 } 2182 #endif 2183 case KVM_IRQFD: { 2184 struct kvm_irqfd data; 2185 2186 r = -EFAULT; 2187 if (copy_from_user(&data, argp, sizeof data)) 2188 goto out; 2189 r = kvm_irqfd(kvm, &data); 2190 break; 2191 } 2192 case KVM_IOEVENTFD: { 2193 struct kvm_ioeventfd data; 2194 2195 r = -EFAULT; 2196 if (copy_from_user(&data, argp, sizeof data)) 2197 goto out; 2198 r = kvm_ioeventfd(kvm, &data); 2199 break; 2200 } 2201 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2202 case KVM_SET_BOOT_CPU_ID: 2203 r = 0; 2204 mutex_lock(&kvm->lock); 2205 if (atomic_read(&kvm->online_vcpus) != 0) 2206 r = -EBUSY; 2207 else 2208 kvm->bsp_vcpu_id = arg; 2209 mutex_unlock(&kvm->lock); 2210 break; 2211 #endif 2212 #ifdef CONFIG_HAVE_KVM_MSI 2213 case KVM_SIGNAL_MSI: { 2214 struct kvm_msi msi; 2215 2216 r = -EFAULT; 2217 if (copy_from_user(&msi, argp, sizeof msi)) 2218 goto out; 2219 r = kvm_send_userspace_msi(kvm, &msi); 2220 break; 2221 } 2222 #endif 2223 #ifdef __KVM_HAVE_IRQ_LINE 2224 case KVM_IRQ_LINE_STATUS: 2225 case KVM_IRQ_LINE: { 2226 struct kvm_irq_level irq_event; 2227 2228 r = -EFAULT; 2229 if (copy_from_user(&irq_event, argp, sizeof irq_event)) 2230 goto out; 2231 2232 r = kvm_vm_ioctl_irq_line(kvm, &irq_event); 2233 if (r) 2234 goto out; 2235 2236 r = -EFAULT; 2237 if (ioctl == KVM_IRQ_LINE_STATUS) { 2238 if (copy_to_user(argp, &irq_event, sizeof irq_event)) 2239 goto out; 2240 } 2241 2242 r = 0; 2243 break; 2244 } 2245 #endif 2246 default: 2247 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 2248 if (r == -ENOTTY) 2249 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); 2250 } 2251 out: 2252 return r; 2253 } 2254 2255 #ifdef CONFIG_COMPAT 2256 struct compat_kvm_dirty_log { 2257 __u32 slot; 2258 __u32 padding1; 2259 union { 2260 compat_uptr_t dirty_bitmap; /* one bit per page */ 2261 __u64 padding2; 2262 }; 2263 }; 2264 2265 static long kvm_vm_compat_ioctl(struct file *filp, 2266 unsigned int ioctl, unsigned long arg) 2267 { 2268 struct kvm *kvm = filp->private_data; 2269 int r; 2270 2271 if (kvm->mm != current->mm) 2272 return -EIO; 2273 switch (ioctl) { 2274 case KVM_GET_DIRTY_LOG: { 2275 struct compat_kvm_dirty_log compat_log; 2276 struct kvm_dirty_log log; 2277 2278 r = -EFAULT; 2279 if (copy_from_user(&compat_log, (void __user *)arg, 2280 sizeof(compat_log))) 2281 goto out; 2282 log.slot = compat_log.slot; 2283 log.padding1 = compat_log.padding1; 2284 log.padding2 = compat_log.padding2; 2285 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 2286 2287 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 2288 if (r) 2289 goto out; 2290 break; 2291 } 2292 default: 2293 r = kvm_vm_ioctl(filp, ioctl, arg); 2294 } 2295 2296 out: 2297 return r; 2298 } 2299 #endif 2300 2301 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2302 { 2303 struct page *page[1]; 2304 unsigned long addr; 2305 int npages; 2306 gfn_t gfn = vmf->pgoff; 2307 struct kvm *kvm = vma->vm_file->private_data; 2308 2309 addr = gfn_to_hva(kvm, gfn); 2310 if (kvm_is_error_hva(addr)) 2311 return VM_FAULT_SIGBUS; 2312 2313 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, 2314 NULL); 2315 if (unlikely(npages != 1)) 2316 return VM_FAULT_SIGBUS; 2317 2318 vmf->page = page[0]; 2319 return 0; 2320 } 2321 2322 static const struct vm_operations_struct kvm_vm_vm_ops = { 2323 .fault = kvm_vm_fault, 2324 }; 2325 2326 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) 2327 { 2328 vma->vm_ops = &kvm_vm_vm_ops; 2329 return 0; 2330 } 2331 2332 static struct file_operations kvm_vm_fops = { 2333 .release = kvm_vm_release, 2334 .unlocked_ioctl = kvm_vm_ioctl, 2335 #ifdef CONFIG_COMPAT 2336 .compat_ioctl = kvm_vm_compat_ioctl, 2337 #endif 2338 .mmap = kvm_vm_mmap, 2339 .llseek = noop_llseek, 2340 }; 2341 2342 static int kvm_dev_ioctl_create_vm(unsigned long type) 2343 { 2344 int r; 2345 struct kvm *kvm; 2346 2347 kvm = kvm_create_vm(type); 2348 if (IS_ERR(kvm)) 2349 return PTR_ERR(kvm); 2350 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2351 r = kvm_coalesced_mmio_init(kvm); 2352 if (r < 0) { 2353 kvm_put_kvm(kvm); 2354 return r; 2355 } 2356 #endif 2357 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 2358 if (r < 0) 2359 kvm_put_kvm(kvm); 2360 2361 return r; 2362 } 2363 2364 static long kvm_dev_ioctl_check_extension_generic(long arg) 2365 { 2366 switch (arg) { 2367 case KVM_CAP_USER_MEMORY: 2368 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 2369 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 2370 #ifdef CONFIG_KVM_APIC_ARCHITECTURE 2371 case KVM_CAP_SET_BOOT_CPU_ID: 2372 #endif 2373 case KVM_CAP_INTERNAL_ERROR_DATA: 2374 #ifdef CONFIG_HAVE_KVM_MSI 2375 case KVM_CAP_SIGNAL_MSI: 2376 #endif 2377 return 1; 2378 #ifdef KVM_CAP_IRQ_ROUTING 2379 case KVM_CAP_IRQ_ROUTING: 2380 return KVM_MAX_IRQ_ROUTES; 2381 #endif 2382 default: 2383 break; 2384 } 2385 return kvm_dev_ioctl_check_extension(arg); 2386 } 2387 2388 static long kvm_dev_ioctl(struct file *filp, 2389 unsigned int ioctl, unsigned long arg) 2390 { 2391 long r = -EINVAL; 2392 2393 switch (ioctl) { 2394 case KVM_GET_API_VERSION: 2395 r = -EINVAL; 2396 if (arg) 2397 goto out; 2398 r = KVM_API_VERSION; 2399 break; 2400 case KVM_CREATE_VM: 2401 r = kvm_dev_ioctl_create_vm(arg); 2402 break; 2403 case KVM_CHECK_EXTENSION: 2404 r = kvm_dev_ioctl_check_extension_generic(arg); 2405 break; 2406 case KVM_GET_VCPU_MMAP_SIZE: 2407 r = -EINVAL; 2408 if (arg) 2409 goto out; 2410 r = PAGE_SIZE; /* struct kvm_run */ 2411 #ifdef CONFIG_X86 2412 r += PAGE_SIZE; /* pio data page */ 2413 #endif 2414 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET 2415 r += PAGE_SIZE; /* coalesced mmio ring page */ 2416 #endif 2417 break; 2418 case KVM_TRACE_ENABLE: 2419 case KVM_TRACE_PAUSE: 2420 case KVM_TRACE_DISABLE: 2421 r = -EOPNOTSUPP; 2422 break; 2423 default: 2424 return kvm_arch_dev_ioctl(filp, ioctl, arg); 2425 } 2426 out: 2427 return r; 2428 } 2429 2430 static struct file_operations kvm_chardev_ops = { 2431 .unlocked_ioctl = kvm_dev_ioctl, 2432 .compat_ioctl = kvm_dev_ioctl, 2433 .llseek = noop_llseek, 2434 }; 2435 2436 static struct miscdevice kvm_dev = { 2437 KVM_MINOR, 2438 "kvm", 2439 &kvm_chardev_ops, 2440 }; 2441 2442 static void hardware_enable_nolock(void *junk) 2443 { 2444 int cpu = raw_smp_processor_id(); 2445 int r; 2446 2447 if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2448 return; 2449 2450 cpumask_set_cpu(cpu, cpus_hardware_enabled); 2451 2452 r = kvm_arch_hardware_enable(NULL); 2453 2454 if (r) { 2455 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2456 atomic_inc(&hardware_enable_failed); 2457 printk(KERN_INFO "kvm: enabling virtualization on " 2458 "CPU%d failed\n", cpu); 2459 } 2460 } 2461 2462 static void hardware_enable(void *junk) 2463 { 2464 raw_spin_lock(&kvm_lock); 2465 hardware_enable_nolock(junk); 2466 raw_spin_unlock(&kvm_lock); 2467 } 2468 2469 static void hardware_disable_nolock(void *junk) 2470 { 2471 int cpu = raw_smp_processor_id(); 2472 2473 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) 2474 return; 2475 cpumask_clear_cpu(cpu, cpus_hardware_enabled); 2476 kvm_arch_hardware_disable(NULL); 2477 } 2478 2479 static void hardware_disable(void *junk) 2480 { 2481 raw_spin_lock(&kvm_lock); 2482 hardware_disable_nolock(junk); 2483 raw_spin_unlock(&kvm_lock); 2484 } 2485 2486 static void hardware_disable_all_nolock(void) 2487 { 2488 BUG_ON(!kvm_usage_count); 2489 2490 kvm_usage_count--; 2491 if (!kvm_usage_count) 2492 on_each_cpu(hardware_disable_nolock, NULL, 1); 2493 } 2494 2495 static void hardware_disable_all(void) 2496 { 2497 raw_spin_lock(&kvm_lock); 2498 hardware_disable_all_nolock(); 2499 raw_spin_unlock(&kvm_lock); 2500 } 2501 2502 static int hardware_enable_all(void) 2503 { 2504 int r = 0; 2505 2506 raw_spin_lock(&kvm_lock); 2507 2508 kvm_usage_count++; 2509 if (kvm_usage_count == 1) { 2510 atomic_set(&hardware_enable_failed, 0); 2511 on_each_cpu(hardware_enable_nolock, NULL, 1); 2512 2513 if (atomic_read(&hardware_enable_failed)) { 2514 hardware_disable_all_nolock(); 2515 r = -EBUSY; 2516 } 2517 } 2518 2519 raw_spin_unlock(&kvm_lock); 2520 2521 return r; 2522 } 2523 2524 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, 2525 void *v) 2526 { 2527 int cpu = (long)v; 2528 2529 if (!kvm_usage_count) 2530 return NOTIFY_OK; 2531 2532 val &= ~CPU_TASKS_FROZEN; 2533 switch (val) { 2534 case CPU_DYING: 2535 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", 2536 cpu); 2537 hardware_disable(NULL); 2538 break; 2539 case CPU_STARTING: 2540 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", 2541 cpu); 2542 hardware_enable(NULL); 2543 break; 2544 } 2545 return NOTIFY_OK; 2546 } 2547 2548 2549 asmlinkage void kvm_spurious_fault(void) 2550 { 2551 /* Fault while not rebooting. We want the trace. */ 2552 BUG(); 2553 } 2554 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 2555 2556 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 2557 void *v) 2558 { 2559 /* 2560 * Some (well, at least mine) BIOSes hang on reboot if 2561 * in vmx root mode. 2562 * 2563 * And Intel TXT required VMX off for all cpu when system shutdown. 2564 */ 2565 printk(KERN_INFO "kvm: exiting hardware virtualization\n"); 2566 kvm_rebooting = true; 2567 on_each_cpu(hardware_disable_nolock, NULL, 1); 2568 return NOTIFY_OK; 2569 } 2570 2571 static struct notifier_block kvm_reboot_notifier = { 2572 .notifier_call = kvm_reboot, 2573 .priority = 0, 2574 }; 2575 2576 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 2577 { 2578 int i; 2579 2580 for (i = 0; i < bus->dev_count; i++) { 2581 struct kvm_io_device *pos = bus->range[i].dev; 2582 2583 kvm_iodevice_destructor(pos); 2584 } 2585 kfree(bus); 2586 } 2587 2588 int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 2589 { 2590 const struct kvm_io_range *r1 = p1; 2591 const struct kvm_io_range *r2 = p2; 2592 2593 if (r1->addr < r2->addr) 2594 return -1; 2595 if (r1->addr + r1->len > r2->addr + r2->len) 2596 return 1; 2597 return 0; 2598 } 2599 2600 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, 2601 gpa_t addr, int len) 2602 { 2603 bus->range[bus->dev_count++] = (struct kvm_io_range) { 2604 .addr = addr, 2605 .len = len, 2606 .dev = dev, 2607 }; 2608 2609 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), 2610 kvm_io_bus_sort_cmp, NULL); 2611 2612 return 0; 2613 } 2614 2615 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 2616 gpa_t addr, int len) 2617 { 2618 struct kvm_io_range *range, key; 2619 int off; 2620 2621 key = (struct kvm_io_range) { 2622 .addr = addr, 2623 .len = len, 2624 }; 2625 2626 range = bsearch(&key, bus->range, bus->dev_count, 2627 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 2628 if (range == NULL) 2629 return -ENOENT; 2630 2631 off = range - bus->range; 2632 2633 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0) 2634 off--; 2635 2636 return off; 2637 } 2638 2639 /* kvm_io_bus_write - called under kvm->slots_lock */ 2640 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2641 int len, const void *val) 2642 { 2643 int idx; 2644 struct kvm_io_bus *bus; 2645 struct kvm_io_range range; 2646 2647 range = (struct kvm_io_range) { 2648 .addr = addr, 2649 .len = len, 2650 }; 2651 2652 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2653 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2654 if (idx < 0) 2655 return -EOPNOTSUPP; 2656 2657 while (idx < bus->dev_count && 2658 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2659 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val)) 2660 return 0; 2661 idx++; 2662 } 2663 2664 return -EOPNOTSUPP; 2665 } 2666 2667 /* kvm_io_bus_read - called under kvm->slots_lock */ 2668 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2669 int len, void *val) 2670 { 2671 int idx; 2672 struct kvm_io_bus *bus; 2673 struct kvm_io_range range; 2674 2675 range = (struct kvm_io_range) { 2676 .addr = addr, 2677 .len = len, 2678 }; 2679 2680 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 2681 idx = kvm_io_bus_get_first_dev(bus, addr, len); 2682 if (idx < 0) 2683 return -EOPNOTSUPP; 2684 2685 while (idx < bus->dev_count && 2686 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { 2687 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val)) 2688 return 0; 2689 idx++; 2690 } 2691 2692 return -EOPNOTSUPP; 2693 } 2694 2695 /* Caller must hold slots_lock. */ 2696 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 2697 int len, struct kvm_io_device *dev) 2698 { 2699 struct kvm_io_bus *new_bus, *bus; 2700 2701 bus = kvm->buses[bus_idx]; 2702 if (bus->dev_count > NR_IOBUS_DEVS - 1) 2703 return -ENOSPC; 2704 2705 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) * 2706 sizeof(struct kvm_io_range)), GFP_KERNEL); 2707 if (!new_bus) 2708 return -ENOMEM; 2709 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count * 2710 sizeof(struct kvm_io_range))); 2711 kvm_io_bus_insert_dev(new_bus, dev, addr, len); 2712 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2713 synchronize_srcu_expedited(&kvm->srcu); 2714 kfree(bus); 2715 2716 return 0; 2717 } 2718 2719 /* Caller must hold slots_lock. */ 2720 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 2721 struct kvm_io_device *dev) 2722 { 2723 int i, r; 2724 struct kvm_io_bus *new_bus, *bus; 2725 2726 bus = kvm->buses[bus_idx]; 2727 r = -ENOENT; 2728 for (i = 0; i < bus->dev_count; i++) 2729 if (bus->range[i].dev == dev) { 2730 r = 0; 2731 break; 2732 } 2733 2734 if (r) 2735 return r; 2736 2737 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) * 2738 sizeof(struct kvm_io_range)), GFP_KERNEL); 2739 if (!new_bus) 2740 return -ENOMEM; 2741 2742 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 2743 new_bus->dev_count--; 2744 memcpy(new_bus->range + i, bus->range + i + 1, 2745 (new_bus->dev_count - i) * sizeof(struct kvm_io_range)); 2746 2747 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 2748 synchronize_srcu_expedited(&kvm->srcu); 2749 kfree(bus); 2750 return r; 2751 } 2752 2753 static struct notifier_block kvm_cpu_notifier = { 2754 .notifier_call = kvm_cpu_hotplug, 2755 }; 2756 2757 static int vm_stat_get(void *_offset, u64 *val) 2758 { 2759 unsigned offset = (long)_offset; 2760 struct kvm *kvm; 2761 2762 *val = 0; 2763 raw_spin_lock(&kvm_lock); 2764 list_for_each_entry(kvm, &vm_list, vm_list) 2765 *val += *(u32 *)((void *)kvm + offset); 2766 raw_spin_unlock(&kvm_lock); 2767 return 0; 2768 } 2769 2770 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); 2771 2772 static int vcpu_stat_get(void *_offset, u64 *val) 2773 { 2774 unsigned offset = (long)_offset; 2775 struct kvm *kvm; 2776 struct kvm_vcpu *vcpu; 2777 int i; 2778 2779 *val = 0; 2780 raw_spin_lock(&kvm_lock); 2781 list_for_each_entry(kvm, &vm_list, vm_list) 2782 kvm_for_each_vcpu(i, vcpu, kvm) 2783 *val += *(u32 *)((void *)vcpu + offset); 2784 2785 raw_spin_unlock(&kvm_lock); 2786 return 0; 2787 } 2788 2789 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); 2790 2791 static const struct file_operations *stat_fops[] = { 2792 [KVM_STAT_VCPU] = &vcpu_stat_fops, 2793 [KVM_STAT_VM] = &vm_stat_fops, 2794 }; 2795 2796 static int kvm_init_debug(void) 2797 { 2798 int r = -EFAULT; 2799 struct kvm_stats_debugfs_item *p; 2800 2801 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 2802 if (kvm_debugfs_dir == NULL) 2803 goto out; 2804 2805 for (p = debugfs_entries; p->name; ++p) { 2806 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, 2807 (void *)(long)p->offset, 2808 stat_fops[p->kind]); 2809 if (p->dentry == NULL) 2810 goto out_dir; 2811 } 2812 2813 return 0; 2814 2815 out_dir: 2816 debugfs_remove_recursive(kvm_debugfs_dir); 2817 out: 2818 return r; 2819 } 2820 2821 static void kvm_exit_debug(void) 2822 { 2823 struct kvm_stats_debugfs_item *p; 2824 2825 for (p = debugfs_entries; p->name; ++p) 2826 debugfs_remove(p->dentry); 2827 debugfs_remove(kvm_debugfs_dir); 2828 } 2829 2830 static int kvm_suspend(void) 2831 { 2832 if (kvm_usage_count) 2833 hardware_disable_nolock(NULL); 2834 return 0; 2835 } 2836 2837 static void kvm_resume(void) 2838 { 2839 if (kvm_usage_count) { 2840 WARN_ON(raw_spin_is_locked(&kvm_lock)); 2841 hardware_enable_nolock(NULL); 2842 } 2843 } 2844 2845 static struct syscore_ops kvm_syscore_ops = { 2846 .suspend = kvm_suspend, 2847 .resume = kvm_resume, 2848 }; 2849 2850 static inline 2851 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 2852 { 2853 return container_of(pn, struct kvm_vcpu, preempt_notifier); 2854 } 2855 2856 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 2857 { 2858 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2859 2860 kvm_arch_vcpu_load(vcpu, cpu); 2861 } 2862 2863 static void kvm_sched_out(struct preempt_notifier *pn, 2864 struct task_struct *next) 2865 { 2866 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 2867 2868 kvm_arch_vcpu_put(vcpu); 2869 } 2870 2871 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 2872 struct module *module) 2873 { 2874 int r; 2875 int cpu; 2876 2877 r = kvm_arch_init(opaque); 2878 if (r) 2879 goto out_fail; 2880 2881 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { 2882 r = -ENOMEM; 2883 goto out_free_0; 2884 } 2885 2886 r = kvm_arch_hardware_setup(); 2887 if (r < 0) 2888 goto out_free_0a; 2889 2890 for_each_online_cpu(cpu) { 2891 smp_call_function_single(cpu, 2892 kvm_arch_check_processor_compat, 2893 &r, 1); 2894 if (r < 0) 2895 goto out_free_1; 2896 } 2897 2898 r = register_cpu_notifier(&kvm_cpu_notifier); 2899 if (r) 2900 goto out_free_2; 2901 register_reboot_notifier(&kvm_reboot_notifier); 2902 2903 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 2904 if (!vcpu_align) 2905 vcpu_align = __alignof__(struct kvm_vcpu); 2906 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, 2907 0, NULL); 2908 if (!kvm_vcpu_cache) { 2909 r = -ENOMEM; 2910 goto out_free_3; 2911 } 2912 2913 r = kvm_async_pf_init(); 2914 if (r) 2915 goto out_free; 2916 2917 kvm_chardev_ops.owner = module; 2918 kvm_vm_fops.owner = module; 2919 kvm_vcpu_fops.owner = module; 2920 2921 r = misc_register(&kvm_dev); 2922 if (r) { 2923 printk(KERN_ERR "kvm: misc device register failed\n"); 2924 goto out_unreg; 2925 } 2926 2927 register_syscore_ops(&kvm_syscore_ops); 2928 2929 kvm_preempt_ops.sched_in = kvm_sched_in; 2930 kvm_preempt_ops.sched_out = kvm_sched_out; 2931 2932 r = kvm_init_debug(); 2933 if (r) { 2934 printk(KERN_ERR "kvm: create debugfs files failed\n"); 2935 goto out_undebugfs; 2936 } 2937 2938 return 0; 2939 2940 out_undebugfs: 2941 unregister_syscore_ops(&kvm_syscore_ops); 2942 out_unreg: 2943 kvm_async_pf_deinit(); 2944 out_free: 2945 kmem_cache_destroy(kvm_vcpu_cache); 2946 out_free_3: 2947 unregister_reboot_notifier(&kvm_reboot_notifier); 2948 unregister_cpu_notifier(&kvm_cpu_notifier); 2949 out_free_2: 2950 out_free_1: 2951 kvm_arch_hardware_unsetup(); 2952 out_free_0a: 2953 free_cpumask_var(cpus_hardware_enabled); 2954 out_free_0: 2955 kvm_arch_exit(); 2956 out_fail: 2957 return r; 2958 } 2959 EXPORT_SYMBOL_GPL(kvm_init); 2960 2961 void kvm_exit(void) 2962 { 2963 kvm_exit_debug(); 2964 misc_deregister(&kvm_dev); 2965 kmem_cache_destroy(kvm_vcpu_cache); 2966 kvm_async_pf_deinit(); 2967 unregister_syscore_ops(&kvm_syscore_ops); 2968 unregister_reboot_notifier(&kvm_reboot_notifier); 2969 unregister_cpu_notifier(&kvm_cpu_notifier); 2970 on_each_cpu(hardware_disable_nolock, NULL, 1); 2971 kvm_arch_hardware_unsetup(); 2972 kvm_arch_exit(); 2973 free_cpumask_var(cpus_hardware_enabled); 2974 } 2975 EXPORT_SYMBOL_GPL(kvm_exit); 2976