1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <kvm/iodev.h> 17 18 #include <linux/kvm_host.h> 19 #include <linux/kvm.h> 20 #include <linux/module.h> 21 #include <linux/errno.h> 22 #include <linux/percpu.h> 23 #include <linux/mm.h> 24 #include <linux/miscdevice.h> 25 #include <linux/vmalloc.h> 26 #include <linux/reboot.h> 27 #include <linux/debugfs.h> 28 #include <linux/highmem.h> 29 #include <linux/file.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/cpu.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/mm.h> 34 #include <linux/sched/stat.h> 35 #include <linux/cpumask.h> 36 #include <linux/smp.h> 37 #include <linux/anon_inodes.h> 38 #include <linux/profile.h> 39 #include <linux/kvm_para.h> 40 #include <linux/pagemap.h> 41 #include <linux/mman.h> 42 #include <linux/swap.h> 43 #include <linux/bitops.h> 44 #include <linux/spinlock.h> 45 #include <linux/compat.h> 46 #include <linux/srcu.h> 47 #include <linux/hugetlb.h> 48 #include <linux/slab.h> 49 #include <linux/sort.h> 50 #include <linux/bsearch.h> 51 #include <linux/io.h> 52 #include <linux/lockdep.h> 53 #include <linux/kthread.h> 54 #include <linux/suspend.h> 55 56 #include <asm/processor.h> 57 #include <asm/ioctl.h> 58 #include <linux/uaccess.h> 59 60 #include "coalesced_mmio.h" 61 #include "async_pf.h" 62 #include "kvm_mm.h" 63 #include "vfio.h" 64 65 #include <trace/events/ipi.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/kvm.h> 69 70 #include <linux/kvm_dirty_ring.h> 71 72 73 /* Worst case buffer size needed for holding an integer. */ 74 #define ITOA_MAX_LEN 12 75 76 MODULE_AUTHOR("Qumranet"); 77 MODULE_LICENSE("GPL"); 78 79 /* Architectures should define their poll value according to the halt latency */ 80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT; 81 module_param(halt_poll_ns, uint, 0644); 82 EXPORT_SYMBOL_GPL(halt_poll_ns); 83 84 /* Default doubles per-vcpu halt_poll_ns. */ 85 unsigned int halt_poll_ns_grow = 2; 86 module_param(halt_poll_ns_grow, uint, 0644); 87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow); 88 89 /* The start value to grow halt_poll_ns from */ 90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */ 91 module_param(halt_poll_ns_grow_start, uint, 0644); 92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start); 93 94 /* Default resets per-vcpu halt_poll_ns . */ 95 unsigned int halt_poll_ns_shrink; 96 module_param(halt_poll_ns_shrink, uint, 0644); 97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink); 98 99 /* 100 * Ordering of locks: 101 * 102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock 103 */ 104 105 DEFINE_MUTEX(kvm_lock); 106 LIST_HEAD(vm_list); 107 108 static struct kmem_cache *kvm_vcpu_cache; 109 110 static __read_mostly struct preempt_ops kvm_preempt_ops; 111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu); 112 113 struct dentry *kvm_debugfs_dir; 114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir); 115 116 static const struct file_operations stat_fops_per_vm; 117 118 static struct file_operations kvm_chardev_ops; 119 120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, 121 unsigned long arg); 122 #ifdef CONFIG_KVM_COMPAT 123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, 124 unsigned long arg); 125 #define KVM_COMPAT(c) .compat_ioctl = (c) 126 #else 127 /* 128 * For architectures that don't implement a compat infrastructure, 129 * adopt a double line of defense: 130 * - Prevent a compat task from opening /dev/kvm 131 * - If the open has been done by a 64bit task, and the KVM fd 132 * passed to a compat task, let the ioctls fail. 133 */ 134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl, 135 unsigned long arg) { return -EINVAL; } 136 137 static int kvm_no_compat_open(struct inode *inode, struct file *file) 138 { 139 return is_compat_task() ? -ENODEV : 0; 140 } 141 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \ 142 .open = kvm_no_compat_open 143 #endif 144 static int hardware_enable_all(void); 145 static void hardware_disable_all(void); 146 147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus); 148 149 #define KVM_EVENT_CREATE_VM 0 150 #define KVM_EVENT_DESTROY_VM 1 151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm); 152 static unsigned long long kvm_createvm_count; 153 static unsigned long long kvm_active_vms; 154 155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask); 156 157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 158 unsigned long start, unsigned long end) 159 { 160 } 161 162 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) 163 { 164 } 165 166 bool kvm_is_zone_device_page(struct page *page) 167 { 168 /* 169 * The metadata used by is_zone_device_page() to determine whether or 170 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if 171 * the device has been pinned, e.g. by get_user_pages(). WARN if the 172 * page_count() is zero to help detect bad usage of this helper. 173 */ 174 if (WARN_ON_ONCE(!page_count(page))) 175 return false; 176 177 return is_zone_device_page(page); 178 } 179 180 /* 181 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted 182 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types 183 * is likely incomplete, it has been compiled purely through people wanting to 184 * back guest with a certain type of memory and encountering issues. 185 */ 186 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn) 187 { 188 struct page *page; 189 190 if (!pfn_valid(pfn)) 191 return NULL; 192 193 page = pfn_to_page(pfn); 194 if (!PageReserved(page)) 195 return page; 196 197 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */ 198 if (is_zero_pfn(pfn)) 199 return page; 200 201 /* 202 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting 203 * perspective they are "normal" pages, albeit with slightly different 204 * usage rules. 205 */ 206 if (kvm_is_zone_device_page(page)) 207 return page; 208 209 return NULL; 210 } 211 212 /* 213 * Switches to specified vcpu, until a matching vcpu_put() 214 */ 215 void vcpu_load(struct kvm_vcpu *vcpu) 216 { 217 int cpu = get_cpu(); 218 219 __this_cpu_write(kvm_running_vcpu, vcpu); 220 preempt_notifier_register(&vcpu->preempt_notifier); 221 kvm_arch_vcpu_load(vcpu, cpu); 222 put_cpu(); 223 } 224 EXPORT_SYMBOL_GPL(vcpu_load); 225 226 void vcpu_put(struct kvm_vcpu *vcpu) 227 { 228 preempt_disable(); 229 kvm_arch_vcpu_put(vcpu); 230 preempt_notifier_unregister(&vcpu->preempt_notifier); 231 __this_cpu_write(kvm_running_vcpu, NULL); 232 preempt_enable(); 233 } 234 EXPORT_SYMBOL_GPL(vcpu_put); 235 236 /* TODO: merge with kvm_arch_vcpu_should_kick */ 237 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req) 238 { 239 int mode = kvm_vcpu_exiting_guest_mode(vcpu); 240 241 /* 242 * We need to wait for the VCPU to reenable interrupts and get out of 243 * READING_SHADOW_PAGE_TABLES mode. 244 */ 245 if (req & KVM_REQUEST_WAIT) 246 return mode != OUTSIDE_GUEST_MODE; 247 248 /* 249 * Need to kick a running VCPU, but otherwise there is nothing to do. 250 */ 251 return mode == IN_GUEST_MODE; 252 } 253 254 static void ack_kick(void *_completed) 255 { 256 } 257 258 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait) 259 { 260 if (cpumask_empty(cpus)) 261 return false; 262 263 smp_call_function_many(cpus, ack_kick, NULL, wait); 264 return true; 265 } 266 267 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req, 268 struct cpumask *tmp, int current_cpu) 269 { 270 int cpu; 271 272 if (likely(!(req & KVM_REQUEST_NO_ACTION))) 273 __kvm_make_request(req, vcpu); 274 275 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu)) 276 return; 277 278 /* 279 * Note, the vCPU could get migrated to a different pCPU at any point 280 * after kvm_request_needs_ipi(), which could result in sending an IPI 281 * to the previous pCPU. But, that's OK because the purpose of the IPI 282 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is 283 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES 284 * after this point is also OK, as the requirement is only that KVM wait 285 * for vCPUs that were reading SPTEs _before_ any changes were 286 * finalized. See kvm_vcpu_kick() for more details on handling requests. 287 */ 288 if (kvm_request_needs_ipi(vcpu, req)) { 289 cpu = READ_ONCE(vcpu->cpu); 290 if (cpu != -1 && cpu != current_cpu) 291 __cpumask_set_cpu(cpu, tmp); 292 } 293 } 294 295 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 296 unsigned long *vcpu_bitmap) 297 { 298 struct kvm_vcpu *vcpu; 299 struct cpumask *cpus; 300 int i, me; 301 bool called; 302 303 me = get_cpu(); 304 305 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 306 cpumask_clear(cpus); 307 308 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) { 309 vcpu = kvm_get_vcpu(kvm, i); 310 if (!vcpu) 311 continue; 312 kvm_make_vcpu_request(vcpu, req, cpus, me); 313 } 314 315 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 316 put_cpu(); 317 318 return called; 319 } 320 321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 322 struct kvm_vcpu *except) 323 { 324 struct kvm_vcpu *vcpu; 325 struct cpumask *cpus; 326 unsigned long i; 327 bool called; 328 int me; 329 330 me = get_cpu(); 331 332 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask); 333 cpumask_clear(cpus); 334 335 kvm_for_each_vcpu(i, vcpu, kvm) { 336 if (vcpu == except) 337 continue; 338 kvm_make_vcpu_request(vcpu, req, cpus, me); 339 } 340 341 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT)); 342 put_cpu(); 343 344 return called; 345 } 346 347 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req) 348 { 349 return kvm_make_all_cpus_request_except(kvm, req, NULL); 350 } 351 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request); 352 353 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL 354 void kvm_flush_remote_tlbs(struct kvm *kvm) 355 { 356 ++kvm->stat.generic.remote_tlb_flush_requests; 357 358 /* 359 * We want to publish modifications to the page tables before reading 360 * mode. Pairs with a memory barrier in arch-specific code. 361 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest 362 * and smp_mb in walk_shadow_page_lockless_begin/end. 363 * - powerpc: smp_mb in kvmppc_prepare_to_enter. 364 * 365 * There is already an smp_mb__after_atomic() before 366 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that 367 * barrier here. 368 */ 369 if (!kvm_arch_flush_remote_tlb(kvm) 370 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) 371 ++kvm->stat.generic.remote_tlb_flush; 372 } 373 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs); 374 #endif 375 376 static void kvm_flush_shadow_all(struct kvm *kvm) 377 { 378 kvm_arch_flush_shadow_all(kvm); 379 kvm_arch_guest_memory_reclaimed(kvm); 380 } 381 382 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 383 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc, 384 gfp_t gfp_flags) 385 { 386 gfp_flags |= mc->gfp_zero; 387 388 if (mc->kmem_cache) 389 return kmem_cache_alloc(mc->kmem_cache, gfp_flags); 390 else 391 return (void *)__get_free_page(gfp_flags); 392 } 393 394 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min) 395 { 396 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT; 397 void *obj; 398 399 if (mc->nobjs >= min) 400 return 0; 401 402 if (unlikely(!mc->objects)) { 403 if (WARN_ON_ONCE(!capacity)) 404 return -EIO; 405 406 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp); 407 if (!mc->objects) 408 return -ENOMEM; 409 410 mc->capacity = capacity; 411 } 412 413 /* It is illegal to request a different capacity across topups. */ 414 if (WARN_ON_ONCE(mc->capacity != capacity)) 415 return -EIO; 416 417 while (mc->nobjs < mc->capacity) { 418 obj = mmu_memory_cache_alloc_obj(mc, gfp); 419 if (!obj) 420 return mc->nobjs >= min ? 0 : -ENOMEM; 421 mc->objects[mc->nobjs++] = obj; 422 } 423 return 0; 424 } 425 426 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min) 427 { 428 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min); 429 } 430 431 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc) 432 { 433 return mc->nobjs; 434 } 435 436 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) 437 { 438 while (mc->nobjs) { 439 if (mc->kmem_cache) 440 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]); 441 else 442 free_page((unsigned long)mc->objects[--mc->nobjs]); 443 } 444 445 kvfree(mc->objects); 446 447 mc->objects = NULL; 448 mc->capacity = 0; 449 } 450 451 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) 452 { 453 void *p; 454 455 if (WARN_ON(!mc->nobjs)) 456 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT); 457 else 458 p = mc->objects[--mc->nobjs]; 459 BUG_ON(!p); 460 return p; 461 } 462 #endif 463 464 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) 465 { 466 mutex_init(&vcpu->mutex); 467 vcpu->cpu = -1; 468 vcpu->kvm = kvm; 469 vcpu->vcpu_id = id; 470 vcpu->pid = NULL; 471 #ifndef __KVM_HAVE_ARCH_WQP 472 rcuwait_init(&vcpu->wait); 473 #endif 474 kvm_async_pf_vcpu_init(vcpu); 475 476 kvm_vcpu_set_in_spin_loop(vcpu, false); 477 kvm_vcpu_set_dy_eligible(vcpu, false); 478 vcpu->preempted = false; 479 vcpu->ready = false; 480 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); 481 vcpu->last_used_slot = NULL; 482 483 /* Fill the stats id string for the vcpu */ 484 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d", 485 task_pid_nr(current), id); 486 } 487 488 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu) 489 { 490 kvm_arch_vcpu_destroy(vcpu); 491 kvm_dirty_ring_free(&vcpu->dirty_ring); 492 493 /* 494 * No need for rcu_read_lock as VCPU_RUN is the only place that changes 495 * the vcpu->pid pointer, and at destruction time all file descriptors 496 * are already gone. 497 */ 498 put_pid(rcu_dereference_protected(vcpu->pid, 1)); 499 500 free_page((unsigned long)vcpu->run); 501 kmem_cache_free(kvm_vcpu_cache, vcpu); 502 } 503 504 void kvm_destroy_vcpus(struct kvm *kvm) 505 { 506 unsigned long i; 507 struct kvm_vcpu *vcpu; 508 509 kvm_for_each_vcpu(i, vcpu, kvm) { 510 kvm_vcpu_destroy(vcpu); 511 xa_erase(&kvm->vcpu_array, i); 512 } 513 514 atomic_set(&kvm->online_vcpus, 0); 515 } 516 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus); 517 518 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 519 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) 520 { 521 return container_of(mn, struct kvm, mmu_notifier); 522 } 523 524 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn, 525 struct mm_struct *mm, 526 unsigned long start, unsigned long end) 527 { 528 struct kvm *kvm = mmu_notifier_to_kvm(mn); 529 int idx; 530 531 idx = srcu_read_lock(&kvm->srcu); 532 kvm_arch_mmu_notifier_invalidate_range(kvm, start, end); 533 srcu_read_unlock(&kvm->srcu, idx); 534 } 535 536 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range); 537 538 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start, 539 unsigned long end); 540 541 typedef void (*on_unlock_fn_t)(struct kvm *kvm); 542 543 struct kvm_hva_range { 544 unsigned long start; 545 unsigned long end; 546 pte_t pte; 547 hva_handler_t handler; 548 on_lock_fn_t on_lock; 549 on_unlock_fn_t on_unlock; 550 bool flush_on_ret; 551 bool may_block; 552 }; 553 554 /* 555 * Use a dedicated stub instead of NULL to indicate that there is no callback 556 * function/handler. The compiler technically can't guarantee that a real 557 * function will have a non-zero address, and so it will generate code to 558 * check for !NULL, whereas comparing against a stub will be elided at compile 559 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9). 560 */ 561 static void kvm_null_fn(void) 562 { 563 564 } 565 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn) 566 567 /* Iterate over each memslot intersecting [start, last] (inclusive) range */ 568 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \ 569 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \ 570 node; \ 571 node = interval_tree_iter_next(node, start, last)) \ 572 573 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm, 574 const struct kvm_hva_range *range) 575 { 576 bool ret = false, locked = false; 577 struct kvm_gfn_range gfn_range; 578 struct kvm_memory_slot *slot; 579 struct kvm_memslots *slots; 580 int i, idx; 581 582 if (WARN_ON_ONCE(range->end <= range->start)) 583 return 0; 584 585 /* A null handler is allowed if and only if on_lock() is provided. */ 586 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) && 587 IS_KVM_NULL_FN(range->handler))) 588 return 0; 589 590 idx = srcu_read_lock(&kvm->srcu); 591 592 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 593 struct interval_tree_node *node; 594 595 slots = __kvm_memslots(kvm, i); 596 kvm_for_each_memslot_in_hva_range(node, slots, 597 range->start, range->end - 1) { 598 unsigned long hva_start, hva_end; 599 600 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]); 601 hva_start = max(range->start, slot->userspace_addr); 602 hva_end = min(range->end, slot->userspace_addr + 603 (slot->npages << PAGE_SHIFT)); 604 605 /* 606 * To optimize for the likely case where the address 607 * range is covered by zero or one memslots, don't 608 * bother making these conditional (to avoid writes on 609 * the second or later invocation of the handler). 610 */ 611 gfn_range.pte = range->pte; 612 gfn_range.may_block = range->may_block; 613 614 /* 615 * {gfn(page) | page intersects with [hva_start, hva_end)} = 616 * {gfn_start, gfn_start+1, ..., gfn_end-1}. 617 */ 618 gfn_range.start = hva_to_gfn_memslot(hva_start, slot); 619 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot); 620 gfn_range.slot = slot; 621 622 if (!locked) { 623 locked = true; 624 KVM_MMU_LOCK(kvm); 625 if (!IS_KVM_NULL_FN(range->on_lock)) 626 range->on_lock(kvm, range->start, range->end); 627 if (IS_KVM_NULL_FN(range->handler)) 628 break; 629 } 630 ret |= range->handler(kvm, &gfn_range); 631 } 632 } 633 634 if (range->flush_on_ret && ret) 635 kvm_flush_remote_tlbs(kvm); 636 637 if (locked) { 638 KVM_MMU_UNLOCK(kvm); 639 if (!IS_KVM_NULL_FN(range->on_unlock)) 640 range->on_unlock(kvm); 641 } 642 643 srcu_read_unlock(&kvm->srcu, idx); 644 645 /* The notifiers are averse to booleans. :-( */ 646 return (int)ret; 647 } 648 649 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn, 650 unsigned long start, 651 unsigned long end, 652 pte_t pte, 653 hva_handler_t handler) 654 { 655 struct kvm *kvm = mmu_notifier_to_kvm(mn); 656 const struct kvm_hva_range range = { 657 .start = start, 658 .end = end, 659 .pte = pte, 660 .handler = handler, 661 .on_lock = (void *)kvm_null_fn, 662 .on_unlock = (void *)kvm_null_fn, 663 .flush_on_ret = true, 664 .may_block = false, 665 }; 666 667 return __kvm_handle_hva_range(kvm, &range); 668 } 669 670 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn, 671 unsigned long start, 672 unsigned long end, 673 hva_handler_t handler) 674 { 675 struct kvm *kvm = mmu_notifier_to_kvm(mn); 676 const struct kvm_hva_range range = { 677 .start = start, 678 .end = end, 679 .pte = __pte(0), 680 .handler = handler, 681 .on_lock = (void *)kvm_null_fn, 682 .on_unlock = (void *)kvm_null_fn, 683 .flush_on_ret = false, 684 .may_block = false, 685 }; 686 687 return __kvm_handle_hva_range(kvm, &range); 688 } 689 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, 690 struct mm_struct *mm, 691 unsigned long address, 692 pte_t pte) 693 { 694 struct kvm *kvm = mmu_notifier_to_kvm(mn); 695 696 trace_kvm_set_spte_hva(address); 697 698 /* 699 * .change_pte() must be surrounded by .invalidate_range_{start,end}(). 700 * If mmu_invalidate_in_progress is zero, then no in-progress 701 * invalidations, including this one, found a relevant memslot at 702 * start(); rechecking memslots here is unnecessary. Note, a false 703 * positive (count elevated by a different invalidation) is sub-optimal 704 * but functionally ok. 705 */ 706 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count)); 707 if (!READ_ONCE(kvm->mmu_invalidate_in_progress)) 708 return; 709 710 kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn); 711 } 712 713 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start, 714 unsigned long end) 715 { 716 /* 717 * The count increase must become visible at unlock time as no 718 * spte can be established without taking the mmu_lock and 719 * count is also read inside the mmu_lock critical section. 720 */ 721 kvm->mmu_invalidate_in_progress++; 722 if (likely(kvm->mmu_invalidate_in_progress == 1)) { 723 kvm->mmu_invalidate_range_start = start; 724 kvm->mmu_invalidate_range_end = end; 725 } else { 726 /* 727 * Fully tracking multiple concurrent ranges has diminishing 728 * returns. Keep things simple and just find the minimal range 729 * which includes the current and new ranges. As there won't be 730 * enough information to subtract a range after its invalidate 731 * completes, any ranges invalidated concurrently will 732 * accumulate and persist until all outstanding invalidates 733 * complete. 734 */ 735 kvm->mmu_invalidate_range_start = 736 min(kvm->mmu_invalidate_range_start, start); 737 kvm->mmu_invalidate_range_end = 738 max(kvm->mmu_invalidate_range_end, end); 739 } 740 } 741 742 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, 743 const struct mmu_notifier_range *range) 744 { 745 struct kvm *kvm = mmu_notifier_to_kvm(mn); 746 const struct kvm_hva_range hva_range = { 747 .start = range->start, 748 .end = range->end, 749 .pte = __pte(0), 750 .handler = kvm_unmap_gfn_range, 751 .on_lock = kvm_mmu_invalidate_begin, 752 .on_unlock = kvm_arch_guest_memory_reclaimed, 753 .flush_on_ret = true, 754 .may_block = mmu_notifier_range_blockable(range), 755 }; 756 757 trace_kvm_unmap_hva_range(range->start, range->end); 758 759 /* 760 * Prevent memslot modification between range_start() and range_end() 761 * so that conditionally locking provides the same result in both 762 * functions. Without that guarantee, the mmu_invalidate_in_progress 763 * adjustments will be imbalanced. 764 * 765 * Pairs with the decrement in range_end(). 766 */ 767 spin_lock(&kvm->mn_invalidate_lock); 768 kvm->mn_active_invalidate_count++; 769 spin_unlock(&kvm->mn_invalidate_lock); 770 771 /* 772 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e. 773 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring 774 * each cache's lock. There are relatively few caches in existence at 775 * any given time, and the caches themselves can check for hva overlap, 776 * i.e. don't need to rely on memslot overlap checks for performance. 777 * Because this runs without holding mmu_lock, the pfn caches must use 778 * mn_active_invalidate_count (see above) instead of 779 * mmu_invalidate_in_progress. 780 */ 781 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end, 782 hva_range.may_block); 783 784 __kvm_handle_hva_range(kvm, &hva_range); 785 786 return 0; 787 } 788 789 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start, 790 unsigned long end) 791 { 792 /* 793 * This sequence increase will notify the kvm page fault that 794 * the page that is going to be mapped in the spte could have 795 * been freed. 796 */ 797 kvm->mmu_invalidate_seq++; 798 smp_wmb(); 799 /* 800 * The above sequence increase must be visible before the 801 * below count decrease, which is ensured by the smp_wmb above 802 * in conjunction with the smp_rmb in mmu_invalidate_retry(). 803 */ 804 kvm->mmu_invalidate_in_progress--; 805 } 806 807 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, 808 const struct mmu_notifier_range *range) 809 { 810 struct kvm *kvm = mmu_notifier_to_kvm(mn); 811 const struct kvm_hva_range hva_range = { 812 .start = range->start, 813 .end = range->end, 814 .pte = __pte(0), 815 .handler = (void *)kvm_null_fn, 816 .on_lock = kvm_mmu_invalidate_end, 817 .on_unlock = (void *)kvm_null_fn, 818 .flush_on_ret = false, 819 .may_block = mmu_notifier_range_blockable(range), 820 }; 821 bool wake; 822 823 __kvm_handle_hva_range(kvm, &hva_range); 824 825 /* Pairs with the increment in range_start(). */ 826 spin_lock(&kvm->mn_invalidate_lock); 827 wake = (--kvm->mn_active_invalidate_count == 0); 828 spin_unlock(&kvm->mn_invalidate_lock); 829 830 /* 831 * There can only be one waiter, since the wait happens under 832 * slots_lock. 833 */ 834 if (wake) 835 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait); 836 837 BUG_ON(kvm->mmu_invalidate_in_progress < 0); 838 } 839 840 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, 841 struct mm_struct *mm, 842 unsigned long start, 843 unsigned long end) 844 { 845 trace_kvm_age_hva(start, end); 846 847 return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn); 848 } 849 850 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn, 851 struct mm_struct *mm, 852 unsigned long start, 853 unsigned long end) 854 { 855 trace_kvm_age_hva(start, end); 856 857 /* 858 * Even though we do not flush TLB, this will still adversely 859 * affect performance on pre-Haswell Intel EPT, where there is 860 * no EPT Access Bit to clear so that we have to tear down EPT 861 * tables instead. If we find this unacceptable, we can always 862 * add a parameter to kvm_age_hva so that it effectively doesn't 863 * do anything on clear_young. 864 * 865 * Also note that currently we never issue secondary TLB flushes 866 * from clear_young, leaving this job up to the regular system 867 * cadence. If we find this inaccurate, we might come up with a 868 * more sophisticated heuristic later. 869 */ 870 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn); 871 } 872 873 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, 874 struct mm_struct *mm, 875 unsigned long address) 876 { 877 trace_kvm_test_age_hva(address); 878 879 return kvm_handle_hva_range_no_flush(mn, address, address + 1, 880 kvm_test_age_gfn); 881 } 882 883 static void kvm_mmu_notifier_release(struct mmu_notifier *mn, 884 struct mm_struct *mm) 885 { 886 struct kvm *kvm = mmu_notifier_to_kvm(mn); 887 int idx; 888 889 idx = srcu_read_lock(&kvm->srcu); 890 kvm_flush_shadow_all(kvm); 891 srcu_read_unlock(&kvm->srcu, idx); 892 } 893 894 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { 895 .invalidate_range = kvm_mmu_notifier_invalidate_range, 896 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, 897 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, 898 .clear_flush_young = kvm_mmu_notifier_clear_flush_young, 899 .clear_young = kvm_mmu_notifier_clear_young, 900 .test_young = kvm_mmu_notifier_test_young, 901 .change_pte = kvm_mmu_notifier_change_pte, 902 .release = kvm_mmu_notifier_release, 903 }; 904 905 static int kvm_init_mmu_notifier(struct kvm *kvm) 906 { 907 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; 908 return mmu_notifier_register(&kvm->mmu_notifier, current->mm); 909 } 910 911 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ 912 913 static int kvm_init_mmu_notifier(struct kvm *kvm) 914 { 915 return 0; 916 } 917 918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ 919 920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 921 static int kvm_pm_notifier_call(struct notifier_block *bl, 922 unsigned long state, 923 void *unused) 924 { 925 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier); 926 927 return kvm_arch_pm_notifier(kvm, state); 928 } 929 930 static void kvm_init_pm_notifier(struct kvm *kvm) 931 { 932 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call; 933 /* Suspend KVM before we suspend ftrace, RCU, etc. */ 934 kvm->pm_notifier.priority = INT_MAX; 935 register_pm_notifier(&kvm->pm_notifier); 936 } 937 938 static void kvm_destroy_pm_notifier(struct kvm *kvm) 939 { 940 unregister_pm_notifier(&kvm->pm_notifier); 941 } 942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */ 943 static void kvm_init_pm_notifier(struct kvm *kvm) 944 { 945 } 946 947 static void kvm_destroy_pm_notifier(struct kvm *kvm) 948 { 949 } 950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 951 952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) 953 { 954 if (!memslot->dirty_bitmap) 955 return; 956 957 kvfree(memslot->dirty_bitmap); 958 memslot->dirty_bitmap = NULL; 959 } 960 961 /* This does not remove the slot from struct kvm_memslots data structures */ 962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 963 { 964 kvm_destroy_dirty_bitmap(slot); 965 966 kvm_arch_free_memslot(kvm, slot); 967 968 kfree(slot); 969 } 970 971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots) 972 { 973 struct hlist_node *idnode; 974 struct kvm_memory_slot *memslot; 975 int bkt; 976 977 /* 978 * The same memslot objects live in both active and inactive sets, 979 * arbitrarily free using index '1' so the second invocation of this 980 * function isn't operating over a structure with dangling pointers 981 * (even though this function isn't actually touching them). 982 */ 983 if (!slots->node_idx) 984 return; 985 986 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1]) 987 kvm_free_memslot(kvm, memslot); 988 } 989 990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc) 991 { 992 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) { 993 case KVM_STATS_TYPE_INSTANT: 994 return 0444; 995 case KVM_STATS_TYPE_CUMULATIVE: 996 case KVM_STATS_TYPE_PEAK: 997 default: 998 return 0644; 999 } 1000 } 1001 1002 1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm) 1004 { 1005 int i; 1006 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1007 kvm_vcpu_stats_header.num_desc; 1008 1009 if (IS_ERR(kvm->debugfs_dentry)) 1010 return; 1011 1012 debugfs_remove_recursive(kvm->debugfs_dentry); 1013 1014 if (kvm->debugfs_stat_data) { 1015 for (i = 0; i < kvm_debugfs_num_entries; i++) 1016 kfree(kvm->debugfs_stat_data[i]); 1017 kfree(kvm->debugfs_stat_data); 1018 } 1019 } 1020 1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname) 1022 { 1023 static DEFINE_MUTEX(kvm_debugfs_lock); 1024 struct dentry *dent; 1025 char dir_name[ITOA_MAX_LEN * 2]; 1026 struct kvm_stat_data *stat_data; 1027 const struct _kvm_stats_desc *pdesc; 1028 int i, ret = -ENOMEM; 1029 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc + 1030 kvm_vcpu_stats_header.num_desc; 1031 1032 if (!debugfs_initialized()) 1033 return 0; 1034 1035 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname); 1036 mutex_lock(&kvm_debugfs_lock); 1037 dent = debugfs_lookup(dir_name, kvm_debugfs_dir); 1038 if (dent) { 1039 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name); 1040 dput(dent); 1041 mutex_unlock(&kvm_debugfs_lock); 1042 return 0; 1043 } 1044 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir); 1045 mutex_unlock(&kvm_debugfs_lock); 1046 if (IS_ERR(dent)) 1047 return 0; 1048 1049 kvm->debugfs_dentry = dent; 1050 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries, 1051 sizeof(*kvm->debugfs_stat_data), 1052 GFP_KERNEL_ACCOUNT); 1053 if (!kvm->debugfs_stat_data) 1054 goto out_err; 1055 1056 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 1057 pdesc = &kvm_vm_stats_desc[i]; 1058 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1059 if (!stat_data) 1060 goto out_err; 1061 1062 stat_data->kvm = kvm; 1063 stat_data->desc = pdesc; 1064 stat_data->kind = KVM_STAT_VM; 1065 kvm->debugfs_stat_data[i] = stat_data; 1066 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1067 kvm->debugfs_dentry, stat_data, 1068 &stat_fops_per_vm); 1069 } 1070 1071 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 1072 pdesc = &kvm_vcpu_stats_desc[i]; 1073 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT); 1074 if (!stat_data) 1075 goto out_err; 1076 1077 stat_data->kvm = kvm; 1078 stat_data->desc = pdesc; 1079 stat_data->kind = KVM_STAT_VCPU; 1080 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data; 1081 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 1082 kvm->debugfs_dentry, stat_data, 1083 &stat_fops_per_vm); 1084 } 1085 1086 ret = kvm_arch_create_vm_debugfs(kvm); 1087 if (ret) 1088 goto out_err; 1089 1090 return 0; 1091 out_err: 1092 kvm_destroy_vm_debugfs(kvm); 1093 return ret; 1094 } 1095 1096 /* 1097 * Called after the VM is otherwise initialized, but just before adding it to 1098 * the vm_list. 1099 */ 1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm) 1101 { 1102 return 0; 1103 } 1104 1105 /* 1106 * Called just after removing the VM from the vm_list, but before doing any 1107 * other destruction. 1108 */ 1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm) 1110 { 1111 } 1112 1113 /* 1114 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should 1115 * be setup already, so we can create arch-specific debugfs entries under it. 1116 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so 1117 * a per-arch destroy interface is not needed. 1118 */ 1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm) 1120 { 1121 return 0; 1122 } 1123 1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname) 1125 { 1126 struct kvm *kvm = kvm_arch_alloc_vm(); 1127 struct kvm_memslots *slots; 1128 int r = -ENOMEM; 1129 int i, j; 1130 1131 if (!kvm) 1132 return ERR_PTR(-ENOMEM); 1133 1134 /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */ 1135 __module_get(kvm_chardev_ops.owner); 1136 1137 KVM_MMU_LOCK_INIT(kvm); 1138 mmgrab(current->mm); 1139 kvm->mm = current->mm; 1140 kvm_eventfd_init(kvm); 1141 mutex_init(&kvm->lock); 1142 mutex_init(&kvm->irq_lock); 1143 mutex_init(&kvm->slots_lock); 1144 mutex_init(&kvm->slots_arch_lock); 1145 spin_lock_init(&kvm->mn_invalidate_lock); 1146 rcuwait_init(&kvm->mn_memslots_update_rcuwait); 1147 xa_init(&kvm->vcpu_array); 1148 1149 INIT_LIST_HEAD(&kvm->gpc_list); 1150 spin_lock_init(&kvm->gpc_lock); 1151 1152 INIT_LIST_HEAD(&kvm->devices); 1153 kvm->max_vcpus = KVM_MAX_VCPUS; 1154 1155 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX); 1156 1157 /* 1158 * Force subsequent debugfs file creations to fail if the VM directory 1159 * is not created (by kvm_create_vm_debugfs()). 1160 */ 1161 kvm->debugfs_dentry = ERR_PTR(-ENOENT); 1162 1163 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d", 1164 task_pid_nr(current)); 1165 1166 if (init_srcu_struct(&kvm->srcu)) 1167 goto out_err_no_srcu; 1168 if (init_srcu_struct(&kvm->irq_srcu)) 1169 goto out_err_no_irq_srcu; 1170 1171 refcount_set(&kvm->users_count, 1); 1172 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1173 for (j = 0; j < 2; j++) { 1174 slots = &kvm->__memslots[i][j]; 1175 1176 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL); 1177 slots->hva_tree = RB_ROOT_CACHED; 1178 slots->gfn_tree = RB_ROOT; 1179 hash_init(slots->id_hash); 1180 slots->node_idx = j; 1181 1182 /* Generations must be different for each address space. */ 1183 slots->generation = i; 1184 } 1185 1186 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]); 1187 } 1188 1189 for (i = 0; i < KVM_NR_BUSES; i++) { 1190 rcu_assign_pointer(kvm->buses[i], 1191 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT)); 1192 if (!kvm->buses[i]) 1193 goto out_err_no_arch_destroy_vm; 1194 } 1195 1196 r = kvm_arch_init_vm(kvm, type); 1197 if (r) 1198 goto out_err_no_arch_destroy_vm; 1199 1200 r = hardware_enable_all(); 1201 if (r) 1202 goto out_err_no_disable; 1203 1204 #ifdef CONFIG_HAVE_KVM_IRQFD 1205 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); 1206 #endif 1207 1208 r = kvm_init_mmu_notifier(kvm); 1209 if (r) 1210 goto out_err_no_mmu_notifier; 1211 1212 r = kvm_coalesced_mmio_init(kvm); 1213 if (r < 0) 1214 goto out_no_coalesced_mmio; 1215 1216 r = kvm_create_vm_debugfs(kvm, fdname); 1217 if (r) 1218 goto out_err_no_debugfs; 1219 1220 r = kvm_arch_post_init_vm(kvm); 1221 if (r) 1222 goto out_err; 1223 1224 mutex_lock(&kvm_lock); 1225 list_add(&kvm->vm_list, &vm_list); 1226 mutex_unlock(&kvm_lock); 1227 1228 preempt_notifier_inc(); 1229 kvm_init_pm_notifier(kvm); 1230 1231 return kvm; 1232 1233 out_err: 1234 kvm_destroy_vm_debugfs(kvm); 1235 out_err_no_debugfs: 1236 kvm_coalesced_mmio_free(kvm); 1237 out_no_coalesced_mmio: 1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1239 if (kvm->mmu_notifier.ops) 1240 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm); 1241 #endif 1242 out_err_no_mmu_notifier: 1243 hardware_disable_all(); 1244 out_err_no_disable: 1245 kvm_arch_destroy_vm(kvm); 1246 out_err_no_arch_destroy_vm: 1247 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count)); 1248 for (i = 0; i < KVM_NR_BUSES; i++) 1249 kfree(kvm_get_bus(kvm, i)); 1250 cleanup_srcu_struct(&kvm->irq_srcu); 1251 out_err_no_irq_srcu: 1252 cleanup_srcu_struct(&kvm->srcu); 1253 out_err_no_srcu: 1254 kvm_arch_free_vm(kvm); 1255 mmdrop(current->mm); 1256 module_put(kvm_chardev_ops.owner); 1257 return ERR_PTR(r); 1258 } 1259 1260 static void kvm_destroy_devices(struct kvm *kvm) 1261 { 1262 struct kvm_device *dev, *tmp; 1263 1264 /* 1265 * We do not need to take the kvm->lock here, because nobody else 1266 * has a reference to the struct kvm at this point and therefore 1267 * cannot access the devices list anyhow. 1268 */ 1269 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) { 1270 list_del(&dev->vm_node); 1271 dev->ops->destroy(dev); 1272 } 1273 } 1274 1275 static void kvm_destroy_vm(struct kvm *kvm) 1276 { 1277 int i; 1278 struct mm_struct *mm = kvm->mm; 1279 1280 kvm_destroy_pm_notifier(kvm); 1281 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm); 1282 kvm_destroy_vm_debugfs(kvm); 1283 kvm_arch_sync_events(kvm); 1284 mutex_lock(&kvm_lock); 1285 list_del(&kvm->vm_list); 1286 mutex_unlock(&kvm_lock); 1287 kvm_arch_pre_destroy_vm(kvm); 1288 1289 kvm_free_irq_routing(kvm); 1290 for (i = 0; i < KVM_NR_BUSES; i++) { 1291 struct kvm_io_bus *bus = kvm_get_bus(kvm, i); 1292 1293 if (bus) 1294 kvm_io_bus_destroy(bus); 1295 kvm->buses[i] = NULL; 1296 } 1297 kvm_coalesced_mmio_free(kvm); 1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1299 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); 1300 /* 1301 * At this point, pending calls to invalidate_range_start() 1302 * have completed but no more MMU notifiers will run, so 1303 * mn_active_invalidate_count may remain unbalanced. 1304 * No threads can be waiting in kvm_swap_active_memslots() as the 1305 * last reference on KVM has been dropped, but freeing 1306 * memslots would deadlock without this manual intervention. 1307 */ 1308 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait)); 1309 kvm->mn_active_invalidate_count = 0; 1310 #else 1311 kvm_flush_shadow_all(kvm); 1312 #endif 1313 kvm_arch_destroy_vm(kvm); 1314 kvm_destroy_devices(kvm); 1315 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 1316 kvm_free_memslots(kvm, &kvm->__memslots[i][0]); 1317 kvm_free_memslots(kvm, &kvm->__memslots[i][1]); 1318 } 1319 cleanup_srcu_struct(&kvm->irq_srcu); 1320 cleanup_srcu_struct(&kvm->srcu); 1321 kvm_arch_free_vm(kvm); 1322 preempt_notifier_dec(); 1323 hardware_disable_all(); 1324 mmdrop(mm); 1325 module_put(kvm_chardev_ops.owner); 1326 } 1327 1328 void kvm_get_kvm(struct kvm *kvm) 1329 { 1330 refcount_inc(&kvm->users_count); 1331 } 1332 EXPORT_SYMBOL_GPL(kvm_get_kvm); 1333 1334 /* 1335 * Make sure the vm is not during destruction, which is a safe version of 1336 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise. 1337 */ 1338 bool kvm_get_kvm_safe(struct kvm *kvm) 1339 { 1340 return refcount_inc_not_zero(&kvm->users_count); 1341 } 1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe); 1343 1344 void kvm_put_kvm(struct kvm *kvm) 1345 { 1346 if (refcount_dec_and_test(&kvm->users_count)) 1347 kvm_destroy_vm(kvm); 1348 } 1349 EXPORT_SYMBOL_GPL(kvm_put_kvm); 1350 1351 /* 1352 * Used to put a reference that was taken on behalf of an object associated 1353 * with a user-visible file descriptor, e.g. a vcpu or device, if installation 1354 * of the new file descriptor fails and the reference cannot be transferred to 1355 * its final owner. In such cases, the caller is still actively using @kvm and 1356 * will fail miserably if the refcount unexpectedly hits zero. 1357 */ 1358 void kvm_put_kvm_no_destroy(struct kvm *kvm) 1359 { 1360 WARN_ON(refcount_dec_and_test(&kvm->users_count)); 1361 } 1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy); 1363 1364 static int kvm_vm_release(struct inode *inode, struct file *filp) 1365 { 1366 struct kvm *kvm = filp->private_data; 1367 1368 kvm_irqfd_release(kvm); 1369 1370 kvm_put_kvm(kvm); 1371 return 0; 1372 } 1373 1374 /* 1375 * Allocation size is twice as large as the actual dirty bitmap size. 1376 * See kvm_vm_ioctl_get_dirty_log() why this is needed. 1377 */ 1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot) 1379 { 1380 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot); 1381 1382 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT); 1383 if (!memslot->dirty_bitmap) 1384 return -ENOMEM; 1385 1386 return 0; 1387 } 1388 1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id) 1390 { 1391 struct kvm_memslots *active = __kvm_memslots(kvm, as_id); 1392 int node_idx_inactive = active->node_idx ^ 1; 1393 1394 return &kvm->__memslots[as_id][node_idx_inactive]; 1395 } 1396 1397 /* 1398 * Helper to get the address space ID when one of memslot pointers may be NULL. 1399 * This also serves as a sanity that at least one of the pointers is non-NULL, 1400 * and that their address space IDs don't diverge. 1401 */ 1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a, 1403 struct kvm_memory_slot *b) 1404 { 1405 if (WARN_ON_ONCE(!a && !b)) 1406 return 0; 1407 1408 if (!a) 1409 return b->as_id; 1410 if (!b) 1411 return a->as_id; 1412 1413 WARN_ON_ONCE(a->as_id != b->as_id); 1414 return a->as_id; 1415 } 1416 1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots, 1418 struct kvm_memory_slot *slot) 1419 { 1420 struct rb_root *gfn_tree = &slots->gfn_tree; 1421 struct rb_node **node, *parent; 1422 int idx = slots->node_idx; 1423 1424 parent = NULL; 1425 for (node = &gfn_tree->rb_node; *node; ) { 1426 struct kvm_memory_slot *tmp; 1427 1428 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]); 1429 parent = *node; 1430 if (slot->base_gfn < tmp->base_gfn) 1431 node = &(*node)->rb_left; 1432 else if (slot->base_gfn > tmp->base_gfn) 1433 node = &(*node)->rb_right; 1434 else 1435 BUG(); 1436 } 1437 1438 rb_link_node(&slot->gfn_node[idx], parent, node); 1439 rb_insert_color(&slot->gfn_node[idx], gfn_tree); 1440 } 1441 1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots, 1443 struct kvm_memory_slot *slot) 1444 { 1445 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree); 1446 } 1447 1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots, 1449 struct kvm_memory_slot *old, 1450 struct kvm_memory_slot *new) 1451 { 1452 int idx = slots->node_idx; 1453 1454 WARN_ON_ONCE(old->base_gfn != new->base_gfn); 1455 1456 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx], 1457 &slots->gfn_tree); 1458 } 1459 1460 /* 1461 * Replace @old with @new in the inactive memslots. 1462 * 1463 * With NULL @old this simply adds @new. 1464 * With NULL @new this simply removes @old. 1465 * 1466 * If @new is non-NULL its hva_node[slots_idx] range has to be set 1467 * appropriately. 1468 */ 1469 static void kvm_replace_memslot(struct kvm *kvm, 1470 struct kvm_memory_slot *old, 1471 struct kvm_memory_slot *new) 1472 { 1473 int as_id = kvm_memslots_get_as_id(old, new); 1474 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1475 int idx = slots->node_idx; 1476 1477 if (old) { 1478 hash_del(&old->id_node[idx]); 1479 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree); 1480 1481 if ((long)old == atomic_long_read(&slots->last_used_slot)) 1482 atomic_long_set(&slots->last_used_slot, (long)new); 1483 1484 if (!new) { 1485 kvm_erase_gfn_node(slots, old); 1486 return; 1487 } 1488 } 1489 1490 /* 1491 * Initialize @new's hva range. Do this even when replacing an @old 1492 * slot, kvm_copy_memslot() deliberately does not touch node data. 1493 */ 1494 new->hva_node[idx].start = new->userspace_addr; 1495 new->hva_node[idx].last = new->userspace_addr + 1496 (new->npages << PAGE_SHIFT) - 1; 1497 1498 /* 1499 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(), 1500 * hva_node needs to be swapped with remove+insert even though hva can't 1501 * change when replacing an existing slot. 1502 */ 1503 hash_add(slots->id_hash, &new->id_node[idx], new->id); 1504 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree); 1505 1506 /* 1507 * If the memslot gfn is unchanged, rb_replace_node() can be used to 1508 * switch the node in the gfn tree instead of removing the old and 1509 * inserting the new as two separate operations. Replacement is a 1510 * single O(1) operation versus two O(log(n)) operations for 1511 * remove+insert. 1512 */ 1513 if (old && old->base_gfn == new->base_gfn) { 1514 kvm_replace_gfn_node(slots, old, new); 1515 } else { 1516 if (old) 1517 kvm_erase_gfn_node(slots, old); 1518 kvm_insert_gfn_node(slots, new); 1519 } 1520 } 1521 1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem) 1523 { 1524 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES; 1525 1526 #ifdef __KVM_HAVE_READONLY_MEM 1527 valid_flags |= KVM_MEM_READONLY; 1528 #endif 1529 1530 if (mem->flags & ~valid_flags) 1531 return -EINVAL; 1532 1533 return 0; 1534 } 1535 1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id) 1537 { 1538 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id); 1539 1540 /* Grab the generation from the activate memslots. */ 1541 u64 gen = __kvm_memslots(kvm, as_id)->generation; 1542 1543 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS); 1544 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1545 1546 /* 1547 * Do not store the new memslots while there are invalidations in 1548 * progress, otherwise the locking in invalidate_range_start and 1549 * invalidate_range_end will be unbalanced. 1550 */ 1551 spin_lock(&kvm->mn_invalidate_lock); 1552 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait); 1553 while (kvm->mn_active_invalidate_count) { 1554 set_current_state(TASK_UNINTERRUPTIBLE); 1555 spin_unlock(&kvm->mn_invalidate_lock); 1556 schedule(); 1557 spin_lock(&kvm->mn_invalidate_lock); 1558 } 1559 finish_rcuwait(&kvm->mn_memslots_update_rcuwait); 1560 rcu_assign_pointer(kvm->memslots[as_id], slots); 1561 spin_unlock(&kvm->mn_invalidate_lock); 1562 1563 /* 1564 * Acquired in kvm_set_memslot. Must be released before synchronize 1565 * SRCU below in order to avoid deadlock with another thread 1566 * acquiring the slots_arch_lock in an srcu critical section. 1567 */ 1568 mutex_unlock(&kvm->slots_arch_lock); 1569 1570 synchronize_srcu_expedited(&kvm->srcu); 1571 1572 /* 1573 * Increment the new memslot generation a second time, dropping the 1574 * update in-progress flag and incrementing the generation based on 1575 * the number of address spaces. This provides a unique and easily 1576 * identifiable generation number while the memslots are in flux. 1577 */ 1578 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS; 1579 1580 /* 1581 * Generations must be unique even across address spaces. We do not need 1582 * a global counter for that, instead the generation space is evenly split 1583 * across address spaces. For example, with two address spaces, address 1584 * space 0 will use generations 0, 2, 4, ... while address space 1 will 1585 * use generations 1, 3, 5, ... 1586 */ 1587 gen += KVM_ADDRESS_SPACE_NUM; 1588 1589 kvm_arch_memslots_updated(kvm, gen); 1590 1591 slots->generation = gen; 1592 } 1593 1594 static int kvm_prepare_memory_region(struct kvm *kvm, 1595 const struct kvm_memory_slot *old, 1596 struct kvm_memory_slot *new, 1597 enum kvm_mr_change change) 1598 { 1599 int r; 1600 1601 /* 1602 * If dirty logging is disabled, nullify the bitmap; the old bitmap 1603 * will be freed on "commit". If logging is enabled in both old and 1604 * new, reuse the existing bitmap. If logging is enabled only in the 1605 * new and KVM isn't using a ring buffer, allocate and initialize a 1606 * new bitmap. 1607 */ 1608 if (change != KVM_MR_DELETE) { 1609 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 1610 new->dirty_bitmap = NULL; 1611 else if (old && old->dirty_bitmap) 1612 new->dirty_bitmap = old->dirty_bitmap; 1613 else if (kvm_use_dirty_bitmap(kvm)) { 1614 r = kvm_alloc_dirty_bitmap(new); 1615 if (r) 1616 return r; 1617 1618 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 1619 bitmap_set(new->dirty_bitmap, 0, new->npages); 1620 } 1621 } 1622 1623 r = kvm_arch_prepare_memory_region(kvm, old, new, change); 1624 1625 /* Free the bitmap on failure if it was allocated above. */ 1626 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap)) 1627 kvm_destroy_dirty_bitmap(new); 1628 1629 return r; 1630 } 1631 1632 static void kvm_commit_memory_region(struct kvm *kvm, 1633 struct kvm_memory_slot *old, 1634 const struct kvm_memory_slot *new, 1635 enum kvm_mr_change change) 1636 { 1637 int old_flags = old ? old->flags : 0; 1638 int new_flags = new ? new->flags : 0; 1639 /* 1640 * Update the total number of memslot pages before calling the arch 1641 * hook so that architectures can consume the result directly. 1642 */ 1643 if (change == KVM_MR_DELETE) 1644 kvm->nr_memslot_pages -= old->npages; 1645 else if (change == KVM_MR_CREATE) 1646 kvm->nr_memslot_pages += new->npages; 1647 1648 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) { 1649 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1; 1650 atomic_set(&kvm->nr_memslots_dirty_logging, 1651 atomic_read(&kvm->nr_memslots_dirty_logging) + change); 1652 } 1653 1654 kvm_arch_commit_memory_region(kvm, old, new, change); 1655 1656 switch (change) { 1657 case KVM_MR_CREATE: 1658 /* Nothing more to do. */ 1659 break; 1660 case KVM_MR_DELETE: 1661 /* Free the old memslot and all its metadata. */ 1662 kvm_free_memslot(kvm, old); 1663 break; 1664 case KVM_MR_MOVE: 1665 case KVM_MR_FLAGS_ONLY: 1666 /* 1667 * Free the dirty bitmap as needed; the below check encompasses 1668 * both the flags and whether a ring buffer is being used) 1669 */ 1670 if (old->dirty_bitmap && !new->dirty_bitmap) 1671 kvm_destroy_dirty_bitmap(old); 1672 1673 /* 1674 * The final quirk. Free the detached, old slot, but only its 1675 * memory, not any metadata. Metadata, including arch specific 1676 * data, may be reused by @new. 1677 */ 1678 kfree(old); 1679 break; 1680 default: 1681 BUG(); 1682 } 1683 } 1684 1685 /* 1686 * Activate @new, which must be installed in the inactive slots by the caller, 1687 * by swapping the active slots and then propagating @new to @old once @old is 1688 * unreachable and can be safely modified. 1689 * 1690 * With NULL @old this simply adds @new to @active (while swapping the sets). 1691 * With NULL @new this simply removes @old from @active and frees it 1692 * (while also swapping the sets). 1693 */ 1694 static void kvm_activate_memslot(struct kvm *kvm, 1695 struct kvm_memory_slot *old, 1696 struct kvm_memory_slot *new) 1697 { 1698 int as_id = kvm_memslots_get_as_id(old, new); 1699 1700 kvm_swap_active_memslots(kvm, as_id); 1701 1702 /* Propagate the new memslot to the now inactive memslots. */ 1703 kvm_replace_memslot(kvm, old, new); 1704 } 1705 1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest, 1707 const struct kvm_memory_slot *src) 1708 { 1709 dest->base_gfn = src->base_gfn; 1710 dest->npages = src->npages; 1711 dest->dirty_bitmap = src->dirty_bitmap; 1712 dest->arch = src->arch; 1713 dest->userspace_addr = src->userspace_addr; 1714 dest->flags = src->flags; 1715 dest->id = src->id; 1716 dest->as_id = src->as_id; 1717 } 1718 1719 static void kvm_invalidate_memslot(struct kvm *kvm, 1720 struct kvm_memory_slot *old, 1721 struct kvm_memory_slot *invalid_slot) 1722 { 1723 /* 1724 * Mark the current slot INVALID. As with all memslot modifications, 1725 * this must be done on an unreachable slot to avoid modifying the 1726 * current slot in the active tree. 1727 */ 1728 kvm_copy_memslot(invalid_slot, old); 1729 invalid_slot->flags |= KVM_MEMSLOT_INVALID; 1730 kvm_replace_memslot(kvm, old, invalid_slot); 1731 1732 /* 1733 * Activate the slot that is now marked INVALID, but don't propagate 1734 * the slot to the now inactive slots. The slot is either going to be 1735 * deleted or recreated as a new slot. 1736 */ 1737 kvm_swap_active_memslots(kvm, old->as_id); 1738 1739 /* 1740 * From this point no new shadow pages pointing to a deleted, or moved, 1741 * memslot will be created. Validation of sp->gfn happens in: 1742 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) 1743 * - kvm_is_visible_gfn (mmu_check_root) 1744 */ 1745 kvm_arch_flush_shadow_memslot(kvm, old); 1746 kvm_arch_guest_memory_reclaimed(kvm); 1747 1748 /* Was released by kvm_swap_active_memslots(), reacquire. */ 1749 mutex_lock(&kvm->slots_arch_lock); 1750 1751 /* 1752 * Copy the arch-specific field of the newly-installed slot back to the 1753 * old slot as the arch data could have changed between releasing 1754 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock 1755 * above. Writers are required to retrieve memslots *after* acquiring 1756 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh. 1757 */ 1758 old->arch = invalid_slot->arch; 1759 } 1760 1761 static void kvm_create_memslot(struct kvm *kvm, 1762 struct kvm_memory_slot *new) 1763 { 1764 /* Add the new memslot to the inactive set and activate. */ 1765 kvm_replace_memslot(kvm, NULL, new); 1766 kvm_activate_memslot(kvm, NULL, new); 1767 } 1768 1769 static void kvm_delete_memslot(struct kvm *kvm, 1770 struct kvm_memory_slot *old, 1771 struct kvm_memory_slot *invalid_slot) 1772 { 1773 /* 1774 * Remove the old memslot (in the inactive memslots) by passing NULL as 1775 * the "new" slot, and for the invalid version in the active slots. 1776 */ 1777 kvm_replace_memslot(kvm, old, NULL); 1778 kvm_activate_memslot(kvm, invalid_slot, NULL); 1779 } 1780 1781 static void kvm_move_memslot(struct kvm *kvm, 1782 struct kvm_memory_slot *old, 1783 struct kvm_memory_slot *new, 1784 struct kvm_memory_slot *invalid_slot) 1785 { 1786 /* 1787 * Replace the old memslot in the inactive slots, and then swap slots 1788 * and replace the current INVALID with the new as well. 1789 */ 1790 kvm_replace_memslot(kvm, old, new); 1791 kvm_activate_memslot(kvm, invalid_slot, new); 1792 } 1793 1794 static void kvm_update_flags_memslot(struct kvm *kvm, 1795 struct kvm_memory_slot *old, 1796 struct kvm_memory_slot *new) 1797 { 1798 /* 1799 * Similar to the MOVE case, but the slot doesn't need to be zapped as 1800 * an intermediate step. Instead, the old memslot is simply replaced 1801 * with a new, updated copy in both memslot sets. 1802 */ 1803 kvm_replace_memslot(kvm, old, new); 1804 kvm_activate_memslot(kvm, old, new); 1805 } 1806 1807 static int kvm_set_memslot(struct kvm *kvm, 1808 struct kvm_memory_slot *old, 1809 struct kvm_memory_slot *new, 1810 enum kvm_mr_change change) 1811 { 1812 struct kvm_memory_slot *invalid_slot; 1813 int r; 1814 1815 /* 1816 * Released in kvm_swap_active_memslots(). 1817 * 1818 * Must be held from before the current memslots are copied until after 1819 * the new memslots are installed with rcu_assign_pointer, then 1820 * released before the synchronize srcu in kvm_swap_active_memslots(). 1821 * 1822 * When modifying memslots outside of the slots_lock, must be held 1823 * before reading the pointer to the current memslots until after all 1824 * changes to those memslots are complete. 1825 * 1826 * These rules ensure that installing new memslots does not lose 1827 * changes made to the previous memslots. 1828 */ 1829 mutex_lock(&kvm->slots_arch_lock); 1830 1831 /* 1832 * Invalidate the old slot if it's being deleted or moved. This is 1833 * done prior to actually deleting/moving the memslot to allow vCPUs to 1834 * continue running by ensuring there are no mappings or shadow pages 1835 * for the memslot when it is deleted/moved. Without pre-invalidation 1836 * (and without a lock), a window would exist between effecting the 1837 * delete/move and committing the changes in arch code where KVM or a 1838 * guest could access a non-existent memslot. 1839 * 1840 * Modifications are done on a temporary, unreachable slot. The old 1841 * slot needs to be preserved in case a later step fails and the 1842 * invalidation needs to be reverted. 1843 */ 1844 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1845 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT); 1846 if (!invalid_slot) { 1847 mutex_unlock(&kvm->slots_arch_lock); 1848 return -ENOMEM; 1849 } 1850 kvm_invalidate_memslot(kvm, old, invalid_slot); 1851 } 1852 1853 r = kvm_prepare_memory_region(kvm, old, new, change); 1854 if (r) { 1855 /* 1856 * For DELETE/MOVE, revert the above INVALID change. No 1857 * modifications required since the original slot was preserved 1858 * in the inactive slots. Changing the active memslots also 1859 * release slots_arch_lock. 1860 */ 1861 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) { 1862 kvm_activate_memslot(kvm, invalid_slot, old); 1863 kfree(invalid_slot); 1864 } else { 1865 mutex_unlock(&kvm->slots_arch_lock); 1866 } 1867 return r; 1868 } 1869 1870 /* 1871 * For DELETE and MOVE, the working slot is now active as the INVALID 1872 * version of the old slot. MOVE is particularly special as it reuses 1873 * the old slot and returns a copy of the old slot (in working_slot). 1874 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the 1875 * old slot is detached but otherwise preserved. 1876 */ 1877 if (change == KVM_MR_CREATE) 1878 kvm_create_memslot(kvm, new); 1879 else if (change == KVM_MR_DELETE) 1880 kvm_delete_memslot(kvm, old, invalid_slot); 1881 else if (change == KVM_MR_MOVE) 1882 kvm_move_memslot(kvm, old, new, invalid_slot); 1883 else if (change == KVM_MR_FLAGS_ONLY) 1884 kvm_update_flags_memslot(kvm, old, new); 1885 else 1886 BUG(); 1887 1888 /* Free the temporary INVALID slot used for DELETE and MOVE. */ 1889 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) 1890 kfree(invalid_slot); 1891 1892 /* 1893 * No need to refresh new->arch, changes after dropping slots_arch_lock 1894 * will directly hit the final, active memslot. Architectures are 1895 * responsible for knowing that new->arch may be stale. 1896 */ 1897 kvm_commit_memory_region(kvm, old, new, change); 1898 1899 return 0; 1900 } 1901 1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id, 1903 gfn_t start, gfn_t end) 1904 { 1905 struct kvm_memslot_iter iter; 1906 1907 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) { 1908 if (iter.slot->id != id) 1909 return true; 1910 } 1911 1912 return false; 1913 } 1914 1915 /* 1916 * Allocate some memory and give it an address in the guest physical address 1917 * space. 1918 * 1919 * Discontiguous memory is allowed, mostly for framebuffers. 1920 * 1921 * Must be called holding kvm->slots_lock for write. 1922 */ 1923 int __kvm_set_memory_region(struct kvm *kvm, 1924 const struct kvm_userspace_memory_region *mem) 1925 { 1926 struct kvm_memory_slot *old, *new; 1927 struct kvm_memslots *slots; 1928 enum kvm_mr_change change; 1929 unsigned long npages; 1930 gfn_t base_gfn; 1931 int as_id, id; 1932 int r; 1933 1934 r = check_memory_region_flags(mem); 1935 if (r) 1936 return r; 1937 1938 as_id = mem->slot >> 16; 1939 id = (u16)mem->slot; 1940 1941 /* General sanity checks */ 1942 if ((mem->memory_size & (PAGE_SIZE - 1)) || 1943 (mem->memory_size != (unsigned long)mem->memory_size)) 1944 return -EINVAL; 1945 if (mem->guest_phys_addr & (PAGE_SIZE - 1)) 1946 return -EINVAL; 1947 /* We can read the guest memory with __xxx_user() later on. */ 1948 if ((mem->userspace_addr & (PAGE_SIZE - 1)) || 1949 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) || 1950 !access_ok((void __user *)(unsigned long)mem->userspace_addr, 1951 mem->memory_size)) 1952 return -EINVAL; 1953 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM) 1954 return -EINVAL; 1955 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) 1956 return -EINVAL; 1957 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES) 1958 return -EINVAL; 1959 1960 slots = __kvm_memslots(kvm, as_id); 1961 1962 /* 1963 * Note, the old memslot (and the pointer itself!) may be invalidated 1964 * and/or destroyed by kvm_set_memslot(). 1965 */ 1966 old = id_to_memslot(slots, id); 1967 1968 if (!mem->memory_size) { 1969 if (!old || !old->npages) 1970 return -EINVAL; 1971 1972 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages)) 1973 return -EIO; 1974 1975 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE); 1976 } 1977 1978 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT); 1979 npages = (mem->memory_size >> PAGE_SHIFT); 1980 1981 if (!old || !old->npages) { 1982 change = KVM_MR_CREATE; 1983 1984 /* 1985 * To simplify KVM internals, the total number of pages across 1986 * all memslots must fit in an unsigned long. 1987 */ 1988 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages) 1989 return -EINVAL; 1990 } else { /* Modify an existing slot. */ 1991 if ((mem->userspace_addr != old->userspace_addr) || 1992 (npages != old->npages) || 1993 ((mem->flags ^ old->flags) & KVM_MEM_READONLY)) 1994 return -EINVAL; 1995 1996 if (base_gfn != old->base_gfn) 1997 change = KVM_MR_MOVE; 1998 else if (mem->flags != old->flags) 1999 change = KVM_MR_FLAGS_ONLY; 2000 else /* Nothing to change. */ 2001 return 0; 2002 } 2003 2004 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) && 2005 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages)) 2006 return -EEXIST; 2007 2008 /* Allocate a slot that will persist in the memslot. */ 2009 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT); 2010 if (!new) 2011 return -ENOMEM; 2012 2013 new->as_id = as_id; 2014 new->id = id; 2015 new->base_gfn = base_gfn; 2016 new->npages = npages; 2017 new->flags = mem->flags; 2018 new->userspace_addr = mem->userspace_addr; 2019 2020 r = kvm_set_memslot(kvm, old, new, change); 2021 if (r) 2022 kfree(new); 2023 return r; 2024 } 2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region); 2026 2027 int kvm_set_memory_region(struct kvm *kvm, 2028 const struct kvm_userspace_memory_region *mem) 2029 { 2030 int r; 2031 2032 mutex_lock(&kvm->slots_lock); 2033 r = __kvm_set_memory_region(kvm, mem); 2034 mutex_unlock(&kvm->slots_lock); 2035 return r; 2036 } 2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region); 2038 2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, 2040 struct kvm_userspace_memory_region *mem) 2041 { 2042 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS) 2043 return -EINVAL; 2044 2045 return kvm_set_memory_region(kvm, mem); 2046 } 2047 2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 2049 /** 2050 * kvm_get_dirty_log - get a snapshot of dirty pages 2051 * @kvm: pointer to kvm instance 2052 * @log: slot id and address to which we copy the log 2053 * @is_dirty: set to '1' if any dirty pages were found 2054 * @memslot: set to the associated memslot, always valid on success 2055 */ 2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 2057 int *is_dirty, struct kvm_memory_slot **memslot) 2058 { 2059 struct kvm_memslots *slots; 2060 int i, as_id, id; 2061 unsigned long n; 2062 unsigned long any = 0; 2063 2064 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2065 if (!kvm_use_dirty_bitmap(kvm)) 2066 return -ENXIO; 2067 2068 *memslot = NULL; 2069 *is_dirty = 0; 2070 2071 as_id = log->slot >> 16; 2072 id = (u16)log->slot; 2073 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2074 return -EINVAL; 2075 2076 slots = __kvm_memslots(kvm, as_id); 2077 *memslot = id_to_memslot(slots, id); 2078 if (!(*memslot) || !(*memslot)->dirty_bitmap) 2079 return -ENOENT; 2080 2081 kvm_arch_sync_dirty_log(kvm, *memslot); 2082 2083 n = kvm_dirty_bitmap_bytes(*memslot); 2084 2085 for (i = 0; !any && i < n/sizeof(long); ++i) 2086 any = (*memslot)->dirty_bitmap[i]; 2087 2088 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n)) 2089 return -EFAULT; 2090 2091 if (any) 2092 *is_dirty = 1; 2093 return 0; 2094 } 2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log); 2096 2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2098 /** 2099 * kvm_get_dirty_log_protect - get a snapshot of dirty pages 2100 * and reenable dirty page tracking for the corresponding pages. 2101 * @kvm: pointer to kvm instance 2102 * @log: slot id and address to which we copy the log 2103 * 2104 * We need to keep it in mind that VCPU threads can write to the bitmap 2105 * concurrently. So, to avoid losing track of dirty pages we keep the 2106 * following order: 2107 * 2108 * 1. Take a snapshot of the bit and clear it if needed. 2109 * 2. Write protect the corresponding page. 2110 * 3. Copy the snapshot to the userspace. 2111 * 4. Upon return caller flushes TLB's if needed. 2112 * 2113 * Between 2 and 4, the guest may write to the page using the remaining TLB 2114 * entry. This is not a problem because the page is reported dirty using 2115 * the snapshot taken before and step 4 ensures that writes done after 2116 * exiting to userspace will be logged for the next call. 2117 * 2118 */ 2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log) 2120 { 2121 struct kvm_memslots *slots; 2122 struct kvm_memory_slot *memslot; 2123 int i, as_id, id; 2124 unsigned long n; 2125 unsigned long *dirty_bitmap; 2126 unsigned long *dirty_bitmap_buffer; 2127 bool flush; 2128 2129 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2130 if (!kvm_use_dirty_bitmap(kvm)) 2131 return -ENXIO; 2132 2133 as_id = log->slot >> 16; 2134 id = (u16)log->slot; 2135 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2136 return -EINVAL; 2137 2138 slots = __kvm_memslots(kvm, as_id); 2139 memslot = id_to_memslot(slots, id); 2140 if (!memslot || !memslot->dirty_bitmap) 2141 return -ENOENT; 2142 2143 dirty_bitmap = memslot->dirty_bitmap; 2144 2145 kvm_arch_sync_dirty_log(kvm, memslot); 2146 2147 n = kvm_dirty_bitmap_bytes(memslot); 2148 flush = false; 2149 if (kvm->manual_dirty_log_protect) { 2150 /* 2151 * Unlike kvm_get_dirty_log, we always return false in *flush, 2152 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There 2153 * is some code duplication between this function and 2154 * kvm_get_dirty_log, but hopefully all architecture 2155 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log 2156 * can be eliminated. 2157 */ 2158 dirty_bitmap_buffer = dirty_bitmap; 2159 } else { 2160 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2161 memset(dirty_bitmap_buffer, 0, n); 2162 2163 KVM_MMU_LOCK(kvm); 2164 for (i = 0; i < n / sizeof(long); i++) { 2165 unsigned long mask; 2166 gfn_t offset; 2167 2168 if (!dirty_bitmap[i]) 2169 continue; 2170 2171 flush = true; 2172 mask = xchg(&dirty_bitmap[i], 0); 2173 dirty_bitmap_buffer[i] = mask; 2174 2175 offset = i * BITS_PER_LONG; 2176 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2177 offset, mask); 2178 } 2179 KVM_MMU_UNLOCK(kvm); 2180 } 2181 2182 if (flush) 2183 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2184 2185 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) 2186 return -EFAULT; 2187 return 0; 2188 } 2189 2190 2191 /** 2192 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 2193 * @kvm: kvm instance 2194 * @log: slot id and address to which we copy the log 2195 * 2196 * Steps 1-4 below provide general overview of dirty page logging. See 2197 * kvm_get_dirty_log_protect() function description for additional details. 2198 * 2199 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 2200 * always flush the TLB (step 4) even if previous step failed and the dirty 2201 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 2202 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 2203 * writes will be marked dirty for next log read. 2204 * 2205 * 1. Take a snapshot of the bit and clear it if needed. 2206 * 2. Write protect the corresponding page. 2207 * 3. Copy the snapshot to the userspace. 2208 * 4. Flush TLB's if needed. 2209 */ 2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 2211 struct kvm_dirty_log *log) 2212 { 2213 int r; 2214 2215 mutex_lock(&kvm->slots_lock); 2216 2217 r = kvm_get_dirty_log_protect(kvm, log); 2218 2219 mutex_unlock(&kvm->slots_lock); 2220 return r; 2221 } 2222 2223 /** 2224 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap 2225 * and reenable dirty page tracking for the corresponding pages. 2226 * @kvm: pointer to kvm instance 2227 * @log: slot id and address from which to fetch the bitmap of dirty pages 2228 */ 2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm, 2230 struct kvm_clear_dirty_log *log) 2231 { 2232 struct kvm_memslots *slots; 2233 struct kvm_memory_slot *memslot; 2234 int as_id, id; 2235 gfn_t offset; 2236 unsigned long i, n; 2237 unsigned long *dirty_bitmap; 2238 unsigned long *dirty_bitmap_buffer; 2239 bool flush; 2240 2241 /* Dirty ring tracking may be exclusive to dirty log tracking */ 2242 if (!kvm_use_dirty_bitmap(kvm)) 2243 return -ENXIO; 2244 2245 as_id = log->slot >> 16; 2246 id = (u16)log->slot; 2247 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS) 2248 return -EINVAL; 2249 2250 if (log->first_page & 63) 2251 return -EINVAL; 2252 2253 slots = __kvm_memslots(kvm, as_id); 2254 memslot = id_to_memslot(slots, id); 2255 if (!memslot || !memslot->dirty_bitmap) 2256 return -ENOENT; 2257 2258 dirty_bitmap = memslot->dirty_bitmap; 2259 2260 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8; 2261 2262 if (log->first_page > memslot->npages || 2263 log->num_pages > memslot->npages - log->first_page || 2264 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63))) 2265 return -EINVAL; 2266 2267 kvm_arch_sync_dirty_log(kvm, memslot); 2268 2269 flush = false; 2270 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot); 2271 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n)) 2272 return -EFAULT; 2273 2274 KVM_MMU_LOCK(kvm); 2275 for (offset = log->first_page, i = offset / BITS_PER_LONG, 2276 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--; 2277 i++, offset += BITS_PER_LONG) { 2278 unsigned long mask = *dirty_bitmap_buffer++; 2279 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i]; 2280 if (!mask) 2281 continue; 2282 2283 mask &= atomic_long_fetch_andnot(mask, p); 2284 2285 /* 2286 * mask contains the bits that really have been cleared. This 2287 * never includes any bits beyond the length of the memslot (if 2288 * the length is not aligned to 64 pages), therefore it is not 2289 * a problem if userspace sets them in log->dirty_bitmap. 2290 */ 2291 if (mask) { 2292 flush = true; 2293 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot, 2294 offset, mask); 2295 } 2296 } 2297 KVM_MMU_UNLOCK(kvm); 2298 2299 if (flush) 2300 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 2301 2302 return 0; 2303 } 2304 2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, 2306 struct kvm_clear_dirty_log *log) 2307 { 2308 int r; 2309 2310 mutex_lock(&kvm->slots_lock); 2311 2312 r = kvm_clear_dirty_log_protect(kvm, log); 2313 2314 mutex_unlock(&kvm->slots_lock); 2315 return r; 2316 } 2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 2318 2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) 2320 { 2321 return __gfn_to_memslot(kvm_memslots(kvm), gfn); 2322 } 2323 EXPORT_SYMBOL_GPL(gfn_to_memslot); 2324 2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn) 2326 { 2327 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu); 2328 u64 gen = slots->generation; 2329 struct kvm_memory_slot *slot; 2330 2331 /* 2332 * This also protects against using a memslot from a different address space, 2333 * since different address spaces have different generation numbers. 2334 */ 2335 if (unlikely(gen != vcpu->last_used_slot_gen)) { 2336 vcpu->last_used_slot = NULL; 2337 vcpu->last_used_slot_gen = gen; 2338 } 2339 2340 slot = try_get_memslot(vcpu->last_used_slot, gfn); 2341 if (slot) 2342 return slot; 2343 2344 /* 2345 * Fall back to searching all memslots. We purposely use 2346 * search_memslots() instead of __gfn_to_memslot() to avoid 2347 * thrashing the VM-wide last_used_slot in kvm_memslots. 2348 */ 2349 slot = search_memslots(slots, gfn, false); 2350 if (slot) { 2351 vcpu->last_used_slot = slot; 2352 return slot; 2353 } 2354 2355 return NULL; 2356 } 2357 2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) 2359 { 2360 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); 2361 2362 return kvm_is_visible_memslot(memslot); 2363 } 2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); 2365 2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2367 { 2368 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2369 2370 return kvm_is_visible_memslot(memslot); 2371 } 2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn); 2373 2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn) 2375 { 2376 struct vm_area_struct *vma; 2377 unsigned long addr, size; 2378 2379 size = PAGE_SIZE; 2380 2381 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL); 2382 if (kvm_is_error_hva(addr)) 2383 return PAGE_SIZE; 2384 2385 mmap_read_lock(current->mm); 2386 vma = find_vma(current->mm, addr); 2387 if (!vma) 2388 goto out; 2389 2390 size = vma_kernel_pagesize(vma); 2391 2392 out: 2393 mmap_read_unlock(current->mm); 2394 2395 return size; 2396 } 2397 2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot) 2399 { 2400 return slot->flags & KVM_MEM_READONLY; 2401 } 2402 2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn, 2404 gfn_t *nr_pages, bool write) 2405 { 2406 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 2407 return KVM_HVA_ERR_BAD; 2408 2409 if (memslot_is_readonly(slot) && write) 2410 return KVM_HVA_ERR_RO_BAD; 2411 2412 if (nr_pages) 2413 *nr_pages = slot->npages - (gfn - slot->base_gfn); 2414 2415 return __gfn_to_hva_memslot(slot, gfn); 2416 } 2417 2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, 2419 gfn_t *nr_pages) 2420 { 2421 return __gfn_to_hva_many(slot, gfn, nr_pages, true); 2422 } 2423 2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, 2425 gfn_t gfn) 2426 { 2427 return gfn_to_hva_many(slot, gfn, NULL); 2428 } 2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot); 2430 2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) 2432 { 2433 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); 2434 } 2435 EXPORT_SYMBOL_GPL(gfn_to_hva); 2436 2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn) 2438 { 2439 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL); 2440 } 2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva); 2442 2443 /* 2444 * Return the hva of a @gfn and the R/W attribute if possible. 2445 * 2446 * @slot: the kvm_memory_slot which contains @gfn 2447 * @gfn: the gfn to be translated 2448 * @writable: used to return the read/write attribute of the @slot if the hva 2449 * is valid and @writable is not NULL 2450 */ 2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, 2452 gfn_t gfn, bool *writable) 2453 { 2454 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false); 2455 2456 if (!kvm_is_error_hva(hva) && writable) 2457 *writable = !memslot_is_readonly(slot); 2458 2459 return hva; 2460 } 2461 2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable) 2463 { 2464 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 2465 2466 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2467 } 2468 2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable) 2470 { 2471 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 2472 2473 return gfn_to_hva_memslot_prot(slot, gfn, writable); 2474 } 2475 2476 static inline int check_user_page_hwpoison(unsigned long addr) 2477 { 2478 int rc, flags = FOLL_HWPOISON | FOLL_WRITE; 2479 2480 rc = get_user_pages(addr, 1, flags, NULL, NULL); 2481 return rc == -EHWPOISON; 2482 } 2483 2484 /* 2485 * The fast path to get the writable pfn which will be stored in @pfn, 2486 * true indicates success, otherwise false is returned. It's also the 2487 * only part that runs if we can in atomic context. 2488 */ 2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault, 2490 bool *writable, kvm_pfn_t *pfn) 2491 { 2492 struct page *page[1]; 2493 2494 /* 2495 * Fast pin a writable pfn only if it is a write fault request 2496 * or the caller allows to map a writable pfn for a read fault 2497 * request. 2498 */ 2499 if (!(write_fault || writable)) 2500 return false; 2501 2502 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) { 2503 *pfn = page_to_pfn(page[0]); 2504 2505 if (writable) 2506 *writable = true; 2507 return true; 2508 } 2509 2510 return false; 2511 } 2512 2513 /* 2514 * The slow path to get the pfn of the specified host virtual address, 2515 * 1 indicates success, -errno is returned if error is detected. 2516 */ 2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault, 2518 bool interruptible, bool *writable, kvm_pfn_t *pfn) 2519 { 2520 unsigned int flags = FOLL_HWPOISON; 2521 struct page *page; 2522 int npages; 2523 2524 might_sleep(); 2525 2526 if (writable) 2527 *writable = write_fault; 2528 2529 if (write_fault) 2530 flags |= FOLL_WRITE; 2531 if (async) 2532 flags |= FOLL_NOWAIT; 2533 if (interruptible) 2534 flags |= FOLL_INTERRUPTIBLE; 2535 2536 npages = get_user_pages_unlocked(addr, 1, &page, flags); 2537 if (npages != 1) 2538 return npages; 2539 2540 /* map read fault as writable if possible */ 2541 if (unlikely(!write_fault) && writable) { 2542 struct page *wpage; 2543 2544 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) { 2545 *writable = true; 2546 put_page(page); 2547 page = wpage; 2548 } 2549 } 2550 *pfn = page_to_pfn(page); 2551 return npages; 2552 } 2553 2554 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault) 2555 { 2556 if (unlikely(!(vma->vm_flags & VM_READ))) 2557 return false; 2558 2559 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE)))) 2560 return false; 2561 2562 return true; 2563 } 2564 2565 static int kvm_try_get_pfn(kvm_pfn_t pfn) 2566 { 2567 struct page *page = kvm_pfn_to_refcounted_page(pfn); 2568 2569 if (!page) 2570 return 1; 2571 2572 return get_page_unless_zero(page); 2573 } 2574 2575 static int hva_to_pfn_remapped(struct vm_area_struct *vma, 2576 unsigned long addr, bool write_fault, 2577 bool *writable, kvm_pfn_t *p_pfn) 2578 { 2579 kvm_pfn_t pfn; 2580 pte_t *ptep; 2581 spinlock_t *ptl; 2582 int r; 2583 2584 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2585 if (r) { 2586 /* 2587 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does 2588 * not call the fault handler, so do it here. 2589 */ 2590 bool unlocked = false; 2591 r = fixup_user_fault(current->mm, addr, 2592 (write_fault ? FAULT_FLAG_WRITE : 0), 2593 &unlocked); 2594 if (unlocked) 2595 return -EAGAIN; 2596 if (r) 2597 return r; 2598 2599 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl); 2600 if (r) 2601 return r; 2602 } 2603 2604 if (write_fault && !pte_write(*ptep)) { 2605 pfn = KVM_PFN_ERR_RO_FAULT; 2606 goto out; 2607 } 2608 2609 if (writable) 2610 *writable = pte_write(*ptep); 2611 pfn = pte_pfn(*ptep); 2612 2613 /* 2614 * Get a reference here because callers of *hva_to_pfn* and 2615 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the 2616 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP 2617 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will 2618 * simply do nothing for reserved pfns. 2619 * 2620 * Whoever called remap_pfn_range is also going to call e.g. 2621 * unmap_mapping_range before the underlying pages are freed, 2622 * causing a call to our MMU notifier. 2623 * 2624 * Certain IO or PFNMAP mappings can be backed with valid 2625 * struct pages, but be allocated without refcounting e.g., 2626 * tail pages of non-compound higher order allocations, which 2627 * would then underflow the refcount when the caller does the 2628 * required put_page. Don't allow those pages here. 2629 */ 2630 if (!kvm_try_get_pfn(pfn)) 2631 r = -EFAULT; 2632 2633 out: 2634 pte_unmap_unlock(ptep, ptl); 2635 *p_pfn = pfn; 2636 2637 return r; 2638 } 2639 2640 /* 2641 * Pin guest page in memory and return its pfn. 2642 * @addr: host virtual address which maps memory to the guest 2643 * @atomic: whether this function can sleep 2644 * @interruptible: whether the process can be interrupted by non-fatal signals 2645 * @async: whether this function need to wait IO complete if the 2646 * host page is not in the memory 2647 * @write_fault: whether we should get a writable host page 2648 * @writable: whether it allows to map a writable host page for !@write_fault 2649 * 2650 * The function will map a writable host page for these two cases: 2651 * 1): @write_fault = true 2652 * 2): @write_fault = false && @writable, @writable will tell the caller 2653 * whether the mapping is writable. 2654 */ 2655 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible, 2656 bool *async, bool write_fault, bool *writable) 2657 { 2658 struct vm_area_struct *vma; 2659 kvm_pfn_t pfn; 2660 int npages, r; 2661 2662 /* we can do it either atomically or asynchronously, not both */ 2663 BUG_ON(atomic && async); 2664 2665 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn)) 2666 return pfn; 2667 2668 if (atomic) 2669 return KVM_PFN_ERR_FAULT; 2670 2671 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible, 2672 writable, &pfn); 2673 if (npages == 1) 2674 return pfn; 2675 if (npages == -EINTR) 2676 return KVM_PFN_ERR_SIGPENDING; 2677 2678 mmap_read_lock(current->mm); 2679 if (npages == -EHWPOISON || 2680 (!async && check_user_page_hwpoison(addr))) { 2681 pfn = KVM_PFN_ERR_HWPOISON; 2682 goto exit; 2683 } 2684 2685 retry: 2686 vma = vma_lookup(current->mm, addr); 2687 2688 if (vma == NULL) 2689 pfn = KVM_PFN_ERR_FAULT; 2690 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) { 2691 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn); 2692 if (r == -EAGAIN) 2693 goto retry; 2694 if (r < 0) 2695 pfn = KVM_PFN_ERR_FAULT; 2696 } else { 2697 if (async && vma_is_valid(vma, write_fault)) 2698 *async = true; 2699 pfn = KVM_PFN_ERR_FAULT; 2700 } 2701 exit: 2702 mmap_read_unlock(current->mm); 2703 return pfn; 2704 } 2705 2706 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn, 2707 bool atomic, bool interruptible, bool *async, 2708 bool write_fault, bool *writable, hva_t *hva) 2709 { 2710 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault); 2711 2712 if (hva) 2713 *hva = addr; 2714 2715 if (addr == KVM_HVA_ERR_RO_BAD) { 2716 if (writable) 2717 *writable = false; 2718 return KVM_PFN_ERR_RO_FAULT; 2719 } 2720 2721 if (kvm_is_error_hva(addr)) { 2722 if (writable) 2723 *writable = false; 2724 return KVM_PFN_NOSLOT; 2725 } 2726 2727 /* Do not map writable pfn in the readonly memslot. */ 2728 if (writable && memslot_is_readonly(slot)) { 2729 *writable = false; 2730 writable = NULL; 2731 } 2732 2733 return hva_to_pfn(addr, atomic, interruptible, async, write_fault, 2734 writable); 2735 } 2736 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot); 2737 2738 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 2739 bool *writable) 2740 { 2741 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false, 2742 NULL, write_fault, writable, NULL); 2743 } 2744 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); 2745 2746 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 2747 { 2748 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true, 2749 NULL, NULL); 2750 } 2751 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot); 2752 2753 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn) 2754 { 2755 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true, 2756 NULL, NULL); 2757 } 2758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic); 2759 2760 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn) 2761 { 2762 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2763 } 2764 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic); 2765 2766 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) 2767 { 2768 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn); 2769 } 2770 EXPORT_SYMBOL_GPL(gfn_to_pfn); 2771 2772 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn) 2773 { 2774 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn); 2775 } 2776 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn); 2777 2778 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 2779 struct page **pages, int nr_pages) 2780 { 2781 unsigned long addr; 2782 gfn_t entry = 0; 2783 2784 addr = gfn_to_hva_many(slot, gfn, &entry); 2785 if (kvm_is_error_hva(addr)) 2786 return -1; 2787 2788 if (entry < nr_pages) 2789 return 0; 2790 2791 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages); 2792 } 2793 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); 2794 2795 /* 2796 * Do not use this helper unless you are absolutely certain the gfn _must_ be 2797 * backed by 'struct page'. A valid example is if the backing memslot is 2798 * controlled by KVM. Note, if the returned page is valid, it's refcount has 2799 * been elevated by gfn_to_pfn(). 2800 */ 2801 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) 2802 { 2803 struct page *page; 2804 kvm_pfn_t pfn; 2805 2806 pfn = gfn_to_pfn(kvm, gfn); 2807 2808 if (is_error_noslot_pfn(pfn)) 2809 return KVM_ERR_PTR_BAD_PAGE; 2810 2811 page = kvm_pfn_to_refcounted_page(pfn); 2812 if (!page) 2813 return KVM_ERR_PTR_BAD_PAGE; 2814 2815 return page; 2816 } 2817 EXPORT_SYMBOL_GPL(gfn_to_page); 2818 2819 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty) 2820 { 2821 if (dirty) 2822 kvm_release_pfn_dirty(pfn); 2823 else 2824 kvm_release_pfn_clean(pfn); 2825 } 2826 2827 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map) 2828 { 2829 kvm_pfn_t pfn; 2830 void *hva = NULL; 2831 struct page *page = KVM_UNMAPPED_PAGE; 2832 2833 if (!map) 2834 return -EINVAL; 2835 2836 pfn = gfn_to_pfn(vcpu->kvm, gfn); 2837 if (is_error_noslot_pfn(pfn)) 2838 return -EINVAL; 2839 2840 if (pfn_valid(pfn)) { 2841 page = pfn_to_page(pfn); 2842 hva = kmap(page); 2843 #ifdef CONFIG_HAS_IOMEM 2844 } else { 2845 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB); 2846 #endif 2847 } 2848 2849 if (!hva) 2850 return -EFAULT; 2851 2852 map->page = page; 2853 map->hva = hva; 2854 map->pfn = pfn; 2855 map->gfn = gfn; 2856 2857 return 0; 2858 } 2859 EXPORT_SYMBOL_GPL(kvm_vcpu_map); 2860 2861 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty) 2862 { 2863 if (!map) 2864 return; 2865 2866 if (!map->hva) 2867 return; 2868 2869 if (map->page != KVM_UNMAPPED_PAGE) 2870 kunmap(map->page); 2871 #ifdef CONFIG_HAS_IOMEM 2872 else 2873 memunmap(map->hva); 2874 #endif 2875 2876 if (dirty) 2877 kvm_vcpu_mark_page_dirty(vcpu, map->gfn); 2878 2879 kvm_release_pfn(map->pfn, dirty); 2880 2881 map->hva = NULL; 2882 map->page = NULL; 2883 } 2884 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap); 2885 2886 static bool kvm_is_ad_tracked_page(struct page *page) 2887 { 2888 /* 2889 * Per page-flags.h, pages tagged PG_reserved "should in general not be 2890 * touched (e.g. set dirty) except by its owner". 2891 */ 2892 return !PageReserved(page); 2893 } 2894 2895 static void kvm_set_page_dirty(struct page *page) 2896 { 2897 if (kvm_is_ad_tracked_page(page)) 2898 SetPageDirty(page); 2899 } 2900 2901 static void kvm_set_page_accessed(struct page *page) 2902 { 2903 if (kvm_is_ad_tracked_page(page)) 2904 mark_page_accessed(page); 2905 } 2906 2907 void kvm_release_page_clean(struct page *page) 2908 { 2909 WARN_ON(is_error_page(page)); 2910 2911 kvm_set_page_accessed(page); 2912 put_page(page); 2913 } 2914 EXPORT_SYMBOL_GPL(kvm_release_page_clean); 2915 2916 void kvm_release_pfn_clean(kvm_pfn_t pfn) 2917 { 2918 struct page *page; 2919 2920 if (is_error_noslot_pfn(pfn)) 2921 return; 2922 2923 page = kvm_pfn_to_refcounted_page(pfn); 2924 if (!page) 2925 return; 2926 2927 kvm_release_page_clean(page); 2928 } 2929 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); 2930 2931 void kvm_release_page_dirty(struct page *page) 2932 { 2933 WARN_ON(is_error_page(page)); 2934 2935 kvm_set_page_dirty(page); 2936 kvm_release_page_clean(page); 2937 } 2938 EXPORT_SYMBOL_GPL(kvm_release_page_dirty); 2939 2940 void kvm_release_pfn_dirty(kvm_pfn_t pfn) 2941 { 2942 struct page *page; 2943 2944 if (is_error_noslot_pfn(pfn)) 2945 return; 2946 2947 page = kvm_pfn_to_refcounted_page(pfn); 2948 if (!page) 2949 return; 2950 2951 kvm_release_page_dirty(page); 2952 } 2953 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); 2954 2955 /* 2956 * Note, checking for an error/noslot pfn is the caller's responsibility when 2957 * directly marking a page dirty/accessed. Unlike the "release" helpers, the 2958 * "set" helpers are not to be used when the pfn might point at garbage. 2959 */ 2960 void kvm_set_pfn_dirty(kvm_pfn_t pfn) 2961 { 2962 if (WARN_ON(is_error_noslot_pfn(pfn))) 2963 return; 2964 2965 if (pfn_valid(pfn)) 2966 kvm_set_page_dirty(pfn_to_page(pfn)); 2967 } 2968 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); 2969 2970 void kvm_set_pfn_accessed(kvm_pfn_t pfn) 2971 { 2972 if (WARN_ON(is_error_noslot_pfn(pfn))) 2973 return; 2974 2975 if (pfn_valid(pfn)) 2976 kvm_set_page_accessed(pfn_to_page(pfn)); 2977 } 2978 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); 2979 2980 static int next_segment(unsigned long len, int offset) 2981 { 2982 if (len > PAGE_SIZE - offset) 2983 return PAGE_SIZE - offset; 2984 else 2985 return len; 2986 } 2987 2988 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn, 2989 void *data, int offset, int len) 2990 { 2991 int r; 2992 unsigned long addr; 2993 2994 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 2995 if (kvm_is_error_hva(addr)) 2996 return -EFAULT; 2997 r = __copy_from_user(data, (void __user *)addr + offset, len); 2998 if (r) 2999 return -EFAULT; 3000 return 0; 3001 } 3002 3003 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 3004 int len) 3005 { 3006 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3007 3008 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3009 } 3010 EXPORT_SYMBOL_GPL(kvm_read_guest_page); 3011 3012 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, 3013 int offset, int len) 3014 { 3015 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3016 3017 return __kvm_read_guest_page(slot, gfn, data, offset, len); 3018 } 3019 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page); 3020 3021 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) 3022 { 3023 gfn_t gfn = gpa >> PAGE_SHIFT; 3024 int seg; 3025 int offset = offset_in_page(gpa); 3026 int ret; 3027 3028 while ((seg = next_segment(len, offset)) != 0) { 3029 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); 3030 if (ret < 0) 3031 return ret; 3032 offset = 0; 3033 len -= seg; 3034 data += seg; 3035 ++gfn; 3036 } 3037 return 0; 3038 } 3039 EXPORT_SYMBOL_GPL(kvm_read_guest); 3040 3041 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len) 3042 { 3043 gfn_t gfn = gpa >> PAGE_SHIFT; 3044 int seg; 3045 int offset = offset_in_page(gpa); 3046 int ret; 3047 3048 while ((seg = next_segment(len, offset)) != 0) { 3049 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg); 3050 if (ret < 0) 3051 return ret; 3052 offset = 0; 3053 len -= seg; 3054 data += seg; 3055 ++gfn; 3056 } 3057 return 0; 3058 } 3059 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest); 3060 3061 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 3062 void *data, int offset, unsigned long len) 3063 { 3064 int r; 3065 unsigned long addr; 3066 3067 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL); 3068 if (kvm_is_error_hva(addr)) 3069 return -EFAULT; 3070 pagefault_disable(); 3071 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); 3072 pagefault_enable(); 3073 if (r) 3074 return -EFAULT; 3075 return 0; 3076 } 3077 3078 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, 3079 void *data, unsigned long len) 3080 { 3081 gfn_t gfn = gpa >> PAGE_SHIFT; 3082 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3083 int offset = offset_in_page(gpa); 3084 3085 return __kvm_read_guest_atomic(slot, gfn, data, offset, len); 3086 } 3087 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic); 3088 3089 static int __kvm_write_guest_page(struct kvm *kvm, 3090 struct kvm_memory_slot *memslot, gfn_t gfn, 3091 const void *data, int offset, int len) 3092 { 3093 int r; 3094 unsigned long addr; 3095 3096 addr = gfn_to_hva_memslot(memslot, gfn); 3097 if (kvm_is_error_hva(addr)) 3098 return -EFAULT; 3099 r = __copy_to_user((void __user *)addr + offset, data, len); 3100 if (r) 3101 return -EFAULT; 3102 mark_page_dirty_in_slot(kvm, memslot, gfn); 3103 return 0; 3104 } 3105 3106 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, 3107 const void *data, int offset, int len) 3108 { 3109 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn); 3110 3111 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len); 3112 } 3113 EXPORT_SYMBOL_GPL(kvm_write_guest_page); 3114 3115 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 3116 const void *data, int offset, int len) 3117 { 3118 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3119 3120 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len); 3121 } 3122 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page); 3123 3124 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 3125 unsigned long len) 3126 { 3127 gfn_t gfn = gpa >> PAGE_SHIFT; 3128 int seg; 3129 int offset = offset_in_page(gpa); 3130 int ret; 3131 3132 while ((seg = next_segment(len, offset)) != 0) { 3133 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); 3134 if (ret < 0) 3135 return ret; 3136 offset = 0; 3137 len -= seg; 3138 data += seg; 3139 ++gfn; 3140 } 3141 return 0; 3142 } 3143 EXPORT_SYMBOL_GPL(kvm_write_guest); 3144 3145 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 3146 unsigned long len) 3147 { 3148 gfn_t gfn = gpa >> PAGE_SHIFT; 3149 int seg; 3150 int offset = offset_in_page(gpa); 3151 int ret; 3152 3153 while ((seg = next_segment(len, offset)) != 0) { 3154 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg); 3155 if (ret < 0) 3156 return ret; 3157 offset = 0; 3158 len -= seg; 3159 data += seg; 3160 ++gfn; 3161 } 3162 return 0; 3163 } 3164 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest); 3165 3166 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots, 3167 struct gfn_to_hva_cache *ghc, 3168 gpa_t gpa, unsigned long len) 3169 { 3170 int offset = offset_in_page(gpa); 3171 gfn_t start_gfn = gpa >> PAGE_SHIFT; 3172 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; 3173 gfn_t nr_pages_needed = end_gfn - start_gfn + 1; 3174 gfn_t nr_pages_avail; 3175 3176 /* Update ghc->generation before performing any error checks. */ 3177 ghc->generation = slots->generation; 3178 3179 if (start_gfn > end_gfn) { 3180 ghc->hva = KVM_HVA_ERR_BAD; 3181 return -EINVAL; 3182 } 3183 3184 /* 3185 * If the requested region crosses two memslots, we still 3186 * verify that the entire region is valid here. 3187 */ 3188 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) { 3189 ghc->memslot = __gfn_to_memslot(slots, start_gfn); 3190 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, 3191 &nr_pages_avail); 3192 if (kvm_is_error_hva(ghc->hva)) 3193 return -EFAULT; 3194 } 3195 3196 /* Use the slow path for cross page reads and writes. */ 3197 if (nr_pages_needed == 1) 3198 ghc->hva += offset; 3199 else 3200 ghc->memslot = NULL; 3201 3202 ghc->gpa = gpa; 3203 ghc->len = len; 3204 return 0; 3205 } 3206 3207 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3208 gpa_t gpa, unsigned long len) 3209 { 3210 struct kvm_memslots *slots = kvm_memslots(kvm); 3211 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len); 3212 } 3213 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); 3214 3215 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3216 void *data, unsigned int offset, 3217 unsigned long len) 3218 { 3219 struct kvm_memslots *slots = kvm_memslots(kvm); 3220 int r; 3221 gpa_t gpa = ghc->gpa + offset; 3222 3223 if (WARN_ON_ONCE(len + offset > ghc->len)) 3224 return -EINVAL; 3225 3226 if (slots->generation != ghc->generation) { 3227 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3228 return -EFAULT; 3229 } 3230 3231 if (kvm_is_error_hva(ghc->hva)) 3232 return -EFAULT; 3233 3234 if (unlikely(!ghc->memslot)) 3235 return kvm_write_guest(kvm, gpa, data, len); 3236 3237 r = __copy_to_user((void __user *)ghc->hva + offset, data, len); 3238 if (r) 3239 return -EFAULT; 3240 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT); 3241 3242 return 0; 3243 } 3244 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached); 3245 3246 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3247 void *data, unsigned long len) 3248 { 3249 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len); 3250 } 3251 EXPORT_SYMBOL_GPL(kvm_write_guest_cached); 3252 3253 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3254 void *data, unsigned int offset, 3255 unsigned long len) 3256 { 3257 struct kvm_memslots *slots = kvm_memslots(kvm); 3258 int r; 3259 gpa_t gpa = ghc->gpa + offset; 3260 3261 if (WARN_ON_ONCE(len + offset > ghc->len)) 3262 return -EINVAL; 3263 3264 if (slots->generation != ghc->generation) { 3265 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len)) 3266 return -EFAULT; 3267 } 3268 3269 if (kvm_is_error_hva(ghc->hva)) 3270 return -EFAULT; 3271 3272 if (unlikely(!ghc->memslot)) 3273 return kvm_read_guest(kvm, gpa, data, len); 3274 3275 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len); 3276 if (r) 3277 return -EFAULT; 3278 3279 return 0; 3280 } 3281 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached); 3282 3283 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 3284 void *data, unsigned long len) 3285 { 3286 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len); 3287 } 3288 EXPORT_SYMBOL_GPL(kvm_read_guest_cached); 3289 3290 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) 3291 { 3292 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3293 gfn_t gfn = gpa >> PAGE_SHIFT; 3294 int seg; 3295 int offset = offset_in_page(gpa); 3296 int ret; 3297 3298 while ((seg = next_segment(len, offset)) != 0) { 3299 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len); 3300 if (ret < 0) 3301 return ret; 3302 offset = 0; 3303 len -= seg; 3304 ++gfn; 3305 } 3306 return 0; 3307 } 3308 EXPORT_SYMBOL_GPL(kvm_clear_guest); 3309 3310 void mark_page_dirty_in_slot(struct kvm *kvm, 3311 const struct kvm_memory_slot *memslot, 3312 gfn_t gfn) 3313 { 3314 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 3315 3316 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3317 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm)) 3318 return; 3319 3320 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm)); 3321 #endif 3322 3323 if (memslot && kvm_slot_dirty_track_enabled(memslot)) { 3324 unsigned long rel_gfn = gfn - memslot->base_gfn; 3325 u32 slot = (memslot->as_id << 16) | memslot->id; 3326 3327 if (kvm->dirty_ring_size && vcpu) 3328 kvm_dirty_ring_push(vcpu, slot, rel_gfn); 3329 else if (memslot->dirty_bitmap) 3330 set_bit_le(rel_gfn, memslot->dirty_bitmap); 3331 } 3332 } 3333 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot); 3334 3335 void mark_page_dirty(struct kvm *kvm, gfn_t gfn) 3336 { 3337 struct kvm_memory_slot *memslot; 3338 3339 memslot = gfn_to_memslot(kvm, gfn); 3340 mark_page_dirty_in_slot(kvm, memslot, gfn); 3341 } 3342 EXPORT_SYMBOL_GPL(mark_page_dirty); 3343 3344 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn) 3345 { 3346 struct kvm_memory_slot *memslot; 3347 3348 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3349 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn); 3350 } 3351 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty); 3352 3353 void kvm_sigset_activate(struct kvm_vcpu *vcpu) 3354 { 3355 if (!vcpu->sigset_active) 3356 return; 3357 3358 /* 3359 * This does a lockless modification of ->real_blocked, which is fine 3360 * because, only current can change ->real_blocked and all readers of 3361 * ->real_blocked don't care as long ->real_blocked is always a subset 3362 * of ->blocked. 3363 */ 3364 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked); 3365 } 3366 3367 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu) 3368 { 3369 if (!vcpu->sigset_active) 3370 return; 3371 3372 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL); 3373 sigemptyset(¤t->real_blocked); 3374 } 3375 3376 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu) 3377 { 3378 unsigned int old, val, grow, grow_start; 3379 3380 old = val = vcpu->halt_poll_ns; 3381 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3382 grow = READ_ONCE(halt_poll_ns_grow); 3383 if (!grow) 3384 goto out; 3385 3386 val *= grow; 3387 if (val < grow_start) 3388 val = grow_start; 3389 3390 vcpu->halt_poll_ns = val; 3391 out: 3392 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old); 3393 } 3394 3395 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu) 3396 { 3397 unsigned int old, val, shrink, grow_start; 3398 3399 old = val = vcpu->halt_poll_ns; 3400 shrink = READ_ONCE(halt_poll_ns_shrink); 3401 grow_start = READ_ONCE(halt_poll_ns_grow_start); 3402 if (shrink == 0) 3403 val = 0; 3404 else 3405 val /= shrink; 3406 3407 if (val < grow_start) 3408 val = 0; 3409 3410 vcpu->halt_poll_ns = val; 3411 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old); 3412 } 3413 3414 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu) 3415 { 3416 int ret = -EINTR; 3417 int idx = srcu_read_lock(&vcpu->kvm->srcu); 3418 3419 if (kvm_arch_vcpu_runnable(vcpu)) 3420 goto out; 3421 if (kvm_cpu_has_pending_timer(vcpu)) 3422 goto out; 3423 if (signal_pending(current)) 3424 goto out; 3425 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu)) 3426 goto out; 3427 3428 ret = 0; 3429 out: 3430 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3431 return ret; 3432 } 3433 3434 /* 3435 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is 3436 * pending. This is mostly used when halting a vCPU, but may also be used 3437 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI. 3438 */ 3439 bool kvm_vcpu_block(struct kvm_vcpu *vcpu) 3440 { 3441 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu); 3442 bool waited = false; 3443 3444 vcpu->stat.generic.blocking = 1; 3445 3446 preempt_disable(); 3447 kvm_arch_vcpu_blocking(vcpu); 3448 prepare_to_rcuwait(wait); 3449 preempt_enable(); 3450 3451 for (;;) { 3452 set_current_state(TASK_INTERRUPTIBLE); 3453 3454 if (kvm_vcpu_check_block(vcpu) < 0) 3455 break; 3456 3457 waited = true; 3458 schedule(); 3459 } 3460 3461 preempt_disable(); 3462 finish_rcuwait(wait); 3463 kvm_arch_vcpu_unblocking(vcpu); 3464 preempt_enable(); 3465 3466 vcpu->stat.generic.blocking = 0; 3467 3468 return waited; 3469 } 3470 3471 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start, 3472 ktime_t end, bool success) 3473 { 3474 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic; 3475 u64 poll_ns = ktime_to_ns(ktime_sub(end, start)); 3476 3477 ++vcpu->stat.generic.halt_attempted_poll; 3478 3479 if (success) { 3480 ++vcpu->stat.generic.halt_successful_poll; 3481 3482 if (!vcpu_valid_wakeup(vcpu)) 3483 ++vcpu->stat.generic.halt_poll_invalid; 3484 3485 stats->halt_poll_success_ns += poll_ns; 3486 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns); 3487 } else { 3488 stats->halt_poll_fail_ns += poll_ns; 3489 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns); 3490 } 3491 } 3492 3493 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu) 3494 { 3495 struct kvm *kvm = vcpu->kvm; 3496 3497 if (kvm->override_halt_poll_ns) { 3498 /* 3499 * Ensure kvm->max_halt_poll_ns is not read before 3500 * kvm->override_halt_poll_ns. 3501 * 3502 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL. 3503 */ 3504 smp_rmb(); 3505 return READ_ONCE(kvm->max_halt_poll_ns); 3506 } 3507 3508 return READ_ONCE(halt_poll_ns); 3509 } 3510 3511 /* 3512 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt 3513 * polling is enabled, busy wait for a short time before blocking to avoid the 3514 * expensive block+unblock sequence if a wake event arrives soon after the vCPU 3515 * is halted. 3516 */ 3517 void kvm_vcpu_halt(struct kvm_vcpu *vcpu) 3518 { 3519 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3520 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu); 3521 ktime_t start, cur, poll_end; 3522 bool waited = false; 3523 bool do_halt_poll; 3524 u64 halt_ns; 3525 3526 if (vcpu->halt_poll_ns > max_halt_poll_ns) 3527 vcpu->halt_poll_ns = max_halt_poll_ns; 3528 3529 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns; 3530 3531 start = cur = poll_end = ktime_get(); 3532 if (do_halt_poll) { 3533 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns); 3534 3535 do { 3536 if (kvm_vcpu_check_block(vcpu) < 0) 3537 goto out; 3538 cpu_relax(); 3539 poll_end = cur = ktime_get(); 3540 } while (kvm_vcpu_can_poll(cur, stop)); 3541 } 3542 3543 waited = kvm_vcpu_block(vcpu); 3544 3545 cur = ktime_get(); 3546 if (waited) { 3547 vcpu->stat.generic.halt_wait_ns += 3548 ktime_to_ns(cur) - ktime_to_ns(poll_end); 3549 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist, 3550 ktime_to_ns(cur) - ktime_to_ns(poll_end)); 3551 } 3552 out: 3553 /* The total time the vCPU was "halted", including polling time. */ 3554 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start); 3555 3556 /* 3557 * Note, halt-polling is considered successful so long as the vCPU was 3558 * never actually scheduled out, i.e. even if the wake event arrived 3559 * after of the halt-polling loop itself, but before the full wait. 3560 */ 3561 if (do_halt_poll) 3562 update_halt_poll_stats(vcpu, start, poll_end, !waited); 3563 3564 if (halt_poll_allowed) { 3565 /* Recompute the max halt poll time in case it changed. */ 3566 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu); 3567 3568 if (!vcpu_valid_wakeup(vcpu)) { 3569 shrink_halt_poll_ns(vcpu); 3570 } else if (max_halt_poll_ns) { 3571 if (halt_ns <= vcpu->halt_poll_ns) 3572 ; 3573 /* we had a long block, shrink polling */ 3574 else if (vcpu->halt_poll_ns && 3575 halt_ns > max_halt_poll_ns) 3576 shrink_halt_poll_ns(vcpu); 3577 /* we had a short halt and our poll time is too small */ 3578 else if (vcpu->halt_poll_ns < max_halt_poll_ns && 3579 halt_ns < max_halt_poll_ns) 3580 grow_halt_poll_ns(vcpu); 3581 } else { 3582 vcpu->halt_poll_ns = 0; 3583 } 3584 } 3585 3586 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu)); 3587 } 3588 EXPORT_SYMBOL_GPL(kvm_vcpu_halt); 3589 3590 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu) 3591 { 3592 if (__kvm_vcpu_wake_up(vcpu)) { 3593 WRITE_ONCE(vcpu->ready, true); 3594 ++vcpu->stat.generic.halt_wakeup; 3595 return true; 3596 } 3597 3598 return false; 3599 } 3600 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up); 3601 3602 #ifndef CONFIG_S390 3603 /* 3604 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode. 3605 */ 3606 void kvm_vcpu_kick(struct kvm_vcpu *vcpu) 3607 { 3608 int me, cpu; 3609 3610 if (kvm_vcpu_wake_up(vcpu)) 3611 return; 3612 3613 me = get_cpu(); 3614 /* 3615 * The only state change done outside the vcpu mutex is IN_GUEST_MODE 3616 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should 3617 * kick" check does not need atomic operations if kvm_vcpu_kick is used 3618 * within the vCPU thread itself. 3619 */ 3620 if (vcpu == __this_cpu_read(kvm_running_vcpu)) { 3621 if (vcpu->mode == IN_GUEST_MODE) 3622 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE); 3623 goto out; 3624 } 3625 3626 /* 3627 * Note, the vCPU could get migrated to a different pCPU at any point 3628 * after kvm_arch_vcpu_should_kick(), which could result in sending an 3629 * IPI to the previous pCPU. But, that's ok because the purpose of the 3630 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the 3631 * vCPU also requires it to leave IN_GUEST_MODE. 3632 */ 3633 if (kvm_arch_vcpu_should_kick(vcpu)) { 3634 cpu = READ_ONCE(vcpu->cpu); 3635 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu)) 3636 smp_send_reschedule(cpu); 3637 } 3638 out: 3639 put_cpu(); 3640 } 3641 EXPORT_SYMBOL_GPL(kvm_vcpu_kick); 3642 #endif /* !CONFIG_S390 */ 3643 3644 int kvm_vcpu_yield_to(struct kvm_vcpu *target) 3645 { 3646 struct pid *pid; 3647 struct task_struct *task = NULL; 3648 int ret = 0; 3649 3650 rcu_read_lock(); 3651 pid = rcu_dereference(target->pid); 3652 if (pid) 3653 task = get_pid_task(pid, PIDTYPE_PID); 3654 rcu_read_unlock(); 3655 if (!task) 3656 return ret; 3657 ret = yield_to(task, 1); 3658 put_task_struct(task); 3659 3660 return ret; 3661 } 3662 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to); 3663 3664 /* 3665 * Helper that checks whether a VCPU is eligible for directed yield. 3666 * Most eligible candidate to yield is decided by following heuristics: 3667 * 3668 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently 3669 * (preempted lock holder), indicated by @in_spin_loop. 3670 * Set at the beginning and cleared at the end of interception/PLE handler. 3671 * 3672 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get 3673 * chance last time (mostly it has become eligible now since we have probably 3674 * yielded to lockholder in last iteration. This is done by toggling 3675 * @dy_eligible each time a VCPU checked for eligibility.) 3676 * 3677 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding 3678 * to preempted lock-holder could result in wrong VCPU selection and CPU 3679 * burning. Giving priority for a potential lock-holder increases lock 3680 * progress. 3681 * 3682 * Since algorithm is based on heuristics, accessing another VCPU data without 3683 * locking does not harm. It may result in trying to yield to same VCPU, fail 3684 * and continue with next VCPU and so on. 3685 */ 3686 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu) 3687 { 3688 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 3689 bool eligible; 3690 3691 eligible = !vcpu->spin_loop.in_spin_loop || 3692 vcpu->spin_loop.dy_eligible; 3693 3694 if (vcpu->spin_loop.in_spin_loop) 3695 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible); 3696 3697 return eligible; 3698 #else 3699 return true; 3700 #endif 3701 } 3702 3703 /* 3704 * Unlike kvm_arch_vcpu_runnable, this function is called outside 3705 * a vcpu_load/vcpu_put pair. However, for most architectures 3706 * kvm_arch_vcpu_runnable does not require vcpu_load. 3707 */ 3708 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 3709 { 3710 return kvm_arch_vcpu_runnable(vcpu); 3711 } 3712 3713 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu) 3714 { 3715 if (kvm_arch_dy_runnable(vcpu)) 3716 return true; 3717 3718 #ifdef CONFIG_KVM_ASYNC_PF 3719 if (!list_empty_careful(&vcpu->async_pf.done)) 3720 return true; 3721 #endif 3722 3723 return false; 3724 } 3725 3726 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 3727 { 3728 return false; 3729 } 3730 3731 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode) 3732 { 3733 struct kvm *kvm = me->kvm; 3734 struct kvm_vcpu *vcpu; 3735 int last_boosted_vcpu = me->kvm->last_boosted_vcpu; 3736 unsigned long i; 3737 int yielded = 0; 3738 int try = 3; 3739 int pass; 3740 3741 kvm_vcpu_set_in_spin_loop(me, true); 3742 /* 3743 * We boost the priority of a VCPU that is runnable but not 3744 * currently running, because it got preempted by something 3745 * else and called schedule in __vcpu_run. Hopefully that 3746 * VCPU is holding the lock that we need and will release it. 3747 * We approximate round-robin by starting at the last boosted VCPU. 3748 */ 3749 for (pass = 0; pass < 2 && !yielded && try; pass++) { 3750 kvm_for_each_vcpu(i, vcpu, kvm) { 3751 if (!pass && i <= last_boosted_vcpu) { 3752 i = last_boosted_vcpu; 3753 continue; 3754 } else if (pass && i > last_boosted_vcpu) 3755 break; 3756 if (!READ_ONCE(vcpu->ready)) 3757 continue; 3758 if (vcpu == me) 3759 continue; 3760 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu)) 3761 continue; 3762 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode && 3763 !kvm_arch_dy_has_pending_interrupt(vcpu) && 3764 !kvm_arch_vcpu_in_kernel(vcpu)) 3765 continue; 3766 if (!kvm_vcpu_eligible_for_directed_yield(vcpu)) 3767 continue; 3768 3769 yielded = kvm_vcpu_yield_to(vcpu); 3770 if (yielded > 0) { 3771 kvm->last_boosted_vcpu = i; 3772 break; 3773 } else if (yielded < 0) { 3774 try--; 3775 if (!try) 3776 break; 3777 } 3778 } 3779 } 3780 kvm_vcpu_set_in_spin_loop(me, false); 3781 3782 /* Ensure vcpu is not eligible during next spinloop */ 3783 kvm_vcpu_set_dy_eligible(me, false); 3784 } 3785 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); 3786 3787 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff) 3788 { 3789 #ifdef CONFIG_HAVE_KVM_DIRTY_RING 3790 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) && 3791 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET + 3792 kvm->dirty_ring_size / PAGE_SIZE); 3793 #else 3794 return false; 3795 #endif 3796 } 3797 3798 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf) 3799 { 3800 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data; 3801 struct page *page; 3802 3803 if (vmf->pgoff == 0) 3804 page = virt_to_page(vcpu->run); 3805 #ifdef CONFIG_X86 3806 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) 3807 page = virt_to_page(vcpu->arch.pio_data); 3808 #endif 3809 #ifdef CONFIG_KVM_MMIO 3810 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) 3811 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); 3812 #endif 3813 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff)) 3814 page = kvm_dirty_ring_get_page( 3815 &vcpu->dirty_ring, 3816 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET); 3817 else 3818 return kvm_arch_vcpu_fault(vcpu, vmf); 3819 get_page(page); 3820 vmf->page = page; 3821 return 0; 3822 } 3823 3824 static const struct vm_operations_struct kvm_vcpu_vm_ops = { 3825 .fault = kvm_vcpu_fault, 3826 }; 3827 3828 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) 3829 { 3830 struct kvm_vcpu *vcpu = file->private_data; 3831 unsigned long pages = vma_pages(vma); 3832 3833 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) || 3834 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) && 3835 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED))) 3836 return -EINVAL; 3837 3838 vma->vm_ops = &kvm_vcpu_vm_ops; 3839 return 0; 3840 } 3841 3842 static int kvm_vcpu_release(struct inode *inode, struct file *filp) 3843 { 3844 struct kvm_vcpu *vcpu = filp->private_data; 3845 3846 kvm_put_kvm(vcpu->kvm); 3847 return 0; 3848 } 3849 3850 static const struct file_operations kvm_vcpu_fops = { 3851 .release = kvm_vcpu_release, 3852 .unlocked_ioctl = kvm_vcpu_ioctl, 3853 .mmap = kvm_vcpu_mmap, 3854 .llseek = noop_llseek, 3855 KVM_COMPAT(kvm_vcpu_compat_ioctl), 3856 }; 3857 3858 /* 3859 * Allocates an inode for the vcpu. 3860 */ 3861 static int create_vcpu_fd(struct kvm_vcpu *vcpu) 3862 { 3863 char name[8 + 1 + ITOA_MAX_LEN + 1]; 3864 3865 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id); 3866 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC); 3867 } 3868 3869 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 3870 static int vcpu_get_pid(void *data, u64 *val) 3871 { 3872 struct kvm_vcpu *vcpu = data; 3873 *val = pid_nr(rcu_access_pointer(vcpu->pid)); 3874 return 0; 3875 } 3876 3877 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n"); 3878 3879 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 3880 { 3881 struct dentry *debugfs_dentry; 3882 char dir_name[ITOA_MAX_LEN * 2]; 3883 3884 if (!debugfs_initialized()) 3885 return; 3886 3887 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id); 3888 debugfs_dentry = debugfs_create_dir(dir_name, 3889 vcpu->kvm->debugfs_dentry); 3890 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu, 3891 &vcpu_get_pid_fops); 3892 3893 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry); 3894 } 3895 #endif 3896 3897 /* 3898 * Creates some virtual cpus. Good luck creating more than one. 3899 */ 3900 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) 3901 { 3902 int r; 3903 struct kvm_vcpu *vcpu; 3904 struct page *page; 3905 3906 if (id >= KVM_MAX_VCPU_IDS) 3907 return -EINVAL; 3908 3909 mutex_lock(&kvm->lock); 3910 if (kvm->created_vcpus >= kvm->max_vcpus) { 3911 mutex_unlock(&kvm->lock); 3912 return -EINVAL; 3913 } 3914 3915 r = kvm_arch_vcpu_precreate(kvm, id); 3916 if (r) { 3917 mutex_unlock(&kvm->lock); 3918 return r; 3919 } 3920 3921 kvm->created_vcpus++; 3922 mutex_unlock(&kvm->lock); 3923 3924 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 3925 if (!vcpu) { 3926 r = -ENOMEM; 3927 goto vcpu_decrement; 3928 } 3929 3930 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE); 3931 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3932 if (!page) { 3933 r = -ENOMEM; 3934 goto vcpu_free; 3935 } 3936 vcpu->run = page_address(page); 3937 3938 kvm_vcpu_init(vcpu, kvm, id); 3939 3940 r = kvm_arch_vcpu_create(vcpu); 3941 if (r) 3942 goto vcpu_free_run_page; 3943 3944 if (kvm->dirty_ring_size) { 3945 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring, 3946 id, kvm->dirty_ring_size); 3947 if (r) 3948 goto arch_vcpu_destroy; 3949 } 3950 3951 mutex_lock(&kvm->lock); 3952 3953 #ifdef CONFIG_LOCKDEP 3954 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */ 3955 mutex_lock(&vcpu->mutex); 3956 mutex_unlock(&vcpu->mutex); 3957 #endif 3958 3959 if (kvm_get_vcpu_by_id(kvm, id)) { 3960 r = -EEXIST; 3961 goto unlock_vcpu_destroy; 3962 } 3963 3964 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus); 3965 r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT); 3966 BUG_ON(r == -EBUSY); 3967 if (r) 3968 goto unlock_vcpu_destroy; 3969 3970 /* Now it's all set up, let userspace reach it */ 3971 kvm_get_kvm(kvm); 3972 r = create_vcpu_fd(vcpu); 3973 if (r < 0) { 3974 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx); 3975 kvm_put_kvm_no_destroy(kvm); 3976 goto unlock_vcpu_destroy; 3977 } 3978 3979 /* 3980 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu 3981 * pointer before kvm->online_vcpu's incremented value. 3982 */ 3983 smp_wmb(); 3984 atomic_inc(&kvm->online_vcpus); 3985 3986 mutex_unlock(&kvm->lock); 3987 kvm_arch_vcpu_postcreate(vcpu); 3988 kvm_create_vcpu_debugfs(vcpu); 3989 return r; 3990 3991 unlock_vcpu_destroy: 3992 mutex_unlock(&kvm->lock); 3993 kvm_dirty_ring_free(&vcpu->dirty_ring); 3994 arch_vcpu_destroy: 3995 kvm_arch_vcpu_destroy(vcpu); 3996 vcpu_free_run_page: 3997 free_page((unsigned long)vcpu->run); 3998 vcpu_free: 3999 kmem_cache_free(kvm_vcpu_cache, vcpu); 4000 vcpu_decrement: 4001 mutex_lock(&kvm->lock); 4002 kvm->created_vcpus--; 4003 mutex_unlock(&kvm->lock); 4004 return r; 4005 } 4006 4007 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) 4008 { 4009 if (sigset) { 4010 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 4011 vcpu->sigset_active = 1; 4012 vcpu->sigset = *sigset; 4013 } else 4014 vcpu->sigset_active = 0; 4015 return 0; 4016 } 4017 4018 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer, 4019 size_t size, loff_t *offset) 4020 { 4021 struct kvm_vcpu *vcpu = file->private_data; 4022 4023 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header, 4024 &kvm_vcpu_stats_desc[0], &vcpu->stat, 4025 sizeof(vcpu->stat), user_buffer, size, offset); 4026 } 4027 4028 static const struct file_operations kvm_vcpu_stats_fops = { 4029 .read = kvm_vcpu_stats_read, 4030 .llseek = noop_llseek, 4031 }; 4032 4033 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu) 4034 { 4035 int fd; 4036 struct file *file; 4037 char name[15 + ITOA_MAX_LEN + 1]; 4038 4039 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id); 4040 4041 fd = get_unused_fd_flags(O_CLOEXEC); 4042 if (fd < 0) 4043 return fd; 4044 4045 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY); 4046 if (IS_ERR(file)) { 4047 put_unused_fd(fd); 4048 return PTR_ERR(file); 4049 } 4050 file->f_mode |= FMODE_PREAD; 4051 fd_install(fd, file); 4052 4053 return fd; 4054 } 4055 4056 static long kvm_vcpu_ioctl(struct file *filp, 4057 unsigned int ioctl, unsigned long arg) 4058 { 4059 struct kvm_vcpu *vcpu = filp->private_data; 4060 void __user *argp = (void __user *)arg; 4061 int r; 4062 struct kvm_fpu *fpu = NULL; 4063 struct kvm_sregs *kvm_sregs = NULL; 4064 4065 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4066 return -EIO; 4067 4068 if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) 4069 return -EINVAL; 4070 4071 /* 4072 * Some architectures have vcpu ioctls that are asynchronous to vcpu 4073 * execution; mutex_lock() would break them. 4074 */ 4075 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg); 4076 if (r != -ENOIOCTLCMD) 4077 return r; 4078 4079 if (mutex_lock_killable(&vcpu->mutex)) 4080 return -EINTR; 4081 switch (ioctl) { 4082 case KVM_RUN: { 4083 struct pid *oldpid; 4084 r = -EINVAL; 4085 if (arg) 4086 goto out; 4087 oldpid = rcu_access_pointer(vcpu->pid); 4088 if (unlikely(oldpid != task_pid(current))) { 4089 /* The thread running this VCPU changed. */ 4090 struct pid *newpid; 4091 4092 r = kvm_arch_vcpu_run_pid_change(vcpu); 4093 if (r) 4094 break; 4095 4096 newpid = get_task_pid(current, PIDTYPE_PID); 4097 rcu_assign_pointer(vcpu->pid, newpid); 4098 if (oldpid) 4099 synchronize_rcu(); 4100 put_pid(oldpid); 4101 } 4102 r = kvm_arch_vcpu_ioctl_run(vcpu); 4103 trace_kvm_userspace_exit(vcpu->run->exit_reason, r); 4104 break; 4105 } 4106 case KVM_GET_REGS: { 4107 struct kvm_regs *kvm_regs; 4108 4109 r = -ENOMEM; 4110 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT); 4111 if (!kvm_regs) 4112 goto out; 4113 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); 4114 if (r) 4115 goto out_free1; 4116 r = -EFAULT; 4117 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) 4118 goto out_free1; 4119 r = 0; 4120 out_free1: 4121 kfree(kvm_regs); 4122 break; 4123 } 4124 case KVM_SET_REGS: { 4125 struct kvm_regs *kvm_regs; 4126 4127 kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); 4128 if (IS_ERR(kvm_regs)) { 4129 r = PTR_ERR(kvm_regs); 4130 goto out; 4131 } 4132 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); 4133 kfree(kvm_regs); 4134 break; 4135 } 4136 case KVM_GET_SREGS: { 4137 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), 4138 GFP_KERNEL_ACCOUNT); 4139 r = -ENOMEM; 4140 if (!kvm_sregs) 4141 goto out; 4142 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); 4143 if (r) 4144 goto out; 4145 r = -EFAULT; 4146 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) 4147 goto out; 4148 r = 0; 4149 break; 4150 } 4151 case KVM_SET_SREGS: { 4152 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); 4153 if (IS_ERR(kvm_sregs)) { 4154 r = PTR_ERR(kvm_sregs); 4155 kvm_sregs = NULL; 4156 goto out; 4157 } 4158 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); 4159 break; 4160 } 4161 case KVM_GET_MP_STATE: { 4162 struct kvm_mp_state mp_state; 4163 4164 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); 4165 if (r) 4166 goto out; 4167 r = -EFAULT; 4168 if (copy_to_user(argp, &mp_state, sizeof(mp_state))) 4169 goto out; 4170 r = 0; 4171 break; 4172 } 4173 case KVM_SET_MP_STATE: { 4174 struct kvm_mp_state mp_state; 4175 4176 r = -EFAULT; 4177 if (copy_from_user(&mp_state, argp, sizeof(mp_state))) 4178 goto out; 4179 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); 4180 break; 4181 } 4182 case KVM_TRANSLATE: { 4183 struct kvm_translation tr; 4184 4185 r = -EFAULT; 4186 if (copy_from_user(&tr, argp, sizeof(tr))) 4187 goto out; 4188 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); 4189 if (r) 4190 goto out; 4191 r = -EFAULT; 4192 if (copy_to_user(argp, &tr, sizeof(tr))) 4193 goto out; 4194 r = 0; 4195 break; 4196 } 4197 case KVM_SET_GUEST_DEBUG: { 4198 struct kvm_guest_debug dbg; 4199 4200 r = -EFAULT; 4201 if (copy_from_user(&dbg, argp, sizeof(dbg))) 4202 goto out; 4203 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); 4204 break; 4205 } 4206 case KVM_SET_SIGNAL_MASK: { 4207 struct kvm_signal_mask __user *sigmask_arg = argp; 4208 struct kvm_signal_mask kvm_sigmask; 4209 sigset_t sigset, *p; 4210 4211 p = NULL; 4212 if (argp) { 4213 r = -EFAULT; 4214 if (copy_from_user(&kvm_sigmask, argp, 4215 sizeof(kvm_sigmask))) 4216 goto out; 4217 r = -EINVAL; 4218 if (kvm_sigmask.len != sizeof(sigset)) 4219 goto out; 4220 r = -EFAULT; 4221 if (copy_from_user(&sigset, sigmask_arg->sigset, 4222 sizeof(sigset))) 4223 goto out; 4224 p = &sigset; 4225 } 4226 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); 4227 break; 4228 } 4229 case KVM_GET_FPU: { 4230 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT); 4231 r = -ENOMEM; 4232 if (!fpu) 4233 goto out; 4234 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); 4235 if (r) 4236 goto out; 4237 r = -EFAULT; 4238 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) 4239 goto out; 4240 r = 0; 4241 break; 4242 } 4243 case KVM_SET_FPU: { 4244 fpu = memdup_user(argp, sizeof(*fpu)); 4245 if (IS_ERR(fpu)) { 4246 r = PTR_ERR(fpu); 4247 fpu = NULL; 4248 goto out; 4249 } 4250 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); 4251 break; 4252 } 4253 case KVM_GET_STATS_FD: { 4254 r = kvm_vcpu_ioctl_get_stats_fd(vcpu); 4255 break; 4256 } 4257 default: 4258 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); 4259 } 4260 out: 4261 mutex_unlock(&vcpu->mutex); 4262 kfree(fpu); 4263 kfree(kvm_sregs); 4264 return r; 4265 } 4266 4267 #ifdef CONFIG_KVM_COMPAT 4268 static long kvm_vcpu_compat_ioctl(struct file *filp, 4269 unsigned int ioctl, unsigned long arg) 4270 { 4271 struct kvm_vcpu *vcpu = filp->private_data; 4272 void __user *argp = compat_ptr(arg); 4273 int r; 4274 4275 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead) 4276 return -EIO; 4277 4278 switch (ioctl) { 4279 case KVM_SET_SIGNAL_MASK: { 4280 struct kvm_signal_mask __user *sigmask_arg = argp; 4281 struct kvm_signal_mask kvm_sigmask; 4282 sigset_t sigset; 4283 4284 if (argp) { 4285 r = -EFAULT; 4286 if (copy_from_user(&kvm_sigmask, argp, 4287 sizeof(kvm_sigmask))) 4288 goto out; 4289 r = -EINVAL; 4290 if (kvm_sigmask.len != sizeof(compat_sigset_t)) 4291 goto out; 4292 r = -EFAULT; 4293 if (get_compat_sigset(&sigset, 4294 (compat_sigset_t __user *)sigmask_arg->sigset)) 4295 goto out; 4296 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); 4297 } else 4298 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL); 4299 break; 4300 } 4301 default: 4302 r = kvm_vcpu_ioctl(filp, ioctl, arg); 4303 } 4304 4305 out: 4306 return r; 4307 } 4308 #endif 4309 4310 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma) 4311 { 4312 struct kvm_device *dev = filp->private_data; 4313 4314 if (dev->ops->mmap) 4315 return dev->ops->mmap(dev, vma); 4316 4317 return -ENODEV; 4318 } 4319 4320 static int kvm_device_ioctl_attr(struct kvm_device *dev, 4321 int (*accessor)(struct kvm_device *dev, 4322 struct kvm_device_attr *attr), 4323 unsigned long arg) 4324 { 4325 struct kvm_device_attr attr; 4326 4327 if (!accessor) 4328 return -EPERM; 4329 4330 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4331 return -EFAULT; 4332 4333 return accessor(dev, &attr); 4334 } 4335 4336 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl, 4337 unsigned long arg) 4338 { 4339 struct kvm_device *dev = filp->private_data; 4340 4341 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead) 4342 return -EIO; 4343 4344 switch (ioctl) { 4345 case KVM_SET_DEVICE_ATTR: 4346 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg); 4347 case KVM_GET_DEVICE_ATTR: 4348 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg); 4349 case KVM_HAS_DEVICE_ATTR: 4350 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg); 4351 default: 4352 if (dev->ops->ioctl) 4353 return dev->ops->ioctl(dev, ioctl, arg); 4354 4355 return -ENOTTY; 4356 } 4357 } 4358 4359 static int kvm_device_release(struct inode *inode, struct file *filp) 4360 { 4361 struct kvm_device *dev = filp->private_data; 4362 struct kvm *kvm = dev->kvm; 4363 4364 if (dev->ops->release) { 4365 mutex_lock(&kvm->lock); 4366 list_del(&dev->vm_node); 4367 dev->ops->release(dev); 4368 mutex_unlock(&kvm->lock); 4369 } 4370 4371 kvm_put_kvm(kvm); 4372 return 0; 4373 } 4374 4375 static const struct file_operations kvm_device_fops = { 4376 .unlocked_ioctl = kvm_device_ioctl, 4377 .release = kvm_device_release, 4378 KVM_COMPAT(kvm_device_ioctl), 4379 .mmap = kvm_device_mmap, 4380 }; 4381 4382 struct kvm_device *kvm_device_from_filp(struct file *filp) 4383 { 4384 if (filp->f_op != &kvm_device_fops) 4385 return NULL; 4386 4387 return filp->private_data; 4388 } 4389 4390 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = { 4391 #ifdef CONFIG_KVM_MPIC 4392 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops, 4393 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops, 4394 #endif 4395 }; 4396 4397 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type) 4398 { 4399 if (type >= ARRAY_SIZE(kvm_device_ops_table)) 4400 return -ENOSPC; 4401 4402 if (kvm_device_ops_table[type] != NULL) 4403 return -EEXIST; 4404 4405 kvm_device_ops_table[type] = ops; 4406 return 0; 4407 } 4408 4409 void kvm_unregister_device_ops(u32 type) 4410 { 4411 if (kvm_device_ops_table[type] != NULL) 4412 kvm_device_ops_table[type] = NULL; 4413 } 4414 4415 static int kvm_ioctl_create_device(struct kvm *kvm, 4416 struct kvm_create_device *cd) 4417 { 4418 const struct kvm_device_ops *ops; 4419 struct kvm_device *dev; 4420 bool test = cd->flags & KVM_CREATE_DEVICE_TEST; 4421 int type; 4422 int ret; 4423 4424 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table)) 4425 return -ENODEV; 4426 4427 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table)); 4428 ops = kvm_device_ops_table[type]; 4429 if (ops == NULL) 4430 return -ENODEV; 4431 4432 if (test) 4433 return 0; 4434 4435 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT); 4436 if (!dev) 4437 return -ENOMEM; 4438 4439 dev->ops = ops; 4440 dev->kvm = kvm; 4441 4442 mutex_lock(&kvm->lock); 4443 ret = ops->create(dev, type); 4444 if (ret < 0) { 4445 mutex_unlock(&kvm->lock); 4446 kfree(dev); 4447 return ret; 4448 } 4449 list_add(&dev->vm_node, &kvm->devices); 4450 mutex_unlock(&kvm->lock); 4451 4452 if (ops->init) 4453 ops->init(dev); 4454 4455 kvm_get_kvm(kvm); 4456 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC); 4457 if (ret < 0) { 4458 kvm_put_kvm_no_destroy(kvm); 4459 mutex_lock(&kvm->lock); 4460 list_del(&dev->vm_node); 4461 if (ops->release) 4462 ops->release(dev); 4463 mutex_unlock(&kvm->lock); 4464 if (ops->destroy) 4465 ops->destroy(dev); 4466 return ret; 4467 } 4468 4469 cd->fd = ret; 4470 return 0; 4471 } 4472 4473 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg) 4474 { 4475 switch (arg) { 4476 case KVM_CAP_USER_MEMORY: 4477 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: 4478 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: 4479 case KVM_CAP_INTERNAL_ERROR_DATA: 4480 #ifdef CONFIG_HAVE_KVM_MSI 4481 case KVM_CAP_SIGNAL_MSI: 4482 #endif 4483 #ifdef CONFIG_HAVE_KVM_IRQFD 4484 case KVM_CAP_IRQFD: 4485 #endif 4486 case KVM_CAP_IOEVENTFD_ANY_LENGTH: 4487 case KVM_CAP_CHECK_EXTENSION_VM: 4488 case KVM_CAP_ENABLE_CAP_VM: 4489 case KVM_CAP_HALT_POLL: 4490 return 1; 4491 #ifdef CONFIG_KVM_MMIO 4492 case KVM_CAP_COALESCED_MMIO: 4493 return KVM_COALESCED_MMIO_PAGE_OFFSET; 4494 case KVM_CAP_COALESCED_PIO: 4495 return 1; 4496 #endif 4497 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4498 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: 4499 return KVM_DIRTY_LOG_MANUAL_CAPS; 4500 #endif 4501 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4502 case KVM_CAP_IRQ_ROUTING: 4503 return KVM_MAX_IRQ_ROUTES; 4504 #endif 4505 #if KVM_ADDRESS_SPACE_NUM > 1 4506 case KVM_CAP_MULTI_ADDRESS_SPACE: 4507 return KVM_ADDRESS_SPACE_NUM; 4508 #endif 4509 case KVM_CAP_NR_MEMSLOTS: 4510 return KVM_USER_MEM_SLOTS; 4511 case KVM_CAP_DIRTY_LOG_RING: 4512 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO 4513 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4514 #else 4515 return 0; 4516 #endif 4517 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4518 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL 4519 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn); 4520 #else 4521 return 0; 4522 #endif 4523 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP 4524 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: 4525 #endif 4526 case KVM_CAP_BINARY_STATS_FD: 4527 case KVM_CAP_SYSTEM_EVENT_DATA: 4528 return 1; 4529 default: 4530 break; 4531 } 4532 return kvm_vm_ioctl_check_extension(kvm, arg); 4533 } 4534 4535 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size) 4536 { 4537 int r; 4538 4539 if (!KVM_DIRTY_LOG_PAGE_OFFSET) 4540 return -EINVAL; 4541 4542 /* the size should be power of 2 */ 4543 if (!size || (size & (size - 1))) 4544 return -EINVAL; 4545 4546 /* Should be bigger to keep the reserved entries, or a page */ 4547 if (size < kvm_dirty_ring_get_rsvd_entries() * 4548 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE) 4549 return -EINVAL; 4550 4551 if (size > KVM_DIRTY_RING_MAX_ENTRIES * 4552 sizeof(struct kvm_dirty_gfn)) 4553 return -E2BIG; 4554 4555 /* We only allow it to set once */ 4556 if (kvm->dirty_ring_size) 4557 return -EINVAL; 4558 4559 mutex_lock(&kvm->lock); 4560 4561 if (kvm->created_vcpus) { 4562 /* We don't allow to change this value after vcpu created */ 4563 r = -EINVAL; 4564 } else { 4565 kvm->dirty_ring_size = size; 4566 r = 0; 4567 } 4568 4569 mutex_unlock(&kvm->lock); 4570 return r; 4571 } 4572 4573 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm) 4574 { 4575 unsigned long i; 4576 struct kvm_vcpu *vcpu; 4577 int cleared = 0; 4578 4579 if (!kvm->dirty_ring_size) 4580 return -EINVAL; 4581 4582 mutex_lock(&kvm->slots_lock); 4583 4584 kvm_for_each_vcpu(i, vcpu, kvm) 4585 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring); 4586 4587 mutex_unlock(&kvm->slots_lock); 4588 4589 if (cleared) 4590 kvm_flush_remote_tlbs(kvm); 4591 4592 return cleared; 4593 } 4594 4595 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm, 4596 struct kvm_enable_cap *cap) 4597 { 4598 return -EINVAL; 4599 } 4600 4601 static bool kvm_are_all_memslots_empty(struct kvm *kvm) 4602 { 4603 int i; 4604 4605 lockdep_assert_held(&kvm->slots_lock); 4606 4607 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 4608 if (!kvm_memslots_empty(__kvm_memslots(kvm, i))) 4609 return false; 4610 } 4611 4612 return true; 4613 } 4614 4615 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm, 4616 struct kvm_enable_cap *cap) 4617 { 4618 switch (cap->cap) { 4619 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4620 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: { 4621 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE; 4622 4623 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE) 4624 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS; 4625 4626 if (cap->flags || (cap->args[0] & ~allowed_options)) 4627 return -EINVAL; 4628 kvm->manual_dirty_log_protect = cap->args[0]; 4629 return 0; 4630 } 4631 #endif 4632 case KVM_CAP_HALT_POLL: { 4633 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0]) 4634 return -EINVAL; 4635 4636 kvm->max_halt_poll_ns = cap->args[0]; 4637 4638 /* 4639 * Ensure kvm->override_halt_poll_ns does not become visible 4640 * before kvm->max_halt_poll_ns. 4641 * 4642 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns(). 4643 */ 4644 smp_wmb(); 4645 kvm->override_halt_poll_ns = true; 4646 4647 return 0; 4648 } 4649 case KVM_CAP_DIRTY_LOG_RING: 4650 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL: 4651 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap)) 4652 return -EINVAL; 4653 4654 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]); 4655 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: { 4656 int r = -EINVAL; 4657 4658 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) || 4659 !kvm->dirty_ring_size || cap->flags) 4660 return r; 4661 4662 mutex_lock(&kvm->slots_lock); 4663 4664 /* 4665 * For simplicity, allow enabling ring+bitmap if and only if 4666 * there are no memslots, e.g. to ensure all memslots allocate 4667 * a bitmap after the capability is enabled. 4668 */ 4669 if (kvm_are_all_memslots_empty(kvm)) { 4670 kvm->dirty_ring_with_bitmap = true; 4671 r = 0; 4672 } 4673 4674 mutex_unlock(&kvm->slots_lock); 4675 4676 return r; 4677 } 4678 default: 4679 return kvm_vm_ioctl_enable_cap(kvm, cap); 4680 } 4681 } 4682 4683 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer, 4684 size_t size, loff_t *offset) 4685 { 4686 struct kvm *kvm = file->private_data; 4687 4688 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header, 4689 &kvm_vm_stats_desc[0], &kvm->stat, 4690 sizeof(kvm->stat), user_buffer, size, offset); 4691 } 4692 4693 static const struct file_operations kvm_vm_stats_fops = { 4694 .read = kvm_vm_stats_read, 4695 .llseek = noop_llseek, 4696 }; 4697 4698 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm) 4699 { 4700 int fd; 4701 struct file *file; 4702 4703 fd = get_unused_fd_flags(O_CLOEXEC); 4704 if (fd < 0) 4705 return fd; 4706 4707 file = anon_inode_getfile("kvm-vm-stats", 4708 &kvm_vm_stats_fops, kvm, O_RDONLY); 4709 if (IS_ERR(file)) { 4710 put_unused_fd(fd); 4711 return PTR_ERR(file); 4712 } 4713 file->f_mode |= FMODE_PREAD; 4714 fd_install(fd, file); 4715 4716 return fd; 4717 } 4718 4719 static long kvm_vm_ioctl(struct file *filp, 4720 unsigned int ioctl, unsigned long arg) 4721 { 4722 struct kvm *kvm = filp->private_data; 4723 void __user *argp = (void __user *)arg; 4724 int r; 4725 4726 if (kvm->mm != current->mm || kvm->vm_dead) 4727 return -EIO; 4728 switch (ioctl) { 4729 case KVM_CREATE_VCPU: 4730 r = kvm_vm_ioctl_create_vcpu(kvm, arg); 4731 break; 4732 case KVM_ENABLE_CAP: { 4733 struct kvm_enable_cap cap; 4734 4735 r = -EFAULT; 4736 if (copy_from_user(&cap, argp, sizeof(cap))) 4737 goto out; 4738 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap); 4739 break; 4740 } 4741 case KVM_SET_USER_MEMORY_REGION: { 4742 struct kvm_userspace_memory_region kvm_userspace_mem; 4743 4744 r = -EFAULT; 4745 if (copy_from_user(&kvm_userspace_mem, argp, 4746 sizeof(kvm_userspace_mem))) 4747 goto out; 4748 4749 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem); 4750 break; 4751 } 4752 case KVM_GET_DIRTY_LOG: { 4753 struct kvm_dirty_log log; 4754 4755 r = -EFAULT; 4756 if (copy_from_user(&log, argp, sizeof(log))) 4757 goto out; 4758 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4759 break; 4760 } 4761 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4762 case KVM_CLEAR_DIRTY_LOG: { 4763 struct kvm_clear_dirty_log log; 4764 4765 r = -EFAULT; 4766 if (copy_from_user(&log, argp, sizeof(log))) 4767 goto out; 4768 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4769 break; 4770 } 4771 #endif 4772 #ifdef CONFIG_KVM_MMIO 4773 case KVM_REGISTER_COALESCED_MMIO: { 4774 struct kvm_coalesced_mmio_zone zone; 4775 4776 r = -EFAULT; 4777 if (copy_from_user(&zone, argp, sizeof(zone))) 4778 goto out; 4779 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); 4780 break; 4781 } 4782 case KVM_UNREGISTER_COALESCED_MMIO: { 4783 struct kvm_coalesced_mmio_zone zone; 4784 4785 r = -EFAULT; 4786 if (copy_from_user(&zone, argp, sizeof(zone))) 4787 goto out; 4788 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); 4789 break; 4790 } 4791 #endif 4792 case KVM_IRQFD: { 4793 struct kvm_irqfd data; 4794 4795 r = -EFAULT; 4796 if (copy_from_user(&data, argp, sizeof(data))) 4797 goto out; 4798 r = kvm_irqfd(kvm, &data); 4799 break; 4800 } 4801 case KVM_IOEVENTFD: { 4802 struct kvm_ioeventfd data; 4803 4804 r = -EFAULT; 4805 if (copy_from_user(&data, argp, sizeof(data))) 4806 goto out; 4807 r = kvm_ioeventfd(kvm, &data); 4808 break; 4809 } 4810 #ifdef CONFIG_HAVE_KVM_MSI 4811 case KVM_SIGNAL_MSI: { 4812 struct kvm_msi msi; 4813 4814 r = -EFAULT; 4815 if (copy_from_user(&msi, argp, sizeof(msi))) 4816 goto out; 4817 r = kvm_send_userspace_msi(kvm, &msi); 4818 break; 4819 } 4820 #endif 4821 #ifdef __KVM_HAVE_IRQ_LINE 4822 case KVM_IRQ_LINE_STATUS: 4823 case KVM_IRQ_LINE: { 4824 struct kvm_irq_level irq_event; 4825 4826 r = -EFAULT; 4827 if (copy_from_user(&irq_event, argp, sizeof(irq_event))) 4828 goto out; 4829 4830 r = kvm_vm_ioctl_irq_line(kvm, &irq_event, 4831 ioctl == KVM_IRQ_LINE_STATUS); 4832 if (r) 4833 goto out; 4834 4835 r = -EFAULT; 4836 if (ioctl == KVM_IRQ_LINE_STATUS) { 4837 if (copy_to_user(argp, &irq_event, sizeof(irq_event))) 4838 goto out; 4839 } 4840 4841 r = 0; 4842 break; 4843 } 4844 #endif 4845 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 4846 case KVM_SET_GSI_ROUTING: { 4847 struct kvm_irq_routing routing; 4848 struct kvm_irq_routing __user *urouting; 4849 struct kvm_irq_routing_entry *entries = NULL; 4850 4851 r = -EFAULT; 4852 if (copy_from_user(&routing, argp, sizeof(routing))) 4853 goto out; 4854 r = -EINVAL; 4855 if (!kvm_arch_can_set_irq_routing(kvm)) 4856 goto out; 4857 if (routing.nr > KVM_MAX_IRQ_ROUTES) 4858 goto out; 4859 if (routing.flags) 4860 goto out; 4861 if (routing.nr) { 4862 urouting = argp; 4863 entries = vmemdup_user(urouting->entries, 4864 array_size(sizeof(*entries), 4865 routing.nr)); 4866 if (IS_ERR(entries)) { 4867 r = PTR_ERR(entries); 4868 goto out; 4869 } 4870 } 4871 r = kvm_set_irq_routing(kvm, entries, routing.nr, 4872 routing.flags); 4873 kvfree(entries); 4874 break; 4875 } 4876 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */ 4877 case KVM_CREATE_DEVICE: { 4878 struct kvm_create_device cd; 4879 4880 r = -EFAULT; 4881 if (copy_from_user(&cd, argp, sizeof(cd))) 4882 goto out; 4883 4884 r = kvm_ioctl_create_device(kvm, &cd); 4885 if (r) 4886 goto out; 4887 4888 r = -EFAULT; 4889 if (copy_to_user(argp, &cd, sizeof(cd))) 4890 goto out; 4891 4892 r = 0; 4893 break; 4894 } 4895 case KVM_CHECK_EXTENSION: 4896 r = kvm_vm_ioctl_check_extension_generic(kvm, arg); 4897 break; 4898 case KVM_RESET_DIRTY_RINGS: 4899 r = kvm_vm_ioctl_reset_dirty_pages(kvm); 4900 break; 4901 case KVM_GET_STATS_FD: 4902 r = kvm_vm_ioctl_get_stats_fd(kvm); 4903 break; 4904 default: 4905 r = kvm_arch_vm_ioctl(filp, ioctl, arg); 4906 } 4907 out: 4908 return r; 4909 } 4910 4911 #ifdef CONFIG_KVM_COMPAT 4912 struct compat_kvm_dirty_log { 4913 __u32 slot; 4914 __u32 padding1; 4915 union { 4916 compat_uptr_t dirty_bitmap; /* one bit per page */ 4917 __u64 padding2; 4918 }; 4919 }; 4920 4921 struct compat_kvm_clear_dirty_log { 4922 __u32 slot; 4923 __u32 num_pages; 4924 __u64 first_page; 4925 union { 4926 compat_uptr_t dirty_bitmap; /* one bit per page */ 4927 __u64 padding2; 4928 }; 4929 }; 4930 4931 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, 4932 unsigned long arg) 4933 { 4934 return -ENOTTY; 4935 } 4936 4937 static long kvm_vm_compat_ioctl(struct file *filp, 4938 unsigned int ioctl, unsigned long arg) 4939 { 4940 struct kvm *kvm = filp->private_data; 4941 int r; 4942 4943 if (kvm->mm != current->mm || kvm->vm_dead) 4944 return -EIO; 4945 4946 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg); 4947 if (r != -ENOTTY) 4948 return r; 4949 4950 switch (ioctl) { 4951 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 4952 case KVM_CLEAR_DIRTY_LOG: { 4953 struct compat_kvm_clear_dirty_log compat_log; 4954 struct kvm_clear_dirty_log log; 4955 4956 if (copy_from_user(&compat_log, (void __user *)arg, 4957 sizeof(compat_log))) 4958 return -EFAULT; 4959 log.slot = compat_log.slot; 4960 log.num_pages = compat_log.num_pages; 4961 log.first_page = compat_log.first_page; 4962 log.padding2 = compat_log.padding2; 4963 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4964 4965 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log); 4966 break; 4967 } 4968 #endif 4969 case KVM_GET_DIRTY_LOG: { 4970 struct compat_kvm_dirty_log compat_log; 4971 struct kvm_dirty_log log; 4972 4973 if (copy_from_user(&compat_log, (void __user *)arg, 4974 sizeof(compat_log))) 4975 return -EFAULT; 4976 log.slot = compat_log.slot; 4977 log.padding1 = compat_log.padding1; 4978 log.padding2 = compat_log.padding2; 4979 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); 4980 4981 r = kvm_vm_ioctl_get_dirty_log(kvm, &log); 4982 break; 4983 } 4984 default: 4985 r = kvm_vm_ioctl(filp, ioctl, arg); 4986 } 4987 return r; 4988 } 4989 #endif 4990 4991 static const struct file_operations kvm_vm_fops = { 4992 .release = kvm_vm_release, 4993 .unlocked_ioctl = kvm_vm_ioctl, 4994 .llseek = noop_llseek, 4995 KVM_COMPAT(kvm_vm_compat_ioctl), 4996 }; 4997 4998 bool file_is_kvm(struct file *file) 4999 { 5000 return file && file->f_op == &kvm_vm_fops; 5001 } 5002 EXPORT_SYMBOL_GPL(file_is_kvm); 5003 5004 static int kvm_dev_ioctl_create_vm(unsigned long type) 5005 { 5006 char fdname[ITOA_MAX_LEN + 1]; 5007 int r, fd; 5008 struct kvm *kvm; 5009 struct file *file; 5010 5011 fd = get_unused_fd_flags(O_CLOEXEC); 5012 if (fd < 0) 5013 return fd; 5014 5015 snprintf(fdname, sizeof(fdname), "%d", fd); 5016 5017 kvm = kvm_create_vm(type, fdname); 5018 if (IS_ERR(kvm)) { 5019 r = PTR_ERR(kvm); 5020 goto put_fd; 5021 } 5022 5023 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); 5024 if (IS_ERR(file)) { 5025 r = PTR_ERR(file); 5026 goto put_kvm; 5027 } 5028 5029 /* 5030 * Don't call kvm_put_kvm anymore at this point; file->f_op is 5031 * already set, with ->release() being kvm_vm_release(). In error 5032 * cases it will be called by the final fput(file) and will take 5033 * care of doing kvm_put_kvm(kvm). 5034 */ 5035 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm); 5036 5037 fd_install(fd, file); 5038 return fd; 5039 5040 put_kvm: 5041 kvm_put_kvm(kvm); 5042 put_fd: 5043 put_unused_fd(fd); 5044 return r; 5045 } 5046 5047 static long kvm_dev_ioctl(struct file *filp, 5048 unsigned int ioctl, unsigned long arg) 5049 { 5050 int r = -EINVAL; 5051 5052 switch (ioctl) { 5053 case KVM_GET_API_VERSION: 5054 if (arg) 5055 goto out; 5056 r = KVM_API_VERSION; 5057 break; 5058 case KVM_CREATE_VM: 5059 r = kvm_dev_ioctl_create_vm(arg); 5060 break; 5061 case KVM_CHECK_EXTENSION: 5062 r = kvm_vm_ioctl_check_extension_generic(NULL, arg); 5063 break; 5064 case KVM_GET_VCPU_MMAP_SIZE: 5065 if (arg) 5066 goto out; 5067 r = PAGE_SIZE; /* struct kvm_run */ 5068 #ifdef CONFIG_X86 5069 r += PAGE_SIZE; /* pio data page */ 5070 #endif 5071 #ifdef CONFIG_KVM_MMIO 5072 r += PAGE_SIZE; /* coalesced mmio ring page */ 5073 #endif 5074 break; 5075 case KVM_TRACE_ENABLE: 5076 case KVM_TRACE_PAUSE: 5077 case KVM_TRACE_DISABLE: 5078 r = -EOPNOTSUPP; 5079 break; 5080 default: 5081 return kvm_arch_dev_ioctl(filp, ioctl, arg); 5082 } 5083 out: 5084 return r; 5085 } 5086 5087 static struct file_operations kvm_chardev_ops = { 5088 .unlocked_ioctl = kvm_dev_ioctl, 5089 .llseek = noop_llseek, 5090 KVM_COMPAT(kvm_dev_ioctl), 5091 }; 5092 5093 static struct miscdevice kvm_dev = { 5094 KVM_MINOR, 5095 "kvm", 5096 &kvm_chardev_ops, 5097 }; 5098 5099 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5100 __visible bool kvm_rebooting; 5101 EXPORT_SYMBOL_GPL(kvm_rebooting); 5102 5103 static DEFINE_PER_CPU(bool, hardware_enabled); 5104 static int kvm_usage_count; 5105 5106 static int __hardware_enable_nolock(void) 5107 { 5108 if (__this_cpu_read(hardware_enabled)) 5109 return 0; 5110 5111 if (kvm_arch_hardware_enable()) { 5112 pr_info("kvm: enabling virtualization on CPU%d failed\n", 5113 raw_smp_processor_id()); 5114 return -EIO; 5115 } 5116 5117 __this_cpu_write(hardware_enabled, true); 5118 return 0; 5119 } 5120 5121 static void hardware_enable_nolock(void *failed) 5122 { 5123 if (__hardware_enable_nolock()) 5124 atomic_inc(failed); 5125 } 5126 5127 static int kvm_online_cpu(unsigned int cpu) 5128 { 5129 int ret = 0; 5130 5131 /* 5132 * Abort the CPU online process if hardware virtualization cannot 5133 * be enabled. Otherwise running VMs would encounter unrecoverable 5134 * errors when scheduled to this CPU. 5135 */ 5136 mutex_lock(&kvm_lock); 5137 if (kvm_usage_count) 5138 ret = __hardware_enable_nolock(); 5139 mutex_unlock(&kvm_lock); 5140 return ret; 5141 } 5142 5143 static void hardware_disable_nolock(void *junk) 5144 { 5145 /* 5146 * Note, hardware_disable_all_nolock() tells all online CPUs to disable 5147 * hardware, not just CPUs that successfully enabled hardware! 5148 */ 5149 if (!__this_cpu_read(hardware_enabled)) 5150 return; 5151 5152 kvm_arch_hardware_disable(); 5153 5154 __this_cpu_write(hardware_enabled, false); 5155 } 5156 5157 static int kvm_offline_cpu(unsigned int cpu) 5158 { 5159 mutex_lock(&kvm_lock); 5160 if (kvm_usage_count) 5161 hardware_disable_nolock(NULL); 5162 mutex_unlock(&kvm_lock); 5163 return 0; 5164 } 5165 5166 static void hardware_disable_all_nolock(void) 5167 { 5168 BUG_ON(!kvm_usage_count); 5169 5170 kvm_usage_count--; 5171 if (!kvm_usage_count) 5172 on_each_cpu(hardware_disable_nolock, NULL, 1); 5173 } 5174 5175 static void hardware_disable_all(void) 5176 { 5177 cpus_read_lock(); 5178 mutex_lock(&kvm_lock); 5179 hardware_disable_all_nolock(); 5180 mutex_unlock(&kvm_lock); 5181 cpus_read_unlock(); 5182 } 5183 5184 static int hardware_enable_all(void) 5185 { 5186 atomic_t failed = ATOMIC_INIT(0); 5187 int r = 0; 5188 5189 /* 5190 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu() 5191 * is called, and so on_each_cpu() between them includes the CPU that 5192 * is being onlined. As a result, hardware_enable_nolock() may get 5193 * invoked before kvm_online_cpu(), which also enables hardware if the 5194 * usage count is non-zero. Disable CPU hotplug to avoid attempting to 5195 * enable hardware multiple times. 5196 */ 5197 cpus_read_lock(); 5198 mutex_lock(&kvm_lock); 5199 5200 kvm_usage_count++; 5201 if (kvm_usage_count == 1) { 5202 on_each_cpu(hardware_enable_nolock, &failed, 1); 5203 5204 if (atomic_read(&failed)) { 5205 hardware_disable_all_nolock(); 5206 r = -EBUSY; 5207 } 5208 } 5209 5210 mutex_unlock(&kvm_lock); 5211 cpus_read_unlock(); 5212 5213 return r; 5214 } 5215 5216 static int kvm_reboot(struct notifier_block *notifier, unsigned long val, 5217 void *v) 5218 { 5219 /* 5220 * Some (well, at least mine) BIOSes hang on reboot if 5221 * in vmx root mode. 5222 * 5223 * And Intel TXT required VMX off for all cpu when system shutdown. 5224 */ 5225 pr_info("kvm: exiting hardware virtualization\n"); 5226 kvm_rebooting = true; 5227 on_each_cpu(hardware_disable_nolock, NULL, 1); 5228 return NOTIFY_OK; 5229 } 5230 5231 static struct notifier_block kvm_reboot_notifier = { 5232 .notifier_call = kvm_reboot, 5233 .priority = 0, 5234 }; 5235 5236 static int kvm_suspend(void) 5237 { 5238 /* 5239 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume 5240 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count 5241 * is stable. Assert that kvm_lock is not held to ensure the system 5242 * isn't suspended while KVM is enabling hardware. Hardware enabling 5243 * can be preempted, but the task cannot be frozen until it has dropped 5244 * all locks (userspace tasks are frozen via a fake signal). 5245 */ 5246 lockdep_assert_not_held(&kvm_lock); 5247 lockdep_assert_irqs_disabled(); 5248 5249 if (kvm_usage_count) 5250 hardware_disable_nolock(NULL); 5251 return 0; 5252 } 5253 5254 static void kvm_resume(void) 5255 { 5256 lockdep_assert_not_held(&kvm_lock); 5257 lockdep_assert_irqs_disabled(); 5258 5259 if (kvm_usage_count) 5260 WARN_ON_ONCE(__hardware_enable_nolock()); 5261 } 5262 5263 static struct syscore_ops kvm_syscore_ops = { 5264 .suspend = kvm_suspend, 5265 .resume = kvm_resume, 5266 }; 5267 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5268 static int hardware_enable_all(void) 5269 { 5270 return 0; 5271 } 5272 5273 static void hardware_disable_all(void) 5274 { 5275 5276 } 5277 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */ 5278 5279 static void kvm_io_bus_destroy(struct kvm_io_bus *bus) 5280 { 5281 int i; 5282 5283 for (i = 0; i < bus->dev_count; i++) { 5284 struct kvm_io_device *pos = bus->range[i].dev; 5285 5286 kvm_iodevice_destructor(pos); 5287 } 5288 kfree(bus); 5289 } 5290 5291 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1, 5292 const struct kvm_io_range *r2) 5293 { 5294 gpa_t addr1 = r1->addr; 5295 gpa_t addr2 = r2->addr; 5296 5297 if (addr1 < addr2) 5298 return -1; 5299 5300 /* If r2->len == 0, match the exact address. If r2->len != 0, 5301 * accept any overlapping write. Any order is acceptable for 5302 * overlapping ranges, because kvm_io_bus_get_first_dev ensures 5303 * we process all of them. 5304 */ 5305 if (r2->len) { 5306 addr1 += r1->len; 5307 addr2 += r2->len; 5308 } 5309 5310 if (addr1 > addr2) 5311 return 1; 5312 5313 return 0; 5314 } 5315 5316 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2) 5317 { 5318 return kvm_io_bus_cmp(p1, p2); 5319 } 5320 5321 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, 5322 gpa_t addr, int len) 5323 { 5324 struct kvm_io_range *range, key; 5325 int off; 5326 5327 key = (struct kvm_io_range) { 5328 .addr = addr, 5329 .len = len, 5330 }; 5331 5332 range = bsearch(&key, bus->range, bus->dev_count, 5333 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); 5334 if (range == NULL) 5335 return -ENOENT; 5336 5337 off = range - bus->range; 5338 5339 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0) 5340 off--; 5341 5342 return off; 5343 } 5344 5345 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5346 struct kvm_io_range *range, const void *val) 5347 { 5348 int idx; 5349 5350 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5351 if (idx < 0) 5352 return -EOPNOTSUPP; 5353 5354 while (idx < bus->dev_count && 5355 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5356 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr, 5357 range->len, val)) 5358 return idx; 5359 idx++; 5360 } 5361 5362 return -EOPNOTSUPP; 5363 } 5364 5365 /* kvm_io_bus_write - called under kvm->slots_lock */ 5366 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5367 int len, const void *val) 5368 { 5369 struct kvm_io_bus *bus; 5370 struct kvm_io_range range; 5371 int r; 5372 5373 range = (struct kvm_io_range) { 5374 .addr = addr, 5375 .len = len, 5376 }; 5377 5378 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5379 if (!bus) 5380 return -ENOMEM; 5381 r = __kvm_io_bus_write(vcpu, bus, &range, val); 5382 return r < 0 ? r : 0; 5383 } 5384 EXPORT_SYMBOL_GPL(kvm_io_bus_write); 5385 5386 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */ 5387 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 5388 gpa_t addr, int len, const void *val, long cookie) 5389 { 5390 struct kvm_io_bus *bus; 5391 struct kvm_io_range range; 5392 5393 range = (struct kvm_io_range) { 5394 .addr = addr, 5395 .len = len, 5396 }; 5397 5398 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5399 if (!bus) 5400 return -ENOMEM; 5401 5402 /* First try the device referenced by cookie. */ 5403 if ((cookie >= 0) && (cookie < bus->dev_count) && 5404 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0)) 5405 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len, 5406 val)) 5407 return cookie; 5408 5409 /* 5410 * cookie contained garbage; fall back to search and return the 5411 * correct cookie value. 5412 */ 5413 return __kvm_io_bus_write(vcpu, bus, &range, val); 5414 } 5415 5416 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus, 5417 struct kvm_io_range *range, void *val) 5418 { 5419 int idx; 5420 5421 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len); 5422 if (idx < 0) 5423 return -EOPNOTSUPP; 5424 5425 while (idx < bus->dev_count && 5426 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) { 5427 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr, 5428 range->len, val)) 5429 return idx; 5430 idx++; 5431 } 5432 5433 return -EOPNOTSUPP; 5434 } 5435 5436 /* kvm_io_bus_read - called under kvm->slots_lock */ 5437 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 5438 int len, void *val) 5439 { 5440 struct kvm_io_bus *bus; 5441 struct kvm_io_range range; 5442 int r; 5443 5444 range = (struct kvm_io_range) { 5445 .addr = addr, 5446 .len = len, 5447 }; 5448 5449 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu); 5450 if (!bus) 5451 return -ENOMEM; 5452 r = __kvm_io_bus_read(vcpu, bus, &range, val); 5453 return r < 0 ? r : 0; 5454 } 5455 5456 /* Caller must hold slots_lock. */ 5457 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 5458 int len, struct kvm_io_device *dev) 5459 { 5460 int i; 5461 struct kvm_io_bus *new_bus, *bus; 5462 struct kvm_io_range range; 5463 5464 bus = kvm_get_bus(kvm, bus_idx); 5465 if (!bus) 5466 return -ENOMEM; 5467 5468 /* exclude ioeventfd which is limited by maximum fd */ 5469 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1) 5470 return -ENOSPC; 5471 5472 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1), 5473 GFP_KERNEL_ACCOUNT); 5474 if (!new_bus) 5475 return -ENOMEM; 5476 5477 range = (struct kvm_io_range) { 5478 .addr = addr, 5479 .len = len, 5480 .dev = dev, 5481 }; 5482 5483 for (i = 0; i < bus->dev_count; i++) 5484 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0) 5485 break; 5486 5487 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range)); 5488 new_bus->dev_count++; 5489 new_bus->range[i] = range; 5490 memcpy(new_bus->range + i + 1, bus->range + i, 5491 (bus->dev_count - i) * sizeof(struct kvm_io_range)); 5492 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5493 synchronize_srcu_expedited(&kvm->srcu); 5494 kfree(bus); 5495 5496 return 0; 5497 } 5498 5499 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5500 struct kvm_io_device *dev) 5501 { 5502 int i, j; 5503 struct kvm_io_bus *new_bus, *bus; 5504 5505 lockdep_assert_held(&kvm->slots_lock); 5506 5507 bus = kvm_get_bus(kvm, bus_idx); 5508 if (!bus) 5509 return 0; 5510 5511 for (i = 0; i < bus->dev_count; i++) { 5512 if (bus->range[i].dev == dev) { 5513 break; 5514 } 5515 } 5516 5517 if (i == bus->dev_count) 5518 return 0; 5519 5520 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1), 5521 GFP_KERNEL_ACCOUNT); 5522 if (new_bus) { 5523 memcpy(new_bus, bus, struct_size(bus, range, i)); 5524 new_bus->dev_count--; 5525 memcpy(new_bus->range + i, bus->range + i + 1, 5526 flex_array_size(new_bus, range, new_bus->dev_count - i)); 5527 } 5528 5529 rcu_assign_pointer(kvm->buses[bus_idx], new_bus); 5530 synchronize_srcu_expedited(&kvm->srcu); 5531 5532 /* Destroy the old bus _after_ installing the (null) bus. */ 5533 if (!new_bus) { 5534 pr_err("kvm: failed to shrink bus, removing it completely\n"); 5535 for (j = 0; j < bus->dev_count; j++) { 5536 if (j == i) 5537 continue; 5538 kvm_iodevice_destructor(bus->range[j].dev); 5539 } 5540 } 5541 5542 kfree(bus); 5543 return new_bus ? 0 : -ENOMEM; 5544 } 5545 5546 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 5547 gpa_t addr) 5548 { 5549 struct kvm_io_bus *bus; 5550 int dev_idx, srcu_idx; 5551 struct kvm_io_device *iodev = NULL; 5552 5553 srcu_idx = srcu_read_lock(&kvm->srcu); 5554 5555 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); 5556 if (!bus) 5557 goto out_unlock; 5558 5559 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1); 5560 if (dev_idx < 0) 5561 goto out_unlock; 5562 5563 iodev = bus->range[dev_idx].dev; 5564 5565 out_unlock: 5566 srcu_read_unlock(&kvm->srcu, srcu_idx); 5567 5568 return iodev; 5569 } 5570 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev); 5571 5572 static int kvm_debugfs_open(struct inode *inode, struct file *file, 5573 int (*get)(void *, u64 *), int (*set)(void *, u64), 5574 const char *fmt) 5575 { 5576 int ret; 5577 struct kvm_stat_data *stat_data = inode->i_private; 5578 5579 /* 5580 * The debugfs files are a reference to the kvm struct which 5581 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe 5582 * avoids the race between open and the removal of the debugfs directory. 5583 */ 5584 if (!kvm_get_kvm_safe(stat_data->kvm)) 5585 return -ENOENT; 5586 5587 ret = simple_attr_open(inode, file, get, 5588 kvm_stats_debugfs_mode(stat_data->desc) & 0222 5589 ? set : NULL, fmt); 5590 if (ret) 5591 kvm_put_kvm(stat_data->kvm); 5592 5593 return ret; 5594 } 5595 5596 static int kvm_debugfs_release(struct inode *inode, struct file *file) 5597 { 5598 struct kvm_stat_data *stat_data = inode->i_private; 5599 5600 simple_attr_release(inode, file); 5601 kvm_put_kvm(stat_data->kvm); 5602 5603 return 0; 5604 } 5605 5606 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val) 5607 { 5608 *val = *(u64 *)((void *)(&kvm->stat) + offset); 5609 5610 return 0; 5611 } 5612 5613 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset) 5614 { 5615 *(u64 *)((void *)(&kvm->stat) + offset) = 0; 5616 5617 return 0; 5618 } 5619 5620 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val) 5621 { 5622 unsigned long i; 5623 struct kvm_vcpu *vcpu; 5624 5625 *val = 0; 5626 5627 kvm_for_each_vcpu(i, vcpu, kvm) 5628 *val += *(u64 *)((void *)(&vcpu->stat) + offset); 5629 5630 return 0; 5631 } 5632 5633 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset) 5634 { 5635 unsigned long i; 5636 struct kvm_vcpu *vcpu; 5637 5638 kvm_for_each_vcpu(i, vcpu, kvm) 5639 *(u64 *)((void *)(&vcpu->stat) + offset) = 0; 5640 5641 return 0; 5642 } 5643 5644 static int kvm_stat_data_get(void *data, u64 *val) 5645 { 5646 int r = -EFAULT; 5647 struct kvm_stat_data *stat_data = data; 5648 5649 switch (stat_data->kind) { 5650 case KVM_STAT_VM: 5651 r = kvm_get_stat_per_vm(stat_data->kvm, 5652 stat_data->desc->desc.offset, val); 5653 break; 5654 case KVM_STAT_VCPU: 5655 r = kvm_get_stat_per_vcpu(stat_data->kvm, 5656 stat_data->desc->desc.offset, val); 5657 break; 5658 } 5659 5660 return r; 5661 } 5662 5663 static int kvm_stat_data_clear(void *data, u64 val) 5664 { 5665 int r = -EFAULT; 5666 struct kvm_stat_data *stat_data = data; 5667 5668 if (val) 5669 return -EINVAL; 5670 5671 switch (stat_data->kind) { 5672 case KVM_STAT_VM: 5673 r = kvm_clear_stat_per_vm(stat_data->kvm, 5674 stat_data->desc->desc.offset); 5675 break; 5676 case KVM_STAT_VCPU: 5677 r = kvm_clear_stat_per_vcpu(stat_data->kvm, 5678 stat_data->desc->desc.offset); 5679 break; 5680 } 5681 5682 return r; 5683 } 5684 5685 static int kvm_stat_data_open(struct inode *inode, struct file *file) 5686 { 5687 __simple_attr_check_format("%llu\n", 0ull); 5688 return kvm_debugfs_open(inode, file, kvm_stat_data_get, 5689 kvm_stat_data_clear, "%llu\n"); 5690 } 5691 5692 static const struct file_operations stat_fops_per_vm = { 5693 .owner = THIS_MODULE, 5694 .open = kvm_stat_data_open, 5695 .release = kvm_debugfs_release, 5696 .read = simple_attr_read, 5697 .write = simple_attr_write, 5698 .llseek = no_llseek, 5699 }; 5700 5701 static int vm_stat_get(void *_offset, u64 *val) 5702 { 5703 unsigned offset = (long)_offset; 5704 struct kvm *kvm; 5705 u64 tmp_val; 5706 5707 *val = 0; 5708 mutex_lock(&kvm_lock); 5709 list_for_each_entry(kvm, &vm_list, vm_list) { 5710 kvm_get_stat_per_vm(kvm, offset, &tmp_val); 5711 *val += tmp_val; 5712 } 5713 mutex_unlock(&kvm_lock); 5714 return 0; 5715 } 5716 5717 static int vm_stat_clear(void *_offset, u64 val) 5718 { 5719 unsigned offset = (long)_offset; 5720 struct kvm *kvm; 5721 5722 if (val) 5723 return -EINVAL; 5724 5725 mutex_lock(&kvm_lock); 5726 list_for_each_entry(kvm, &vm_list, vm_list) { 5727 kvm_clear_stat_per_vm(kvm, offset); 5728 } 5729 mutex_unlock(&kvm_lock); 5730 5731 return 0; 5732 } 5733 5734 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n"); 5735 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n"); 5736 5737 static int vcpu_stat_get(void *_offset, u64 *val) 5738 { 5739 unsigned offset = (long)_offset; 5740 struct kvm *kvm; 5741 u64 tmp_val; 5742 5743 *val = 0; 5744 mutex_lock(&kvm_lock); 5745 list_for_each_entry(kvm, &vm_list, vm_list) { 5746 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val); 5747 *val += tmp_val; 5748 } 5749 mutex_unlock(&kvm_lock); 5750 return 0; 5751 } 5752 5753 static int vcpu_stat_clear(void *_offset, u64 val) 5754 { 5755 unsigned offset = (long)_offset; 5756 struct kvm *kvm; 5757 5758 if (val) 5759 return -EINVAL; 5760 5761 mutex_lock(&kvm_lock); 5762 list_for_each_entry(kvm, &vm_list, vm_list) { 5763 kvm_clear_stat_per_vcpu(kvm, offset); 5764 } 5765 mutex_unlock(&kvm_lock); 5766 5767 return 0; 5768 } 5769 5770 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear, 5771 "%llu\n"); 5772 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n"); 5773 5774 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm) 5775 { 5776 struct kobj_uevent_env *env; 5777 unsigned long long created, active; 5778 5779 if (!kvm_dev.this_device || !kvm) 5780 return; 5781 5782 mutex_lock(&kvm_lock); 5783 if (type == KVM_EVENT_CREATE_VM) { 5784 kvm_createvm_count++; 5785 kvm_active_vms++; 5786 } else if (type == KVM_EVENT_DESTROY_VM) { 5787 kvm_active_vms--; 5788 } 5789 created = kvm_createvm_count; 5790 active = kvm_active_vms; 5791 mutex_unlock(&kvm_lock); 5792 5793 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT); 5794 if (!env) 5795 return; 5796 5797 add_uevent_var(env, "CREATED=%llu", created); 5798 add_uevent_var(env, "COUNT=%llu", active); 5799 5800 if (type == KVM_EVENT_CREATE_VM) { 5801 add_uevent_var(env, "EVENT=create"); 5802 kvm->userspace_pid = task_pid_nr(current); 5803 } else if (type == KVM_EVENT_DESTROY_VM) { 5804 add_uevent_var(env, "EVENT=destroy"); 5805 } 5806 add_uevent_var(env, "PID=%d", kvm->userspace_pid); 5807 5808 if (!IS_ERR(kvm->debugfs_dentry)) { 5809 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT); 5810 5811 if (p) { 5812 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX); 5813 if (!IS_ERR(tmp)) 5814 add_uevent_var(env, "STATS_PATH=%s", tmp); 5815 kfree(p); 5816 } 5817 } 5818 /* no need for checks, since we are adding at most only 5 keys */ 5819 env->envp[env->envp_idx++] = NULL; 5820 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp); 5821 kfree(env); 5822 } 5823 5824 static void kvm_init_debug(void) 5825 { 5826 const struct file_operations *fops; 5827 const struct _kvm_stats_desc *pdesc; 5828 int i; 5829 5830 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); 5831 5832 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) { 5833 pdesc = &kvm_vm_stats_desc[i]; 5834 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5835 fops = &vm_stat_fops; 5836 else 5837 fops = &vm_stat_readonly_fops; 5838 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5839 kvm_debugfs_dir, 5840 (void *)(long)pdesc->desc.offset, fops); 5841 } 5842 5843 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) { 5844 pdesc = &kvm_vcpu_stats_desc[i]; 5845 if (kvm_stats_debugfs_mode(pdesc) & 0222) 5846 fops = &vcpu_stat_fops; 5847 else 5848 fops = &vcpu_stat_readonly_fops; 5849 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc), 5850 kvm_debugfs_dir, 5851 (void *)(long)pdesc->desc.offset, fops); 5852 } 5853 } 5854 5855 static inline 5856 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) 5857 { 5858 return container_of(pn, struct kvm_vcpu, preempt_notifier); 5859 } 5860 5861 static void kvm_sched_in(struct preempt_notifier *pn, int cpu) 5862 { 5863 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5864 5865 WRITE_ONCE(vcpu->preempted, false); 5866 WRITE_ONCE(vcpu->ready, false); 5867 5868 __this_cpu_write(kvm_running_vcpu, vcpu); 5869 kvm_arch_sched_in(vcpu, cpu); 5870 kvm_arch_vcpu_load(vcpu, cpu); 5871 } 5872 5873 static void kvm_sched_out(struct preempt_notifier *pn, 5874 struct task_struct *next) 5875 { 5876 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); 5877 5878 if (current->on_rq) { 5879 WRITE_ONCE(vcpu->preempted, true); 5880 WRITE_ONCE(vcpu->ready, true); 5881 } 5882 kvm_arch_vcpu_put(vcpu); 5883 __this_cpu_write(kvm_running_vcpu, NULL); 5884 } 5885 5886 /** 5887 * kvm_get_running_vcpu - get the vcpu running on the current CPU. 5888 * 5889 * We can disable preemption locally around accessing the per-CPU variable, 5890 * and use the resolved vcpu pointer after enabling preemption again, 5891 * because even if the current thread is migrated to another CPU, reading 5892 * the per-CPU value later will give us the same value as we update the 5893 * per-CPU variable in the preempt notifier handlers. 5894 */ 5895 struct kvm_vcpu *kvm_get_running_vcpu(void) 5896 { 5897 struct kvm_vcpu *vcpu; 5898 5899 preempt_disable(); 5900 vcpu = __this_cpu_read(kvm_running_vcpu); 5901 preempt_enable(); 5902 5903 return vcpu; 5904 } 5905 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu); 5906 5907 /** 5908 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus. 5909 */ 5910 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) 5911 { 5912 return &kvm_running_vcpu; 5913 } 5914 5915 #ifdef CONFIG_GUEST_PERF_EVENTS 5916 static unsigned int kvm_guest_state(void) 5917 { 5918 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5919 unsigned int state; 5920 5921 if (!kvm_arch_pmi_in_guest(vcpu)) 5922 return 0; 5923 5924 state = PERF_GUEST_ACTIVE; 5925 if (!kvm_arch_vcpu_in_kernel(vcpu)) 5926 state |= PERF_GUEST_USER; 5927 5928 return state; 5929 } 5930 5931 static unsigned long kvm_guest_get_ip(void) 5932 { 5933 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 5934 5935 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */ 5936 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu))) 5937 return 0; 5938 5939 return kvm_arch_vcpu_get_ip(vcpu); 5940 } 5941 5942 static struct perf_guest_info_callbacks kvm_guest_cbs = { 5943 .state = kvm_guest_state, 5944 .get_ip = kvm_guest_get_ip, 5945 .handle_intel_pt_intr = NULL, 5946 }; 5947 5948 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void)) 5949 { 5950 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler; 5951 perf_register_guest_info_callbacks(&kvm_guest_cbs); 5952 } 5953 void kvm_unregister_perf_callbacks(void) 5954 { 5955 perf_unregister_guest_info_callbacks(&kvm_guest_cbs); 5956 } 5957 #endif 5958 5959 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module) 5960 { 5961 int r; 5962 int cpu; 5963 5964 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 5965 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online", 5966 kvm_online_cpu, kvm_offline_cpu); 5967 if (r) 5968 return r; 5969 5970 register_reboot_notifier(&kvm_reboot_notifier); 5971 register_syscore_ops(&kvm_syscore_ops); 5972 #endif 5973 5974 /* A kmem cache lets us meet the alignment requirements of fx_save. */ 5975 if (!vcpu_align) 5976 vcpu_align = __alignof__(struct kvm_vcpu); 5977 kvm_vcpu_cache = 5978 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align, 5979 SLAB_ACCOUNT, 5980 offsetof(struct kvm_vcpu, arch), 5981 offsetofend(struct kvm_vcpu, stats_id) 5982 - offsetof(struct kvm_vcpu, arch), 5983 NULL); 5984 if (!kvm_vcpu_cache) { 5985 r = -ENOMEM; 5986 goto err_vcpu_cache; 5987 } 5988 5989 for_each_possible_cpu(cpu) { 5990 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu), 5991 GFP_KERNEL, cpu_to_node(cpu))) { 5992 r = -ENOMEM; 5993 goto err_cpu_kick_mask; 5994 } 5995 } 5996 5997 r = kvm_irqfd_init(); 5998 if (r) 5999 goto err_irqfd; 6000 6001 r = kvm_async_pf_init(); 6002 if (r) 6003 goto err_async_pf; 6004 6005 kvm_chardev_ops.owner = module; 6006 6007 kvm_preempt_ops.sched_in = kvm_sched_in; 6008 kvm_preempt_ops.sched_out = kvm_sched_out; 6009 6010 kvm_init_debug(); 6011 6012 r = kvm_vfio_ops_init(); 6013 if (WARN_ON_ONCE(r)) 6014 goto err_vfio; 6015 6016 /* 6017 * Registration _must_ be the very last thing done, as this exposes 6018 * /dev/kvm to userspace, i.e. all infrastructure must be setup! 6019 */ 6020 r = misc_register(&kvm_dev); 6021 if (r) { 6022 pr_err("kvm: misc device register failed\n"); 6023 goto err_register; 6024 } 6025 6026 return 0; 6027 6028 err_register: 6029 kvm_vfio_ops_exit(); 6030 err_vfio: 6031 kvm_async_pf_deinit(); 6032 err_async_pf: 6033 kvm_irqfd_exit(); 6034 err_irqfd: 6035 err_cpu_kick_mask: 6036 for_each_possible_cpu(cpu) 6037 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6038 kmem_cache_destroy(kvm_vcpu_cache); 6039 err_vcpu_cache: 6040 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6041 unregister_syscore_ops(&kvm_syscore_ops); 6042 unregister_reboot_notifier(&kvm_reboot_notifier); 6043 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6044 #endif 6045 return r; 6046 } 6047 EXPORT_SYMBOL_GPL(kvm_init); 6048 6049 void kvm_exit(void) 6050 { 6051 int cpu; 6052 6053 /* 6054 * Note, unregistering /dev/kvm doesn't strictly need to come first, 6055 * fops_get(), a.k.a. try_module_get(), prevents acquiring references 6056 * to KVM while the module is being stopped. 6057 */ 6058 misc_deregister(&kvm_dev); 6059 6060 debugfs_remove_recursive(kvm_debugfs_dir); 6061 for_each_possible_cpu(cpu) 6062 free_cpumask_var(per_cpu(cpu_kick_mask, cpu)); 6063 kmem_cache_destroy(kvm_vcpu_cache); 6064 kvm_vfio_ops_exit(); 6065 kvm_async_pf_deinit(); 6066 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING 6067 unregister_syscore_ops(&kvm_syscore_ops); 6068 unregister_reboot_notifier(&kvm_reboot_notifier); 6069 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE); 6070 #endif 6071 kvm_irqfd_exit(); 6072 } 6073 EXPORT_SYMBOL_GPL(kvm_exit); 6074 6075 struct kvm_vm_worker_thread_context { 6076 struct kvm *kvm; 6077 struct task_struct *parent; 6078 struct completion init_done; 6079 kvm_vm_thread_fn_t thread_fn; 6080 uintptr_t data; 6081 int err; 6082 }; 6083 6084 static int kvm_vm_worker_thread(void *context) 6085 { 6086 /* 6087 * The init_context is allocated on the stack of the parent thread, so 6088 * we have to locally copy anything that is needed beyond initialization 6089 */ 6090 struct kvm_vm_worker_thread_context *init_context = context; 6091 struct task_struct *parent; 6092 struct kvm *kvm = init_context->kvm; 6093 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn; 6094 uintptr_t data = init_context->data; 6095 int err; 6096 6097 err = kthread_park(current); 6098 /* kthread_park(current) is never supposed to return an error */ 6099 WARN_ON(err != 0); 6100 if (err) 6101 goto init_complete; 6102 6103 err = cgroup_attach_task_all(init_context->parent, current); 6104 if (err) { 6105 kvm_err("%s: cgroup_attach_task_all failed with err %d\n", 6106 __func__, err); 6107 goto init_complete; 6108 } 6109 6110 set_user_nice(current, task_nice(init_context->parent)); 6111 6112 init_complete: 6113 init_context->err = err; 6114 complete(&init_context->init_done); 6115 init_context = NULL; 6116 6117 if (err) 6118 goto out; 6119 6120 /* Wait to be woken up by the spawner before proceeding. */ 6121 kthread_parkme(); 6122 6123 if (!kthread_should_stop()) 6124 err = thread_fn(kvm, data); 6125 6126 out: 6127 /* 6128 * Move kthread back to its original cgroup to prevent it lingering in 6129 * the cgroup of the VM process, after the latter finishes its 6130 * execution. 6131 * 6132 * kthread_stop() waits on the 'exited' completion condition which is 6133 * set in exit_mm(), via mm_release(), in do_exit(). However, the 6134 * kthread is removed from the cgroup in the cgroup_exit() which is 6135 * called after the exit_mm(). This causes the kthread_stop() to return 6136 * before the kthread actually quits the cgroup. 6137 */ 6138 rcu_read_lock(); 6139 parent = rcu_dereference(current->real_parent); 6140 get_task_struct(parent); 6141 rcu_read_unlock(); 6142 cgroup_attach_task_all(parent, current); 6143 put_task_struct(parent); 6144 6145 return err; 6146 } 6147 6148 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 6149 uintptr_t data, const char *name, 6150 struct task_struct **thread_ptr) 6151 { 6152 struct kvm_vm_worker_thread_context init_context = {}; 6153 struct task_struct *thread; 6154 6155 *thread_ptr = NULL; 6156 init_context.kvm = kvm; 6157 init_context.parent = current; 6158 init_context.thread_fn = thread_fn; 6159 init_context.data = data; 6160 init_completion(&init_context.init_done); 6161 6162 thread = kthread_run(kvm_vm_worker_thread, &init_context, 6163 "%s-%d", name, task_pid_nr(current)); 6164 if (IS_ERR(thread)) 6165 return PTR_ERR(thread); 6166 6167 /* kthread_run is never supposed to return NULL */ 6168 WARN_ON(thread == NULL); 6169 6170 wait_for_completion(&init_context.init_done); 6171 6172 if (!init_context.err) 6173 *thread_ptr = thread; 6174 6175 return init_context.err; 6176 } 6177