1 /* 2 * kvm eventfd support - use eventfd objects to signal various KVM events 3 * 4 * Copyright 2009 Novell. All Rights Reserved. 5 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 6 * 7 * Author: 8 * Gregory Haskins <ghaskins@novell.com> 9 * 10 * This file is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License 12 * as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software Foundation, 21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 22 */ 23 24 #include <linux/kvm_host.h> 25 #include <linux/kvm.h> 26 #include <linux/workqueue.h> 27 #include <linux/syscalls.h> 28 #include <linux/wait.h> 29 #include <linux/poll.h> 30 #include <linux/file.h> 31 #include <linux/list.h> 32 #include <linux/eventfd.h> 33 #include <linux/kernel.h> 34 #include <linux/srcu.h> 35 #include <linux/slab.h> 36 #include <linux/seqlock.h> 37 #include <trace/events/kvm.h> 38 39 #include "iodev.h" 40 41 #ifdef CONFIG_HAVE_KVM_IRQFD 42 /* 43 * -------------------------------------------------------------------- 44 * irqfd: Allows an fd to be used to inject an interrupt to the guest 45 * 46 * Credit goes to Avi Kivity for the original idea. 47 * -------------------------------------------------------------------- 48 */ 49 50 /* 51 * Resampling irqfds are a special variety of irqfds used to emulate 52 * level triggered interrupts. The interrupt is asserted on eventfd 53 * trigger. On acknowledgement through the irq ack notifier, the 54 * interrupt is de-asserted and userspace is notified through the 55 * resamplefd. All resamplers on the same gsi are de-asserted 56 * together, so we don't need to track the state of each individual 57 * user. We can also therefore share the same irq source ID. 58 */ 59 struct _irqfd_resampler { 60 struct kvm *kvm; 61 /* 62 * List of resampling struct _irqfd objects sharing this gsi. 63 * RCU list modified under kvm->irqfds.resampler_lock 64 */ 65 struct list_head list; 66 struct kvm_irq_ack_notifier notifier; 67 /* 68 * Entry in list of kvm->irqfd.resampler_list. Use for sharing 69 * resamplers among irqfds on the same gsi. 70 * Accessed and modified under kvm->irqfds.resampler_lock 71 */ 72 struct list_head link; 73 }; 74 75 struct _irqfd { 76 /* Used for MSI fast-path */ 77 struct kvm *kvm; 78 wait_queue_t wait; 79 /* Update side is protected by irqfds.lock */ 80 struct kvm_kernel_irq_routing_entry irq_entry; 81 seqcount_t irq_entry_sc; 82 /* Used for level IRQ fast-path */ 83 int gsi; 84 struct work_struct inject; 85 /* The resampler used by this irqfd (resampler-only) */ 86 struct _irqfd_resampler *resampler; 87 /* Eventfd notified on resample (resampler-only) */ 88 struct eventfd_ctx *resamplefd; 89 /* Entry in list of irqfds for a resampler (resampler-only) */ 90 struct list_head resampler_link; 91 /* Used for setup/shutdown */ 92 struct eventfd_ctx *eventfd; 93 struct list_head list; 94 poll_table pt; 95 struct work_struct shutdown; 96 }; 97 98 static struct workqueue_struct *irqfd_cleanup_wq; 99 100 static void 101 irqfd_inject(struct work_struct *work) 102 { 103 struct _irqfd *irqfd = container_of(work, struct _irqfd, inject); 104 struct kvm *kvm = irqfd->kvm; 105 106 if (!irqfd->resampler) { 107 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1, 108 false); 109 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0, 110 false); 111 } else 112 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 113 irqfd->gsi, 1, false); 114 } 115 116 /* 117 * Since resampler irqfds share an IRQ source ID, we de-assert once 118 * then notify all of the resampler irqfds using this GSI. We can't 119 * do multiple de-asserts or we risk racing with incoming re-asserts. 120 */ 121 static void 122 irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian) 123 { 124 struct _irqfd_resampler *resampler; 125 struct kvm *kvm; 126 struct _irqfd *irqfd; 127 int idx; 128 129 resampler = container_of(kian, struct _irqfd_resampler, notifier); 130 kvm = resampler->kvm; 131 132 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 133 resampler->notifier.gsi, 0, false); 134 135 idx = srcu_read_lock(&kvm->irq_srcu); 136 137 list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link) 138 eventfd_signal(irqfd->resamplefd, 1); 139 140 srcu_read_unlock(&kvm->irq_srcu, idx); 141 } 142 143 static void 144 irqfd_resampler_shutdown(struct _irqfd *irqfd) 145 { 146 struct _irqfd_resampler *resampler = irqfd->resampler; 147 struct kvm *kvm = resampler->kvm; 148 149 mutex_lock(&kvm->irqfds.resampler_lock); 150 151 list_del_rcu(&irqfd->resampler_link); 152 synchronize_srcu(&kvm->irq_srcu); 153 154 if (list_empty(&resampler->list)) { 155 list_del(&resampler->link); 156 kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier); 157 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 158 resampler->notifier.gsi, 0, false); 159 kfree(resampler); 160 } 161 162 mutex_unlock(&kvm->irqfds.resampler_lock); 163 } 164 165 /* 166 * Race-free decouple logic (ordering is critical) 167 */ 168 static void 169 irqfd_shutdown(struct work_struct *work) 170 { 171 struct _irqfd *irqfd = container_of(work, struct _irqfd, shutdown); 172 u64 cnt; 173 174 /* 175 * Synchronize with the wait-queue and unhook ourselves to prevent 176 * further events. 177 */ 178 eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt); 179 180 /* 181 * We know no new events will be scheduled at this point, so block 182 * until all previously outstanding events have completed 183 */ 184 flush_work(&irqfd->inject); 185 186 if (irqfd->resampler) { 187 irqfd_resampler_shutdown(irqfd); 188 eventfd_ctx_put(irqfd->resamplefd); 189 } 190 191 /* 192 * It is now safe to release the object's resources 193 */ 194 eventfd_ctx_put(irqfd->eventfd); 195 kfree(irqfd); 196 } 197 198 199 /* assumes kvm->irqfds.lock is held */ 200 static bool 201 irqfd_is_active(struct _irqfd *irqfd) 202 { 203 return list_empty(&irqfd->list) ? false : true; 204 } 205 206 /* 207 * Mark the irqfd as inactive and schedule it for removal 208 * 209 * assumes kvm->irqfds.lock is held 210 */ 211 static void 212 irqfd_deactivate(struct _irqfd *irqfd) 213 { 214 BUG_ON(!irqfd_is_active(irqfd)); 215 216 list_del_init(&irqfd->list); 217 218 queue_work(irqfd_cleanup_wq, &irqfd->shutdown); 219 } 220 221 /* 222 * Called with wqh->lock held and interrupts disabled 223 */ 224 static int 225 irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key) 226 { 227 struct _irqfd *irqfd = container_of(wait, struct _irqfd, wait); 228 unsigned long flags = (unsigned long)key; 229 struct kvm_kernel_irq_routing_entry irq; 230 struct kvm *kvm = irqfd->kvm; 231 unsigned seq; 232 int idx; 233 234 if (flags & POLLIN) { 235 idx = srcu_read_lock(&kvm->irq_srcu); 236 do { 237 seq = read_seqcount_begin(&irqfd->irq_entry_sc); 238 irq = irqfd->irq_entry; 239 } while (read_seqcount_retry(&irqfd->irq_entry_sc, seq)); 240 /* An event has been signaled, inject an interrupt */ 241 if (irq.type == KVM_IRQ_ROUTING_MSI) 242 kvm_set_msi(&irq, kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1, 243 false); 244 else 245 schedule_work(&irqfd->inject); 246 srcu_read_unlock(&kvm->irq_srcu, idx); 247 } 248 249 if (flags & POLLHUP) { 250 /* The eventfd is closing, detach from KVM */ 251 unsigned long flags; 252 253 spin_lock_irqsave(&kvm->irqfds.lock, flags); 254 255 /* 256 * We must check if someone deactivated the irqfd before 257 * we could acquire the irqfds.lock since the item is 258 * deactivated from the KVM side before it is unhooked from 259 * the wait-queue. If it is already deactivated, we can 260 * simply return knowing the other side will cleanup for us. 261 * We cannot race against the irqfd going away since the 262 * other side is required to acquire wqh->lock, which we hold 263 */ 264 if (irqfd_is_active(irqfd)) 265 irqfd_deactivate(irqfd); 266 267 spin_unlock_irqrestore(&kvm->irqfds.lock, flags); 268 } 269 270 return 0; 271 } 272 273 static void 274 irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, 275 poll_table *pt) 276 { 277 struct _irqfd *irqfd = container_of(pt, struct _irqfd, pt); 278 add_wait_queue(wqh, &irqfd->wait); 279 } 280 281 /* Must be called under irqfds.lock */ 282 static void irqfd_update(struct kvm *kvm, struct _irqfd *irqfd) 283 { 284 struct kvm_kernel_irq_routing_entry *e; 285 struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS]; 286 int i, n_entries; 287 288 n_entries = kvm_irq_map_gsi(kvm, entries, irqfd->gsi); 289 290 write_seqcount_begin(&irqfd->irq_entry_sc); 291 292 irqfd->irq_entry.type = 0; 293 294 e = entries; 295 for (i = 0; i < n_entries; ++i, ++e) { 296 /* Only fast-path MSI. */ 297 if (e->type == KVM_IRQ_ROUTING_MSI) 298 irqfd->irq_entry = *e; 299 } 300 301 write_seqcount_end(&irqfd->irq_entry_sc); 302 } 303 304 static int 305 kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args) 306 { 307 struct _irqfd *irqfd, *tmp; 308 struct fd f; 309 struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL; 310 int ret; 311 unsigned int events; 312 int idx; 313 314 irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL); 315 if (!irqfd) 316 return -ENOMEM; 317 318 irqfd->kvm = kvm; 319 irqfd->gsi = args->gsi; 320 INIT_LIST_HEAD(&irqfd->list); 321 INIT_WORK(&irqfd->inject, irqfd_inject); 322 INIT_WORK(&irqfd->shutdown, irqfd_shutdown); 323 seqcount_init(&irqfd->irq_entry_sc); 324 325 f = fdget(args->fd); 326 if (!f.file) { 327 ret = -EBADF; 328 goto out; 329 } 330 331 eventfd = eventfd_ctx_fileget(f.file); 332 if (IS_ERR(eventfd)) { 333 ret = PTR_ERR(eventfd); 334 goto fail; 335 } 336 337 irqfd->eventfd = eventfd; 338 339 if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) { 340 struct _irqfd_resampler *resampler; 341 342 resamplefd = eventfd_ctx_fdget(args->resamplefd); 343 if (IS_ERR(resamplefd)) { 344 ret = PTR_ERR(resamplefd); 345 goto fail; 346 } 347 348 irqfd->resamplefd = resamplefd; 349 INIT_LIST_HEAD(&irqfd->resampler_link); 350 351 mutex_lock(&kvm->irqfds.resampler_lock); 352 353 list_for_each_entry(resampler, 354 &kvm->irqfds.resampler_list, link) { 355 if (resampler->notifier.gsi == irqfd->gsi) { 356 irqfd->resampler = resampler; 357 break; 358 } 359 } 360 361 if (!irqfd->resampler) { 362 resampler = kzalloc(sizeof(*resampler), GFP_KERNEL); 363 if (!resampler) { 364 ret = -ENOMEM; 365 mutex_unlock(&kvm->irqfds.resampler_lock); 366 goto fail; 367 } 368 369 resampler->kvm = kvm; 370 INIT_LIST_HEAD(&resampler->list); 371 resampler->notifier.gsi = irqfd->gsi; 372 resampler->notifier.irq_acked = irqfd_resampler_ack; 373 INIT_LIST_HEAD(&resampler->link); 374 375 list_add(&resampler->link, &kvm->irqfds.resampler_list); 376 kvm_register_irq_ack_notifier(kvm, 377 &resampler->notifier); 378 irqfd->resampler = resampler; 379 } 380 381 list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list); 382 synchronize_srcu(&kvm->irq_srcu); 383 384 mutex_unlock(&kvm->irqfds.resampler_lock); 385 } 386 387 /* 388 * Install our own custom wake-up handling so we are notified via 389 * a callback whenever someone signals the underlying eventfd 390 */ 391 init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup); 392 init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc); 393 394 spin_lock_irq(&kvm->irqfds.lock); 395 396 ret = 0; 397 list_for_each_entry(tmp, &kvm->irqfds.items, list) { 398 if (irqfd->eventfd != tmp->eventfd) 399 continue; 400 /* This fd is used for another irq already. */ 401 ret = -EBUSY; 402 spin_unlock_irq(&kvm->irqfds.lock); 403 goto fail; 404 } 405 406 idx = srcu_read_lock(&kvm->irq_srcu); 407 irqfd_update(kvm, irqfd); 408 srcu_read_unlock(&kvm->irq_srcu, idx); 409 410 list_add_tail(&irqfd->list, &kvm->irqfds.items); 411 412 spin_unlock_irq(&kvm->irqfds.lock); 413 414 /* 415 * Check if there was an event already pending on the eventfd 416 * before we registered, and trigger it as if we didn't miss it. 417 */ 418 events = f.file->f_op->poll(f.file, &irqfd->pt); 419 420 if (events & POLLIN) 421 schedule_work(&irqfd->inject); 422 423 /* 424 * do not drop the file until the irqfd is fully initialized, otherwise 425 * we might race against the POLLHUP 426 */ 427 fdput(f); 428 429 return 0; 430 431 fail: 432 if (irqfd->resampler) 433 irqfd_resampler_shutdown(irqfd); 434 435 if (resamplefd && !IS_ERR(resamplefd)) 436 eventfd_ctx_put(resamplefd); 437 438 if (eventfd && !IS_ERR(eventfd)) 439 eventfd_ctx_put(eventfd); 440 441 fdput(f); 442 443 out: 444 kfree(irqfd); 445 return ret; 446 } 447 448 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin) 449 { 450 struct kvm_irq_ack_notifier *kian; 451 int gsi, idx; 452 453 idx = srcu_read_lock(&kvm->irq_srcu); 454 gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); 455 if (gsi != -1) 456 hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, 457 link) 458 if (kian->gsi == gsi) { 459 srcu_read_unlock(&kvm->irq_srcu, idx); 460 return true; 461 } 462 463 srcu_read_unlock(&kvm->irq_srcu, idx); 464 465 return false; 466 } 467 EXPORT_SYMBOL_GPL(kvm_irq_has_notifier); 468 469 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin) 470 { 471 struct kvm_irq_ack_notifier *kian; 472 int gsi, idx; 473 474 trace_kvm_ack_irq(irqchip, pin); 475 476 idx = srcu_read_lock(&kvm->irq_srcu); 477 gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); 478 if (gsi != -1) 479 hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, 480 link) 481 if (kian->gsi == gsi) 482 kian->irq_acked(kian); 483 srcu_read_unlock(&kvm->irq_srcu, idx); 484 } 485 486 void kvm_register_irq_ack_notifier(struct kvm *kvm, 487 struct kvm_irq_ack_notifier *kian) 488 { 489 mutex_lock(&kvm->irq_lock); 490 hlist_add_head_rcu(&kian->link, &kvm->irq_ack_notifier_list); 491 mutex_unlock(&kvm->irq_lock); 492 kvm_vcpu_request_scan_ioapic(kvm); 493 } 494 495 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 496 struct kvm_irq_ack_notifier *kian) 497 { 498 mutex_lock(&kvm->irq_lock); 499 hlist_del_init_rcu(&kian->link); 500 mutex_unlock(&kvm->irq_lock); 501 synchronize_srcu(&kvm->irq_srcu); 502 kvm_vcpu_request_scan_ioapic(kvm); 503 } 504 #endif 505 506 void 507 kvm_eventfd_init(struct kvm *kvm) 508 { 509 #ifdef CONFIG_HAVE_KVM_IRQFD 510 spin_lock_init(&kvm->irqfds.lock); 511 INIT_LIST_HEAD(&kvm->irqfds.items); 512 INIT_LIST_HEAD(&kvm->irqfds.resampler_list); 513 mutex_init(&kvm->irqfds.resampler_lock); 514 #endif 515 INIT_LIST_HEAD(&kvm->ioeventfds); 516 } 517 518 #ifdef CONFIG_HAVE_KVM_IRQFD 519 /* 520 * shutdown any irqfd's that match fd+gsi 521 */ 522 static int 523 kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args) 524 { 525 struct _irqfd *irqfd, *tmp; 526 struct eventfd_ctx *eventfd; 527 528 eventfd = eventfd_ctx_fdget(args->fd); 529 if (IS_ERR(eventfd)) 530 return PTR_ERR(eventfd); 531 532 spin_lock_irq(&kvm->irqfds.lock); 533 534 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) { 535 if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) { 536 /* 537 * This clearing of irq_entry.type is needed for when 538 * another thread calls kvm_irq_routing_update before 539 * we flush workqueue below (we synchronize with 540 * kvm_irq_routing_update using irqfds.lock). 541 */ 542 write_seqcount_begin(&irqfd->irq_entry_sc); 543 irqfd->irq_entry.type = 0; 544 write_seqcount_end(&irqfd->irq_entry_sc); 545 irqfd_deactivate(irqfd); 546 } 547 } 548 549 spin_unlock_irq(&kvm->irqfds.lock); 550 eventfd_ctx_put(eventfd); 551 552 /* 553 * Block until we know all outstanding shutdown jobs have completed 554 * so that we guarantee there will not be any more interrupts on this 555 * gsi once this deassign function returns. 556 */ 557 flush_workqueue(irqfd_cleanup_wq); 558 559 return 0; 560 } 561 562 int 563 kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 564 { 565 if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE)) 566 return -EINVAL; 567 568 if (args->flags & KVM_IRQFD_FLAG_DEASSIGN) 569 return kvm_irqfd_deassign(kvm, args); 570 571 return kvm_irqfd_assign(kvm, args); 572 } 573 574 /* 575 * This function is called as the kvm VM fd is being released. Shutdown all 576 * irqfds that still remain open 577 */ 578 void 579 kvm_irqfd_release(struct kvm *kvm) 580 { 581 struct _irqfd *irqfd, *tmp; 582 583 spin_lock_irq(&kvm->irqfds.lock); 584 585 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) 586 irqfd_deactivate(irqfd); 587 588 spin_unlock_irq(&kvm->irqfds.lock); 589 590 /* 591 * Block until we know all outstanding shutdown jobs have completed 592 * since we do not take a kvm* reference. 593 */ 594 flush_workqueue(irqfd_cleanup_wq); 595 596 } 597 598 /* 599 * Take note of a change in irq routing. 600 * Caller must invoke synchronize_srcu(&kvm->irq_srcu) afterwards. 601 */ 602 void kvm_irq_routing_update(struct kvm *kvm) 603 { 604 struct _irqfd *irqfd; 605 606 spin_lock_irq(&kvm->irqfds.lock); 607 608 list_for_each_entry(irqfd, &kvm->irqfds.items, list) 609 irqfd_update(kvm, irqfd); 610 611 spin_unlock_irq(&kvm->irqfds.lock); 612 } 613 614 /* 615 * create a host-wide workqueue for issuing deferred shutdown requests 616 * aggregated from all vm* instances. We need our own isolated single-thread 617 * queue to prevent deadlock against flushing the normal work-queue. 618 */ 619 int kvm_irqfd_init(void) 620 { 621 irqfd_cleanup_wq = create_singlethread_workqueue("kvm-irqfd-cleanup"); 622 if (!irqfd_cleanup_wq) 623 return -ENOMEM; 624 625 return 0; 626 } 627 628 void kvm_irqfd_exit(void) 629 { 630 destroy_workqueue(irqfd_cleanup_wq); 631 } 632 #endif 633 634 /* 635 * -------------------------------------------------------------------- 636 * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal. 637 * 638 * userspace can register a PIO/MMIO address with an eventfd for receiving 639 * notification when the memory has been touched. 640 * -------------------------------------------------------------------- 641 */ 642 643 struct _ioeventfd { 644 struct list_head list; 645 u64 addr; 646 int length; 647 struct eventfd_ctx *eventfd; 648 u64 datamatch; 649 struct kvm_io_device dev; 650 u8 bus_idx; 651 bool wildcard; 652 }; 653 654 static inline struct _ioeventfd * 655 to_ioeventfd(struct kvm_io_device *dev) 656 { 657 return container_of(dev, struct _ioeventfd, dev); 658 } 659 660 static void 661 ioeventfd_release(struct _ioeventfd *p) 662 { 663 eventfd_ctx_put(p->eventfd); 664 list_del(&p->list); 665 kfree(p); 666 } 667 668 static bool 669 ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val) 670 { 671 u64 _val; 672 673 if (addr != p->addr) 674 /* address must be precise for a hit */ 675 return false; 676 677 if (!p->length) 678 /* length = 0 means only look at the address, so always a hit */ 679 return true; 680 681 if (len != p->length) 682 /* address-range must be precise for a hit */ 683 return false; 684 685 if (p->wildcard) 686 /* all else equal, wildcard is always a hit */ 687 return true; 688 689 /* otherwise, we have to actually compare the data */ 690 691 BUG_ON(!IS_ALIGNED((unsigned long)val, len)); 692 693 switch (len) { 694 case 1: 695 _val = *(u8 *)val; 696 break; 697 case 2: 698 _val = *(u16 *)val; 699 break; 700 case 4: 701 _val = *(u32 *)val; 702 break; 703 case 8: 704 _val = *(u64 *)val; 705 break; 706 default: 707 return false; 708 } 709 710 return _val == p->datamatch ? true : false; 711 } 712 713 /* MMIO/PIO writes trigger an event if the addr/val match */ 714 static int 715 ioeventfd_write(struct kvm_io_device *this, gpa_t addr, int len, 716 const void *val) 717 { 718 struct _ioeventfd *p = to_ioeventfd(this); 719 720 if (!ioeventfd_in_range(p, addr, len, val)) 721 return -EOPNOTSUPP; 722 723 eventfd_signal(p->eventfd, 1); 724 return 0; 725 } 726 727 /* 728 * This function is called as KVM is completely shutting down. We do not 729 * need to worry about locking just nuke anything we have as quickly as possible 730 */ 731 static void 732 ioeventfd_destructor(struct kvm_io_device *this) 733 { 734 struct _ioeventfd *p = to_ioeventfd(this); 735 736 ioeventfd_release(p); 737 } 738 739 static const struct kvm_io_device_ops ioeventfd_ops = { 740 .write = ioeventfd_write, 741 .destructor = ioeventfd_destructor, 742 }; 743 744 /* assumes kvm->slots_lock held */ 745 static bool 746 ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p) 747 { 748 struct _ioeventfd *_p; 749 750 list_for_each_entry(_p, &kvm->ioeventfds, list) 751 if (_p->bus_idx == p->bus_idx && 752 _p->addr == p->addr && 753 (!_p->length || !p->length || 754 (_p->length == p->length && 755 (_p->wildcard || p->wildcard || 756 _p->datamatch == p->datamatch)))) 757 return true; 758 759 return false; 760 } 761 762 static enum kvm_bus ioeventfd_bus_from_flags(__u32 flags) 763 { 764 if (flags & KVM_IOEVENTFD_FLAG_PIO) 765 return KVM_PIO_BUS; 766 if (flags & KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY) 767 return KVM_VIRTIO_CCW_NOTIFY_BUS; 768 return KVM_MMIO_BUS; 769 } 770 771 static int 772 kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 773 { 774 enum kvm_bus bus_idx; 775 struct _ioeventfd *p; 776 struct eventfd_ctx *eventfd; 777 int ret; 778 779 bus_idx = ioeventfd_bus_from_flags(args->flags); 780 /* must be natural-word sized, or 0 to ignore length */ 781 switch (args->len) { 782 case 0: 783 case 1: 784 case 2: 785 case 4: 786 case 8: 787 break; 788 default: 789 return -EINVAL; 790 } 791 792 /* check for range overflow */ 793 if (args->addr + args->len < args->addr) 794 return -EINVAL; 795 796 /* check for extra flags that we don't understand */ 797 if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK) 798 return -EINVAL; 799 800 /* ioeventfd with no length can't be combined with DATAMATCH */ 801 if (!args->len && 802 args->flags & (KVM_IOEVENTFD_FLAG_PIO | 803 KVM_IOEVENTFD_FLAG_DATAMATCH)) 804 return -EINVAL; 805 806 eventfd = eventfd_ctx_fdget(args->fd); 807 if (IS_ERR(eventfd)) 808 return PTR_ERR(eventfd); 809 810 p = kzalloc(sizeof(*p), GFP_KERNEL); 811 if (!p) { 812 ret = -ENOMEM; 813 goto fail; 814 } 815 816 INIT_LIST_HEAD(&p->list); 817 p->addr = args->addr; 818 p->bus_idx = bus_idx; 819 p->length = args->len; 820 p->eventfd = eventfd; 821 822 /* The datamatch feature is optional, otherwise this is a wildcard */ 823 if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH) 824 p->datamatch = args->datamatch; 825 else 826 p->wildcard = true; 827 828 mutex_lock(&kvm->slots_lock); 829 830 /* Verify that there isn't a match already */ 831 if (ioeventfd_check_collision(kvm, p)) { 832 ret = -EEXIST; 833 goto unlock_fail; 834 } 835 836 kvm_iodevice_init(&p->dev, &ioeventfd_ops); 837 838 ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length, 839 &p->dev); 840 if (ret < 0) 841 goto unlock_fail; 842 843 /* When length is ignored, MMIO is also put on a separate bus, for 844 * faster lookups. 845 */ 846 if (!args->len && !(args->flags & KVM_IOEVENTFD_FLAG_PIO)) { 847 ret = kvm_io_bus_register_dev(kvm, KVM_FAST_MMIO_BUS, 848 p->addr, 0, &p->dev); 849 if (ret < 0) 850 goto register_fail; 851 } 852 853 kvm->buses[bus_idx]->ioeventfd_count++; 854 list_add_tail(&p->list, &kvm->ioeventfds); 855 856 mutex_unlock(&kvm->slots_lock); 857 858 return 0; 859 860 register_fail: 861 kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); 862 unlock_fail: 863 mutex_unlock(&kvm->slots_lock); 864 865 fail: 866 kfree(p); 867 eventfd_ctx_put(eventfd); 868 869 return ret; 870 } 871 872 static int 873 kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 874 { 875 enum kvm_bus bus_idx; 876 struct _ioeventfd *p, *tmp; 877 struct eventfd_ctx *eventfd; 878 int ret = -ENOENT; 879 880 bus_idx = ioeventfd_bus_from_flags(args->flags); 881 eventfd = eventfd_ctx_fdget(args->fd); 882 if (IS_ERR(eventfd)) 883 return PTR_ERR(eventfd); 884 885 mutex_lock(&kvm->slots_lock); 886 887 list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) { 888 bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH); 889 890 if (p->bus_idx != bus_idx || 891 p->eventfd != eventfd || 892 p->addr != args->addr || 893 p->length != args->len || 894 p->wildcard != wildcard) 895 continue; 896 897 if (!p->wildcard && p->datamatch != args->datamatch) 898 continue; 899 900 kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); 901 if (!p->length) { 902 kvm_io_bus_unregister_dev(kvm, KVM_FAST_MMIO_BUS, 903 &p->dev); 904 } 905 kvm->buses[bus_idx]->ioeventfd_count--; 906 ioeventfd_release(p); 907 ret = 0; 908 break; 909 } 910 911 mutex_unlock(&kvm->slots_lock); 912 913 eventfd_ctx_put(eventfd); 914 915 return ret; 916 } 917 918 int 919 kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 920 { 921 if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN) 922 return kvm_deassign_ioeventfd(kvm, args); 923 924 return kvm_assign_ioeventfd(kvm, args); 925 } 926