1 /* 2 * kvm eventfd support - use eventfd objects to signal various KVM events 3 * 4 * Copyright 2009 Novell. All Rights Reserved. 5 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 6 * 7 * Author: 8 * Gregory Haskins <ghaskins@novell.com> 9 * 10 * This file is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License 12 * as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software Foundation, 21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 22 */ 23 24 #include <linux/kvm_host.h> 25 #include <linux/kvm.h> 26 #include <linux/workqueue.h> 27 #include <linux/syscalls.h> 28 #include <linux/wait.h> 29 #include <linux/poll.h> 30 #include <linux/file.h> 31 #include <linux/list.h> 32 #include <linux/eventfd.h> 33 #include <linux/kernel.h> 34 #include <linux/srcu.h> 35 #include <linux/slab.h> 36 #include <linux/seqlock.h> 37 #include <trace/events/kvm.h> 38 39 #include <kvm/iodev.h> 40 41 #ifdef CONFIG_HAVE_KVM_IRQFD 42 /* 43 * -------------------------------------------------------------------- 44 * irqfd: Allows an fd to be used to inject an interrupt to the guest 45 * 46 * Credit goes to Avi Kivity for the original idea. 47 * -------------------------------------------------------------------- 48 */ 49 50 /* 51 * Resampling irqfds are a special variety of irqfds used to emulate 52 * level triggered interrupts. The interrupt is asserted on eventfd 53 * trigger. On acknowledgement through the irq ack notifier, the 54 * interrupt is de-asserted and userspace is notified through the 55 * resamplefd. All resamplers on the same gsi are de-asserted 56 * together, so we don't need to track the state of each individual 57 * user. We can also therefore share the same irq source ID. 58 */ 59 struct _irqfd_resampler { 60 struct kvm *kvm; 61 /* 62 * List of resampling struct _irqfd objects sharing this gsi. 63 * RCU list modified under kvm->irqfds.resampler_lock 64 */ 65 struct list_head list; 66 struct kvm_irq_ack_notifier notifier; 67 /* 68 * Entry in list of kvm->irqfd.resampler_list. Use for sharing 69 * resamplers among irqfds on the same gsi. 70 * Accessed and modified under kvm->irqfds.resampler_lock 71 */ 72 struct list_head link; 73 }; 74 75 struct _irqfd { 76 /* Used for MSI fast-path */ 77 struct kvm *kvm; 78 wait_queue_t wait; 79 /* Update side is protected by irqfds.lock */ 80 struct kvm_kernel_irq_routing_entry irq_entry; 81 seqcount_t irq_entry_sc; 82 /* Used for level IRQ fast-path */ 83 int gsi; 84 struct work_struct inject; 85 /* The resampler used by this irqfd (resampler-only) */ 86 struct _irqfd_resampler *resampler; 87 /* Eventfd notified on resample (resampler-only) */ 88 struct eventfd_ctx *resamplefd; 89 /* Entry in list of irqfds for a resampler (resampler-only) */ 90 struct list_head resampler_link; 91 /* Used for setup/shutdown */ 92 struct eventfd_ctx *eventfd; 93 struct list_head list; 94 poll_table pt; 95 struct work_struct shutdown; 96 }; 97 98 static struct workqueue_struct *irqfd_cleanup_wq; 99 100 static void 101 irqfd_inject(struct work_struct *work) 102 { 103 struct _irqfd *irqfd = container_of(work, struct _irqfd, inject); 104 struct kvm *kvm = irqfd->kvm; 105 106 if (!irqfd->resampler) { 107 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1, 108 false); 109 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0, 110 false); 111 } else 112 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 113 irqfd->gsi, 1, false); 114 } 115 116 /* 117 * Since resampler irqfds share an IRQ source ID, we de-assert once 118 * then notify all of the resampler irqfds using this GSI. We can't 119 * do multiple de-asserts or we risk racing with incoming re-asserts. 120 */ 121 static void 122 irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian) 123 { 124 struct _irqfd_resampler *resampler; 125 struct kvm *kvm; 126 struct _irqfd *irqfd; 127 int idx; 128 129 resampler = container_of(kian, struct _irqfd_resampler, notifier); 130 kvm = resampler->kvm; 131 132 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 133 resampler->notifier.gsi, 0, false); 134 135 idx = srcu_read_lock(&kvm->irq_srcu); 136 137 list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link) 138 eventfd_signal(irqfd->resamplefd, 1); 139 140 srcu_read_unlock(&kvm->irq_srcu, idx); 141 } 142 143 static void 144 irqfd_resampler_shutdown(struct _irqfd *irqfd) 145 { 146 struct _irqfd_resampler *resampler = irqfd->resampler; 147 struct kvm *kvm = resampler->kvm; 148 149 mutex_lock(&kvm->irqfds.resampler_lock); 150 151 list_del_rcu(&irqfd->resampler_link); 152 synchronize_srcu(&kvm->irq_srcu); 153 154 if (list_empty(&resampler->list)) { 155 list_del(&resampler->link); 156 kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier); 157 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 158 resampler->notifier.gsi, 0, false); 159 kfree(resampler); 160 } 161 162 mutex_unlock(&kvm->irqfds.resampler_lock); 163 } 164 165 /* 166 * Race-free decouple logic (ordering is critical) 167 */ 168 static void 169 irqfd_shutdown(struct work_struct *work) 170 { 171 struct _irqfd *irqfd = container_of(work, struct _irqfd, shutdown); 172 u64 cnt; 173 174 /* 175 * Synchronize with the wait-queue and unhook ourselves to prevent 176 * further events. 177 */ 178 eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt); 179 180 /* 181 * We know no new events will be scheduled at this point, so block 182 * until all previously outstanding events have completed 183 */ 184 flush_work(&irqfd->inject); 185 186 if (irqfd->resampler) { 187 irqfd_resampler_shutdown(irqfd); 188 eventfd_ctx_put(irqfd->resamplefd); 189 } 190 191 /* 192 * It is now safe to release the object's resources 193 */ 194 eventfd_ctx_put(irqfd->eventfd); 195 kfree(irqfd); 196 } 197 198 199 /* assumes kvm->irqfds.lock is held */ 200 static bool 201 irqfd_is_active(struct _irqfd *irqfd) 202 { 203 return list_empty(&irqfd->list) ? false : true; 204 } 205 206 /* 207 * Mark the irqfd as inactive and schedule it for removal 208 * 209 * assumes kvm->irqfds.lock is held 210 */ 211 static void 212 irqfd_deactivate(struct _irqfd *irqfd) 213 { 214 BUG_ON(!irqfd_is_active(irqfd)); 215 216 list_del_init(&irqfd->list); 217 218 queue_work(irqfd_cleanup_wq, &irqfd->shutdown); 219 } 220 221 /* 222 * Called with wqh->lock held and interrupts disabled 223 */ 224 static int 225 irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key) 226 { 227 struct _irqfd *irqfd = container_of(wait, struct _irqfd, wait); 228 unsigned long flags = (unsigned long)key; 229 struct kvm_kernel_irq_routing_entry irq; 230 struct kvm *kvm = irqfd->kvm; 231 unsigned seq; 232 int idx; 233 234 if (flags & POLLIN) { 235 idx = srcu_read_lock(&kvm->irq_srcu); 236 do { 237 seq = read_seqcount_begin(&irqfd->irq_entry_sc); 238 irq = irqfd->irq_entry; 239 } while (read_seqcount_retry(&irqfd->irq_entry_sc, seq)); 240 /* An event has been signaled, inject an interrupt */ 241 if (irq.type == KVM_IRQ_ROUTING_MSI) 242 kvm_set_msi(&irq, kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1, 243 false); 244 else 245 schedule_work(&irqfd->inject); 246 srcu_read_unlock(&kvm->irq_srcu, idx); 247 } 248 249 if (flags & POLLHUP) { 250 /* The eventfd is closing, detach from KVM */ 251 unsigned long flags; 252 253 spin_lock_irqsave(&kvm->irqfds.lock, flags); 254 255 /* 256 * We must check if someone deactivated the irqfd before 257 * we could acquire the irqfds.lock since the item is 258 * deactivated from the KVM side before it is unhooked from 259 * the wait-queue. If it is already deactivated, we can 260 * simply return knowing the other side will cleanup for us. 261 * We cannot race against the irqfd going away since the 262 * other side is required to acquire wqh->lock, which we hold 263 */ 264 if (irqfd_is_active(irqfd)) 265 irqfd_deactivate(irqfd); 266 267 spin_unlock_irqrestore(&kvm->irqfds.lock, flags); 268 } 269 270 return 0; 271 } 272 273 static void 274 irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, 275 poll_table *pt) 276 { 277 struct _irqfd *irqfd = container_of(pt, struct _irqfd, pt); 278 add_wait_queue(wqh, &irqfd->wait); 279 } 280 281 /* Must be called under irqfds.lock */ 282 static void irqfd_update(struct kvm *kvm, struct _irqfd *irqfd) 283 { 284 struct kvm_kernel_irq_routing_entry *e; 285 struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS]; 286 int i, n_entries; 287 288 n_entries = kvm_irq_map_gsi(kvm, entries, irqfd->gsi); 289 290 write_seqcount_begin(&irqfd->irq_entry_sc); 291 292 irqfd->irq_entry.type = 0; 293 294 e = entries; 295 for (i = 0; i < n_entries; ++i, ++e) { 296 /* Only fast-path MSI. */ 297 if (e->type == KVM_IRQ_ROUTING_MSI) 298 irqfd->irq_entry = *e; 299 } 300 301 write_seqcount_end(&irqfd->irq_entry_sc); 302 } 303 304 static int 305 kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args) 306 { 307 struct _irqfd *irqfd, *tmp; 308 struct fd f; 309 struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL; 310 int ret; 311 unsigned int events; 312 int idx; 313 314 if (!kvm_arch_intc_initialized(kvm)) 315 return -EAGAIN; 316 317 irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL); 318 if (!irqfd) 319 return -ENOMEM; 320 321 irqfd->kvm = kvm; 322 irqfd->gsi = args->gsi; 323 INIT_LIST_HEAD(&irqfd->list); 324 INIT_WORK(&irqfd->inject, irqfd_inject); 325 INIT_WORK(&irqfd->shutdown, irqfd_shutdown); 326 seqcount_init(&irqfd->irq_entry_sc); 327 328 f = fdget(args->fd); 329 if (!f.file) { 330 ret = -EBADF; 331 goto out; 332 } 333 334 eventfd = eventfd_ctx_fileget(f.file); 335 if (IS_ERR(eventfd)) { 336 ret = PTR_ERR(eventfd); 337 goto fail; 338 } 339 340 irqfd->eventfd = eventfd; 341 342 if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) { 343 struct _irqfd_resampler *resampler; 344 345 resamplefd = eventfd_ctx_fdget(args->resamplefd); 346 if (IS_ERR(resamplefd)) { 347 ret = PTR_ERR(resamplefd); 348 goto fail; 349 } 350 351 irqfd->resamplefd = resamplefd; 352 INIT_LIST_HEAD(&irqfd->resampler_link); 353 354 mutex_lock(&kvm->irqfds.resampler_lock); 355 356 list_for_each_entry(resampler, 357 &kvm->irqfds.resampler_list, link) { 358 if (resampler->notifier.gsi == irqfd->gsi) { 359 irqfd->resampler = resampler; 360 break; 361 } 362 } 363 364 if (!irqfd->resampler) { 365 resampler = kzalloc(sizeof(*resampler), GFP_KERNEL); 366 if (!resampler) { 367 ret = -ENOMEM; 368 mutex_unlock(&kvm->irqfds.resampler_lock); 369 goto fail; 370 } 371 372 resampler->kvm = kvm; 373 INIT_LIST_HEAD(&resampler->list); 374 resampler->notifier.gsi = irqfd->gsi; 375 resampler->notifier.irq_acked = irqfd_resampler_ack; 376 INIT_LIST_HEAD(&resampler->link); 377 378 list_add(&resampler->link, &kvm->irqfds.resampler_list); 379 kvm_register_irq_ack_notifier(kvm, 380 &resampler->notifier); 381 irqfd->resampler = resampler; 382 } 383 384 list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list); 385 synchronize_srcu(&kvm->irq_srcu); 386 387 mutex_unlock(&kvm->irqfds.resampler_lock); 388 } 389 390 /* 391 * Install our own custom wake-up handling so we are notified via 392 * a callback whenever someone signals the underlying eventfd 393 */ 394 init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup); 395 init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc); 396 397 spin_lock_irq(&kvm->irqfds.lock); 398 399 ret = 0; 400 list_for_each_entry(tmp, &kvm->irqfds.items, list) { 401 if (irqfd->eventfd != tmp->eventfd) 402 continue; 403 /* This fd is used for another irq already. */ 404 ret = -EBUSY; 405 spin_unlock_irq(&kvm->irqfds.lock); 406 goto fail; 407 } 408 409 idx = srcu_read_lock(&kvm->irq_srcu); 410 irqfd_update(kvm, irqfd); 411 srcu_read_unlock(&kvm->irq_srcu, idx); 412 413 list_add_tail(&irqfd->list, &kvm->irqfds.items); 414 415 spin_unlock_irq(&kvm->irqfds.lock); 416 417 /* 418 * Check if there was an event already pending on the eventfd 419 * before we registered, and trigger it as if we didn't miss it. 420 */ 421 events = f.file->f_op->poll(f.file, &irqfd->pt); 422 423 if (events & POLLIN) 424 schedule_work(&irqfd->inject); 425 426 /* 427 * do not drop the file until the irqfd is fully initialized, otherwise 428 * we might race against the POLLHUP 429 */ 430 fdput(f); 431 432 return 0; 433 434 fail: 435 if (irqfd->resampler) 436 irqfd_resampler_shutdown(irqfd); 437 438 if (resamplefd && !IS_ERR(resamplefd)) 439 eventfd_ctx_put(resamplefd); 440 441 if (eventfd && !IS_ERR(eventfd)) 442 eventfd_ctx_put(eventfd); 443 444 fdput(f); 445 446 out: 447 kfree(irqfd); 448 return ret; 449 } 450 451 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin) 452 { 453 struct kvm_irq_ack_notifier *kian; 454 int gsi, idx; 455 456 idx = srcu_read_lock(&kvm->irq_srcu); 457 gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); 458 if (gsi != -1) 459 hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, 460 link) 461 if (kian->gsi == gsi) { 462 srcu_read_unlock(&kvm->irq_srcu, idx); 463 return true; 464 } 465 466 srcu_read_unlock(&kvm->irq_srcu, idx); 467 468 return false; 469 } 470 EXPORT_SYMBOL_GPL(kvm_irq_has_notifier); 471 472 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin) 473 { 474 struct kvm_irq_ack_notifier *kian; 475 int gsi, idx; 476 477 trace_kvm_ack_irq(irqchip, pin); 478 479 idx = srcu_read_lock(&kvm->irq_srcu); 480 gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); 481 if (gsi != -1) 482 hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, 483 link) 484 if (kian->gsi == gsi) 485 kian->irq_acked(kian); 486 srcu_read_unlock(&kvm->irq_srcu, idx); 487 } 488 489 void kvm_register_irq_ack_notifier(struct kvm *kvm, 490 struct kvm_irq_ack_notifier *kian) 491 { 492 mutex_lock(&kvm->irq_lock); 493 hlist_add_head_rcu(&kian->link, &kvm->irq_ack_notifier_list); 494 mutex_unlock(&kvm->irq_lock); 495 kvm_vcpu_request_scan_ioapic(kvm); 496 } 497 498 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 499 struct kvm_irq_ack_notifier *kian) 500 { 501 mutex_lock(&kvm->irq_lock); 502 hlist_del_init_rcu(&kian->link); 503 mutex_unlock(&kvm->irq_lock); 504 synchronize_srcu(&kvm->irq_srcu); 505 kvm_vcpu_request_scan_ioapic(kvm); 506 } 507 #endif 508 509 void 510 kvm_eventfd_init(struct kvm *kvm) 511 { 512 #ifdef CONFIG_HAVE_KVM_IRQFD 513 spin_lock_init(&kvm->irqfds.lock); 514 INIT_LIST_HEAD(&kvm->irqfds.items); 515 INIT_LIST_HEAD(&kvm->irqfds.resampler_list); 516 mutex_init(&kvm->irqfds.resampler_lock); 517 #endif 518 INIT_LIST_HEAD(&kvm->ioeventfds); 519 } 520 521 #ifdef CONFIG_HAVE_KVM_IRQFD 522 /* 523 * shutdown any irqfd's that match fd+gsi 524 */ 525 static int 526 kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args) 527 { 528 struct _irqfd *irqfd, *tmp; 529 struct eventfd_ctx *eventfd; 530 531 eventfd = eventfd_ctx_fdget(args->fd); 532 if (IS_ERR(eventfd)) 533 return PTR_ERR(eventfd); 534 535 spin_lock_irq(&kvm->irqfds.lock); 536 537 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) { 538 if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) { 539 /* 540 * This clearing of irq_entry.type is needed for when 541 * another thread calls kvm_irq_routing_update before 542 * we flush workqueue below (we synchronize with 543 * kvm_irq_routing_update using irqfds.lock). 544 */ 545 write_seqcount_begin(&irqfd->irq_entry_sc); 546 irqfd->irq_entry.type = 0; 547 write_seqcount_end(&irqfd->irq_entry_sc); 548 irqfd_deactivate(irqfd); 549 } 550 } 551 552 spin_unlock_irq(&kvm->irqfds.lock); 553 eventfd_ctx_put(eventfd); 554 555 /* 556 * Block until we know all outstanding shutdown jobs have completed 557 * so that we guarantee there will not be any more interrupts on this 558 * gsi once this deassign function returns. 559 */ 560 flush_workqueue(irqfd_cleanup_wq); 561 562 return 0; 563 } 564 565 int 566 kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 567 { 568 if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE)) 569 return -EINVAL; 570 571 if (args->flags & KVM_IRQFD_FLAG_DEASSIGN) 572 return kvm_irqfd_deassign(kvm, args); 573 574 return kvm_irqfd_assign(kvm, args); 575 } 576 577 /* 578 * This function is called as the kvm VM fd is being released. Shutdown all 579 * irqfds that still remain open 580 */ 581 void 582 kvm_irqfd_release(struct kvm *kvm) 583 { 584 struct _irqfd *irqfd, *tmp; 585 586 spin_lock_irq(&kvm->irqfds.lock); 587 588 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) 589 irqfd_deactivate(irqfd); 590 591 spin_unlock_irq(&kvm->irqfds.lock); 592 593 /* 594 * Block until we know all outstanding shutdown jobs have completed 595 * since we do not take a kvm* reference. 596 */ 597 flush_workqueue(irqfd_cleanup_wq); 598 599 } 600 601 /* 602 * Take note of a change in irq routing. 603 * Caller must invoke synchronize_srcu(&kvm->irq_srcu) afterwards. 604 */ 605 void kvm_irq_routing_update(struct kvm *kvm) 606 { 607 struct _irqfd *irqfd; 608 609 spin_lock_irq(&kvm->irqfds.lock); 610 611 list_for_each_entry(irqfd, &kvm->irqfds.items, list) 612 irqfd_update(kvm, irqfd); 613 614 spin_unlock_irq(&kvm->irqfds.lock); 615 } 616 617 /* 618 * create a host-wide workqueue for issuing deferred shutdown requests 619 * aggregated from all vm* instances. We need our own isolated single-thread 620 * queue to prevent deadlock against flushing the normal work-queue. 621 */ 622 int kvm_irqfd_init(void) 623 { 624 irqfd_cleanup_wq = create_singlethread_workqueue("kvm-irqfd-cleanup"); 625 if (!irqfd_cleanup_wq) 626 return -ENOMEM; 627 628 return 0; 629 } 630 631 void kvm_irqfd_exit(void) 632 { 633 destroy_workqueue(irqfd_cleanup_wq); 634 } 635 #endif 636 637 /* 638 * -------------------------------------------------------------------- 639 * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal. 640 * 641 * userspace can register a PIO/MMIO address with an eventfd for receiving 642 * notification when the memory has been touched. 643 * -------------------------------------------------------------------- 644 */ 645 646 struct _ioeventfd { 647 struct list_head list; 648 u64 addr; 649 int length; 650 struct eventfd_ctx *eventfd; 651 u64 datamatch; 652 struct kvm_io_device dev; 653 u8 bus_idx; 654 bool wildcard; 655 }; 656 657 static inline struct _ioeventfd * 658 to_ioeventfd(struct kvm_io_device *dev) 659 { 660 return container_of(dev, struct _ioeventfd, dev); 661 } 662 663 static void 664 ioeventfd_release(struct _ioeventfd *p) 665 { 666 eventfd_ctx_put(p->eventfd); 667 list_del(&p->list); 668 kfree(p); 669 } 670 671 static bool 672 ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val) 673 { 674 u64 _val; 675 676 if (addr != p->addr) 677 /* address must be precise for a hit */ 678 return false; 679 680 if (!p->length) 681 /* length = 0 means only look at the address, so always a hit */ 682 return true; 683 684 if (len != p->length) 685 /* address-range must be precise for a hit */ 686 return false; 687 688 if (p->wildcard) 689 /* all else equal, wildcard is always a hit */ 690 return true; 691 692 /* otherwise, we have to actually compare the data */ 693 694 BUG_ON(!IS_ALIGNED((unsigned long)val, len)); 695 696 switch (len) { 697 case 1: 698 _val = *(u8 *)val; 699 break; 700 case 2: 701 _val = *(u16 *)val; 702 break; 703 case 4: 704 _val = *(u32 *)val; 705 break; 706 case 8: 707 _val = *(u64 *)val; 708 break; 709 default: 710 return false; 711 } 712 713 return _val == p->datamatch ? true : false; 714 } 715 716 /* MMIO/PIO writes trigger an event if the addr/val match */ 717 static int 718 ioeventfd_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, 719 int len, const void *val) 720 { 721 struct _ioeventfd *p = to_ioeventfd(this); 722 723 if (!ioeventfd_in_range(p, addr, len, val)) 724 return -EOPNOTSUPP; 725 726 eventfd_signal(p->eventfd, 1); 727 return 0; 728 } 729 730 /* 731 * This function is called as KVM is completely shutting down. We do not 732 * need to worry about locking just nuke anything we have as quickly as possible 733 */ 734 static void 735 ioeventfd_destructor(struct kvm_io_device *this) 736 { 737 struct _ioeventfd *p = to_ioeventfd(this); 738 739 ioeventfd_release(p); 740 } 741 742 static const struct kvm_io_device_ops ioeventfd_ops = { 743 .write = ioeventfd_write, 744 .destructor = ioeventfd_destructor, 745 }; 746 747 /* assumes kvm->slots_lock held */ 748 static bool 749 ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p) 750 { 751 struct _ioeventfd *_p; 752 753 list_for_each_entry(_p, &kvm->ioeventfds, list) 754 if (_p->bus_idx == p->bus_idx && 755 _p->addr == p->addr && 756 (!_p->length || !p->length || 757 (_p->length == p->length && 758 (_p->wildcard || p->wildcard || 759 _p->datamatch == p->datamatch)))) 760 return true; 761 762 return false; 763 } 764 765 static enum kvm_bus ioeventfd_bus_from_flags(__u32 flags) 766 { 767 if (flags & KVM_IOEVENTFD_FLAG_PIO) 768 return KVM_PIO_BUS; 769 if (flags & KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY) 770 return KVM_VIRTIO_CCW_NOTIFY_BUS; 771 return KVM_MMIO_BUS; 772 } 773 774 static int kvm_assign_ioeventfd_idx(struct kvm *kvm, 775 enum kvm_bus bus_idx, 776 struct kvm_ioeventfd *args) 777 { 778 779 struct eventfd_ctx *eventfd; 780 struct _ioeventfd *p; 781 int ret; 782 783 eventfd = eventfd_ctx_fdget(args->fd); 784 if (IS_ERR(eventfd)) 785 return PTR_ERR(eventfd); 786 787 p = kzalloc(sizeof(*p), GFP_KERNEL); 788 if (!p) { 789 ret = -ENOMEM; 790 goto fail; 791 } 792 793 INIT_LIST_HEAD(&p->list); 794 p->addr = args->addr; 795 p->bus_idx = bus_idx; 796 p->length = args->len; 797 p->eventfd = eventfd; 798 799 /* The datamatch feature is optional, otherwise this is a wildcard */ 800 if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH) 801 p->datamatch = args->datamatch; 802 else 803 p->wildcard = true; 804 805 mutex_lock(&kvm->slots_lock); 806 807 /* Verify that there isn't a match already */ 808 if (ioeventfd_check_collision(kvm, p)) { 809 ret = -EEXIST; 810 goto unlock_fail; 811 } 812 813 kvm_iodevice_init(&p->dev, &ioeventfd_ops); 814 815 ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length, 816 &p->dev); 817 if (ret < 0) 818 goto unlock_fail; 819 820 kvm->buses[bus_idx]->ioeventfd_count++; 821 list_add_tail(&p->list, &kvm->ioeventfds); 822 823 mutex_unlock(&kvm->slots_lock); 824 825 return 0; 826 827 unlock_fail: 828 mutex_unlock(&kvm->slots_lock); 829 830 fail: 831 kfree(p); 832 eventfd_ctx_put(eventfd); 833 834 return ret; 835 } 836 837 static int 838 kvm_deassign_ioeventfd_idx(struct kvm *kvm, enum kvm_bus bus_idx, 839 struct kvm_ioeventfd *args) 840 { 841 struct _ioeventfd *p, *tmp; 842 struct eventfd_ctx *eventfd; 843 int ret = -ENOENT; 844 845 eventfd = eventfd_ctx_fdget(args->fd); 846 if (IS_ERR(eventfd)) 847 return PTR_ERR(eventfd); 848 849 mutex_lock(&kvm->slots_lock); 850 851 list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) { 852 bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH); 853 854 if (p->bus_idx != bus_idx || 855 p->eventfd != eventfd || 856 p->addr != args->addr || 857 p->length != args->len || 858 p->wildcard != wildcard) 859 continue; 860 861 if (!p->wildcard && p->datamatch != args->datamatch) 862 continue; 863 864 kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); 865 kvm->buses[bus_idx]->ioeventfd_count--; 866 ioeventfd_release(p); 867 ret = 0; 868 break; 869 } 870 871 mutex_unlock(&kvm->slots_lock); 872 873 eventfd_ctx_put(eventfd); 874 875 return ret; 876 } 877 878 static int kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 879 { 880 enum kvm_bus bus_idx = ioeventfd_bus_from_flags(args->flags); 881 int ret = kvm_deassign_ioeventfd_idx(kvm, bus_idx, args); 882 883 if (!args->len && bus_idx == KVM_MMIO_BUS) 884 kvm_deassign_ioeventfd_idx(kvm, KVM_FAST_MMIO_BUS, args); 885 886 return ret; 887 } 888 889 static int 890 kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 891 { 892 enum kvm_bus bus_idx; 893 int ret; 894 895 bus_idx = ioeventfd_bus_from_flags(args->flags); 896 /* must be natural-word sized, or 0 to ignore length */ 897 switch (args->len) { 898 case 0: 899 case 1: 900 case 2: 901 case 4: 902 case 8: 903 break; 904 default: 905 return -EINVAL; 906 } 907 908 /* check for range overflow */ 909 if (args->addr + args->len < args->addr) 910 return -EINVAL; 911 912 /* check for extra flags that we don't understand */ 913 if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK) 914 return -EINVAL; 915 916 /* ioeventfd with no length can't be combined with DATAMATCH */ 917 if (!args->len && 918 args->flags & (KVM_IOEVENTFD_FLAG_PIO | 919 KVM_IOEVENTFD_FLAG_DATAMATCH)) 920 return -EINVAL; 921 922 ret = kvm_assign_ioeventfd_idx(kvm, bus_idx, args); 923 if (ret) 924 goto fail; 925 926 /* When length is ignored, MMIO is also put on a separate bus, for 927 * faster lookups. 928 */ 929 if (!args->len && bus_idx == KVM_MMIO_BUS) { 930 ret = kvm_assign_ioeventfd_idx(kvm, KVM_FAST_MMIO_BUS, args); 931 if (ret < 0) 932 goto fast_fail; 933 } 934 935 return 0; 936 937 fast_fail: 938 kvm_deassign_ioeventfd_idx(kvm, bus_idx, args); 939 fail: 940 return ret; 941 } 942 943 int 944 kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 945 { 946 if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN) 947 return kvm_deassign_ioeventfd(kvm, args); 948 949 return kvm_assign_ioeventfd(kvm, args); 950 } 951