xref: /openbmc/linux/virt/kvm/eventfd.c (revision af958a38)
1 /*
2  * kvm eventfd support - use eventfd objects to signal various KVM events
3  *
4  * Copyright 2009 Novell.  All Rights Reserved.
5  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6  *
7  * Author:
8  *	Gregory Haskins <ghaskins@novell.com>
9  *
10  * This file is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License
12  * as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
22  */
23 
24 #include <linux/kvm_host.h>
25 #include <linux/kvm.h>
26 #include <linux/workqueue.h>
27 #include <linux/syscalls.h>
28 #include <linux/wait.h>
29 #include <linux/poll.h>
30 #include <linux/file.h>
31 #include <linux/list.h>
32 #include <linux/eventfd.h>
33 #include <linux/kernel.h>
34 #include <linux/srcu.h>
35 #include <linux/slab.h>
36 #include <linux/seqlock.h>
37 #include <trace/events/kvm.h>
38 
39 #include "irq.h"
40 #include "iodev.h"
41 
42 #ifdef CONFIG_HAVE_KVM_IRQFD
43 /*
44  * --------------------------------------------------------------------
45  * irqfd: Allows an fd to be used to inject an interrupt to the guest
46  *
47  * Credit goes to Avi Kivity for the original idea.
48  * --------------------------------------------------------------------
49  */
50 
51 /*
52  * Resampling irqfds are a special variety of irqfds used to emulate
53  * level triggered interrupts.  The interrupt is asserted on eventfd
54  * trigger.  On acknowledgement through the irq ack notifier, the
55  * interrupt is de-asserted and userspace is notified through the
56  * resamplefd.  All resamplers on the same gsi are de-asserted
57  * together, so we don't need to track the state of each individual
58  * user.  We can also therefore share the same irq source ID.
59  */
60 struct _irqfd_resampler {
61 	struct kvm *kvm;
62 	/*
63 	 * List of resampling struct _irqfd objects sharing this gsi.
64 	 * RCU list modified under kvm->irqfds.resampler_lock
65 	 */
66 	struct list_head list;
67 	struct kvm_irq_ack_notifier notifier;
68 	/*
69 	 * Entry in list of kvm->irqfd.resampler_list.  Use for sharing
70 	 * resamplers among irqfds on the same gsi.
71 	 * Accessed and modified under kvm->irqfds.resampler_lock
72 	 */
73 	struct list_head link;
74 };
75 
76 struct _irqfd {
77 	/* Used for MSI fast-path */
78 	struct kvm *kvm;
79 	wait_queue_t wait;
80 	/* Update side is protected by irqfds.lock */
81 	struct kvm_kernel_irq_routing_entry irq_entry;
82 	seqcount_t irq_entry_sc;
83 	/* Used for level IRQ fast-path */
84 	int gsi;
85 	struct work_struct inject;
86 	/* The resampler used by this irqfd (resampler-only) */
87 	struct _irqfd_resampler *resampler;
88 	/* Eventfd notified on resample (resampler-only) */
89 	struct eventfd_ctx *resamplefd;
90 	/* Entry in list of irqfds for a resampler (resampler-only) */
91 	struct list_head resampler_link;
92 	/* Used for setup/shutdown */
93 	struct eventfd_ctx *eventfd;
94 	struct list_head list;
95 	poll_table pt;
96 	struct work_struct shutdown;
97 };
98 
99 static struct workqueue_struct *irqfd_cleanup_wq;
100 
101 static void
102 irqfd_inject(struct work_struct *work)
103 {
104 	struct _irqfd *irqfd = container_of(work, struct _irqfd, inject);
105 	struct kvm *kvm = irqfd->kvm;
106 
107 	if (!irqfd->resampler) {
108 		kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1,
109 				false);
110 		kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0,
111 				false);
112 	} else
113 		kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
114 			    irqfd->gsi, 1, false);
115 }
116 
117 /*
118  * Since resampler irqfds share an IRQ source ID, we de-assert once
119  * then notify all of the resampler irqfds using this GSI.  We can't
120  * do multiple de-asserts or we risk racing with incoming re-asserts.
121  */
122 static void
123 irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian)
124 {
125 	struct _irqfd_resampler *resampler;
126 	struct kvm *kvm;
127 	struct _irqfd *irqfd;
128 	int idx;
129 
130 	resampler = container_of(kian, struct _irqfd_resampler, notifier);
131 	kvm = resampler->kvm;
132 
133 	kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
134 		    resampler->notifier.gsi, 0, false);
135 
136 	idx = srcu_read_lock(&kvm->irq_srcu);
137 
138 	list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link)
139 		eventfd_signal(irqfd->resamplefd, 1);
140 
141 	srcu_read_unlock(&kvm->irq_srcu, idx);
142 }
143 
144 static void
145 irqfd_resampler_shutdown(struct _irqfd *irqfd)
146 {
147 	struct _irqfd_resampler *resampler = irqfd->resampler;
148 	struct kvm *kvm = resampler->kvm;
149 
150 	mutex_lock(&kvm->irqfds.resampler_lock);
151 
152 	list_del_rcu(&irqfd->resampler_link);
153 	synchronize_srcu(&kvm->irq_srcu);
154 
155 	if (list_empty(&resampler->list)) {
156 		list_del(&resampler->link);
157 		kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier);
158 		kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
159 			    resampler->notifier.gsi, 0, false);
160 		kfree(resampler);
161 	}
162 
163 	mutex_unlock(&kvm->irqfds.resampler_lock);
164 }
165 
166 /*
167  * Race-free decouple logic (ordering is critical)
168  */
169 static void
170 irqfd_shutdown(struct work_struct *work)
171 {
172 	struct _irqfd *irqfd = container_of(work, struct _irqfd, shutdown);
173 	u64 cnt;
174 
175 	/*
176 	 * Synchronize with the wait-queue and unhook ourselves to prevent
177 	 * further events.
178 	 */
179 	eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt);
180 
181 	/*
182 	 * We know no new events will be scheduled at this point, so block
183 	 * until all previously outstanding events have completed
184 	 */
185 	flush_work(&irqfd->inject);
186 
187 	if (irqfd->resampler) {
188 		irqfd_resampler_shutdown(irqfd);
189 		eventfd_ctx_put(irqfd->resamplefd);
190 	}
191 
192 	/*
193 	 * It is now safe to release the object's resources
194 	 */
195 	eventfd_ctx_put(irqfd->eventfd);
196 	kfree(irqfd);
197 }
198 
199 
200 /* assumes kvm->irqfds.lock is held */
201 static bool
202 irqfd_is_active(struct _irqfd *irqfd)
203 {
204 	return list_empty(&irqfd->list) ? false : true;
205 }
206 
207 /*
208  * Mark the irqfd as inactive and schedule it for removal
209  *
210  * assumes kvm->irqfds.lock is held
211  */
212 static void
213 irqfd_deactivate(struct _irqfd *irqfd)
214 {
215 	BUG_ON(!irqfd_is_active(irqfd));
216 
217 	list_del_init(&irqfd->list);
218 
219 	queue_work(irqfd_cleanup_wq, &irqfd->shutdown);
220 }
221 
222 /*
223  * Called with wqh->lock held and interrupts disabled
224  */
225 static int
226 irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key)
227 {
228 	struct _irqfd *irqfd = container_of(wait, struct _irqfd, wait);
229 	unsigned long flags = (unsigned long)key;
230 	struct kvm_kernel_irq_routing_entry irq;
231 	struct kvm *kvm = irqfd->kvm;
232 	unsigned seq;
233 	int idx;
234 
235 	if (flags & POLLIN) {
236 		idx = srcu_read_lock(&kvm->irq_srcu);
237 		do {
238 			seq = read_seqcount_begin(&irqfd->irq_entry_sc);
239 			irq = irqfd->irq_entry;
240 		} while (read_seqcount_retry(&irqfd->irq_entry_sc, seq));
241 		/* An event has been signaled, inject an interrupt */
242 		if (irq.type == KVM_IRQ_ROUTING_MSI)
243 			kvm_set_msi(&irq, kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1,
244 					false);
245 		else
246 			schedule_work(&irqfd->inject);
247 		srcu_read_unlock(&kvm->irq_srcu, idx);
248 	}
249 
250 	if (flags & POLLHUP) {
251 		/* The eventfd is closing, detach from KVM */
252 		unsigned long flags;
253 
254 		spin_lock_irqsave(&kvm->irqfds.lock, flags);
255 
256 		/*
257 		 * We must check if someone deactivated the irqfd before
258 		 * we could acquire the irqfds.lock since the item is
259 		 * deactivated from the KVM side before it is unhooked from
260 		 * the wait-queue.  If it is already deactivated, we can
261 		 * simply return knowing the other side will cleanup for us.
262 		 * We cannot race against the irqfd going away since the
263 		 * other side is required to acquire wqh->lock, which we hold
264 		 */
265 		if (irqfd_is_active(irqfd))
266 			irqfd_deactivate(irqfd);
267 
268 		spin_unlock_irqrestore(&kvm->irqfds.lock, flags);
269 	}
270 
271 	return 0;
272 }
273 
274 static void
275 irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh,
276 			poll_table *pt)
277 {
278 	struct _irqfd *irqfd = container_of(pt, struct _irqfd, pt);
279 	add_wait_queue(wqh, &irqfd->wait);
280 }
281 
282 /* Must be called under irqfds.lock */
283 static void irqfd_update(struct kvm *kvm, struct _irqfd *irqfd)
284 {
285 	struct kvm_kernel_irq_routing_entry *e;
286 	struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS];
287 	int i, n_entries;
288 
289 	n_entries = kvm_irq_map_gsi(kvm, entries, irqfd->gsi);
290 
291 	write_seqcount_begin(&irqfd->irq_entry_sc);
292 
293 	irqfd->irq_entry.type = 0;
294 
295 	e = entries;
296 	for (i = 0; i < n_entries; ++i, ++e) {
297 		/* Only fast-path MSI. */
298 		if (e->type == KVM_IRQ_ROUTING_MSI)
299 			irqfd->irq_entry = *e;
300 	}
301 
302 	write_seqcount_end(&irqfd->irq_entry_sc);
303 }
304 
305 static int
306 kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args)
307 {
308 	struct _irqfd *irqfd, *tmp;
309 	struct fd f;
310 	struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL;
311 	int ret;
312 	unsigned int events;
313 	int idx;
314 
315 	irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL);
316 	if (!irqfd)
317 		return -ENOMEM;
318 
319 	irqfd->kvm = kvm;
320 	irqfd->gsi = args->gsi;
321 	INIT_LIST_HEAD(&irqfd->list);
322 	INIT_WORK(&irqfd->inject, irqfd_inject);
323 	INIT_WORK(&irqfd->shutdown, irqfd_shutdown);
324 	seqcount_init(&irqfd->irq_entry_sc);
325 
326 	f = fdget(args->fd);
327 	if (!f.file) {
328 		ret = -EBADF;
329 		goto out;
330 	}
331 
332 	eventfd = eventfd_ctx_fileget(f.file);
333 	if (IS_ERR(eventfd)) {
334 		ret = PTR_ERR(eventfd);
335 		goto fail;
336 	}
337 
338 	irqfd->eventfd = eventfd;
339 
340 	if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) {
341 		struct _irqfd_resampler *resampler;
342 
343 		resamplefd = eventfd_ctx_fdget(args->resamplefd);
344 		if (IS_ERR(resamplefd)) {
345 			ret = PTR_ERR(resamplefd);
346 			goto fail;
347 		}
348 
349 		irqfd->resamplefd = resamplefd;
350 		INIT_LIST_HEAD(&irqfd->resampler_link);
351 
352 		mutex_lock(&kvm->irqfds.resampler_lock);
353 
354 		list_for_each_entry(resampler,
355 				    &kvm->irqfds.resampler_list, link) {
356 			if (resampler->notifier.gsi == irqfd->gsi) {
357 				irqfd->resampler = resampler;
358 				break;
359 			}
360 		}
361 
362 		if (!irqfd->resampler) {
363 			resampler = kzalloc(sizeof(*resampler), GFP_KERNEL);
364 			if (!resampler) {
365 				ret = -ENOMEM;
366 				mutex_unlock(&kvm->irqfds.resampler_lock);
367 				goto fail;
368 			}
369 
370 			resampler->kvm = kvm;
371 			INIT_LIST_HEAD(&resampler->list);
372 			resampler->notifier.gsi = irqfd->gsi;
373 			resampler->notifier.irq_acked = irqfd_resampler_ack;
374 			INIT_LIST_HEAD(&resampler->link);
375 
376 			list_add(&resampler->link, &kvm->irqfds.resampler_list);
377 			kvm_register_irq_ack_notifier(kvm,
378 						      &resampler->notifier);
379 			irqfd->resampler = resampler;
380 		}
381 
382 		list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list);
383 		synchronize_srcu(&kvm->irq_srcu);
384 
385 		mutex_unlock(&kvm->irqfds.resampler_lock);
386 	}
387 
388 	/*
389 	 * Install our own custom wake-up handling so we are notified via
390 	 * a callback whenever someone signals the underlying eventfd
391 	 */
392 	init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup);
393 	init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc);
394 
395 	spin_lock_irq(&kvm->irqfds.lock);
396 
397 	ret = 0;
398 	list_for_each_entry(tmp, &kvm->irqfds.items, list) {
399 		if (irqfd->eventfd != tmp->eventfd)
400 			continue;
401 		/* This fd is used for another irq already. */
402 		ret = -EBUSY;
403 		spin_unlock_irq(&kvm->irqfds.lock);
404 		goto fail;
405 	}
406 
407 	idx = srcu_read_lock(&kvm->irq_srcu);
408 	irqfd_update(kvm, irqfd);
409 	srcu_read_unlock(&kvm->irq_srcu, idx);
410 
411 	list_add_tail(&irqfd->list, &kvm->irqfds.items);
412 
413 	spin_unlock_irq(&kvm->irqfds.lock);
414 
415 	/*
416 	 * Check if there was an event already pending on the eventfd
417 	 * before we registered, and trigger it as if we didn't miss it.
418 	 */
419 	events = f.file->f_op->poll(f.file, &irqfd->pt);
420 
421 	if (events & POLLIN)
422 		schedule_work(&irqfd->inject);
423 
424 	/*
425 	 * do not drop the file until the irqfd is fully initialized, otherwise
426 	 * we might race against the POLLHUP
427 	 */
428 	fdput(f);
429 
430 	return 0;
431 
432 fail:
433 	if (irqfd->resampler)
434 		irqfd_resampler_shutdown(irqfd);
435 
436 	if (resamplefd && !IS_ERR(resamplefd))
437 		eventfd_ctx_put(resamplefd);
438 
439 	if (eventfd && !IS_ERR(eventfd))
440 		eventfd_ctx_put(eventfd);
441 
442 	fdput(f);
443 
444 out:
445 	kfree(irqfd);
446 	return ret;
447 }
448 
449 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin)
450 {
451 	struct kvm_irq_ack_notifier *kian;
452 	int gsi, idx;
453 
454 	idx = srcu_read_lock(&kvm->irq_srcu);
455 	gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin);
456 	if (gsi != -1)
457 		hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list,
458 					 link)
459 			if (kian->gsi == gsi) {
460 				srcu_read_unlock(&kvm->irq_srcu, idx);
461 				return true;
462 			}
463 
464 	srcu_read_unlock(&kvm->irq_srcu, idx);
465 
466 	return false;
467 }
468 EXPORT_SYMBOL_GPL(kvm_irq_has_notifier);
469 
470 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin)
471 {
472 	struct kvm_irq_ack_notifier *kian;
473 	int gsi, idx;
474 
475 	trace_kvm_ack_irq(irqchip, pin);
476 
477 	idx = srcu_read_lock(&kvm->irq_srcu);
478 	gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin);
479 	if (gsi != -1)
480 		hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list,
481 					 link)
482 			if (kian->gsi == gsi)
483 				kian->irq_acked(kian);
484 	srcu_read_unlock(&kvm->irq_srcu, idx);
485 }
486 
487 void kvm_register_irq_ack_notifier(struct kvm *kvm,
488 				   struct kvm_irq_ack_notifier *kian)
489 {
490 	mutex_lock(&kvm->irq_lock);
491 	hlist_add_head_rcu(&kian->link, &kvm->irq_ack_notifier_list);
492 	mutex_unlock(&kvm->irq_lock);
493 #ifdef __KVM_HAVE_IOAPIC
494 	kvm_vcpu_request_scan_ioapic(kvm);
495 #endif
496 }
497 
498 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
499 				    struct kvm_irq_ack_notifier *kian)
500 {
501 	mutex_lock(&kvm->irq_lock);
502 	hlist_del_init_rcu(&kian->link);
503 	mutex_unlock(&kvm->irq_lock);
504 	synchronize_srcu(&kvm->irq_srcu);
505 #ifdef __KVM_HAVE_IOAPIC
506 	kvm_vcpu_request_scan_ioapic(kvm);
507 #endif
508 }
509 #endif
510 
511 void
512 kvm_eventfd_init(struct kvm *kvm)
513 {
514 #ifdef CONFIG_HAVE_KVM_IRQFD
515 	spin_lock_init(&kvm->irqfds.lock);
516 	INIT_LIST_HEAD(&kvm->irqfds.items);
517 	INIT_LIST_HEAD(&kvm->irqfds.resampler_list);
518 	mutex_init(&kvm->irqfds.resampler_lock);
519 #endif
520 	INIT_LIST_HEAD(&kvm->ioeventfds);
521 }
522 
523 #ifdef CONFIG_HAVE_KVM_IRQFD
524 /*
525  * shutdown any irqfd's that match fd+gsi
526  */
527 static int
528 kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args)
529 {
530 	struct _irqfd *irqfd, *tmp;
531 	struct eventfd_ctx *eventfd;
532 
533 	eventfd = eventfd_ctx_fdget(args->fd);
534 	if (IS_ERR(eventfd))
535 		return PTR_ERR(eventfd);
536 
537 	spin_lock_irq(&kvm->irqfds.lock);
538 
539 	list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) {
540 		if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) {
541 			/*
542 			 * This clearing of irq_entry.type is needed for when
543 			 * another thread calls kvm_irq_routing_update before
544 			 * we flush workqueue below (we synchronize with
545 			 * kvm_irq_routing_update using irqfds.lock).
546 			 */
547 			write_seqcount_begin(&irqfd->irq_entry_sc);
548 			irqfd->irq_entry.type = 0;
549 			write_seqcount_end(&irqfd->irq_entry_sc);
550 			irqfd_deactivate(irqfd);
551 		}
552 	}
553 
554 	spin_unlock_irq(&kvm->irqfds.lock);
555 	eventfd_ctx_put(eventfd);
556 
557 	/*
558 	 * Block until we know all outstanding shutdown jobs have completed
559 	 * so that we guarantee there will not be any more interrupts on this
560 	 * gsi once this deassign function returns.
561 	 */
562 	flush_workqueue(irqfd_cleanup_wq);
563 
564 	return 0;
565 }
566 
567 int
568 kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
569 {
570 	if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE))
571 		return -EINVAL;
572 
573 	if (args->flags & KVM_IRQFD_FLAG_DEASSIGN)
574 		return kvm_irqfd_deassign(kvm, args);
575 
576 	return kvm_irqfd_assign(kvm, args);
577 }
578 
579 /*
580  * This function is called as the kvm VM fd is being released. Shutdown all
581  * irqfds that still remain open
582  */
583 void
584 kvm_irqfd_release(struct kvm *kvm)
585 {
586 	struct _irqfd *irqfd, *tmp;
587 
588 	spin_lock_irq(&kvm->irqfds.lock);
589 
590 	list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list)
591 		irqfd_deactivate(irqfd);
592 
593 	spin_unlock_irq(&kvm->irqfds.lock);
594 
595 	/*
596 	 * Block until we know all outstanding shutdown jobs have completed
597 	 * since we do not take a kvm* reference.
598 	 */
599 	flush_workqueue(irqfd_cleanup_wq);
600 
601 }
602 
603 /*
604  * Take note of a change in irq routing.
605  * Caller must invoke synchronize_srcu(&kvm->irq_srcu) afterwards.
606  */
607 void kvm_irq_routing_update(struct kvm *kvm)
608 {
609 	struct _irqfd *irqfd;
610 
611 	spin_lock_irq(&kvm->irqfds.lock);
612 
613 	list_for_each_entry(irqfd, &kvm->irqfds.items, list)
614 		irqfd_update(kvm, irqfd);
615 
616 	spin_unlock_irq(&kvm->irqfds.lock);
617 }
618 
619 /*
620  * create a host-wide workqueue for issuing deferred shutdown requests
621  * aggregated from all vm* instances. We need our own isolated single-thread
622  * queue to prevent deadlock against flushing the normal work-queue.
623  */
624 int kvm_irqfd_init(void)
625 {
626 	irqfd_cleanup_wq = create_singlethread_workqueue("kvm-irqfd-cleanup");
627 	if (!irqfd_cleanup_wq)
628 		return -ENOMEM;
629 
630 	return 0;
631 }
632 
633 void kvm_irqfd_exit(void)
634 {
635 	destroy_workqueue(irqfd_cleanup_wq);
636 }
637 #endif
638 
639 /*
640  * --------------------------------------------------------------------
641  * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal.
642  *
643  * userspace can register a PIO/MMIO address with an eventfd for receiving
644  * notification when the memory has been touched.
645  * --------------------------------------------------------------------
646  */
647 
648 struct _ioeventfd {
649 	struct list_head     list;
650 	u64                  addr;
651 	int                  length;
652 	struct eventfd_ctx  *eventfd;
653 	u64                  datamatch;
654 	struct kvm_io_device dev;
655 	u8                   bus_idx;
656 	bool                 wildcard;
657 };
658 
659 static inline struct _ioeventfd *
660 to_ioeventfd(struct kvm_io_device *dev)
661 {
662 	return container_of(dev, struct _ioeventfd, dev);
663 }
664 
665 static void
666 ioeventfd_release(struct _ioeventfd *p)
667 {
668 	eventfd_ctx_put(p->eventfd);
669 	list_del(&p->list);
670 	kfree(p);
671 }
672 
673 static bool
674 ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val)
675 {
676 	u64 _val;
677 
678 	if (addr != p->addr)
679 		/* address must be precise for a hit */
680 		return false;
681 
682 	if (!p->length)
683 		/* length = 0 means only look at the address, so always a hit */
684 		return true;
685 
686 	if (len != p->length)
687 		/* address-range must be precise for a hit */
688 		return false;
689 
690 	if (p->wildcard)
691 		/* all else equal, wildcard is always a hit */
692 		return true;
693 
694 	/* otherwise, we have to actually compare the data */
695 
696 	BUG_ON(!IS_ALIGNED((unsigned long)val, len));
697 
698 	switch (len) {
699 	case 1:
700 		_val = *(u8 *)val;
701 		break;
702 	case 2:
703 		_val = *(u16 *)val;
704 		break;
705 	case 4:
706 		_val = *(u32 *)val;
707 		break;
708 	case 8:
709 		_val = *(u64 *)val;
710 		break;
711 	default:
712 		return false;
713 	}
714 
715 	return _val == p->datamatch ? true : false;
716 }
717 
718 /* MMIO/PIO writes trigger an event if the addr/val match */
719 static int
720 ioeventfd_write(struct kvm_io_device *this, gpa_t addr, int len,
721 		const void *val)
722 {
723 	struct _ioeventfd *p = to_ioeventfd(this);
724 
725 	if (!ioeventfd_in_range(p, addr, len, val))
726 		return -EOPNOTSUPP;
727 
728 	eventfd_signal(p->eventfd, 1);
729 	return 0;
730 }
731 
732 /*
733  * This function is called as KVM is completely shutting down.  We do not
734  * need to worry about locking just nuke anything we have as quickly as possible
735  */
736 static void
737 ioeventfd_destructor(struct kvm_io_device *this)
738 {
739 	struct _ioeventfd *p = to_ioeventfd(this);
740 
741 	ioeventfd_release(p);
742 }
743 
744 static const struct kvm_io_device_ops ioeventfd_ops = {
745 	.write      = ioeventfd_write,
746 	.destructor = ioeventfd_destructor,
747 };
748 
749 /* assumes kvm->slots_lock held */
750 static bool
751 ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p)
752 {
753 	struct _ioeventfd *_p;
754 
755 	list_for_each_entry(_p, &kvm->ioeventfds, list)
756 		if (_p->bus_idx == p->bus_idx &&
757 		    _p->addr == p->addr &&
758 		    (!_p->length || !p->length ||
759 		     (_p->length == p->length &&
760 		      (_p->wildcard || p->wildcard ||
761 		       _p->datamatch == p->datamatch))))
762 			return true;
763 
764 	return false;
765 }
766 
767 static enum kvm_bus ioeventfd_bus_from_flags(__u32 flags)
768 {
769 	if (flags & KVM_IOEVENTFD_FLAG_PIO)
770 		return KVM_PIO_BUS;
771 	if (flags & KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY)
772 		return KVM_VIRTIO_CCW_NOTIFY_BUS;
773 	return KVM_MMIO_BUS;
774 }
775 
776 static int
777 kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
778 {
779 	enum kvm_bus              bus_idx;
780 	struct _ioeventfd        *p;
781 	struct eventfd_ctx       *eventfd;
782 	int                       ret;
783 
784 	bus_idx = ioeventfd_bus_from_flags(args->flags);
785 	/* must be natural-word sized, or 0 to ignore length */
786 	switch (args->len) {
787 	case 0:
788 	case 1:
789 	case 2:
790 	case 4:
791 	case 8:
792 		break;
793 	default:
794 		return -EINVAL;
795 	}
796 
797 	/* check for range overflow */
798 	if (args->addr + args->len < args->addr)
799 		return -EINVAL;
800 
801 	/* check for extra flags that we don't understand */
802 	if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK)
803 		return -EINVAL;
804 
805 	/* ioeventfd with no length can't be combined with DATAMATCH */
806 	if (!args->len &&
807 	    args->flags & (KVM_IOEVENTFD_FLAG_PIO |
808 			   KVM_IOEVENTFD_FLAG_DATAMATCH))
809 		return -EINVAL;
810 
811 	eventfd = eventfd_ctx_fdget(args->fd);
812 	if (IS_ERR(eventfd))
813 		return PTR_ERR(eventfd);
814 
815 	p = kzalloc(sizeof(*p), GFP_KERNEL);
816 	if (!p) {
817 		ret = -ENOMEM;
818 		goto fail;
819 	}
820 
821 	INIT_LIST_HEAD(&p->list);
822 	p->addr    = args->addr;
823 	p->bus_idx = bus_idx;
824 	p->length  = args->len;
825 	p->eventfd = eventfd;
826 
827 	/* The datamatch feature is optional, otherwise this is a wildcard */
828 	if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH)
829 		p->datamatch = args->datamatch;
830 	else
831 		p->wildcard = true;
832 
833 	mutex_lock(&kvm->slots_lock);
834 
835 	/* Verify that there isn't a match already */
836 	if (ioeventfd_check_collision(kvm, p)) {
837 		ret = -EEXIST;
838 		goto unlock_fail;
839 	}
840 
841 	kvm_iodevice_init(&p->dev, &ioeventfd_ops);
842 
843 	ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length,
844 				      &p->dev);
845 	if (ret < 0)
846 		goto unlock_fail;
847 
848 	/* When length is ignored, MMIO is also put on a separate bus, for
849 	 * faster lookups.
850 	 */
851 	if (!args->len && !(args->flags & KVM_IOEVENTFD_FLAG_PIO)) {
852 		ret = kvm_io_bus_register_dev(kvm, KVM_FAST_MMIO_BUS,
853 					      p->addr, 0, &p->dev);
854 		if (ret < 0)
855 			goto register_fail;
856 	}
857 
858 	kvm->buses[bus_idx]->ioeventfd_count++;
859 	list_add_tail(&p->list, &kvm->ioeventfds);
860 
861 	mutex_unlock(&kvm->slots_lock);
862 
863 	return 0;
864 
865 register_fail:
866 	kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev);
867 unlock_fail:
868 	mutex_unlock(&kvm->slots_lock);
869 
870 fail:
871 	kfree(p);
872 	eventfd_ctx_put(eventfd);
873 
874 	return ret;
875 }
876 
877 static int
878 kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
879 {
880 	enum kvm_bus              bus_idx;
881 	struct _ioeventfd        *p, *tmp;
882 	struct eventfd_ctx       *eventfd;
883 	int                       ret = -ENOENT;
884 
885 	bus_idx = ioeventfd_bus_from_flags(args->flags);
886 	eventfd = eventfd_ctx_fdget(args->fd);
887 	if (IS_ERR(eventfd))
888 		return PTR_ERR(eventfd);
889 
890 	mutex_lock(&kvm->slots_lock);
891 
892 	list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) {
893 		bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH);
894 
895 		if (p->bus_idx != bus_idx ||
896 		    p->eventfd != eventfd  ||
897 		    p->addr != args->addr  ||
898 		    p->length != args->len ||
899 		    p->wildcard != wildcard)
900 			continue;
901 
902 		if (!p->wildcard && p->datamatch != args->datamatch)
903 			continue;
904 
905 		kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev);
906 		if (!p->length) {
907 			kvm_io_bus_unregister_dev(kvm, KVM_FAST_MMIO_BUS,
908 						  &p->dev);
909 		}
910 		kvm->buses[bus_idx]->ioeventfd_count--;
911 		ioeventfd_release(p);
912 		ret = 0;
913 		break;
914 	}
915 
916 	mutex_unlock(&kvm->slots_lock);
917 
918 	eventfd_ctx_put(eventfd);
919 
920 	return ret;
921 }
922 
923 int
924 kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
925 {
926 	if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN)
927 		return kvm_deassign_ioeventfd(kvm, args);
928 
929 	return kvm_assign_ioeventfd(kvm, args);
930 }
931