1 /* 2 * kvm eventfd support - use eventfd objects to signal various KVM events 3 * 4 * Copyright 2009 Novell. All Rights Reserved. 5 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 6 * 7 * Author: 8 * Gregory Haskins <ghaskins@novell.com> 9 * 10 * This file is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License 12 * as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software Foundation, 21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 22 */ 23 24 #include <linux/kvm_host.h> 25 #include <linux/kvm.h> 26 #include <linux/workqueue.h> 27 #include <linux/syscalls.h> 28 #include <linux/wait.h> 29 #include <linux/poll.h> 30 #include <linux/file.h> 31 #include <linux/list.h> 32 #include <linux/eventfd.h> 33 #include <linux/kernel.h> 34 #include <linux/srcu.h> 35 #include <linux/slab.h> 36 #include <linux/seqlock.h> 37 #include <trace/events/kvm.h> 38 39 #ifdef __KVM_HAVE_IOAPIC 40 #include "ioapic.h" 41 #endif 42 #include "iodev.h" 43 44 #ifdef CONFIG_HAVE_KVM_IRQFD 45 /* 46 * -------------------------------------------------------------------- 47 * irqfd: Allows an fd to be used to inject an interrupt to the guest 48 * 49 * Credit goes to Avi Kivity for the original idea. 50 * -------------------------------------------------------------------- 51 */ 52 53 /* 54 * Resampling irqfds are a special variety of irqfds used to emulate 55 * level triggered interrupts. The interrupt is asserted on eventfd 56 * trigger. On acknowledgement through the irq ack notifier, the 57 * interrupt is de-asserted and userspace is notified through the 58 * resamplefd. All resamplers on the same gsi are de-asserted 59 * together, so we don't need to track the state of each individual 60 * user. We can also therefore share the same irq source ID. 61 */ 62 struct _irqfd_resampler { 63 struct kvm *kvm; 64 /* 65 * List of resampling struct _irqfd objects sharing this gsi. 66 * RCU list modified under kvm->irqfds.resampler_lock 67 */ 68 struct list_head list; 69 struct kvm_irq_ack_notifier notifier; 70 /* 71 * Entry in list of kvm->irqfd.resampler_list. Use for sharing 72 * resamplers among irqfds on the same gsi. 73 * Accessed and modified under kvm->irqfds.resampler_lock 74 */ 75 struct list_head link; 76 }; 77 78 struct _irqfd { 79 /* Used for MSI fast-path */ 80 struct kvm *kvm; 81 wait_queue_t wait; 82 /* Update side is protected by irqfds.lock */ 83 struct kvm_kernel_irq_routing_entry irq_entry; 84 seqcount_t irq_entry_sc; 85 /* Used for level IRQ fast-path */ 86 int gsi; 87 struct work_struct inject; 88 /* The resampler used by this irqfd (resampler-only) */ 89 struct _irqfd_resampler *resampler; 90 /* Eventfd notified on resample (resampler-only) */ 91 struct eventfd_ctx *resamplefd; 92 /* Entry in list of irqfds for a resampler (resampler-only) */ 93 struct list_head resampler_link; 94 /* Used for setup/shutdown */ 95 struct eventfd_ctx *eventfd; 96 struct list_head list; 97 poll_table pt; 98 struct work_struct shutdown; 99 }; 100 101 static struct workqueue_struct *irqfd_cleanup_wq; 102 103 static void 104 irqfd_inject(struct work_struct *work) 105 { 106 struct _irqfd *irqfd = container_of(work, struct _irqfd, inject); 107 struct kvm *kvm = irqfd->kvm; 108 109 if (!irqfd->resampler) { 110 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1, 111 false); 112 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0, 113 false); 114 } else 115 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 116 irqfd->gsi, 1, false); 117 } 118 119 /* 120 * Since resampler irqfds share an IRQ source ID, we de-assert once 121 * then notify all of the resampler irqfds using this GSI. We can't 122 * do multiple de-asserts or we risk racing with incoming re-asserts. 123 */ 124 static void 125 irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian) 126 { 127 struct _irqfd_resampler *resampler; 128 struct kvm *kvm; 129 struct _irqfd *irqfd; 130 int idx; 131 132 resampler = container_of(kian, struct _irqfd_resampler, notifier); 133 kvm = resampler->kvm; 134 135 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 136 resampler->notifier.gsi, 0, false); 137 138 idx = srcu_read_lock(&kvm->irq_srcu); 139 140 list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link) 141 eventfd_signal(irqfd->resamplefd, 1); 142 143 srcu_read_unlock(&kvm->irq_srcu, idx); 144 } 145 146 static void 147 irqfd_resampler_shutdown(struct _irqfd *irqfd) 148 { 149 struct _irqfd_resampler *resampler = irqfd->resampler; 150 struct kvm *kvm = resampler->kvm; 151 152 mutex_lock(&kvm->irqfds.resampler_lock); 153 154 list_del_rcu(&irqfd->resampler_link); 155 synchronize_srcu(&kvm->irq_srcu); 156 157 if (list_empty(&resampler->list)) { 158 list_del(&resampler->link); 159 kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier); 160 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 161 resampler->notifier.gsi, 0, false); 162 kfree(resampler); 163 } 164 165 mutex_unlock(&kvm->irqfds.resampler_lock); 166 } 167 168 /* 169 * Race-free decouple logic (ordering is critical) 170 */ 171 static void 172 irqfd_shutdown(struct work_struct *work) 173 { 174 struct _irqfd *irqfd = container_of(work, struct _irqfd, shutdown); 175 u64 cnt; 176 177 /* 178 * Synchronize with the wait-queue and unhook ourselves to prevent 179 * further events. 180 */ 181 eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt); 182 183 /* 184 * We know no new events will be scheduled at this point, so block 185 * until all previously outstanding events have completed 186 */ 187 flush_work(&irqfd->inject); 188 189 if (irqfd->resampler) { 190 irqfd_resampler_shutdown(irqfd); 191 eventfd_ctx_put(irqfd->resamplefd); 192 } 193 194 /* 195 * It is now safe to release the object's resources 196 */ 197 eventfd_ctx_put(irqfd->eventfd); 198 kfree(irqfd); 199 } 200 201 202 /* assumes kvm->irqfds.lock is held */ 203 static bool 204 irqfd_is_active(struct _irqfd *irqfd) 205 { 206 return list_empty(&irqfd->list) ? false : true; 207 } 208 209 /* 210 * Mark the irqfd as inactive and schedule it for removal 211 * 212 * assumes kvm->irqfds.lock is held 213 */ 214 static void 215 irqfd_deactivate(struct _irqfd *irqfd) 216 { 217 BUG_ON(!irqfd_is_active(irqfd)); 218 219 list_del_init(&irqfd->list); 220 221 queue_work(irqfd_cleanup_wq, &irqfd->shutdown); 222 } 223 224 /* 225 * Called with wqh->lock held and interrupts disabled 226 */ 227 static int 228 irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key) 229 { 230 struct _irqfd *irqfd = container_of(wait, struct _irqfd, wait); 231 unsigned long flags = (unsigned long)key; 232 struct kvm_kernel_irq_routing_entry irq; 233 struct kvm *kvm = irqfd->kvm; 234 unsigned seq; 235 int idx; 236 237 if (flags & POLLIN) { 238 idx = srcu_read_lock(&kvm->irq_srcu); 239 do { 240 seq = read_seqcount_begin(&irqfd->irq_entry_sc); 241 irq = irqfd->irq_entry; 242 } while (read_seqcount_retry(&irqfd->irq_entry_sc, seq)); 243 /* An event has been signaled, inject an interrupt */ 244 if (irq.type == KVM_IRQ_ROUTING_MSI) 245 kvm_set_msi(&irq, kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 1, 246 false); 247 else 248 schedule_work(&irqfd->inject); 249 srcu_read_unlock(&kvm->irq_srcu, idx); 250 } 251 252 if (flags & POLLHUP) { 253 /* The eventfd is closing, detach from KVM */ 254 unsigned long flags; 255 256 spin_lock_irqsave(&kvm->irqfds.lock, flags); 257 258 /* 259 * We must check if someone deactivated the irqfd before 260 * we could acquire the irqfds.lock since the item is 261 * deactivated from the KVM side before it is unhooked from 262 * the wait-queue. If it is already deactivated, we can 263 * simply return knowing the other side will cleanup for us. 264 * We cannot race against the irqfd going away since the 265 * other side is required to acquire wqh->lock, which we hold 266 */ 267 if (irqfd_is_active(irqfd)) 268 irqfd_deactivate(irqfd); 269 270 spin_unlock_irqrestore(&kvm->irqfds.lock, flags); 271 } 272 273 return 0; 274 } 275 276 static void 277 irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, 278 poll_table *pt) 279 { 280 struct _irqfd *irqfd = container_of(pt, struct _irqfd, pt); 281 add_wait_queue(wqh, &irqfd->wait); 282 } 283 284 /* Must be called under irqfds.lock */ 285 static void irqfd_update(struct kvm *kvm, struct _irqfd *irqfd) 286 { 287 struct kvm_kernel_irq_routing_entry *e; 288 struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS]; 289 int i, n_entries; 290 291 n_entries = kvm_irq_map_gsi(kvm, entries, irqfd->gsi); 292 293 write_seqcount_begin(&irqfd->irq_entry_sc); 294 295 irqfd->irq_entry.type = 0; 296 297 e = entries; 298 for (i = 0; i < n_entries; ++i, ++e) { 299 /* Only fast-path MSI. */ 300 if (e->type == KVM_IRQ_ROUTING_MSI) 301 irqfd->irq_entry = *e; 302 } 303 304 write_seqcount_end(&irqfd->irq_entry_sc); 305 } 306 307 static int 308 kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args) 309 { 310 struct _irqfd *irqfd, *tmp; 311 struct fd f; 312 struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL; 313 int ret; 314 unsigned int events; 315 int idx; 316 317 irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL); 318 if (!irqfd) 319 return -ENOMEM; 320 321 irqfd->kvm = kvm; 322 irqfd->gsi = args->gsi; 323 INIT_LIST_HEAD(&irqfd->list); 324 INIT_WORK(&irqfd->inject, irqfd_inject); 325 INIT_WORK(&irqfd->shutdown, irqfd_shutdown); 326 seqcount_init(&irqfd->irq_entry_sc); 327 328 f = fdget(args->fd); 329 if (!f.file) { 330 ret = -EBADF; 331 goto out; 332 } 333 334 eventfd = eventfd_ctx_fileget(f.file); 335 if (IS_ERR(eventfd)) { 336 ret = PTR_ERR(eventfd); 337 goto fail; 338 } 339 340 irqfd->eventfd = eventfd; 341 342 if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) { 343 struct _irqfd_resampler *resampler; 344 345 resamplefd = eventfd_ctx_fdget(args->resamplefd); 346 if (IS_ERR(resamplefd)) { 347 ret = PTR_ERR(resamplefd); 348 goto fail; 349 } 350 351 irqfd->resamplefd = resamplefd; 352 INIT_LIST_HEAD(&irqfd->resampler_link); 353 354 mutex_lock(&kvm->irqfds.resampler_lock); 355 356 list_for_each_entry(resampler, 357 &kvm->irqfds.resampler_list, link) { 358 if (resampler->notifier.gsi == irqfd->gsi) { 359 irqfd->resampler = resampler; 360 break; 361 } 362 } 363 364 if (!irqfd->resampler) { 365 resampler = kzalloc(sizeof(*resampler), GFP_KERNEL); 366 if (!resampler) { 367 ret = -ENOMEM; 368 mutex_unlock(&kvm->irqfds.resampler_lock); 369 goto fail; 370 } 371 372 resampler->kvm = kvm; 373 INIT_LIST_HEAD(&resampler->list); 374 resampler->notifier.gsi = irqfd->gsi; 375 resampler->notifier.irq_acked = irqfd_resampler_ack; 376 INIT_LIST_HEAD(&resampler->link); 377 378 list_add(&resampler->link, &kvm->irqfds.resampler_list); 379 kvm_register_irq_ack_notifier(kvm, 380 &resampler->notifier); 381 irqfd->resampler = resampler; 382 } 383 384 list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list); 385 synchronize_srcu(&kvm->irq_srcu); 386 387 mutex_unlock(&kvm->irqfds.resampler_lock); 388 } 389 390 /* 391 * Install our own custom wake-up handling so we are notified via 392 * a callback whenever someone signals the underlying eventfd 393 */ 394 init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup); 395 init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc); 396 397 spin_lock_irq(&kvm->irqfds.lock); 398 399 ret = 0; 400 list_for_each_entry(tmp, &kvm->irqfds.items, list) { 401 if (irqfd->eventfd != tmp->eventfd) 402 continue; 403 /* This fd is used for another irq already. */ 404 ret = -EBUSY; 405 spin_unlock_irq(&kvm->irqfds.lock); 406 goto fail; 407 } 408 409 idx = srcu_read_lock(&kvm->irq_srcu); 410 irqfd_update(kvm, irqfd); 411 srcu_read_unlock(&kvm->irq_srcu, idx); 412 413 list_add_tail(&irqfd->list, &kvm->irqfds.items); 414 415 spin_unlock_irq(&kvm->irqfds.lock); 416 417 /* 418 * Check if there was an event already pending on the eventfd 419 * before we registered, and trigger it as if we didn't miss it. 420 */ 421 events = f.file->f_op->poll(f.file, &irqfd->pt); 422 423 if (events & POLLIN) 424 schedule_work(&irqfd->inject); 425 426 /* 427 * do not drop the file until the irqfd is fully initialized, otherwise 428 * we might race against the POLLHUP 429 */ 430 fdput(f); 431 432 return 0; 433 434 fail: 435 if (irqfd->resampler) 436 irqfd_resampler_shutdown(irqfd); 437 438 if (resamplefd && !IS_ERR(resamplefd)) 439 eventfd_ctx_put(resamplefd); 440 441 if (eventfd && !IS_ERR(eventfd)) 442 eventfd_ctx_put(eventfd); 443 444 fdput(f); 445 446 out: 447 kfree(irqfd); 448 return ret; 449 } 450 451 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin) 452 { 453 struct kvm_irq_ack_notifier *kian; 454 int gsi, idx; 455 456 idx = srcu_read_lock(&kvm->irq_srcu); 457 gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); 458 if (gsi != -1) 459 hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, 460 link) 461 if (kian->gsi == gsi) { 462 srcu_read_unlock(&kvm->irq_srcu, idx); 463 return true; 464 } 465 466 srcu_read_unlock(&kvm->irq_srcu, idx); 467 468 return false; 469 } 470 EXPORT_SYMBOL_GPL(kvm_irq_has_notifier); 471 472 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin) 473 { 474 struct kvm_irq_ack_notifier *kian; 475 int gsi, idx; 476 477 trace_kvm_ack_irq(irqchip, pin); 478 479 idx = srcu_read_lock(&kvm->irq_srcu); 480 gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); 481 if (gsi != -1) 482 hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, 483 link) 484 if (kian->gsi == gsi) 485 kian->irq_acked(kian); 486 srcu_read_unlock(&kvm->irq_srcu, idx); 487 } 488 489 void kvm_register_irq_ack_notifier(struct kvm *kvm, 490 struct kvm_irq_ack_notifier *kian) 491 { 492 mutex_lock(&kvm->irq_lock); 493 hlist_add_head_rcu(&kian->link, &kvm->irq_ack_notifier_list); 494 mutex_unlock(&kvm->irq_lock); 495 #ifdef __KVM_HAVE_IOAPIC 496 kvm_vcpu_request_scan_ioapic(kvm); 497 #endif 498 } 499 500 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 501 struct kvm_irq_ack_notifier *kian) 502 { 503 mutex_lock(&kvm->irq_lock); 504 hlist_del_init_rcu(&kian->link); 505 mutex_unlock(&kvm->irq_lock); 506 synchronize_srcu(&kvm->irq_srcu); 507 #ifdef __KVM_HAVE_IOAPIC 508 kvm_vcpu_request_scan_ioapic(kvm); 509 #endif 510 } 511 #endif 512 513 void 514 kvm_eventfd_init(struct kvm *kvm) 515 { 516 #ifdef CONFIG_HAVE_KVM_IRQFD 517 spin_lock_init(&kvm->irqfds.lock); 518 INIT_LIST_HEAD(&kvm->irqfds.items); 519 INIT_LIST_HEAD(&kvm->irqfds.resampler_list); 520 mutex_init(&kvm->irqfds.resampler_lock); 521 #endif 522 INIT_LIST_HEAD(&kvm->ioeventfds); 523 } 524 525 #ifdef CONFIG_HAVE_KVM_IRQFD 526 /* 527 * shutdown any irqfd's that match fd+gsi 528 */ 529 static int 530 kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args) 531 { 532 struct _irqfd *irqfd, *tmp; 533 struct eventfd_ctx *eventfd; 534 535 eventfd = eventfd_ctx_fdget(args->fd); 536 if (IS_ERR(eventfd)) 537 return PTR_ERR(eventfd); 538 539 spin_lock_irq(&kvm->irqfds.lock); 540 541 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) { 542 if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) { 543 /* 544 * This clearing of irq_entry.type is needed for when 545 * another thread calls kvm_irq_routing_update before 546 * we flush workqueue below (we synchronize with 547 * kvm_irq_routing_update using irqfds.lock). 548 */ 549 write_seqcount_begin(&irqfd->irq_entry_sc); 550 irqfd->irq_entry.type = 0; 551 write_seqcount_end(&irqfd->irq_entry_sc); 552 irqfd_deactivate(irqfd); 553 } 554 } 555 556 spin_unlock_irq(&kvm->irqfds.lock); 557 eventfd_ctx_put(eventfd); 558 559 /* 560 * Block until we know all outstanding shutdown jobs have completed 561 * so that we guarantee there will not be any more interrupts on this 562 * gsi once this deassign function returns. 563 */ 564 flush_workqueue(irqfd_cleanup_wq); 565 566 return 0; 567 } 568 569 int 570 kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 571 { 572 if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE)) 573 return -EINVAL; 574 575 if (args->flags & KVM_IRQFD_FLAG_DEASSIGN) 576 return kvm_irqfd_deassign(kvm, args); 577 578 return kvm_irqfd_assign(kvm, args); 579 } 580 581 /* 582 * This function is called as the kvm VM fd is being released. Shutdown all 583 * irqfds that still remain open 584 */ 585 void 586 kvm_irqfd_release(struct kvm *kvm) 587 { 588 struct _irqfd *irqfd, *tmp; 589 590 spin_lock_irq(&kvm->irqfds.lock); 591 592 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) 593 irqfd_deactivate(irqfd); 594 595 spin_unlock_irq(&kvm->irqfds.lock); 596 597 /* 598 * Block until we know all outstanding shutdown jobs have completed 599 * since we do not take a kvm* reference. 600 */ 601 flush_workqueue(irqfd_cleanup_wq); 602 603 } 604 605 /* 606 * Take note of a change in irq routing. 607 * Caller must invoke synchronize_srcu(&kvm->irq_srcu) afterwards. 608 */ 609 void kvm_irq_routing_update(struct kvm *kvm) 610 { 611 struct _irqfd *irqfd; 612 613 spin_lock_irq(&kvm->irqfds.lock); 614 615 list_for_each_entry(irqfd, &kvm->irqfds.items, list) 616 irqfd_update(kvm, irqfd); 617 618 spin_unlock_irq(&kvm->irqfds.lock); 619 } 620 621 /* 622 * create a host-wide workqueue for issuing deferred shutdown requests 623 * aggregated from all vm* instances. We need our own isolated single-thread 624 * queue to prevent deadlock against flushing the normal work-queue. 625 */ 626 int kvm_irqfd_init(void) 627 { 628 irqfd_cleanup_wq = create_singlethread_workqueue("kvm-irqfd-cleanup"); 629 if (!irqfd_cleanup_wq) 630 return -ENOMEM; 631 632 return 0; 633 } 634 635 void kvm_irqfd_exit(void) 636 { 637 destroy_workqueue(irqfd_cleanup_wq); 638 } 639 #endif 640 641 /* 642 * -------------------------------------------------------------------- 643 * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal. 644 * 645 * userspace can register a PIO/MMIO address with an eventfd for receiving 646 * notification when the memory has been touched. 647 * -------------------------------------------------------------------- 648 */ 649 650 struct _ioeventfd { 651 struct list_head list; 652 u64 addr; 653 int length; 654 struct eventfd_ctx *eventfd; 655 u64 datamatch; 656 struct kvm_io_device dev; 657 u8 bus_idx; 658 bool wildcard; 659 }; 660 661 static inline struct _ioeventfd * 662 to_ioeventfd(struct kvm_io_device *dev) 663 { 664 return container_of(dev, struct _ioeventfd, dev); 665 } 666 667 static void 668 ioeventfd_release(struct _ioeventfd *p) 669 { 670 eventfd_ctx_put(p->eventfd); 671 list_del(&p->list); 672 kfree(p); 673 } 674 675 static bool 676 ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val) 677 { 678 u64 _val; 679 680 if (addr != p->addr) 681 /* address must be precise for a hit */ 682 return false; 683 684 if (!p->length) 685 /* length = 0 means only look at the address, so always a hit */ 686 return true; 687 688 if (len != p->length) 689 /* address-range must be precise for a hit */ 690 return false; 691 692 if (p->wildcard) 693 /* all else equal, wildcard is always a hit */ 694 return true; 695 696 /* otherwise, we have to actually compare the data */ 697 698 BUG_ON(!IS_ALIGNED((unsigned long)val, len)); 699 700 switch (len) { 701 case 1: 702 _val = *(u8 *)val; 703 break; 704 case 2: 705 _val = *(u16 *)val; 706 break; 707 case 4: 708 _val = *(u32 *)val; 709 break; 710 case 8: 711 _val = *(u64 *)val; 712 break; 713 default: 714 return false; 715 } 716 717 return _val == p->datamatch ? true : false; 718 } 719 720 /* MMIO/PIO writes trigger an event if the addr/val match */ 721 static int 722 ioeventfd_write(struct kvm_io_device *this, gpa_t addr, int len, 723 const void *val) 724 { 725 struct _ioeventfd *p = to_ioeventfd(this); 726 727 if (!ioeventfd_in_range(p, addr, len, val)) 728 return -EOPNOTSUPP; 729 730 eventfd_signal(p->eventfd, 1); 731 return 0; 732 } 733 734 /* 735 * This function is called as KVM is completely shutting down. We do not 736 * need to worry about locking just nuke anything we have as quickly as possible 737 */ 738 static void 739 ioeventfd_destructor(struct kvm_io_device *this) 740 { 741 struct _ioeventfd *p = to_ioeventfd(this); 742 743 ioeventfd_release(p); 744 } 745 746 static const struct kvm_io_device_ops ioeventfd_ops = { 747 .write = ioeventfd_write, 748 .destructor = ioeventfd_destructor, 749 }; 750 751 /* assumes kvm->slots_lock held */ 752 static bool 753 ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p) 754 { 755 struct _ioeventfd *_p; 756 757 list_for_each_entry(_p, &kvm->ioeventfds, list) 758 if (_p->bus_idx == p->bus_idx && 759 _p->addr == p->addr && 760 (!_p->length || !p->length || 761 (_p->length == p->length && 762 (_p->wildcard || p->wildcard || 763 _p->datamatch == p->datamatch)))) 764 return true; 765 766 return false; 767 } 768 769 static enum kvm_bus ioeventfd_bus_from_flags(__u32 flags) 770 { 771 if (flags & KVM_IOEVENTFD_FLAG_PIO) 772 return KVM_PIO_BUS; 773 if (flags & KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY) 774 return KVM_VIRTIO_CCW_NOTIFY_BUS; 775 return KVM_MMIO_BUS; 776 } 777 778 static int 779 kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 780 { 781 enum kvm_bus bus_idx; 782 struct _ioeventfd *p; 783 struct eventfd_ctx *eventfd; 784 int ret; 785 786 bus_idx = ioeventfd_bus_from_flags(args->flags); 787 /* must be natural-word sized, or 0 to ignore length */ 788 switch (args->len) { 789 case 0: 790 case 1: 791 case 2: 792 case 4: 793 case 8: 794 break; 795 default: 796 return -EINVAL; 797 } 798 799 /* check for range overflow */ 800 if (args->addr + args->len < args->addr) 801 return -EINVAL; 802 803 /* check for extra flags that we don't understand */ 804 if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK) 805 return -EINVAL; 806 807 /* ioeventfd with no length can't be combined with DATAMATCH */ 808 if (!args->len && 809 args->flags & (KVM_IOEVENTFD_FLAG_PIO | 810 KVM_IOEVENTFD_FLAG_DATAMATCH)) 811 return -EINVAL; 812 813 eventfd = eventfd_ctx_fdget(args->fd); 814 if (IS_ERR(eventfd)) 815 return PTR_ERR(eventfd); 816 817 p = kzalloc(sizeof(*p), GFP_KERNEL); 818 if (!p) { 819 ret = -ENOMEM; 820 goto fail; 821 } 822 823 INIT_LIST_HEAD(&p->list); 824 p->addr = args->addr; 825 p->bus_idx = bus_idx; 826 p->length = args->len; 827 p->eventfd = eventfd; 828 829 /* The datamatch feature is optional, otherwise this is a wildcard */ 830 if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH) 831 p->datamatch = args->datamatch; 832 else 833 p->wildcard = true; 834 835 mutex_lock(&kvm->slots_lock); 836 837 /* Verify that there isn't a match already */ 838 if (ioeventfd_check_collision(kvm, p)) { 839 ret = -EEXIST; 840 goto unlock_fail; 841 } 842 843 kvm_iodevice_init(&p->dev, &ioeventfd_ops); 844 845 ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length, 846 &p->dev); 847 if (ret < 0) 848 goto unlock_fail; 849 850 /* When length is ignored, MMIO is also put on a separate bus, for 851 * faster lookups. 852 */ 853 if (!args->len && !(args->flags & KVM_IOEVENTFD_FLAG_PIO)) { 854 ret = kvm_io_bus_register_dev(kvm, KVM_FAST_MMIO_BUS, 855 p->addr, 0, &p->dev); 856 if (ret < 0) 857 goto register_fail; 858 } 859 860 kvm->buses[bus_idx]->ioeventfd_count++; 861 list_add_tail(&p->list, &kvm->ioeventfds); 862 863 mutex_unlock(&kvm->slots_lock); 864 865 return 0; 866 867 register_fail: 868 kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); 869 unlock_fail: 870 mutex_unlock(&kvm->slots_lock); 871 872 fail: 873 kfree(p); 874 eventfd_ctx_put(eventfd); 875 876 return ret; 877 } 878 879 static int 880 kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 881 { 882 enum kvm_bus bus_idx; 883 struct _ioeventfd *p, *tmp; 884 struct eventfd_ctx *eventfd; 885 int ret = -ENOENT; 886 887 bus_idx = ioeventfd_bus_from_flags(args->flags); 888 eventfd = eventfd_ctx_fdget(args->fd); 889 if (IS_ERR(eventfd)) 890 return PTR_ERR(eventfd); 891 892 mutex_lock(&kvm->slots_lock); 893 894 list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) { 895 bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH); 896 897 if (p->bus_idx != bus_idx || 898 p->eventfd != eventfd || 899 p->addr != args->addr || 900 p->length != args->len || 901 p->wildcard != wildcard) 902 continue; 903 904 if (!p->wildcard && p->datamatch != args->datamatch) 905 continue; 906 907 kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); 908 if (!p->length) { 909 kvm_io_bus_unregister_dev(kvm, KVM_FAST_MMIO_BUS, 910 &p->dev); 911 } 912 kvm->buses[bus_idx]->ioeventfd_count--; 913 ioeventfd_release(p); 914 ret = 0; 915 break; 916 } 917 918 mutex_unlock(&kvm->slots_lock); 919 920 eventfd_ctx_put(eventfd); 921 922 return ret; 923 } 924 925 int 926 kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 927 { 928 if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN) 929 return kvm_deassign_ioeventfd(kvm, args); 930 931 return kvm_assign_ioeventfd(kvm, args); 932 } 933