1 /* 2 * kvm eventfd support - use eventfd objects to signal various KVM events 3 * 4 * Copyright 2009 Novell. All Rights Reserved. 5 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 6 * 7 * Author: 8 * Gregory Haskins <ghaskins@novell.com> 9 * 10 * This file is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License 12 * as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software Foundation, 21 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 22 */ 23 24 #include <linux/kvm_host.h> 25 #include <linux/kvm.h> 26 #include <linux/kvm_irqfd.h> 27 #include <linux/workqueue.h> 28 #include <linux/syscalls.h> 29 #include <linux/wait.h> 30 #include <linux/poll.h> 31 #include <linux/file.h> 32 #include <linux/list.h> 33 #include <linux/eventfd.h> 34 #include <linux/kernel.h> 35 #include <linux/srcu.h> 36 #include <linux/slab.h> 37 #include <linux/seqlock.h> 38 #include <linux/irqbypass.h> 39 #include <trace/events/kvm.h> 40 41 #include <kvm/iodev.h> 42 43 #ifdef CONFIG_HAVE_KVM_IRQFD 44 45 static struct workqueue_struct *irqfd_cleanup_wq; 46 47 static void 48 irqfd_inject(struct work_struct *work) 49 { 50 struct kvm_kernel_irqfd *irqfd = 51 container_of(work, struct kvm_kernel_irqfd, inject); 52 struct kvm *kvm = irqfd->kvm; 53 54 if (!irqfd->resampler) { 55 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 1, 56 false); 57 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irqfd->gsi, 0, 58 false); 59 } else 60 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 61 irqfd->gsi, 1, false); 62 } 63 64 /* 65 * Since resampler irqfds share an IRQ source ID, we de-assert once 66 * then notify all of the resampler irqfds using this GSI. We can't 67 * do multiple de-asserts or we risk racing with incoming re-asserts. 68 */ 69 static void 70 irqfd_resampler_ack(struct kvm_irq_ack_notifier *kian) 71 { 72 struct kvm_kernel_irqfd_resampler *resampler; 73 struct kvm *kvm; 74 struct kvm_kernel_irqfd *irqfd; 75 int idx; 76 77 resampler = container_of(kian, 78 struct kvm_kernel_irqfd_resampler, notifier); 79 kvm = resampler->kvm; 80 81 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 82 resampler->notifier.gsi, 0, false); 83 84 idx = srcu_read_lock(&kvm->irq_srcu); 85 86 list_for_each_entry_rcu(irqfd, &resampler->list, resampler_link) 87 eventfd_signal(irqfd->resamplefd, 1); 88 89 srcu_read_unlock(&kvm->irq_srcu, idx); 90 } 91 92 static void 93 irqfd_resampler_shutdown(struct kvm_kernel_irqfd *irqfd) 94 { 95 struct kvm_kernel_irqfd_resampler *resampler = irqfd->resampler; 96 struct kvm *kvm = resampler->kvm; 97 98 mutex_lock(&kvm->irqfds.resampler_lock); 99 100 list_del_rcu(&irqfd->resampler_link); 101 synchronize_srcu(&kvm->irq_srcu); 102 103 if (list_empty(&resampler->list)) { 104 list_del(&resampler->link); 105 kvm_unregister_irq_ack_notifier(kvm, &resampler->notifier); 106 kvm_set_irq(kvm, KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 107 resampler->notifier.gsi, 0, false); 108 kfree(resampler); 109 } 110 111 mutex_unlock(&kvm->irqfds.resampler_lock); 112 } 113 114 /* 115 * Race-free decouple logic (ordering is critical) 116 */ 117 static void 118 irqfd_shutdown(struct work_struct *work) 119 { 120 struct kvm_kernel_irqfd *irqfd = 121 container_of(work, struct kvm_kernel_irqfd, shutdown); 122 u64 cnt; 123 124 /* 125 * Synchronize with the wait-queue and unhook ourselves to prevent 126 * further events. 127 */ 128 eventfd_ctx_remove_wait_queue(irqfd->eventfd, &irqfd->wait, &cnt); 129 130 /* 131 * We know no new events will be scheduled at this point, so block 132 * until all previously outstanding events have completed 133 */ 134 flush_work(&irqfd->inject); 135 136 if (irqfd->resampler) { 137 irqfd_resampler_shutdown(irqfd); 138 eventfd_ctx_put(irqfd->resamplefd); 139 } 140 141 /* 142 * It is now safe to release the object's resources 143 */ 144 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 145 irq_bypass_unregister_consumer(&irqfd->consumer); 146 #endif 147 eventfd_ctx_put(irqfd->eventfd); 148 kfree(irqfd); 149 } 150 151 152 /* assumes kvm->irqfds.lock is held */ 153 static bool 154 irqfd_is_active(struct kvm_kernel_irqfd *irqfd) 155 { 156 return list_empty(&irqfd->list) ? false : true; 157 } 158 159 /* 160 * Mark the irqfd as inactive and schedule it for removal 161 * 162 * assumes kvm->irqfds.lock is held 163 */ 164 static void 165 irqfd_deactivate(struct kvm_kernel_irqfd *irqfd) 166 { 167 BUG_ON(!irqfd_is_active(irqfd)); 168 169 list_del_init(&irqfd->list); 170 171 queue_work(irqfd_cleanup_wq, &irqfd->shutdown); 172 } 173 174 int __attribute__((weak)) kvm_arch_set_irq_inatomic( 175 struct kvm_kernel_irq_routing_entry *irq, 176 struct kvm *kvm, int irq_source_id, 177 int level, 178 bool line_status) 179 { 180 return -EWOULDBLOCK; 181 } 182 183 /* 184 * Called with wqh->lock held and interrupts disabled 185 */ 186 static int 187 irqfd_wakeup(wait_queue_t *wait, unsigned mode, int sync, void *key) 188 { 189 struct kvm_kernel_irqfd *irqfd = 190 container_of(wait, struct kvm_kernel_irqfd, wait); 191 unsigned long flags = (unsigned long)key; 192 struct kvm_kernel_irq_routing_entry irq; 193 struct kvm *kvm = irqfd->kvm; 194 unsigned seq; 195 int idx; 196 197 if (flags & POLLIN) { 198 idx = srcu_read_lock(&kvm->irq_srcu); 199 do { 200 seq = read_seqcount_begin(&irqfd->irq_entry_sc); 201 irq = irqfd->irq_entry; 202 } while (read_seqcount_retry(&irqfd->irq_entry_sc, seq)); 203 /* An event has been signaled, inject an interrupt */ 204 if (kvm_arch_set_irq_inatomic(&irq, kvm, 205 KVM_USERSPACE_IRQ_SOURCE_ID, 1, 206 false) == -EWOULDBLOCK) 207 schedule_work(&irqfd->inject); 208 srcu_read_unlock(&kvm->irq_srcu, idx); 209 } 210 211 if (flags & POLLHUP) { 212 /* The eventfd is closing, detach from KVM */ 213 unsigned long flags; 214 215 spin_lock_irqsave(&kvm->irqfds.lock, flags); 216 217 /* 218 * We must check if someone deactivated the irqfd before 219 * we could acquire the irqfds.lock since the item is 220 * deactivated from the KVM side before it is unhooked from 221 * the wait-queue. If it is already deactivated, we can 222 * simply return knowing the other side will cleanup for us. 223 * We cannot race against the irqfd going away since the 224 * other side is required to acquire wqh->lock, which we hold 225 */ 226 if (irqfd_is_active(irqfd)) 227 irqfd_deactivate(irqfd); 228 229 spin_unlock_irqrestore(&kvm->irqfds.lock, flags); 230 } 231 232 return 0; 233 } 234 235 static void 236 irqfd_ptable_queue_proc(struct file *file, wait_queue_head_t *wqh, 237 poll_table *pt) 238 { 239 struct kvm_kernel_irqfd *irqfd = 240 container_of(pt, struct kvm_kernel_irqfd, pt); 241 add_wait_queue(wqh, &irqfd->wait); 242 } 243 244 /* Must be called under irqfds.lock */ 245 static void irqfd_update(struct kvm *kvm, struct kvm_kernel_irqfd *irqfd) 246 { 247 struct kvm_kernel_irq_routing_entry *e; 248 struct kvm_kernel_irq_routing_entry entries[KVM_NR_IRQCHIPS]; 249 int n_entries; 250 251 n_entries = kvm_irq_map_gsi(kvm, entries, irqfd->gsi); 252 253 write_seqcount_begin(&irqfd->irq_entry_sc); 254 255 e = entries; 256 if (n_entries == 1) 257 irqfd->irq_entry = *e; 258 else 259 irqfd->irq_entry.type = 0; 260 261 write_seqcount_end(&irqfd->irq_entry_sc); 262 } 263 264 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 265 void __attribute__((weak)) kvm_arch_irq_bypass_stop( 266 struct irq_bypass_consumer *cons) 267 { 268 } 269 270 void __attribute__((weak)) kvm_arch_irq_bypass_start( 271 struct irq_bypass_consumer *cons) 272 { 273 } 274 275 int __attribute__((weak)) kvm_arch_update_irqfd_routing( 276 struct kvm *kvm, unsigned int host_irq, 277 uint32_t guest_irq, bool set) 278 { 279 return 0; 280 } 281 #endif 282 283 static int 284 kvm_irqfd_assign(struct kvm *kvm, struct kvm_irqfd *args) 285 { 286 struct kvm_kernel_irqfd *irqfd, *tmp; 287 struct fd f; 288 struct eventfd_ctx *eventfd = NULL, *resamplefd = NULL; 289 int ret; 290 unsigned int events; 291 int idx; 292 293 if (!kvm_arch_intc_initialized(kvm)) 294 return -EAGAIN; 295 296 irqfd = kzalloc(sizeof(*irqfd), GFP_KERNEL); 297 if (!irqfd) 298 return -ENOMEM; 299 300 irqfd->kvm = kvm; 301 irqfd->gsi = args->gsi; 302 INIT_LIST_HEAD(&irqfd->list); 303 INIT_WORK(&irqfd->inject, irqfd_inject); 304 INIT_WORK(&irqfd->shutdown, irqfd_shutdown); 305 seqcount_init(&irqfd->irq_entry_sc); 306 307 f = fdget(args->fd); 308 if (!f.file) { 309 ret = -EBADF; 310 goto out; 311 } 312 313 eventfd = eventfd_ctx_fileget(f.file); 314 if (IS_ERR(eventfd)) { 315 ret = PTR_ERR(eventfd); 316 goto fail; 317 } 318 319 irqfd->eventfd = eventfd; 320 321 if (args->flags & KVM_IRQFD_FLAG_RESAMPLE) { 322 struct kvm_kernel_irqfd_resampler *resampler; 323 324 resamplefd = eventfd_ctx_fdget(args->resamplefd); 325 if (IS_ERR(resamplefd)) { 326 ret = PTR_ERR(resamplefd); 327 goto fail; 328 } 329 330 irqfd->resamplefd = resamplefd; 331 INIT_LIST_HEAD(&irqfd->resampler_link); 332 333 mutex_lock(&kvm->irqfds.resampler_lock); 334 335 list_for_each_entry(resampler, 336 &kvm->irqfds.resampler_list, link) { 337 if (resampler->notifier.gsi == irqfd->gsi) { 338 irqfd->resampler = resampler; 339 break; 340 } 341 } 342 343 if (!irqfd->resampler) { 344 resampler = kzalloc(sizeof(*resampler), GFP_KERNEL); 345 if (!resampler) { 346 ret = -ENOMEM; 347 mutex_unlock(&kvm->irqfds.resampler_lock); 348 goto fail; 349 } 350 351 resampler->kvm = kvm; 352 INIT_LIST_HEAD(&resampler->list); 353 resampler->notifier.gsi = irqfd->gsi; 354 resampler->notifier.irq_acked = irqfd_resampler_ack; 355 INIT_LIST_HEAD(&resampler->link); 356 357 list_add(&resampler->link, &kvm->irqfds.resampler_list); 358 kvm_register_irq_ack_notifier(kvm, 359 &resampler->notifier); 360 irqfd->resampler = resampler; 361 } 362 363 list_add_rcu(&irqfd->resampler_link, &irqfd->resampler->list); 364 synchronize_srcu(&kvm->irq_srcu); 365 366 mutex_unlock(&kvm->irqfds.resampler_lock); 367 } 368 369 /* 370 * Install our own custom wake-up handling so we are notified via 371 * a callback whenever someone signals the underlying eventfd 372 */ 373 init_waitqueue_func_entry(&irqfd->wait, irqfd_wakeup); 374 init_poll_funcptr(&irqfd->pt, irqfd_ptable_queue_proc); 375 376 spin_lock_irq(&kvm->irqfds.lock); 377 378 ret = 0; 379 list_for_each_entry(tmp, &kvm->irqfds.items, list) { 380 if (irqfd->eventfd != tmp->eventfd) 381 continue; 382 /* This fd is used for another irq already. */ 383 ret = -EBUSY; 384 spin_unlock_irq(&kvm->irqfds.lock); 385 goto fail; 386 } 387 388 idx = srcu_read_lock(&kvm->irq_srcu); 389 irqfd_update(kvm, irqfd); 390 srcu_read_unlock(&kvm->irq_srcu, idx); 391 392 list_add_tail(&irqfd->list, &kvm->irqfds.items); 393 394 spin_unlock_irq(&kvm->irqfds.lock); 395 396 /* 397 * Check if there was an event already pending on the eventfd 398 * before we registered, and trigger it as if we didn't miss it. 399 */ 400 events = f.file->f_op->poll(f.file, &irqfd->pt); 401 402 if (events & POLLIN) 403 schedule_work(&irqfd->inject); 404 405 /* 406 * do not drop the file until the irqfd is fully initialized, otherwise 407 * we might race against the POLLHUP 408 */ 409 fdput(f); 410 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 411 if (kvm_arch_has_irq_bypass()) { 412 irqfd->consumer.token = (void *)irqfd->eventfd; 413 irqfd->consumer.add_producer = kvm_arch_irq_bypass_add_producer; 414 irqfd->consumer.del_producer = kvm_arch_irq_bypass_del_producer; 415 irqfd->consumer.stop = kvm_arch_irq_bypass_stop; 416 irqfd->consumer.start = kvm_arch_irq_bypass_start; 417 ret = irq_bypass_register_consumer(&irqfd->consumer); 418 if (ret) 419 pr_info("irq bypass consumer (token %p) registration fails: %d\n", 420 irqfd->consumer.token, ret); 421 } 422 #endif 423 424 return 0; 425 426 fail: 427 if (irqfd->resampler) 428 irqfd_resampler_shutdown(irqfd); 429 430 if (resamplefd && !IS_ERR(resamplefd)) 431 eventfd_ctx_put(resamplefd); 432 433 if (eventfd && !IS_ERR(eventfd)) 434 eventfd_ctx_put(eventfd); 435 436 fdput(f); 437 438 out: 439 kfree(irqfd); 440 return ret; 441 } 442 443 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin) 444 { 445 struct kvm_irq_ack_notifier *kian; 446 int gsi, idx; 447 448 idx = srcu_read_lock(&kvm->irq_srcu); 449 gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); 450 if (gsi != -1) 451 hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, 452 link) 453 if (kian->gsi == gsi) { 454 srcu_read_unlock(&kvm->irq_srcu, idx); 455 return true; 456 } 457 458 srcu_read_unlock(&kvm->irq_srcu, idx); 459 460 return false; 461 } 462 EXPORT_SYMBOL_GPL(kvm_irq_has_notifier); 463 464 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi) 465 { 466 struct kvm_irq_ack_notifier *kian; 467 468 hlist_for_each_entry_rcu(kian, &kvm->irq_ack_notifier_list, 469 link) 470 if (kian->gsi == gsi) 471 kian->irq_acked(kian); 472 } 473 474 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin) 475 { 476 int gsi, idx; 477 478 trace_kvm_ack_irq(irqchip, pin); 479 480 idx = srcu_read_lock(&kvm->irq_srcu); 481 gsi = kvm_irq_map_chip_pin(kvm, irqchip, pin); 482 if (gsi != -1) 483 kvm_notify_acked_gsi(kvm, gsi); 484 srcu_read_unlock(&kvm->irq_srcu, idx); 485 } 486 487 void kvm_register_irq_ack_notifier(struct kvm *kvm, 488 struct kvm_irq_ack_notifier *kian) 489 { 490 mutex_lock(&kvm->irq_lock); 491 hlist_add_head_rcu(&kian->link, &kvm->irq_ack_notifier_list); 492 mutex_unlock(&kvm->irq_lock); 493 kvm_vcpu_request_scan_ioapic(kvm); 494 } 495 496 void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 497 struct kvm_irq_ack_notifier *kian) 498 { 499 mutex_lock(&kvm->irq_lock); 500 hlist_del_init_rcu(&kian->link); 501 mutex_unlock(&kvm->irq_lock); 502 synchronize_srcu(&kvm->irq_srcu); 503 kvm_vcpu_request_scan_ioapic(kvm); 504 } 505 #endif 506 507 void 508 kvm_eventfd_init(struct kvm *kvm) 509 { 510 #ifdef CONFIG_HAVE_KVM_IRQFD 511 spin_lock_init(&kvm->irqfds.lock); 512 INIT_LIST_HEAD(&kvm->irqfds.items); 513 INIT_LIST_HEAD(&kvm->irqfds.resampler_list); 514 mutex_init(&kvm->irqfds.resampler_lock); 515 #endif 516 INIT_LIST_HEAD(&kvm->ioeventfds); 517 } 518 519 #ifdef CONFIG_HAVE_KVM_IRQFD 520 /* 521 * shutdown any irqfd's that match fd+gsi 522 */ 523 static int 524 kvm_irqfd_deassign(struct kvm *kvm, struct kvm_irqfd *args) 525 { 526 struct kvm_kernel_irqfd *irqfd, *tmp; 527 struct eventfd_ctx *eventfd; 528 529 eventfd = eventfd_ctx_fdget(args->fd); 530 if (IS_ERR(eventfd)) 531 return PTR_ERR(eventfd); 532 533 spin_lock_irq(&kvm->irqfds.lock); 534 535 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) { 536 if (irqfd->eventfd == eventfd && irqfd->gsi == args->gsi) { 537 /* 538 * This clearing of irq_entry.type is needed for when 539 * another thread calls kvm_irq_routing_update before 540 * we flush workqueue below (we synchronize with 541 * kvm_irq_routing_update using irqfds.lock). 542 */ 543 write_seqcount_begin(&irqfd->irq_entry_sc); 544 irqfd->irq_entry.type = 0; 545 write_seqcount_end(&irqfd->irq_entry_sc); 546 irqfd_deactivate(irqfd); 547 } 548 } 549 550 spin_unlock_irq(&kvm->irqfds.lock); 551 eventfd_ctx_put(eventfd); 552 553 /* 554 * Block until we know all outstanding shutdown jobs have completed 555 * so that we guarantee there will not be any more interrupts on this 556 * gsi once this deassign function returns. 557 */ 558 flush_workqueue(irqfd_cleanup_wq); 559 560 return 0; 561 } 562 563 int 564 kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 565 { 566 if (args->flags & ~(KVM_IRQFD_FLAG_DEASSIGN | KVM_IRQFD_FLAG_RESAMPLE)) 567 return -EINVAL; 568 569 if (args->flags & KVM_IRQFD_FLAG_DEASSIGN) 570 return kvm_irqfd_deassign(kvm, args); 571 572 return kvm_irqfd_assign(kvm, args); 573 } 574 575 /* 576 * This function is called as the kvm VM fd is being released. Shutdown all 577 * irqfds that still remain open 578 */ 579 void 580 kvm_irqfd_release(struct kvm *kvm) 581 { 582 struct kvm_kernel_irqfd *irqfd, *tmp; 583 584 spin_lock_irq(&kvm->irqfds.lock); 585 586 list_for_each_entry_safe(irqfd, tmp, &kvm->irqfds.items, list) 587 irqfd_deactivate(irqfd); 588 589 spin_unlock_irq(&kvm->irqfds.lock); 590 591 /* 592 * Block until we know all outstanding shutdown jobs have completed 593 * since we do not take a kvm* reference. 594 */ 595 flush_workqueue(irqfd_cleanup_wq); 596 597 } 598 599 /* 600 * Take note of a change in irq routing. 601 * Caller must invoke synchronize_srcu(&kvm->irq_srcu) afterwards. 602 */ 603 void kvm_irq_routing_update(struct kvm *kvm) 604 { 605 struct kvm_kernel_irqfd *irqfd; 606 607 spin_lock_irq(&kvm->irqfds.lock); 608 609 list_for_each_entry(irqfd, &kvm->irqfds.items, list) { 610 irqfd_update(kvm, irqfd); 611 612 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 613 if (irqfd->producer) { 614 int ret = kvm_arch_update_irqfd_routing( 615 irqfd->kvm, irqfd->producer->irq, 616 irqfd->gsi, 1); 617 WARN_ON(ret); 618 } 619 #endif 620 } 621 622 spin_unlock_irq(&kvm->irqfds.lock); 623 } 624 625 /* 626 * create a host-wide workqueue for issuing deferred shutdown requests 627 * aggregated from all vm* instances. We need our own isolated 628 * queue to ease flushing work items when a VM exits. 629 */ 630 int kvm_irqfd_init(void) 631 { 632 irqfd_cleanup_wq = alloc_workqueue("kvm-irqfd-cleanup", 0, 0); 633 if (!irqfd_cleanup_wq) 634 return -ENOMEM; 635 636 return 0; 637 } 638 639 void kvm_irqfd_exit(void) 640 { 641 destroy_workqueue(irqfd_cleanup_wq); 642 } 643 #endif 644 645 /* 646 * -------------------------------------------------------------------- 647 * ioeventfd: translate a PIO/MMIO memory write to an eventfd signal. 648 * 649 * userspace can register a PIO/MMIO address with an eventfd for receiving 650 * notification when the memory has been touched. 651 * -------------------------------------------------------------------- 652 */ 653 654 struct _ioeventfd { 655 struct list_head list; 656 u64 addr; 657 int length; 658 struct eventfd_ctx *eventfd; 659 u64 datamatch; 660 struct kvm_io_device dev; 661 u8 bus_idx; 662 bool wildcard; 663 }; 664 665 static inline struct _ioeventfd * 666 to_ioeventfd(struct kvm_io_device *dev) 667 { 668 return container_of(dev, struct _ioeventfd, dev); 669 } 670 671 static void 672 ioeventfd_release(struct _ioeventfd *p) 673 { 674 eventfd_ctx_put(p->eventfd); 675 list_del(&p->list); 676 kfree(p); 677 } 678 679 static bool 680 ioeventfd_in_range(struct _ioeventfd *p, gpa_t addr, int len, const void *val) 681 { 682 u64 _val; 683 684 if (addr != p->addr) 685 /* address must be precise for a hit */ 686 return false; 687 688 if (!p->length) 689 /* length = 0 means only look at the address, so always a hit */ 690 return true; 691 692 if (len != p->length) 693 /* address-range must be precise for a hit */ 694 return false; 695 696 if (p->wildcard) 697 /* all else equal, wildcard is always a hit */ 698 return true; 699 700 /* otherwise, we have to actually compare the data */ 701 702 BUG_ON(!IS_ALIGNED((unsigned long)val, len)); 703 704 switch (len) { 705 case 1: 706 _val = *(u8 *)val; 707 break; 708 case 2: 709 _val = *(u16 *)val; 710 break; 711 case 4: 712 _val = *(u32 *)val; 713 break; 714 case 8: 715 _val = *(u64 *)val; 716 break; 717 default: 718 return false; 719 } 720 721 return _val == p->datamatch ? true : false; 722 } 723 724 /* MMIO/PIO writes trigger an event if the addr/val match */ 725 static int 726 ioeventfd_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, 727 int len, const void *val) 728 { 729 struct _ioeventfd *p = to_ioeventfd(this); 730 731 if (!ioeventfd_in_range(p, addr, len, val)) 732 return -EOPNOTSUPP; 733 734 eventfd_signal(p->eventfd, 1); 735 return 0; 736 } 737 738 /* 739 * This function is called as KVM is completely shutting down. We do not 740 * need to worry about locking just nuke anything we have as quickly as possible 741 */ 742 static void 743 ioeventfd_destructor(struct kvm_io_device *this) 744 { 745 struct _ioeventfd *p = to_ioeventfd(this); 746 747 ioeventfd_release(p); 748 } 749 750 static const struct kvm_io_device_ops ioeventfd_ops = { 751 .write = ioeventfd_write, 752 .destructor = ioeventfd_destructor, 753 }; 754 755 /* assumes kvm->slots_lock held */ 756 static bool 757 ioeventfd_check_collision(struct kvm *kvm, struct _ioeventfd *p) 758 { 759 struct _ioeventfd *_p; 760 761 list_for_each_entry(_p, &kvm->ioeventfds, list) 762 if (_p->bus_idx == p->bus_idx && 763 _p->addr == p->addr && 764 (!_p->length || !p->length || 765 (_p->length == p->length && 766 (_p->wildcard || p->wildcard || 767 _p->datamatch == p->datamatch)))) 768 return true; 769 770 return false; 771 } 772 773 static enum kvm_bus ioeventfd_bus_from_flags(__u32 flags) 774 { 775 if (flags & KVM_IOEVENTFD_FLAG_PIO) 776 return KVM_PIO_BUS; 777 if (flags & KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY) 778 return KVM_VIRTIO_CCW_NOTIFY_BUS; 779 return KVM_MMIO_BUS; 780 } 781 782 static int kvm_assign_ioeventfd_idx(struct kvm *kvm, 783 enum kvm_bus bus_idx, 784 struct kvm_ioeventfd *args) 785 { 786 787 struct eventfd_ctx *eventfd; 788 struct _ioeventfd *p; 789 int ret; 790 791 eventfd = eventfd_ctx_fdget(args->fd); 792 if (IS_ERR(eventfd)) 793 return PTR_ERR(eventfd); 794 795 p = kzalloc(sizeof(*p), GFP_KERNEL); 796 if (!p) { 797 ret = -ENOMEM; 798 goto fail; 799 } 800 801 INIT_LIST_HEAD(&p->list); 802 p->addr = args->addr; 803 p->bus_idx = bus_idx; 804 p->length = args->len; 805 p->eventfd = eventfd; 806 807 /* The datamatch feature is optional, otherwise this is a wildcard */ 808 if (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH) 809 p->datamatch = args->datamatch; 810 else 811 p->wildcard = true; 812 813 mutex_lock(&kvm->slots_lock); 814 815 /* Verify that there isn't a match already */ 816 if (ioeventfd_check_collision(kvm, p)) { 817 ret = -EEXIST; 818 goto unlock_fail; 819 } 820 821 kvm_iodevice_init(&p->dev, &ioeventfd_ops); 822 823 ret = kvm_io_bus_register_dev(kvm, bus_idx, p->addr, p->length, 824 &p->dev); 825 if (ret < 0) 826 goto unlock_fail; 827 828 kvm->buses[bus_idx]->ioeventfd_count++; 829 list_add_tail(&p->list, &kvm->ioeventfds); 830 831 mutex_unlock(&kvm->slots_lock); 832 833 return 0; 834 835 unlock_fail: 836 mutex_unlock(&kvm->slots_lock); 837 838 fail: 839 kfree(p); 840 eventfd_ctx_put(eventfd); 841 842 return ret; 843 } 844 845 static int 846 kvm_deassign_ioeventfd_idx(struct kvm *kvm, enum kvm_bus bus_idx, 847 struct kvm_ioeventfd *args) 848 { 849 struct _ioeventfd *p, *tmp; 850 struct eventfd_ctx *eventfd; 851 int ret = -ENOENT; 852 853 eventfd = eventfd_ctx_fdget(args->fd); 854 if (IS_ERR(eventfd)) 855 return PTR_ERR(eventfd); 856 857 mutex_lock(&kvm->slots_lock); 858 859 list_for_each_entry_safe(p, tmp, &kvm->ioeventfds, list) { 860 bool wildcard = !(args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH); 861 862 if (p->bus_idx != bus_idx || 863 p->eventfd != eventfd || 864 p->addr != args->addr || 865 p->length != args->len || 866 p->wildcard != wildcard) 867 continue; 868 869 if (!p->wildcard && p->datamatch != args->datamatch) 870 continue; 871 872 kvm_io_bus_unregister_dev(kvm, bus_idx, &p->dev); 873 if (kvm->buses[bus_idx]) 874 kvm->buses[bus_idx]->ioeventfd_count--; 875 ioeventfd_release(p); 876 ret = 0; 877 break; 878 } 879 880 mutex_unlock(&kvm->slots_lock); 881 882 eventfd_ctx_put(eventfd); 883 884 return ret; 885 } 886 887 static int kvm_deassign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 888 { 889 enum kvm_bus bus_idx = ioeventfd_bus_from_flags(args->flags); 890 int ret = kvm_deassign_ioeventfd_idx(kvm, bus_idx, args); 891 892 if (!args->len && bus_idx == KVM_MMIO_BUS) 893 kvm_deassign_ioeventfd_idx(kvm, KVM_FAST_MMIO_BUS, args); 894 895 return ret; 896 } 897 898 static int 899 kvm_assign_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 900 { 901 enum kvm_bus bus_idx; 902 int ret; 903 904 bus_idx = ioeventfd_bus_from_flags(args->flags); 905 /* must be natural-word sized, or 0 to ignore length */ 906 switch (args->len) { 907 case 0: 908 case 1: 909 case 2: 910 case 4: 911 case 8: 912 break; 913 default: 914 return -EINVAL; 915 } 916 917 /* check for range overflow */ 918 if (args->addr + args->len < args->addr) 919 return -EINVAL; 920 921 /* check for extra flags that we don't understand */ 922 if (args->flags & ~KVM_IOEVENTFD_VALID_FLAG_MASK) 923 return -EINVAL; 924 925 /* ioeventfd with no length can't be combined with DATAMATCH */ 926 if (!args->len && (args->flags & KVM_IOEVENTFD_FLAG_DATAMATCH)) 927 return -EINVAL; 928 929 ret = kvm_assign_ioeventfd_idx(kvm, bus_idx, args); 930 if (ret) 931 goto fail; 932 933 /* When length is ignored, MMIO is also put on a separate bus, for 934 * faster lookups. 935 */ 936 if (!args->len && bus_idx == KVM_MMIO_BUS) { 937 ret = kvm_assign_ioeventfd_idx(kvm, KVM_FAST_MMIO_BUS, args); 938 if (ret < 0) 939 goto fast_fail; 940 } 941 942 return 0; 943 944 fast_fail: 945 kvm_deassign_ioeventfd_idx(kvm, bus_idx, args); 946 fail: 947 return ret; 948 } 949 950 int 951 kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 952 { 953 if (args->flags & KVM_IOEVENTFD_FLAG_DEASSIGN) 954 return kvm_deassign_ioeventfd(kvm, args); 955 956 return kvm_assign_ioeventfd(kvm, args); 957 } 958