1 /* 2 * This test checks the response of the system clock to frequency 3 * steps made with adjtimex(). The frequency error and stability of 4 * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock 5 * is measured in two intervals following the step. The test fails if 6 * values from the second interval exceed specified limits. 7 * 8 * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com> 2017 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of version 2 of the GNU General Public License as 12 * published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope that it will be useful, but 15 * WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 * General Public License for more details. 18 */ 19 20 #include <math.h> 21 #include <stdio.h> 22 #include <sys/timex.h> 23 #include <time.h> 24 #include <unistd.h> 25 26 #include "../kselftest.h" 27 28 #define SAMPLES 100 29 #define SAMPLE_READINGS 10 30 #define MEAN_SAMPLE_INTERVAL 0.1 31 #define STEP_INTERVAL 1.0 32 #define MAX_PRECISION 100e-9 33 #define MAX_FREQ_ERROR 10e-6 34 #define MAX_STDDEV 1000e-9 35 36 #ifndef ADJ_SETOFFSET 37 #define ADJ_SETOFFSET 0x0100 38 #endif 39 40 struct sample { 41 double offset; 42 double time; 43 }; 44 45 static time_t mono_raw_base; 46 static time_t mono_base; 47 static long user_hz; 48 static double precision; 49 static double mono_freq_offset; 50 51 static double diff_timespec(struct timespec *ts1, struct timespec *ts2) 52 { 53 return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9; 54 } 55 56 static double get_sample(struct sample *sample) 57 { 58 double delay, mindelay = 0.0; 59 struct timespec ts1, ts2, ts3; 60 int i; 61 62 for (i = 0; i < SAMPLE_READINGS; i++) { 63 clock_gettime(CLOCK_MONOTONIC_RAW, &ts1); 64 clock_gettime(CLOCK_MONOTONIC, &ts2); 65 clock_gettime(CLOCK_MONOTONIC_RAW, &ts3); 66 67 ts1.tv_sec -= mono_raw_base; 68 ts2.tv_sec -= mono_base; 69 ts3.tv_sec -= mono_raw_base; 70 71 delay = diff_timespec(&ts3, &ts1); 72 if (delay <= 1e-9) { 73 i--; 74 continue; 75 } 76 77 if (!i || delay < mindelay) { 78 sample->offset = diff_timespec(&ts2, &ts1); 79 sample->offset -= delay / 2.0; 80 sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9; 81 mindelay = delay; 82 } 83 } 84 85 return mindelay; 86 } 87 88 static void reset_ntp_error(void) 89 { 90 struct timex txc; 91 92 txc.modes = ADJ_SETOFFSET; 93 txc.time.tv_sec = 0; 94 txc.time.tv_usec = 0; 95 96 if (adjtimex(&txc) < 0) { 97 perror("[FAIL] adjtimex"); 98 ksft_exit_fail(); 99 } 100 } 101 102 static void set_frequency(double freq) 103 { 104 struct timex txc; 105 int tick_offset; 106 107 tick_offset = 1e6 * freq / user_hz; 108 109 txc.modes = ADJ_TICK | ADJ_FREQUENCY; 110 txc.tick = 1000000 / user_hz + tick_offset; 111 txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16); 112 113 if (adjtimex(&txc) < 0) { 114 perror("[FAIL] adjtimex"); 115 ksft_exit_fail(); 116 } 117 } 118 119 static void regress(struct sample *samples, int n, double *intercept, 120 double *slope, double *r_stddev, double *r_max) 121 { 122 double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum; 123 int i; 124 125 x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0; 126 127 for (i = 0; i < n; i++) { 128 x = samples[i].time; 129 y = samples[i].offset; 130 131 x_sum += x; 132 y_sum += y; 133 xy_sum += x * y; 134 x2_sum += x * x; 135 } 136 137 *slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n); 138 *intercept = (y_sum - *slope * x_sum) / n; 139 140 *r_max = 0.0, r2_sum = 0.0; 141 142 for (i = 0; i < n; i++) { 143 x = samples[i].time; 144 y = samples[i].offset; 145 r = fabs(x * *slope + *intercept - y); 146 if (*r_max < r) 147 *r_max = r; 148 r2_sum += r * r; 149 } 150 151 *r_stddev = sqrt(r2_sum / n); 152 } 153 154 static int run_test(int calibration, double freq_base, double freq_step) 155 { 156 struct sample samples[SAMPLES]; 157 double intercept, slope, stddev1, max1, stddev2, max2; 158 double freq_error1, freq_error2; 159 int i; 160 161 set_frequency(freq_base); 162 163 for (i = 0; i < 10; i++) 164 usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10); 165 166 reset_ntp_error(); 167 168 set_frequency(freq_base + freq_step); 169 170 for (i = 0; i < 10; i++) 171 usleep(rand() % 2000000 * STEP_INTERVAL / 10); 172 173 set_frequency(freq_base); 174 175 for (i = 0; i < SAMPLES; i++) { 176 usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL); 177 get_sample(&samples[i]); 178 } 179 180 if (calibration) { 181 regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1); 182 mono_freq_offset = slope; 183 printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n", 184 1e6 * mono_freq_offset); 185 return 0; 186 } 187 188 regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1); 189 freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - 190 freq_base; 191 192 regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope, 193 &stddev2, &max2); 194 freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - 195 freq_base; 196 197 printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t", 198 1e6 * freq_step, 199 1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1, 200 1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2); 201 202 if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) { 203 printf("[FAIL]\n"); 204 return 1; 205 } 206 207 printf("[OK]\n"); 208 return 0; 209 } 210 211 static void init_test(void) 212 { 213 struct timespec ts; 214 struct sample sample; 215 216 if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) { 217 perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)"); 218 ksft_exit_fail(); 219 } 220 221 mono_raw_base = ts.tv_sec; 222 223 if (clock_gettime(CLOCK_MONOTONIC, &ts)) { 224 perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)"); 225 ksft_exit_fail(); 226 } 227 228 mono_base = ts.tv_sec; 229 230 user_hz = sysconf(_SC_CLK_TCK); 231 232 precision = get_sample(&sample) / 2.0; 233 printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t", 234 1e9 * precision); 235 236 if (precision > MAX_PRECISION) 237 ksft_exit_skip("precision: %.0f ns > MAX_PRECISION: %.0f ns\n", 238 1e9 * precision, 1e9 * MAX_PRECISION); 239 240 printf("[OK]\n"); 241 srand(ts.tv_sec ^ ts.tv_nsec); 242 243 run_test(1, 0.0, 0.0); 244 } 245 246 int main(int argc, char **argv) 247 { 248 double freq_base, freq_step; 249 int i, j, fails = 0; 250 251 init_test(); 252 253 printf("Checking response to frequency step:\n"); 254 printf(" Step 1st interval 2nd interval\n"); 255 printf(" Freq Dev Max Freq Dev Max\n"); 256 257 for (i = 2; i >= 0; i--) { 258 for (j = 0; j < 5; j++) { 259 freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6; 260 freq_step = 10e-6 * (1 << (6 * i)); 261 fails += run_test(0, freq_base, freq_step); 262 } 263 } 264 265 set_frequency(0.0); 266 267 if (fails) 268 return ksft_exit_fail(); 269 270 return ksft_exit_pass(); 271 } 272