xref: /openbmc/linux/tools/testing/selftests/timers/freq-step.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * This test checks the response of the system clock to frequency
3  * steps made with adjtimex(). The frequency error and stability of
4  * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock
5  * is measured in two intervals following the step. The test fails if
6  * values from the second interval exceed specified limits.
7  *
8  * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com>  2017
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of version 2 of the GNU General Public License as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  */
19 
20 #include <math.h>
21 #include <stdio.h>
22 #include <sys/timex.h>
23 #include <time.h>
24 #include <unistd.h>
25 
26 #include "../kselftest.h"
27 
28 #define SAMPLES 100
29 #define SAMPLE_READINGS 10
30 #define MEAN_SAMPLE_INTERVAL 0.1
31 #define STEP_INTERVAL 1.0
32 #define MAX_PRECISION 100e-9
33 #define MAX_FREQ_ERROR 10e-6
34 #define MAX_STDDEV 1000e-9
35 
36 struct sample {
37 	double offset;
38 	double time;
39 };
40 
41 static time_t mono_raw_base;
42 static time_t mono_base;
43 static long user_hz;
44 static double precision;
45 static double mono_freq_offset;
46 
47 static double diff_timespec(struct timespec *ts1, struct timespec *ts2)
48 {
49 	return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9;
50 }
51 
52 static double get_sample(struct sample *sample)
53 {
54 	double delay, mindelay = 0.0;
55 	struct timespec ts1, ts2, ts3;
56 	int i;
57 
58 	for (i = 0; i < SAMPLE_READINGS; i++) {
59 		clock_gettime(CLOCK_MONOTONIC_RAW, &ts1);
60 		clock_gettime(CLOCK_MONOTONIC, &ts2);
61 		clock_gettime(CLOCK_MONOTONIC_RAW, &ts3);
62 
63 		ts1.tv_sec -= mono_raw_base;
64 		ts2.tv_sec -= mono_base;
65 		ts3.tv_sec -= mono_raw_base;
66 
67 		delay = diff_timespec(&ts3, &ts1);
68 		if (delay <= 1e-9) {
69 			i--;
70 			continue;
71 		}
72 
73 		if (!i || delay < mindelay) {
74 			sample->offset = diff_timespec(&ts2, &ts1);
75 			sample->offset -= delay / 2.0;
76 			sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9;
77 			mindelay = delay;
78 		}
79 	}
80 
81 	return mindelay;
82 }
83 
84 static void reset_ntp_error(void)
85 {
86 	struct timex txc;
87 
88 	txc.modes = ADJ_SETOFFSET;
89 	txc.time.tv_sec = 0;
90 	txc.time.tv_usec = 0;
91 
92 	if (adjtimex(&txc) < 0) {
93 		perror("[FAIL] adjtimex");
94 		ksft_exit_fail();
95 	}
96 }
97 
98 static void set_frequency(double freq)
99 {
100 	struct timex txc;
101 	int tick_offset;
102 
103 	tick_offset = 1e6 * freq / user_hz;
104 
105 	txc.modes = ADJ_TICK | ADJ_FREQUENCY;
106 	txc.tick = 1000000 / user_hz + tick_offset;
107 	txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16);
108 
109 	if (adjtimex(&txc) < 0) {
110 		perror("[FAIL] adjtimex");
111 		ksft_exit_fail();
112 	}
113 }
114 
115 static void regress(struct sample *samples, int n, double *intercept,
116 		    double *slope, double *r_stddev, double *r_max)
117 {
118 	double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum;
119 	int i;
120 
121 	x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0;
122 
123 	for (i = 0; i < n; i++) {
124 		x = samples[i].time;
125 		y = samples[i].offset;
126 
127 		x_sum += x;
128 		y_sum += y;
129 		xy_sum += x * y;
130 		x2_sum += x * x;
131 	}
132 
133 	*slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n);
134 	*intercept = (y_sum - *slope * x_sum) / n;
135 
136 	*r_max = 0.0, r2_sum = 0.0;
137 
138 	for (i = 0; i < n; i++) {
139 		x = samples[i].time;
140 		y = samples[i].offset;
141 		r = fabs(x * *slope + *intercept - y);
142 		if (*r_max < r)
143 			*r_max = r;
144 		r2_sum += r * r;
145 	}
146 
147 	*r_stddev = sqrt(r2_sum / n);
148 }
149 
150 static int run_test(int calibration, double freq_base, double freq_step)
151 {
152 	struct sample samples[SAMPLES];
153 	double intercept, slope, stddev1, max1, stddev2, max2;
154 	double freq_error1, freq_error2;
155 	int i;
156 
157 	set_frequency(freq_base);
158 
159 	for (i = 0; i < 10; i++)
160 		usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10);
161 
162 	reset_ntp_error();
163 
164 	set_frequency(freq_base + freq_step);
165 
166 	for (i = 0; i < 10; i++)
167 		usleep(rand() % 2000000 * STEP_INTERVAL / 10);
168 
169 	set_frequency(freq_base);
170 
171 	for (i = 0; i < SAMPLES; i++) {
172 		usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL);
173 		get_sample(&samples[i]);
174 	}
175 
176 	if (calibration) {
177 		regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1);
178 		mono_freq_offset = slope;
179 		printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n",
180 		       1e6 * mono_freq_offset);
181 		return 0;
182 	}
183 
184 	regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1);
185 	freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
186 			freq_base;
187 
188 	regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope,
189 		&stddev2, &max2);
190 	freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
191 			freq_base;
192 
193 	printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t",
194 	       1e6 * freq_step,
195 	       1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1,
196 	       1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2);
197 
198 	if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) {
199 		printf("[FAIL]\n");
200 		return 1;
201 	}
202 
203 	printf("[OK]\n");
204 	return 0;
205 }
206 
207 static void init_test(void)
208 {
209 	struct timespec ts;
210 	struct sample sample;
211 
212 	if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) {
213 		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)");
214 		ksft_exit_fail();
215 	}
216 
217 	mono_raw_base = ts.tv_sec;
218 
219 	if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
220 		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)");
221 		ksft_exit_fail();
222 	}
223 
224 	mono_base = ts.tv_sec;
225 
226 	user_hz = sysconf(_SC_CLK_TCK);
227 
228 	precision = get_sample(&sample) / 2.0;
229 	printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t",
230 	       1e9 * precision);
231 
232 	if (precision > MAX_PRECISION) {
233 		printf("[SKIP]\n");
234 		ksft_exit_skip();
235 	}
236 
237 	printf("[OK]\n");
238 	srand(ts.tv_sec ^ ts.tv_nsec);
239 
240 	run_test(1, 0.0, 0.0);
241 }
242 
243 int main(int argc, char **argv)
244 {
245 	double freq_base, freq_step;
246 	int i, j, fails = 0;
247 
248 	init_test();
249 
250 	printf("Checking response to frequency step:\n");
251 	printf("  Step           1st interval              2nd interval\n");
252 	printf("             Freq    Dev     Max       Freq    Dev     Max\n");
253 
254 	for (i = 2; i >= 0; i--) {
255 		for (j = 0; j < 5; j++) {
256 			freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6;
257 			freq_step = 10e-6 * (1 << (6 * i));
258 			fails += run_test(0, freq_base, freq_step);
259 		}
260 	}
261 
262 	set_frequency(0.0);
263 
264 	if (fails)
265 		ksft_exit_fail();
266 
267 	ksft_exit_pass();
268 }
269