1 /* 2 * Copyright (c) 2012 The Chromium OS Authors. All rights reserved. 3 * Use of this source code is governed by the GPLv2 license. 4 * 5 * Test code for seccomp bpf. 6 */ 7 8 #include <sys/types.h> 9 #include <asm/siginfo.h> 10 #define __have_siginfo_t 1 11 #define __have_sigval_t 1 12 #define __have_sigevent_t 1 13 14 #include <errno.h> 15 #include <linux/filter.h> 16 #include <sys/prctl.h> 17 #include <sys/ptrace.h> 18 #include <sys/user.h> 19 #include <linux/prctl.h> 20 #include <linux/ptrace.h> 21 #include <linux/seccomp.h> 22 #include <pthread.h> 23 #include <semaphore.h> 24 #include <signal.h> 25 #include <stddef.h> 26 #include <stdbool.h> 27 #include <string.h> 28 #include <time.h> 29 #include <linux/elf.h> 30 #include <sys/uio.h> 31 #include <sys/utsname.h> 32 #include <sys/fcntl.h> 33 #include <sys/mman.h> 34 #include <sys/times.h> 35 36 #define _GNU_SOURCE 37 #include <unistd.h> 38 #include <sys/syscall.h> 39 40 #include "test_harness.h" 41 42 #ifndef PR_SET_PTRACER 43 # define PR_SET_PTRACER 0x59616d61 44 #endif 45 46 #ifndef PR_SET_NO_NEW_PRIVS 47 #define PR_SET_NO_NEW_PRIVS 38 48 #define PR_GET_NO_NEW_PRIVS 39 49 #endif 50 51 #ifndef PR_SECCOMP_EXT 52 #define PR_SECCOMP_EXT 43 53 #endif 54 55 #ifndef SECCOMP_EXT_ACT 56 #define SECCOMP_EXT_ACT 1 57 #endif 58 59 #ifndef SECCOMP_EXT_ACT_TSYNC 60 #define SECCOMP_EXT_ACT_TSYNC 1 61 #endif 62 63 #ifndef SECCOMP_MODE_STRICT 64 #define SECCOMP_MODE_STRICT 1 65 #endif 66 67 #ifndef SECCOMP_MODE_FILTER 68 #define SECCOMP_MODE_FILTER 2 69 #endif 70 71 #ifndef SECCOMP_RET_KILL 72 #define SECCOMP_RET_KILL 0x00000000U /* kill the task immediately */ 73 #define SECCOMP_RET_TRAP 0x00030000U /* disallow and force a SIGSYS */ 74 #define SECCOMP_RET_ERRNO 0x00050000U /* returns an errno */ 75 #define SECCOMP_RET_TRACE 0x7ff00000U /* pass to a tracer or disallow */ 76 #define SECCOMP_RET_ALLOW 0x7fff0000U /* allow */ 77 78 /* Masks for the return value sections. */ 79 #define SECCOMP_RET_ACTION 0x7fff0000U 80 #define SECCOMP_RET_DATA 0x0000ffffU 81 82 struct seccomp_data { 83 int nr; 84 __u32 arch; 85 __u64 instruction_pointer; 86 __u64 args[6]; 87 }; 88 #endif 89 90 #if __BYTE_ORDER == __LITTLE_ENDIAN 91 #define syscall_arg(_n) (offsetof(struct seccomp_data, args[_n])) 92 #elif __BYTE_ORDER == __BIG_ENDIAN 93 #define syscall_arg(_n) (offsetof(struct seccomp_data, args[_n]) + sizeof(__u32)) 94 #else 95 #error "wut? Unknown __BYTE_ORDER?!" 96 #endif 97 98 #define SIBLING_EXIT_UNKILLED 0xbadbeef 99 #define SIBLING_EXIT_FAILURE 0xbadface 100 #define SIBLING_EXIT_NEWPRIVS 0xbadfeed 101 102 TEST(mode_strict_support) 103 { 104 long ret; 105 106 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, NULL, NULL, NULL); 107 ASSERT_EQ(0, ret) { 108 TH_LOG("Kernel does not support CONFIG_SECCOMP"); 109 } 110 syscall(__NR_exit, 1); 111 } 112 113 TEST_SIGNAL(mode_strict_cannot_call_prctl, SIGKILL) 114 { 115 long ret; 116 117 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, NULL, NULL, NULL); 118 ASSERT_EQ(0, ret) { 119 TH_LOG("Kernel does not support CONFIG_SECCOMP"); 120 } 121 syscall(__NR_prctl, PR_SET_SECCOMP, SECCOMP_MODE_FILTER, 122 NULL, NULL, NULL); 123 EXPECT_FALSE(true) { 124 TH_LOG("Unreachable!"); 125 } 126 } 127 128 /* Note! This doesn't test no new privs behavior */ 129 TEST(no_new_privs_support) 130 { 131 long ret; 132 133 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 134 EXPECT_EQ(0, ret) { 135 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 136 } 137 } 138 139 /* Tests kernel support by checking for a copy_from_user() fault on * NULL. */ 140 TEST(mode_filter_support) 141 { 142 long ret; 143 144 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, NULL, 0, 0); 145 ASSERT_EQ(0, ret) { 146 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 147 } 148 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, NULL, NULL, NULL); 149 EXPECT_EQ(-1, ret); 150 EXPECT_EQ(EFAULT, errno) { 151 TH_LOG("Kernel does not support CONFIG_SECCOMP_FILTER!"); 152 } 153 } 154 155 TEST(mode_filter_without_nnp) 156 { 157 struct sock_filter filter[] = { 158 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 159 }; 160 struct sock_fprog prog = { 161 .len = (unsigned short)ARRAY_SIZE(filter), 162 .filter = filter, 163 }; 164 long ret; 165 166 ret = prctl(PR_GET_NO_NEW_PRIVS, 0, NULL, 0, 0); 167 ASSERT_LE(0, ret) { 168 TH_LOG("Expected 0 or unsupported for NO_NEW_PRIVS"); 169 } 170 errno = 0; 171 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); 172 /* Succeeds with CAP_SYS_ADMIN, fails without */ 173 /* TODO(wad) check caps not euid */ 174 if (geteuid()) { 175 EXPECT_EQ(-1, ret); 176 EXPECT_EQ(EACCES, errno); 177 } else { 178 EXPECT_EQ(0, ret); 179 } 180 } 181 182 #define MAX_INSNS_PER_PATH 32768 183 184 TEST(filter_size_limits) 185 { 186 int i; 187 int count = BPF_MAXINSNS + 1; 188 struct sock_filter allow[] = { 189 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 190 }; 191 struct sock_filter *filter; 192 struct sock_fprog prog = { }; 193 long ret; 194 195 filter = calloc(count, sizeof(*filter)); 196 ASSERT_NE(NULL, filter); 197 198 for (i = 0; i < count; i++) 199 filter[i] = allow[0]; 200 201 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 202 ASSERT_EQ(0, ret); 203 204 prog.filter = filter; 205 prog.len = count; 206 207 /* Too many filter instructions in a single filter. */ 208 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); 209 ASSERT_NE(0, ret) { 210 TH_LOG("Installing %d insn filter was allowed", prog.len); 211 } 212 213 /* One less is okay, though. */ 214 prog.len -= 1; 215 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); 216 ASSERT_EQ(0, ret) { 217 TH_LOG("Installing %d insn filter wasn't allowed", prog.len); 218 } 219 } 220 221 TEST(filter_chain_limits) 222 { 223 int i; 224 int count = BPF_MAXINSNS; 225 struct sock_filter allow[] = { 226 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 227 }; 228 struct sock_filter *filter; 229 struct sock_fprog prog = { }; 230 long ret; 231 232 filter = calloc(count, sizeof(*filter)); 233 ASSERT_NE(NULL, filter); 234 235 for (i = 0; i < count; i++) 236 filter[i] = allow[0]; 237 238 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 239 ASSERT_EQ(0, ret); 240 241 prog.filter = filter; 242 prog.len = 1; 243 244 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); 245 ASSERT_EQ(0, ret); 246 247 prog.len = count; 248 249 /* Too many total filter instructions. */ 250 for (i = 0; i < MAX_INSNS_PER_PATH; i++) { 251 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); 252 if (ret != 0) 253 break; 254 } 255 ASSERT_NE(0, ret) { 256 TH_LOG("Allowed %d %d-insn filters (total with penalties:%d)", 257 i, count, i * (count + 4)); 258 } 259 } 260 261 TEST(mode_filter_cannot_move_to_strict) 262 { 263 struct sock_filter filter[] = { 264 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 265 }; 266 struct sock_fprog prog = { 267 .len = (unsigned short)ARRAY_SIZE(filter), 268 .filter = filter, 269 }; 270 long ret; 271 272 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 273 ASSERT_EQ(0, ret); 274 275 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); 276 ASSERT_EQ(0, ret); 277 278 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, NULL, 0, 0); 279 EXPECT_EQ(-1, ret); 280 EXPECT_EQ(EINVAL, errno); 281 } 282 283 284 TEST(mode_filter_get_seccomp) 285 { 286 struct sock_filter filter[] = { 287 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 288 }; 289 struct sock_fprog prog = { 290 .len = (unsigned short)ARRAY_SIZE(filter), 291 .filter = filter, 292 }; 293 long ret; 294 295 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 296 ASSERT_EQ(0, ret); 297 298 ret = prctl(PR_GET_SECCOMP, 0, 0, 0, 0); 299 EXPECT_EQ(0, ret); 300 301 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); 302 ASSERT_EQ(0, ret); 303 304 ret = prctl(PR_GET_SECCOMP, 0, 0, 0, 0); 305 EXPECT_EQ(2, ret); 306 } 307 308 309 TEST(ALLOW_all) 310 { 311 struct sock_filter filter[] = { 312 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 313 }; 314 struct sock_fprog prog = { 315 .len = (unsigned short)ARRAY_SIZE(filter), 316 .filter = filter, 317 }; 318 long ret; 319 320 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 321 ASSERT_EQ(0, ret); 322 323 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 324 ASSERT_EQ(0, ret); 325 } 326 327 TEST(empty_prog) 328 { 329 struct sock_filter filter[] = { 330 }; 331 struct sock_fprog prog = { 332 .len = (unsigned short)ARRAY_SIZE(filter), 333 .filter = filter, 334 }; 335 long ret; 336 337 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 338 ASSERT_EQ(0, ret); 339 340 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 341 EXPECT_EQ(-1, ret); 342 EXPECT_EQ(EINVAL, errno); 343 } 344 345 TEST_SIGNAL(unknown_ret_is_kill_inside, SIGSYS) 346 { 347 struct sock_filter filter[] = { 348 BPF_STMT(BPF_RET|BPF_K, 0x10000000U), 349 }; 350 struct sock_fprog prog = { 351 .len = (unsigned short)ARRAY_SIZE(filter), 352 .filter = filter, 353 }; 354 long ret; 355 356 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 357 ASSERT_EQ(0, ret); 358 359 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 360 ASSERT_EQ(0, ret); 361 EXPECT_EQ(0, syscall(__NR_getpid)) { 362 TH_LOG("getpid() shouldn't ever return"); 363 } 364 } 365 366 /* return code >= 0x80000000 is unused. */ 367 TEST_SIGNAL(unknown_ret_is_kill_above_allow, SIGSYS) 368 { 369 struct sock_filter filter[] = { 370 BPF_STMT(BPF_RET|BPF_K, 0x90000000U), 371 }; 372 struct sock_fprog prog = { 373 .len = (unsigned short)ARRAY_SIZE(filter), 374 .filter = filter, 375 }; 376 long ret; 377 378 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 379 ASSERT_EQ(0, ret); 380 381 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 382 ASSERT_EQ(0, ret); 383 EXPECT_EQ(0, syscall(__NR_getpid)) { 384 TH_LOG("getpid() shouldn't ever return"); 385 } 386 } 387 388 TEST_SIGNAL(KILL_all, SIGSYS) 389 { 390 struct sock_filter filter[] = { 391 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), 392 }; 393 struct sock_fprog prog = { 394 .len = (unsigned short)ARRAY_SIZE(filter), 395 .filter = filter, 396 }; 397 long ret; 398 399 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 400 ASSERT_EQ(0, ret); 401 402 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 403 ASSERT_EQ(0, ret); 404 } 405 406 TEST_SIGNAL(KILL_one, SIGSYS) 407 { 408 struct sock_filter filter[] = { 409 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 410 offsetof(struct seccomp_data, nr)), 411 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1), 412 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), 413 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 414 }; 415 struct sock_fprog prog = { 416 .len = (unsigned short)ARRAY_SIZE(filter), 417 .filter = filter, 418 }; 419 long ret; 420 pid_t parent = getppid(); 421 422 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 423 ASSERT_EQ(0, ret); 424 425 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 426 ASSERT_EQ(0, ret); 427 428 EXPECT_EQ(parent, syscall(__NR_getppid)); 429 /* getpid() should never return. */ 430 EXPECT_EQ(0, syscall(__NR_getpid)); 431 } 432 433 TEST_SIGNAL(KILL_one_arg_one, SIGSYS) 434 { 435 void *fatal_address; 436 struct sock_filter filter[] = { 437 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 438 offsetof(struct seccomp_data, nr)), 439 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_times, 1, 0), 440 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 441 /* Only both with lower 32-bit for now. */ 442 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, syscall_arg(0)), 443 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 444 (unsigned long)&fatal_address, 0, 1), 445 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), 446 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 447 }; 448 struct sock_fprog prog = { 449 .len = (unsigned short)ARRAY_SIZE(filter), 450 .filter = filter, 451 }; 452 long ret; 453 pid_t parent = getppid(); 454 struct tms timebuf; 455 clock_t clock = times(&timebuf); 456 457 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 458 ASSERT_EQ(0, ret); 459 460 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 461 ASSERT_EQ(0, ret); 462 463 EXPECT_EQ(parent, syscall(__NR_getppid)); 464 EXPECT_LE(clock, syscall(__NR_times, &timebuf)); 465 /* times() should never return. */ 466 EXPECT_EQ(0, syscall(__NR_times, &fatal_address)); 467 } 468 469 TEST_SIGNAL(KILL_one_arg_six, SIGSYS) 470 { 471 #ifndef __NR_mmap2 472 int sysno = __NR_mmap; 473 #else 474 int sysno = __NR_mmap2; 475 #endif 476 struct sock_filter filter[] = { 477 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 478 offsetof(struct seccomp_data, nr)), 479 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, sysno, 1, 0), 480 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 481 /* Only both with lower 32-bit for now. */ 482 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, syscall_arg(5)), 483 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, 0x0C0FFEE, 0, 1), 484 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), 485 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 486 }; 487 struct sock_fprog prog = { 488 .len = (unsigned short)ARRAY_SIZE(filter), 489 .filter = filter, 490 }; 491 long ret; 492 pid_t parent = getppid(); 493 int fd; 494 void *map1, *map2; 495 int page_size = sysconf(_SC_PAGESIZE); 496 497 ASSERT_LT(0, page_size); 498 499 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 500 ASSERT_EQ(0, ret); 501 502 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 503 ASSERT_EQ(0, ret); 504 505 fd = open("/dev/zero", O_RDONLY); 506 ASSERT_NE(-1, fd); 507 508 EXPECT_EQ(parent, syscall(__NR_getppid)); 509 map1 = (void *)syscall(sysno, 510 NULL, page_size, PROT_READ, MAP_PRIVATE, fd, page_size); 511 EXPECT_NE(MAP_FAILED, map1); 512 /* mmap2() should never return. */ 513 map2 = (void *)syscall(sysno, 514 NULL, page_size, PROT_READ, MAP_PRIVATE, fd, 0x0C0FFEE); 515 EXPECT_EQ(MAP_FAILED, map2); 516 517 /* The test failed, so clean up the resources. */ 518 munmap(map1, page_size); 519 munmap(map2, page_size); 520 close(fd); 521 } 522 523 /* TODO(wad) add 64-bit versus 32-bit arg tests. */ 524 TEST(arg_out_of_range) 525 { 526 struct sock_filter filter[] = { 527 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, syscall_arg(6)), 528 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 529 }; 530 struct sock_fprog prog = { 531 .len = (unsigned short)ARRAY_SIZE(filter), 532 .filter = filter, 533 }; 534 long ret; 535 536 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 537 ASSERT_EQ(0, ret); 538 539 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 540 EXPECT_EQ(-1, ret); 541 EXPECT_EQ(EINVAL, errno); 542 } 543 544 TEST(ERRNO_valid) 545 { 546 struct sock_filter filter[] = { 547 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 548 offsetof(struct seccomp_data, nr)), 549 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), 550 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | E2BIG), 551 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 552 }; 553 struct sock_fprog prog = { 554 .len = (unsigned short)ARRAY_SIZE(filter), 555 .filter = filter, 556 }; 557 long ret; 558 pid_t parent = getppid(); 559 560 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 561 ASSERT_EQ(0, ret); 562 563 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 564 ASSERT_EQ(0, ret); 565 566 EXPECT_EQ(parent, syscall(__NR_getppid)); 567 EXPECT_EQ(-1, read(0, NULL, 0)); 568 EXPECT_EQ(E2BIG, errno); 569 } 570 571 TEST(ERRNO_zero) 572 { 573 struct sock_filter filter[] = { 574 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 575 offsetof(struct seccomp_data, nr)), 576 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), 577 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | 0), 578 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 579 }; 580 struct sock_fprog prog = { 581 .len = (unsigned short)ARRAY_SIZE(filter), 582 .filter = filter, 583 }; 584 long ret; 585 pid_t parent = getppid(); 586 587 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 588 ASSERT_EQ(0, ret); 589 590 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 591 ASSERT_EQ(0, ret); 592 593 EXPECT_EQ(parent, syscall(__NR_getppid)); 594 /* "errno" of 0 is ok. */ 595 EXPECT_EQ(0, read(0, NULL, 0)); 596 } 597 598 TEST(ERRNO_capped) 599 { 600 struct sock_filter filter[] = { 601 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 602 offsetof(struct seccomp_data, nr)), 603 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), 604 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | 4096), 605 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 606 }; 607 struct sock_fprog prog = { 608 .len = (unsigned short)ARRAY_SIZE(filter), 609 .filter = filter, 610 }; 611 long ret; 612 pid_t parent = getppid(); 613 614 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 615 ASSERT_EQ(0, ret); 616 617 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog); 618 ASSERT_EQ(0, ret); 619 620 EXPECT_EQ(parent, syscall(__NR_getppid)); 621 EXPECT_EQ(-1, read(0, NULL, 0)); 622 EXPECT_EQ(4095, errno); 623 } 624 625 FIXTURE_DATA(TRAP) { 626 struct sock_fprog prog; 627 }; 628 629 FIXTURE_SETUP(TRAP) 630 { 631 struct sock_filter filter[] = { 632 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 633 offsetof(struct seccomp_data, nr)), 634 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1), 635 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRAP), 636 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 637 }; 638 639 memset(&self->prog, 0, sizeof(self->prog)); 640 self->prog.filter = malloc(sizeof(filter)); 641 ASSERT_NE(NULL, self->prog.filter); 642 memcpy(self->prog.filter, filter, sizeof(filter)); 643 self->prog.len = (unsigned short)ARRAY_SIZE(filter); 644 } 645 646 FIXTURE_TEARDOWN(TRAP) 647 { 648 if (self->prog.filter) 649 free(self->prog.filter); 650 } 651 652 TEST_F_SIGNAL(TRAP, dfl, SIGSYS) 653 { 654 long ret; 655 656 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 657 ASSERT_EQ(0, ret); 658 659 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog); 660 ASSERT_EQ(0, ret); 661 syscall(__NR_getpid); 662 } 663 664 /* Ensure that SIGSYS overrides SIG_IGN */ 665 TEST_F_SIGNAL(TRAP, ign, SIGSYS) 666 { 667 long ret; 668 669 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 670 ASSERT_EQ(0, ret); 671 672 signal(SIGSYS, SIG_IGN); 673 674 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog); 675 ASSERT_EQ(0, ret); 676 syscall(__NR_getpid); 677 } 678 679 static struct siginfo TRAP_info; 680 static volatile int TRAP_nr; 681 static void TRAP_action(int nr, siginfo_t *info, void *void_context) 682 { 683 memcpy(&TRAP_info, info, sizeof(TRAP_info)); 684 TRAP_nr = nr; 685 } 686 687 TEST_F(TRAP, handler) 688 { 689 int ret, test; 690 struct sigaction act; 691 sigset_t mask; 692 693 memset(&act, 0, sizeof(act)); 694 sigemptyset(&mask); 695 sigaddset(&mask, SIGSYS); 696 697 act.sa_sigaction = &TRAP_action; 698 act.sa_flags = SA_SIGINFO; 699 ret = sigaction(SIGSYS, &act, NULL); 700 ASSERT_EQ(0, ret) { 701 TH_LOG("sigaction failed"); 702 } 703 ret = sigprocmask(SIG_UNBLOCK, &mask, NULL); 704 ASSERT_EQ(0, ret) { 705 TH_LOG("sigprocmask failed"); 706 } 707 708 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 709 ASSERT_EQ(0, ret); 710 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog); 711 ASSERT_EQ(0, ret); 712 TRAP_nr = 0; 713 memset(&TRAP_info, 0, sizeof(TRAP_info)); 714 /* Expect the registers to be rolled back. (nr = error) may vary 715 * based on arch. */ 716 ret = syscall(__NR_getpid); 717 /* Silence gcc warning about volatile. */ 718 test = TRAP_nr; 719 EXPECT_EQ(SIGSYS, test); 720 struct local_sigsys { 721 void *_call_addr; /* calling user insn */ 722 int _syscall; /* triggering system call number */ 723 unsigned int _arch; /* AUDIT_ARCH_* of syscall */ 724 } *sigsys = (struct local_sigsys *) 725 #ifdef si_syscall 726 &(TRAP_info.si_call_addr); 727 #else 728 &TRAP_info.si_pid; 729 #endif 730 EXPECT_EQ(__NR_getpid, sigsys->_syscall); 731 /* Make sure arch is non-zero. */ 732 EXPECT_NE(0, sigsys->_arch); 733 EXPECT_NE(0, (unsigned long)sigsys->_call_addr); 734 } 735 736 FIXTURE_DATA(precedence) { 737 struct sock_fprog allow; 738 struct sock_fprog trace; 739 struct sock_fprog error; 740 struct sock_fprog trap; 741 struct sock_fprog kill; 742 }; 743 744 FIXTURE_SETUP(precedence) 745 { 746 struct sock_filter allow_insns[] = { 747 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 748 }; 749 struct sock_filter trace_insns[] = { 750 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 751 offsetof(struct seccomp_data, nr)), 752 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0), 753 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 754 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE), 755 }; 756 struct sock_filter error_insns[] = { 757 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 758 offsetof(struct seccomp_data, nr)), 759 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0), 760 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 761 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO), 762 }; 763 struct sock_filter trap_insns[] = { 764 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 765 offsetof(struct seccomp_data, nr)), 766 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0), 767 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 768 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRAP), 769 }; 770 struct sock_filter kill_insns[] = { 771 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 772 offsetof(struct seccomp_data, nr)), 773 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 1, 0), 774 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 775 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), 776 }; 777 778 memset(self, 0, sizeof(*self)); 779 #define FILTER_ALLOC(_x) \ 780 self->_x.filter = malloc(sizeof(_x##_insns)); \ 781 ASSERT_NE(NULL, self->_x.filter); \ 782 memcpy(self->_x.filter, &_x##_insns, sizeof(_x##_insns)); \ 783 self->_x.len = (unsigned short)ARRAY_SIZE(_x##_insns) 784 FILTER_ALLOC(allow); 785 FILTER_ALLOC(trace); 786 FILTER_ALLOC(error); 787 FILTER_ALLOC(trap); 788 FILTER_ALLOC(kill); 789 } 790 791 FIXTURE_TEARDOWN(precedence) 792 { 793 #define FILTER_FREE(_x) if (self->_x.filter) free(self->_x.filter) 794 FILTER_FREE(allow); 795 FILTER_FREE(trace); 796 FILTER_FREE(error); 797 FILTER_FREE(trap); 798 FILTER_FREE(kill); 799 } 800 801 TEST_F(precedence, allow_ok) 802 { 803 pid_t parent, res = 0; 804 long ret; 805 806 parent = getppid(); 807 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 808 ASSERT_EQ(0, ret); 809 810 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); 811 ASSERT_EQ(0, ret); 812 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); 813 ASSERT_EQ(0, ret); 814 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); 815 ASSERT_EQ(0, ret); 816 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); 817 ASSERT_EQ(0, ret); 818 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->kill); 819 ASSERT_EQ(0, ret); 820 /* Should work just fine. */ 821 res = syscall(__NR_getppid); 822 EXPECT_EQ(parent, res); 823 } 824 825 TEST_F_SIGNAL(precedence, kill_is_highest, SIGSYS) 826 { 827 pid_t parent, res = 0; 828 long ret; 829 830 parent = getppid(); 831 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 832 ASSERT_EQ(0, ret); 833 834 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); 835 ASSERT_EQ(0, ret); 836 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); 837 ASSERT_EQ(0, ret); 838 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); 839 ASSERT_EQ(0, ret); 840 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); 841 ASSERT_EQ(0, ret); 842 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->kill); 843 ASSERT_EQ(0, ret); 844 /* Should work just fine. */ 845 res = syscall(__NR_getppid); 846 EXPECT_EQ(parent, res); 847 /* getpid() should never return. */ 848 res = syscall(__NR_getpid); 849 EXPECT_EQ(0, res); 850 } 851 852 TEST_F_SIGNAL(precedence, kill_is_highest_in_any_order, SIGSYS) 853 { 854 pid_t parent; 855 long ret; 856 857 parent = getppid(); 858 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 859 ASSERT_EQ(0, ret); 860 861 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); 862 ASSERT_EQ(0, ret); 863 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->kill); 864 ASSERT_EQ(0, ret); 865 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); 866 ASSERT_EQ(0, ret); 867 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); 868 ASSERT_EQ(0, ret); 869 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); 870 ASSERT_EQ(0, ret); 871 /* Should work just fine. */ 872 EXPECT_EQ(parent, syscall(__NR_getppid)); 873 /* getpid() should never return. */ 874 EXPECT_EQ(0, syscall(__NR_getpid)); 875 } 876 877 TEST_F_SIGNAL(precedence, trap_is_second, SIGSYS) 878 { 879 pid_t parent; 880 long ret; 881 882 parent = getppid(); 883 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 884 ASSERT_EQ(0, ret); 885 886 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); 887 ASSERT_EQ(0, ret); 888 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); 889 ASSERT_EQ(0, ret); 890 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); 891 ASSERT_EQ(0, ret); 892 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); 893 ASSERT_EQ(0, ret); 894 /* Should work just fine. */ 895 EXPECT_EQ(parent, syscall(__NR_getppid)); 896 /* getpid() should never return. */ 897 EXPECT_EQ(0, syscall(__NR_getpid)); 898 } 899 900 TEST_F_SIGNAL(precedence, trap_is_second_in_any_order, SIGSYS) 901 { 902 pid_t parent; 903 long ret; 904 905 parent = getppid(); 906 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 907 ASSERT_EQ(0, ret); 908 909 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); 910 ASSERT_EQ(0, ret); 911 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trap); 912 ASSERT_EQ(0, ret); 913 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); 914 ASSERT_EQ(0, ret); 915 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); 916 ASSERT_EQ(0, ret); 917 /* Should work just fine. */ 918 EXPECT_EQ(parent, syscall(__NR_getppid)); 919 /* getpid() should never return. */ 920 EXPECT_EQ(0, syscall(__NR_getpid)); 921 } 922 923 TEST_F(precedence, errno_is_third) 924 { 925 pid_t parent; 926 long ret; 927 928 parent = getppid(); 929 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 930 ASSERT_EQ(0, ret); 931 932 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); 933 ASSERT_EQ(0, ret); 934 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); 935 ASSERT_EQ(0, ret); 936 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); 937 ASSERT_EQ(0, ret); 938 /* Should work just fine. */ 939 EXPECT_EQ(parent, syscall(__NR_getppid)); 940 EXPECT_EQ(0, syscall(__NR_getpid)); 941 } 942 943 TEST_F(precedence, errno_is_third_in_any_order) 944 { 945 pid_t parent; 946 long ret; 947 948 parent = getppid(); 949 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 950 ASSERT_EQ(0, ret); 951 952 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->error); 953 ASSERT_EQ(0, ret); 954 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); 955 ASSERT_EQ(0, ret); 956 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); 957 ASSERT_EQ(0, ret); 958 /* Should work just fine. */ 959 EXPECT_EQ(parent, syscall(__NR_getppid)); 960 EXPECT_EQ(0, syscall(__NR_getpid)); 961 } 962 963 TEST_F(precedence, trace_is_fourth) 964 { 965 pid_t parent; 966 long ret; 967 968 parent = getppid(); 969 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 970 ASSERT_EQ(0, ret); 971 972 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); 973 ASSERT_EQ(0, ret); 974 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); 975 ASSERT_EQ(0, ret); 976 /* Should work just fine. */ 977 EXPECT_EQ(parent, syscall(__NR_getppid)); 978 /* No ptracer */ 979 EXPECT_EQ(-1, syscall(__NR_getpid)); 980 } 981 982 TEST_F(precedence, trace_is_fourth_in_any_order) 983 { 984 pid_t parent; 985 long ret; 986 987 parent = getppid(); 988 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 989 ASSERT_EQ(0, ret); 990 991 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->trace); 992 ASSERT_EQ(0, ret); 993 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->allow); 994 ASSERT_EQ(0, ret); 995 /* Should work just fine. */ 996 EXPECT_EQ(parent, syscall(__NR_getppid)); 997 /* No ptracer */ 998 EXPECT_EQ(-1, syscall(__NR_getpid)); 999 } 1000 1001 #ifndef PTRACE_O_TRACESECCOMP 1002 #define PTRACE_O_TRACESECCOMP 0x00000080 1003 #endif 1004 1005 /* Catch the Ubuntu 12.04 value error. */ 1006 #if PTRACE_EVENT_SECCOMP != 7 1007 #undef PTRACE_EVENT_SECCOMP 1008 #endif 1009 1010 #ifndef PTRACE_EVENT_SECCOMP 1011 #define PTRACE_EVENT_SECCOMP 7 1012 #endif 1013 1014 #define IS_SECCOMP_EVENT(status) ((status >> 16) == PTRACE_EVENT_SECCOMP) 1015 bool tracer_running; 1016 void tracer_stop(int sig) 1017 { 1018 tracer_running = false; 1019 } 1020 1021 typedef void tracer_func_t(struct __test_metadata *_metadata, 1022 pid_t tracee, int status, void *args); 1023 1024 void tracer(struct __test_metadata *_metadata, int fd, pid_t tracee, 1025 tracer_func_t tracer_func, void *args) 1026 { 1027 int ret = -1; 1028 struct sigaction action = { 1029 .sa_handler = tracer_stop, 1030 }; 1031 1032 /* Allow external shutdown. */ 1033 tracer_running = true; 1034 ASSERT_EQ(0, sigaction(SIGUSR1, &action, NULL)); 1035 1036 errno = 0; 1037 while (ret == -1 && errno != EINVAL) 1038 ret = ptrace(PTRACE_ATTACH, tracee, NULL, 0); 1039 ASSERT_EQ(0, ret) { 1040 kill(tracee, SIGKILL); 1041 } 1042 /* Wait for attach stop */ 1043 wait(NULL); 1044 1045 ret = ptrace(PTRACE_SETOPTIONS, tracee, NULL, PTRACE_O_TRACESECCOMP); 1046 ASSERT_EQ(0, ret) { 1047 TH_LOG("Failed to set PTRACE_O_TRACESECCOMP"); 1048 kill(tracee, SIGKILL); 1049 } 1050 ptrace(PTRACE_CONT, tracee, NULL, 0); 1051 1052 /* Unblock the tracee */ 1053 ASSERT_EQ(1, write(fd, "A", 1)); 1054 ASSERT_EQ(0, close(fd)); 1055 1056 /* Run until we're shut down. Must assert to stop execution. */ 1057 while (tracer_running) { 1058 int status; 1059 1060 if (wait(&status) != tracee) 1061 continue; 1062 if (WIFSIGNALED(status) || WIFEXITED(status)) 1063 /* Child is dead. Time to go. */ 1064 return; 1065 1066 /* Make sure this is a seccomp event. */ 1067 ASSERT_EQ(true, IS_SECCOMP_EVENT(status)); 1068 1069 tracer_func(_metadata, tracee, status, args); 1070 1071 ret = ptrace(PTRACE_CONT, tracee, NULL, NULL); 1072 ASSERT_EQ(0, ret); 1073 } 1074 /* Directly report the status of our test harness results. */ 1075 syscall(__NR_exit, _metadata->passed ? EXIT_SUCCESS : EXIT_FAILURE); 1076 } 1077 1078 /* Common tracer setup/teardown functions. */ 1079 void cont_handler(int num) 1080 { } 1081 pid_t setup_trace_fixture(struct __test_metadata *_metadata, 1082 tracer_func_t func, void *args) 1083 { 1084 char sync; 1085 int pipefd[2]; 1086 pid_t tracer_pid; 1087 pid_t tracee = getpid(); 1088 1089 /* Setup a pipe for clean synchronization. */ 1090 ASSERT_EQ(0, pipe(pipefd)); 1091 1092 /* Fork a child which we'll promote to tracer */ 1093 tracer_pid = fork(); 1094 ASSERT_LE(0, tracer_pid); 1095 signal(SIGALRM, cont_handler); 1096 if (tracer_pid == 0) { 1097 close(pipefd[0]); 1098 tracer(_metadata, pipefd[1], tracee, func, args); 1099 syscall(__NR_exit, 0); 1100 } 1101 close(pipefd[1]); 1102 prctl(PR_SET_PTRACER, tracer_pid, 0, 0, 0); 1103 read(pipefd[0], &sync, 1); 1104 close(pipefd[0]); 1105 1106 return tracer_pid; 1107 } 1108 void teardown_trace_fixture(struct __test_metadata *_metadata, 1109 pid_t tracer) 1110 { 1111 if (tracer) { 1112 int status; 1113 /* 1114 * Extract the exit code from the other process and 1115 * adopt it for ourselves in case its asserts failed. 1116 */ 1117 ASSERT_EQ(0, kill(tracer, SIGUSR1)); 1118 ASSERT_EQ(tracer, waitpid(tracer, &status, 0)); 1119 if (WEXITSTATUS(status)) 1120 _metadata->passed = 0; 1121 } 1122 } 1123 1124 /* "poke" tracer arguments and function. */ 1125 struct tracer_args_poke_t { 1126 unsigned long poke_addr; 1127 }; 1128 1129 void tracer_poke(struct __test_metadata *_metadata, pid_t tracee, int status, 1130 void *args) 1131 { 1132 int ret; 1133 unsigned long msg; 1134 struct tracer_args_poke_t *info = (struct tracer_args_poke_t *)args; 1135 1136 ret = ptrace(PTRACE_GETEVENTMSG, tracee, NULL, &msg); 1137 EXPECT_EQ(0, ret); 1138 /* If this fails, don't try to recover. */ 1139 ASSERT_EQ(0x1001, msg) { 1140 kill(tracee, SIGKILL); 1141 } 1142 /* 1143 * Poke in the message. 1144 * Registers are not touched to try to keep this relatively arch 1145 * agnostic. 1146 */ 1147 ret = ptrace(PTRACE_POKEDATA, tracee, info->poke_addr, 0x1001); 1148 EXPECT_EQ(0, ret); 1149 } 1150 1151 FIXTURE_DATA(TRACE_poke) { 1152 struct sock_fprog prog; 1153 pid_t tracer; 1154 long poked; 1155 struct tracer_args_poke_t tracer_args; 1156 }; 1157 1158 FIXTURE_SETUP(TRACE_poke) 1159 { 1160 struct sock_filter filter[] = { 1161 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 1162 offsetof(struct seccomp_data, nr)), 1163 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), 1164 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1001), 1165 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 1166 }; 1167 1168 self->poked = 0; 1169 memset(&self->prog, 0, sizeof(self->prog)); 1170 self->prog.filter = malloc(sizeof(filter)); 1171 ASSERT_NE(NULL, self->prog.filter); 1172 memcpy(self->prog.filter, filter, sizeof(filter)); 1173 self->prog.len = (unsigned short)ARRAY_SIZE(filter); 1174 1175 /* Set up tracer args. */ 1176 self->tracer_args.poke_addr = (unsigned long)&self->poked; 1177 1178 /* Launch tracer. */ 1179 self->tracer = setup_trace_fixture(_metadata, tracer_poke, 1180 &self->tracer_args); 1181 } 1182 1183 FIXTURE_TEARDOWN(TRACE_poke) 1184 { 1185 teardown_trace_fixture(_metadata, self->tracer); 1186 if (self->prog.filter) 1187 free(self->prog.filter); 1188 } 1189 1190 TEST_F(TRACE_poke, read_has_side_effects) 1191 { 1192 ssize_t ret; 1193 1194 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 1195 ASSERT_EQ(0, ret); 1196 1197 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); 1198 ASSERT_EQ(0, ret); 1199 1200 EXPECT_EQ(0, self->poked); 1201 ret = read(-1, NULL, 0); 1202 EXPECT_EQ(-1, ret); 1203 EXPECT_EQ(0x1001, self->poked); 1204 } 1205 1206 TEST_F(TRACE_poke, getpid_runs_normally) 1207 { 1208 long ret; 1209 1210 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 1211 ASSERT_EQ(0, ret); 1212 1213 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); 1214 ASSERT_EQ(0, ret); 1215 1216 EXPECT_EQ(0, self->poked); 1217 EXPECT_NE(0, syscall(__NR_getpid)); 1218 EXPECT_EQ(0, self->poked); 1219 } 1220 1221 #if defined(__x86_64__) 1222 # define ARCH_REGS struct user_regs_struct 1223 # define SYSCALL_NUM orig_rax 1224 # define SYSCALL_RET rax 1225 #elif defined(__i386__) 1226 # define ARCH_REGS struct user_regs_struct 1227 # define SYSCALL_NUM orig_eax 1228 # define SYSCALL_RET eax 1229 #elif defined(__arm__) 1230 # define ARCH_REGS struct pt_regs 1231 # define SYSCALL_NUM ARM_r7 1232 # define SYSCALL_RET ARM_r0 1233 #elif defined(__aarch64__) 1234 # define ARCH_REGS struct user_pt_regs 1235 # define SYSCALL_NUM regs[8] 1236 # define SYSCALL_RET regs[0] 1237 #elif defined(__hppa__) 1238 # define ARCH_REGS struct user_regs_struct 1239 # define SYSCALL_NUM gr[20] 1240 # define SYSCALL_RET gr[28] 1241 #elif defined(__powerpc__) 1242 # define ARCH_REGS struct pt_regs 1243 # define SYSCALL_NUM gpr[0] 1244 # define SYSCALL_RET gpr[3] 1245 #elif defined(__s390__) 1246 # define ARCH_REGS s390_regs 1247 # define SYSCALL_NUM gprs[2] 1248 # define SYSCALL_RET gprs[2] 1249 #elif defined(__mips__) 1250 # define ARCH_REGS struct pt_regs 1251 # define SYSCALL_NUM regs[2] 1252 # define SYSCALL_SYSCALL_NUM regs[4] 1253 # define SYSCALL_RET regs[2] 1254 # define SYSCALL_NUM_RET_SHARE_REG 1255 #else 1256 # error "Do not know how to find your architecture's registers and syscalls" 1257 #endif 1258 1259 /* Use PTRACE_GETREGS and PTRACE_SETREGS when available. This is useful for 1260 * architectures without HAVE_ARCH_TRACEHOOK (e.g. User-mode Linux). 1261 */ 1262 #if defined(__x86_64__) || defined(__i386__) || defined(__mips__) 1263 #define HAVE_GETREGS 1264 #endif 1265 1266 /* Architecture-specific syscall fetching routine. */ 1267 int get_syscall(struct __test_metadata *_metadata, pid_t tracee) 1268 { 1269 ARCH_REGS regs; 1270 #ifdef HAVE_GETREGS 1271 EXPECT_EQ(0, ptrace(PTRACE_GETREGS, tracee, 0, ®s)) { 1272 TH_LOG("PTRACE_GETREGS failed"); 1273 return -1; 1274 } 1275 #else 1276 struct iovec iov; 1277 1278 iov.iov_base = ®s; 1279 iov.iov_len = sizeof(regs); 1280 EXPECT_EQ(0, ptrace(PTRACE_GETREGSET, tracee, NT_PRSTATUS, &iov)) { 1281 TH_LOG("PTRACE_GETREGSET failed"); 1282 return -1; 1283 } 1284 #endif 1285 1286 #if defined(__mips__) 1287 if (regs.SYSCALL_NUM == __NR_O32_Linux) 1288 return regs.SYSCALL_SYSCALL_NUM; 1289 #endif 1290 return regs.SYSCALL_NUM; 1291 } 1292 1293 /* Architecture-specific syscall changing routine. */ 1294 void change_syscall(struct __test_metadata *_metadata, 1295 pid_t tracee, int syscall) 1296 { 1297 int ret; 1298 ARCH_REGS regs; 1299 #ifdef HAVE_GETREGS 1300 ret = ptrace(PTRACE_GETREGS, tracee, 0, ®s); 1301 #else 1302 struct iovec iov; 1303 iov.iov_base = ®s; 1304 iov.iov_len = sizeof(regs); 1305 ret = ptrace(PTRACE_GETREGSET, tracee, NT_PRSTATUS, &iov); 1306 #endif 1307 EXPECT_EQ(0, ret); 1308 1309 #if defined(__x86_64__) || defined(__i386__) || defined(__powerpc__) || \ 1310 defined(__s390__) || defined(__hppa__) 1311 { 1312 regs.SYSCALL_NUM = syscall; 1313 } 1314 #elif defined(__mips__) 1315 { 1316 if (regs.SYSCALL_NUM == __NR_O32_Linux) 1317 regs.SYSCALL_SYSCALL_NUM = syscall; 1318 else 1319 regs.SYSCALL_NUM = syscall; 1320 } 1321 1322 #elif defined(__arm__) 1323 # ifndef PTRACE_SET_SYSCALL 1324 # define PTRACE_SET_SYSCALL 23 1325 # endif 1326 { 1327 ret = ptrace(PTRACE_SET_SYSCALL, tracee, NULL, syscall); 1328 EXPECT_EQ(0, ret); 1329 } 1330 1331 #elif defined(__aarch64__) 1332 # ifndef NT_ARM_SYSTEM_CALL 1333 # define NT_ARM_SYSTEM_CALL 0x404 1334 # endif 1335 { 1336 iov.iov_base = &syscall; 1337 iov.iov_len = sizeof(syscall); 1338 ret = ptrace(PTRACE_SETREGSET, tracee, NT_ARM_SYSTEM_CALL, 1339 &iov); 1340 EXPECT_EQ(0, ret); 1341 } 1342 1343 #else 1344 ASSERT_EQ(1, 0) { 1345 TH_LOG("How is the syscall changed on this architecture?"); 1346 } 1347 #endif 1348 1349 /* If syscall is skipped, change return value. */ 1350 if (syscall == -1) 1351 #ifdef SYSCALL_NUM_RET_SHARE_REG 1352 TH_LOG("Can't modify syscall return on this architecture"); 1353 #else 1354 regs.SYSCALL_RET = 1; 1355 #endif 1356 1357 #ifdef HAVE_GETREGS 1358 ret = ptrace(PTRACE_SETREGS, tracee, 0, ®s); 1359 #else 1360 iov.iov_base = ®s; 1361 iov.iov_len = sizeof(regs); 1362 ret = ptrace(PTRACE_SETREGSET, tracee, NT_PRSTATUS, &iov); 1363 #endif 1364 EXPECT_EQ(0, ret); 1365 } 1366 1367 void tracer_syscall(struct __test_metadata *_metadata, pid_t tracee, 1368 int status, void *args) 1369 { 1370 int ret; 1371 unsigned long msg; 1372 1373 /* Make sure we got the right message. */ 1374 ret = ptrace(PTRACE_GETEVENTMSG, tracee, NULL, &msg); 1375 EXPECT_EQ(0, ret); 1376 1377 /* Validate and take action on expected syscalls. */ 1378 switch (msg) { 1379 case 0x1002: 1380 /* change getpid to getppid. */ 1381 EXPECT_EQ(__NR_getpid, get_syscall(_metadata, tracee)); 1382 change_syscall(_metadata, tracee, __NR_getppid); 1383 break; 1384 case 0x1003: 1385 /* skip gettid. */ 1386 EXPECT_EQ(__NR_gettid, get_syscall(_metadata, tracee)); 1387 change_syscall(_metadata, tracee, -1); 1388 break; 1389 case 0x1004: 1390 /* do nothing (allow getppid) */ 1391 EXPECT_EQ(__NR_getppid, get_syscall(_metadata, tracee)); 1392 break; 1393 default: 1394 EXPECT_EQ(0, msg) { 1395 TH_LOG("Unknown PTRACE_GETEVENTMSG: 0x%lx", msg); 1396 kill(tracee, SIGKILL); 1397 } 1398 } 1399 1400 } 1401 1402 FIXTURE_DATA(TRACE_syscall) { 1403 struct sock_fprog prog; 1404 pid_t tracer, mytid, mypid, parent; 1405 }; 1406 1407 FIXTURE_SETUP(TRACE_syscall) 1408 { 1409 struct sock_filter filter[] = { 1410 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 1411 offsetof(struct seccomp_data, nr)), 1412 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getpid, 0, 1), 1413 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1002), 1414 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_gettid, 0, 1), 1415 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1003), 1416 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_getppid, 0, 1), 1417 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE | 0x1004), 1418 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 1419 }; 1420 1421 memset(&self->prog, 0, sizeof(self->prog)); 1422 self->prog.filter = malloc(sizeof(filter)); 1423 ASSERT_NE(NULL, self->prog.filter); 1424 memcpy(self->prog.filter, filter, sizeof(filter)); 1425 self->prog.len = (unsigned short)ARRAY_SIZE(filter); 1426 1427 /* Prepare some testable syscall results. */ 1428 self->mytid = syscall(__NR_gettid); 1429 ASSERT_GT(self->mytid, 0); 1430 ASSERT_NE(self->mytid, 1) { 1431 TH_LOG("Running this test as init is not supported. :)"); 1432 } 1433 1434 self->mypid = getpid(); 1435 ASSERT_GT(self->mypid, 0); 1436 ASSERT_EQ(self->mytid, self->mypid); 1437 1438 self->parent = getppid(); 1439 ASSERT_GT(self->parent, 0); 1440 ASSERT_NE(self->parent, self->mypid); 1441 1442 /* Launch tracer. */ 1443 self->tracer = setup_trace_fixture(_metadata, tracer_syscall, NULL); 1444 } 1445 1446 FIXTURE_TEARDOWN(TRACE_syscall) 1447 { 1448 teardown_trace_fixture(_metadata, self->tracer); 1449 if (self->prog.filter) 1450 free(self->prog.filter); 1451 } 1452 1453 TEST_F(TRACE_syscall, syscall_allowed) 1454 { 1455 long ret; 1456 1457 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 1458 ASSERT_EQ(0, ret); 1459 1460 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); 1461 ASSERT_EQ(0, ret); 1462 1463 /* getppid works as expected (no changes). */ 1464 EXPECT_EQ(self->parent, syscall(__NR_getppid)); 1465 EXPECT_NE(self->mypid, syscall(__NR_getppid)); 1466 } 1467 1468 TEST_F(TRACE_syscall, syscall_redirected) 1469 { 1470 long ret; 1471 1472 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 1473 ASSERT_EQ(0, ret); 1474 1475 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); 1476 ASSERT_EQ(0, ret); 1477 1478 /* getpid has been redirected to getppid as expected. */ 1479 EXPECT_EQ(self->parent, syscall(__NR_getpid)); 1480 EXPECT_NE(self->mypid, syscall(__NR_getpid)); 1481 } 1482 1483 TEST_F(TRACE_syscall, syscall_dropped) 1484 { 1485 long ret; 1486 1487 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 1488 ASSERT_EQ(0, ret); 1489 1490 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &self->prog, 0, 0); 1491 ASSERT_EQ(0, ret); 1492 1493 #ifdef SYSCALL_NUM_RET_SHARE_REG 1494 /* gettid has been skipped */ 1495 EXPECT_EQ(-1, syscall(__NR_gettid)); 1496 #else 1497 /* gettid has been skipped and an altered return value stored. */ 1498 EXPECT_EQ(1, syscall(__NR_gettid)); 1499 #endif 1500 EXPECT_NE(self->mytid, syscall(__NR_gettid)); 1501 } 1502 1503 #ifndef __NR_seccomp 1504 # if defined(__i386__) 1505 # define __NR_seccomp 354 1506 # elif defined(__x86_64__) 1507 # define __NR_seccomp 317 1508 # elif defined(__arm__) 1509 # define __NR_seccomp 383 1510 # elif defined(__aarch64__) 1511 # define __NR_seccomp 277 1512 # elif defined(__hppa__) 1513 # define __NR_seccomp 338 1514 # elif defined(__powerpc__) 1515 # define __NR_seccomp 358 1516 # elif defined(__s390__) 1517 # define __NR_seccomp 348 1518 # else 1519 # warning "seccomp syscall number unknown for this architecture" 1520 # define __NR_seccomp 0xffff 1521 # endif 1522 #endif 1523 1524 #ifndef SECCOMP_SET_MODE_STRICT 1525 #define SECCOMP_SET_MODE_STRICT 0 1526 #endif 1527 1528 #ifndef SECCOMP_SET_MODE_FILTER 1529 #define SECCOMP_SET_MODE_FILTER 1 1530 #endif 1531 1532 #ifndef SECCOMP_FILTER_FLAG_TSYNC 1533 #define SECCOMP_FILTER_FLAG_TSYNC 1 1534 #endif 1535 1536 #ifndef seccomp 1537 int seccomp(unsigned int op, unsigned int flags, void *args) 1538 { 1539 errno = 0; 1540 return syscall(__NR_seccomp, op, flags, args); 1541 } 1542 #endif 1543 1544 TEST(seccomp_syscall) 1545 { 1546 struct sock_filter filter[] = { 1547 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 1548 }; 1549 struct sock_fprog prog = { 1550 .len = (unsigned short)ARRAY_SIZE(filter), 1551 .filter = filter, 1552 }; 1553 long ret; 1554 1555 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0); 1556 ASSERT_EQ(0, ret) { 1557 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 1558 } 1559 1560 /* Reject insane operation. */ 1561 ret = seccomp(-1, 0, &prog); 1562 ASSERT_NE(ENOSYS, errno) { 1563 TH_LOG("Kernel does not support seccomp syscall!"); 1564 } 1565 EXPECT_EQ(EINVAL, errno) { 1566 TH_LOG("Did not reject crazy op value!"); 1567 } 1568 1569 /* Reject strict with flags or pointer. */ 1570 ret = seccomp(SECCOMP_SET_MODE_STRICT, -1, NULL); 1571 EXPECT_EQ(EINVAL, errno) { 1572 TH_LOG("Did not reject mode strict with flags!"); 1573 } 1574 ret = seccomp(SECCOMP_SET_MODE_STRICT, 0, &prog); 1575 EXPECT_EQ(EINVAL, errno) { 1576 TH_LOG("Did not reject mode strict with uargs!"); 1577 } 1578 1579 /* Reject insane args for filter. */ 1580 ret = seccomp(SECCOMP_SET_MODE_FILTER, -1, &prog); 1581 EXPECT_EQ(EINVAL, errno) { 1582 TH_LOG("Did not reject crazy filter flags!"); 1583 } 1584 ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, NULL); 1585 EXPECT_EQ(EFAULT, errno) { 1586 TH_LOG("Did not reject NULL filter!"); 1587 } 1588 1589 ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog); 1590 EXPECT_EQ(0, errno) { 1591 TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER: %s", 1592 strerror(errno)); 1593 } 1594 } 1595 1596 TEST(seccomp_syscall_mode_lock) 1597 { 1598 struct sock_filter filter[] = { 1599 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 1600 }; 1601 struct sock_fprog prog = { 1602 .len = (unsigned short)ARRAY_SIZE(filter), 1603 .filter = filter, 1604 }; 1605 long ret; 1606 1607 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, NULL, 0, 0); 1608 ASSERT_EQ(0, ret) { 1609 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 1610 } 1611 1612 ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog); 1613 ASSERT_NE(ENOSYS, errno) { 1614 TH_LOG("Kernel does not support seccomp syscall!"); 1615 } 1616 EXPECT_EQ(0, ret) { 1617 TH_LOG("Could not install filter!"); 1618 } 1619 1620 /* Make sure neither entry point will switch to strict. */ 1621 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, 0, 0, 0); 1622 EXPECT_EQ(EINVAL, errno) { 1623 TH_LOG("Switched to mode strict!"); 1624 } 1625 1626 ret = seccomp(SECCOMP_SET_MODE_STRICT, 0, NULL); 1627 EXPECT_EQ(EINVAL, errno) { 1628 TH_LOG("Switched to mode strict!"); 1629 } 1630 } 1631 1632 TEST(TSYNC_first) 1633 { 1634 struct sock_filter filter[] = { 1635 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 1636 }; 1637 struct sock_fprog prog = { 1638 .len = (unsigned short)ARRAY_SIZE(filter), 1639 .filter = filter, 1640 }; 1641 long ret; 1642 1643 ret = prctl(PR_SET_NO_NEW_PRIVS, 1, NULL, 0, 0); 1644 ASSERT_EQ(0, ret) { 1645 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 1646 } 1647 1648 ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, 1649 &prog); 1650 ASSERT_NE(ENOSYS, errno) { 1651 TH_LOG("Kernel does not support seccomp syscall!"); 1652 } 1653 EXPECT_EQ(0, ret) { 1654 TH_LOG("Could not install initial filter with TSYNC!"); 1655 } 1656 } 1657 1658 #define TSYNC_SIBLINGS 2 1659 struct tsync_sibling { 1660 pthread_t tid; 1661 pid_t system_tid; 1662 sem_t *started; 1663 pthread_cond_t *cond; 1664 pthread_mutex_t *mutex; 1665 int diverge; 1666 int num_waits; 1667 struct sock_fprog *prog; 1668 struct __test_metadata *metadata; 1669 }; 1670 1671 FIXTURE_DATA(TSYNC) { 1672 struct sock_fprog root_prog, apply_prog; 1673 struct tsync_sibling sibling[TSYNC_SIBLINGS]; 1674 sem_t started; 1675 pthread_cond_t cond; 1676 pthread_mutex_t mutex; 1677 int sibling_count; 1678 }; 1679 1680 FIXTURE_SETUP(TSYNC) 1681 { 1682 struct sock_filter root_filter[] = { 1683 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 1684 }; 1685 struct sock_filter apply_filter[] = { 1686 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 1687 offsetof(struct seccomp_data, nr)), 1688 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 0, 1), 1689 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), 1690 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 1691 }; 1692 1693 memset(&self->root_prog, 0, sizeof(self->root_prog)); 1694 memset(&self->apply_prog, 0, sizeof(self->apply_prog)); 1695 memset(&self->sibling, 0, sizeof(self->sibling)); 1696 self->root_prog.filter = malloc(sizeof(root_filter)); 1697 ASSERT_NE(NULL, self->root_prog.filter); 1698 memcpy(self->root_prog.filter, &root_filter, sizeof(root_filter)); 1699 self->root_prog.len = (unsigned short)ARRAY_SIZE(root_filter); 1700 1701 self->apply_prog.filter = malloc(sizeof(apply_filter)); 1702 ASSERT_NE(NULL, self->apply_prog.filter); 1703 memcpy(self->apply_prog.filter, &apply_filter, sizeof(apply_filter)); 1704 self->apply_prog.len = (unsigned short)ARRAY_SIZE(apply_filter); 1705 1706 self->sibling_count = 0; 1707 pthread_mutex_init(&self->mutex, NULL); 1708 pthread_cond_init(&self->cond, NULL); 1709 sem_init(&self->started, 0, 0); 1710 self->sibling[0].tid = 0; 1711 self->sibling[0].cond = &self->cond; 1712 self->sibling[0].started = &self->started; 1713 self->sibling[0].mutex = &self->mutex; 1714 self->sibling[0].diverge = 0; 1715 self->sibling[0].num_waits = 1; 1716 self->sibling[0].prog = &self->root_prog; 1717 self->sibling[0].metadata = _metadata; 1718 self->sibling[1].tid = 0; 1719 self->sibling[1].cond = &self->cond; 1720 self->sibling[1].started = &self->started; 1721 self->sibling[1].mutex = &self->mutex; 1722 self->sibling[1].diverge = 0; 1723 self->sibling[1].prog = &self->root_prog; 1724 self->sibling[1].num_waits = 1; 1725 self->sibling[1].metadata = _metadata; 1726 } 1727 1728 FIXTURE_TEARDOWN(TSYNC) 1729 { 1730 int sib = 0; 1731 1732 if (self->root_prog.filter) 1733 free(self->root_prog.filter); 1734 if (self->apply_prog.filter) 1735 free(self->apply_prog.filter); 1736 1737 for ( ; sib < self->sibling_count; ++sib) { 1738 struct tsync_sibling *s = &self->sibling[sib]; 1739 void *status; 1740 1741 if (!s->tid) 1742 continue; 1743 if (pthread_kill(s->tid, 0)) { 1744 pthread_cancel(s->tid); 1745 pthread_join(s->tid, &status); 1746 } 1747 } 1748 pthread_mutex_destroy(&self->mutex); 1749 pthread_cond_destroy(&self->cond); 1750 sem_destroy(&self->started); 1751 } 1752 1753 void *tsync_sibling(void *data) 1754 { 1755 long ret = 0; 1756 struct tsync_sibling *me = data; 1757 1758 me->system_tid = syscall(__NR_gettid); 1759 1760 pthread_mutex_lock(me->mutex); 1761 if (me->diverge) { 1762 /* Just re-apply the root prog to fork the tree */ 1763 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, 1764 me->prog, 0, 0); 1765 } 1766 sem_post(me->started); 1767 /* Return outside of started so parent notices failures. */ 1768 if (ret) { 1769 pthread_mutex_unlock(me->mutex); 1770 return (void *)SIBLING_EXIT_FAILURE; 1771 } 1772 do { 1773 pthread_cond_wait(me->cond, me->mutex); 1774 me->num_waits = me->num_waits - 1; 1775 } while (me->num_waits); 1776 pthread_mutex_unlock(me->mutex); 1777 1778 ret = prctl(PR_GET_NO_NEW_PRIVS, 0, 0, 0, 0); 1779 if (!ret) 1780 return (void *)SIBLING_EXIT_NEWPRIVS; 1781 read(0, NULL, 0); 1782 return (void *)SIBLING_EXIT_UNKILLED; 1783 } 1784 1785 void tsync_start_sibling(struct tsync_sibling *sibling) 1786 { 1787 pthread_create(&sibling->tid, NULL, tsync_sibling, (void *)sibling); 1788 } 1789 1790 TEST_F(TSYNC, siblings_fail_prctl) 1791 { 1792 long ret; 1793 void *status; 1794 struct sock_filter filter[] = { 1795 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 1796 offsetof(struct seccomp_data, nr)), 1797 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_prctl, 0, 1), 1798 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ERRNO | EINVAL), 1799 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 1800 }; 1801 struct sock_fprog prog = { 1802 .len = (unsigned short)ARRAY_SIZE(filter), 1803 .filter = filter, 1804 }; 1805 1806 ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { 1807 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 1808 } 1809 1810 /* Check prctl failure detection by requesting sib 0 diverge. */ 1811 ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &prog); 1812 ASSERT_NE(ENOSYS, errno) { 1813 TH_LOG("Kernel does not support seccomp syscall!"); 1814 } 1815 ASSERT_EQ(0, ret) { 1816 TH_LOG("setting filter failed"); 1817 } 1818 1819 self->sibling[0].diverge = 1; 1820 tsync_start_sibling(&self->sibling[0]); 1821 tsync_start_sibling(&self->sibling[1]); 1822 1823 while (self->sibling_count < TSYNC_SIBLINGS) { 1824 sem_wait(&self->started); 1825 self->sibling_count++; 1826 } 1827 1828 /* Signal the threads to clean up*/ 1829 pthread_mutex_lock(&self->mutex); 1830 ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { 1831 TH_LOG("cond broadcast non-zero"); 1832 } 1833 pthread_mutex_unlock(&self->mutex); 1834 1835 /* Ensure diverging sibling failed to call prctl. */ 1836 pthread_join(self->sibling[0].tid, &status); 1837 EXPECT_EQ(SIBLING_EXIT_FAILURE, (long)status); 1838 pthread_join(self->sibling[1].tid, &status); 1839 EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status); 1840 } 1841 1842 TEST_F(TSYNC, two_siblings_with_ancestor) 1843 { 1844 long ret; 1845 void *status; 1846 1847 ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { 1848 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 1849 } 1850 1851 ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog); 1852 ASSERT_NE(ENOSYS, errno) { 1853 TH_LOG("Kernel does not support seccomp syscall!"); 1854 } 1855 ASSERT_EQ(0, ret) { 1856 TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!"); 1857 } 1858 tsync_start_sibling(&self->sibling[0]); 1859 tsync_start_sibling(&self->sibling[1]); 1860 1861 while (self->sibling_count < TSYNC_SIBLINGS) { 1862 sem_wait(&self->started); 1863 self->sibling_count++; 1864 } 1865 1866 ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, 1867 &self->apply_prog); 1868 ASSERT_EQ(0, ret) { 1869 TH_LOG("Could install filter on all threads!"); 1870 } 1871 /* Tell the siblings to test the policy */ 1872 pthread_mutex_lock(&self->mutex); 1873 ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { 1874 TH_LOG("cond broadcast non-zero"); 1875 } 1876 pthread_mutex_unlock(&self->mutex); 1877 /* Ensure they are both killed and don't exit cleanly. */ 1878 pthread_join(self->sibling[0].tid, &status); 1879 EXPECT_EQ(0x0, (long)status); 1880 pthread_join(self->sibling[1].tid, &status); 1881 EXPECT_EQ(0x0, (long)status); 1882 } 1883 1884 TEST_F(TSYNC, two_sibling_want_nnp) 1885 { 1886 void *status; 1887 1888 /* start siblings before any prctl() operations */ 1889 tsync_start_sibling(&self->sibling[0]); 1890 tsync_start_sibling(&self->sibling[1]); 1891 while (self->sibling_count < TSYNC_SIBLINGS) { 1892 sem_wait(&self->started); 1893 self->sibling_count++; 1894 } 1895 1896 /* Tell the siblings to test no policy */ 1897 pthread_mutex_lock(&self->mutex); 1898 ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { 1899 TH_LOG("cond broadcast non-zero"); 1900 } 1901 pthread_mutex_unlock(&self->mutex); 1902 1903 /* Ensure they are both upset about lacking nnp. */ 1904 pthread_join(self->sibling[0].tid, &status); 1905 EXPECT_EQ(SIBLING_EXIT_NEWPRIVS, (long)status); 1906 pthread_join(self->sibling[1].tid, &status); 1907 EXPECT_EQ(SIBLING_EXIT_NEWPRIVS, (long)status); 1908 } 1909 1910 TEST_F(TSYNC, two_siblings_with_no_filter) 1911 { 1912 long ret; 1913 void *status; 1914 1915 /* start siblings before any prctl() operations */ 1916 tsync_start_sibling(&self->sibling[0]); 1917 tsync_start_sibling(&self->sibling[1]); 1918 while (self->sibling_count < TSYNC_SIBLINGS) { 1919 sem_wait(&self->started); 1920 self->sibling_count++; 1921 } 1922 1923 ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { 1924 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 1925 } 1926 1927 ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, 1928 &self->apply_prog); 1929 ASSERT_NE(ENOSYS, errno) { 1930 TH_LOG("Kernel does not support seccomp syscall!"); 1931 } 1932 ASSERT_EQ(0, ret) { 1933 TH_LOG("Could install filter on all threads!"); 1934 } 1935 1936 /* Tell the siblings to test the policy */ 1937 pthread_mutex_lock(&self->mutex); 1938 ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { 1939 TH_LOG("cond broadcast non-zero"); 1940 } 1941 pthread_mutex_unlock(&self->mutex); 1942 1943 /* Ensure they are both killed and don't exit cleanly. */ 1944 pthread_join(self->sibling[0].tid, &status); 1945 EXPECT_EQ(0x0, (long)status); 1946 pthread_join(self->sibling[1].tid, &status); 1947 EXPECT_EQ(0x0, (long)status); 1948 } 1949 1950 TEST_F(TSYNC, two_siblings_with_one_divergence) 1951 { 1952 long ret; 1953 void *status; 1954 1955 ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { 1956 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 1957 } 1958 1959 ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog); 1960 ASSERT_NE(ENOSYS, errno) { 1961 TH_LOG("Kernel does not support seccomp syscall!"); 1962 } 1963 ASSERT_EQ(0, ret) { 1964 TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!"); 1965 } 1966 self->sibling[0].diverge = 1; 1967 tsync_start_sibling(&self->sibling[0]); 1968 tsync_start_sibling(&self->sibling[1]); 1969 1970 while (self->sibling_count < TSYNC_SIBLINGS) { 1971 sem_wait(&self->started); 1972 self->sibling_count++; 1973 } 1974 1975 ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, 1976 &self->apply_prog); 1977 ASSERT_EQ(self->sibling[0].system_tid, ret) { 1978 TH_LOG("Did not fail on diverged sibling."); 1979 } 1980 1981 /* Wake the threads */ 1982 pthread_mutex_lock(&self->mutex); 1983 ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { 1984 TH_LOG("cond broadcast non-zero"); 1985 } 1986 pthread_mutex_unlock(&self->mutex); 1987 1988 /* Ensure they are both unkilled. */ 1989 pthread_join(self->sibling[0].tid, &status); 1990 EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status); 1991 pthread_join(self->sibling[1].tid, &status); 1992 EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status); 1993 } 1994 1995 TEST_F(TSYNC, two_siblings_not_under_filter) 1996 { 1997 long ret, sib; 1998 void *status; 1999 2000 ASSERT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { 2001 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 2002 } 2003 2004 /* 2005 * Sibling 0 will have its own seccomp policy 2006 * and Sibling 1 will not be under seccomp at 2007 * all. Sibling 1 will enter seccomp and 0 2008 * will cause failure. 2009 */ 2010 self->sibling[0].diverge = 1; 2011 tsync_start_sibling(&self->sibling[0]); 2012 tsync_start_sibling(&self->sibling[1]); 2013 2014 while (self->sibling_count < TSYNC_SIBLINGS) { 2015 sem_wait(&self->started); 2016 self->sibling_count++; 2017 } 2018 2019 ret = seccomp(SECCOMP_SET_MODE_FILTER, 0, &self->root_prog); 2020 ASSERT_NE(ENOSYS, errno) { 2021 TH_LOG("Kernel does not support seccomp syscall!"); 2022 } 2023 ASSERT_EQ(0, ret) { 2024 TH_LOG("Kernel does not support SECCOMP_SET_MODE_FILTER!"); 2025 } 2026 2027 ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, 2028 &self->apply_prog); 2029 ASSERT_EQ(ret, self->sibling[0].system_tid) { 2030 TH_LOG("Did not fail on diverged sibling."); 2031 } 2032 sib = 1; 2033 if (ret == self->sibling[0].system_tid) 2034 sib = 0; 2035 2036 pthread_mutex_lock(&self->mutex); 2037 2038 /* Increment the other siblings num_waits so we can clean up 2039 * the one we just saw. 2040 */ 2041 self->sibling[!sib].num_waits += 1; 2042 2043 /* Signal the thread to clean up*/ 2044 ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { 2045 TH_LOG("cond broadcast non-zero"); 2046 } 2047 pthread_mutex_unlock(&self->mutex); 2048 pthread_join(self->sibling[sib].tid, &status); 2049 EXPECT_EQ(SIBLING_EXIT_UNKILLED, (long)status); 2050 /* Poll for actual task death. pthread_join doesn't guarantee it. */ 2051 while (!kill(self->sibling[sib].system_tid, 0)) 2052 sleep(0.1); 2053 /* Switch to the remaining sibling */ 2054 sib = !sib; 2055 2056 ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, 2057 &self->apply_prog); 2058 ASSERT_EQ(0, ret) { 2059 TH_LOG("Expected the remaining sibling to sync"); 2060 }; 2061 2062 pthread_mutex_lock(&self->mutex); 2063 2064 /* If remaining sibling didn't have a chance to wake up during 2065 * the first broadcast, manually reduce the num_waits now. 2066 */ 2067 if (self->sibling[sib].num_waits > 1) 2068 self->sibling[sib].num_waits = 1; 2069 ASSERT_EQ(0, pthread_cond_broadcast(&self->cond)) { 2070 TH_LOG("cond broadcast non-zero"); 2071 } 2072 pthread_mutex_unlock(&self->mutex); 2073 pthread_join(self->sibling[sib].tid, &status); 2074 EXPECT_EQ(0, (long)status); 2075 /* Poll for actual task death. pthread_join doesn't guarantee it. */ 2076 while (!kill(self->sibling[sib].system_tid, 0)) 2077 sleep(0.1); 2078 2079 ret = seccomp(SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, 2080 &self->apply_prog); 2081 ASSERT_EQ(0, ret); /* just us chickens */ 2082 } 2083 2084 /* Make sure restarted syscalls are seen directly as "restart_syscall". */ 2085 TEST(syscall_restart) 2086 { 2087 long ret; 2088 unsigned long msg; 2089 pid_t child_pid; 2090 int pipefd[2]; 2091 int status; 2092 siginfo_t info = { }; 2093 struct sock_filter filter[] = { 2094 BPF_STMT(BPF_LD|BPF_W|BPF_ABS, 2095 offsetof(struct seccomp_data, nr)), 2096 2097 #ifdef __NR_sigreturn 2098 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_sigreturn, 6, 0), 2099 #endif 2100 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_read, 5, 0), 2101 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_exit, 4, 0), 2102 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_rt_sigreturn, 3, 0), 2103 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_nanosleep, 4, 0), 2104 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_restart_syscall, 4, 0), 2105 2106 /* Allow __NR_write for easy logging. */ 2107 BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, __NR_write, 0, 1), 2108 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_ALLOW), 2109 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_KILL), 2110 /* The nanosleep jump target. */ 2111 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE|0x100), 2112 /* The restart_syscall jump target. */ 2113 BPF_STMT(BPF_RET|BPF_K, SECCOMP_RET_TRACE|0x200), 2114 }; 2115 struct sock_fprog prog = { 2116 .len = (unsigned short)ARRAY_SIZE(filter), 2117 .filter = filter, 2118 }; 2119 #if defined(__arm__) 2120 struct utsname utsbuf; 2121 #endif 2122 2123 ASSERT_EQ(0, pipe(pipefd)); 2124 2125 child_pid = fork(); 2126 ASSERT_LE(0, child_pid); 2127 if (child_pid == 0) { 2128 /* Child uses EXPECT not ASSERT to deliver status correctly. */ 2129 char buf = ' '; 2130 struct timespec timeout = { }; 2131 2132 /* Attach parent as tracer and stop. */ 2133 EXPECT_EQ(0, ptrace(PTRACE_TRACEME)); 2134 EXPECT_EQ(0, raise(SIGSTOP)); 2135 2136 EXPECT_EQ(0, close(pipefd[1])); 2137 2138 EXPECT_EQ(0, prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { 2139 TH_LOG("Kernel does not support PR_SET_NO_NEW_PRIVS!"); 2140 } 2141 2142 ret = prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog, 0, 0); 2143 EXPECT_EQ(0, ret) { 2144 TH_LOG("Failed to install filter!"); 2145 } 2146 2147 EXPECT_EQ(1, read(pipefd[0], &buf, 1)) { 2148 TH_LOG("Failed to read() sync from parent"); 2149 } 2150 EXPECT_EQ('.', buf) { 2151 TH_LOG("Failed to get sync data from read()"); 2152 } 2153 2154 /* Start nanosleep to be interrupted. */ 2155 timeout.tv_sec = 1; 2156 errno = 0; 2157 EXPECT_EQ(0, nanosleep(&timeout, NULL)) { 2158 TH_LOG("Call to nanosleep() failed (errno %d)", errno); 2159 } 2160 2161 /* Read final sync from parent. */ 2162 EXPECT_EQ(1, read(pipefd[0], &buf, 1)) { 2163 TH_LOG("Failed final read() from parent"); 2164 } 2165 EXPECT_EQ('!', buf) { 2166 TH_LOG("Failed to get final data from read()"); 2167 } 2168 2169 /* Directly report the status of our test harness results. */ 2170 syscall(__NR_exit, _metadata->passed ? EXIT_SUCCESS 2171 : EXIT_FAILURE); 2172 } 2173 EXPECT_EQ(0, close(pipefd[0])); 2174 2175 /* Attach to child, setup options, and release. */ 2176 ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); 2177 ASSERT_EQ(true, WIFSTOPPED(status)); 2178 ASSERT_EQ(0, ptrace(PTRACE_SETOPTIONS, child_pid, NULL, 2179 PTRACE_O_TRACESECCOMP)); 2180 ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); 2181 ASSERT_EQ(1, write(pipefd[1], ".", 1)); 2182 2183 /* Wait for nanosleep() to start. */ 2184 ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); 2185 ASSERT_EQ(true, WIFSTOPPED(status)); 2186 ASSERT_EQ(SIGTRAP, WSTOPSIG(status)); 2187 ASSERT_EQ(PTRACE_EVENT_SECCOMP, (status >> 16)); 2188 ASSERT_EQ(0, ptrace(PTRACE_GETEVENTMSG, child_pid, NULL, &msg)); 2189 ASSERT_EQ(0x100, msg); 2190 EXPECT_EQ(__NR_nanosleep, get_syscall(_metadata, child_pid)); 2191 2192 /* Might as well check siginfo for sanity while we're here. */ 2193 ASSERT_EQ(0, ptrace(PTRACE_GETSIGINFO, child_pid, NULL, &info)); 2194 ASSERT_EQ(SIGTRAP, info.si_signo); 2195 ASSERT_EQ(SIGTRAP | (PTRACE_EVENT_SECCOMP << 8), info.si_code); 2196 EXPECT_EQ(0, info.si_errno); 2197 EXPECT_EQ(getuid(), info.si_uid); 2198 /* Verify signal delivery came from child (seccomp-triggered). */ 2199 EXPECT_EQ(child_pid, info.si_pid); 2200 2201 /* Interrupt nanosleep with SIGSTOP (which we'll need to handle). */ 2202 ASSERT_EQ(0, kill(child_pid, SIGSTOP)); 2203 ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); 2204 ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); 2205 ASSERT_EQ(true, WIFSTOPPED(status)); 2206 ASSERT_EQ(SIGSTOP, WSTOPSIG(status)); 2207 /* Verify signal delivery came from parent now. */ 2208 ASSERT_EQ(0, ptrace(PTRACE_GETSIGINFO, child_pid, NULL, &info)); 2209 EXPECT_EQ(getpid(), info.si_pid); 2210 2211 /* Restart nanosleep with SIGCONT, which triggers restart_syscall. */ 2212 ASSERT_EQ(0, kill(child_pid, SIGCONT)); 2213 ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); 2214 ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); 2215 ASSERT_EQ(true, WIFSTOPPED(status)); 2216 ASSERT_EQ(SIGCONT, WSTOPSIG(status)); 2217 ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); 2218 2219 /* Wait for restart_syscall() to start. */ 2220 ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); 2221 ASSERT_EQ(true, WIFSTOPPED(status)); 2222 ASSERT_EQ(SIGTRAP, WSTOPSIG(status)); 2223 ASSERT_EQ(PTRACE_EVENT_SECCOMP, (status >> 16)); 2224 ASSERT_EQ(0, ptrace(PTRACE_GETEVENTMSG, child_pid, NULL, &msg)); 2225 2226 ASSERT_EQ(0x200, msg); 2227 ret = get_syscall(_metadata, child_pid); 2228 #if defined(__arm__) 2229 /* 2230 * FIXME: 2231 * - native ARM registers do NOT expose true syscall. 2232 * - compat ARM registers on ARM64 DO expose true syscall. 2233 */ 2234 ASSERT_EQ(0, uname(&utsbuf)); 2235 if (strncmp(utsbuf.machine, "arm", 3) == 0) { 2236 EXPECT_EQ(__NR_nanosleep, ret); 2237 } else 2238 #endif 2239 { 2240 EXPECT_EQ(__NR_restart_syscall, ret); 2241 } 2242 2243 /* Write again to end test. */ 2244 ASSERT_EQ(0, ptrace(PTRACE_CONT, child_pid, NULL, 0)); 2245 ASSERT_EQ(1, write(pipefd[1], "!", 1)); 2246 EXPECT_EQ(0, close(pipefd[1])); 2247 2248 ASSERT_EQ(child_pid, waitpid(child_pid, &status, 0)); 2249 if (WIFSIGNALED(status) || WEXITSTATUS(status)) 2250 _metadata->passed = 0; 2251 } 2252 2253 /* 2254 * TODO: 2255 * - add microbenchmarks 2256 * - expand NNP testing 2257 * - better arch-specific TRACE and TRAP handlers. 2258 * - endianness checking when appropriate 2259 * - 64-bit arg prodding 2260 * - arch value testing (x86 modes especially) 2261 * - ... 2262 */ 2263 2264 TEST_HARNESS_MAIN 2265