1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2020, Gustavo Luiz Duarte, IBM Corp. 4 * 5 * This test starts a transaction and triggers a signal, forcing a pagefault to 6 * happen when the kernel signal handling code touches the user signal stack. 7 * 8 * In order to avoid pre-faulting the signal stack memory and to force the 9 * pagefault to happen precisely in the kernel signal handling code, the 10 * pagefault handling is done in userspace using the userfaultfd facility. 11 * 12 * Further pagefaults are triggered by crafting the signal handler's ucontext 13 * to point to additional memory regions managed by the userfaultfd, so using 14 * the same mechanism used to avoid pre-faulting the signal stack memory. 15 * 16 * On failure (bug is present) kernel crashes or never returns control back to 17 * userspace. If bug is not present, tests completes almost immediately. 18 */ 19 20 #include <stdio.h> 21 #include <stdlib.h> 22 #include <string.h> 23 #include <linux/userfaultfd.h> 24 #include <poll.h> 25 #include <unistd.h> 26 #include <sys/ioctl.h> 27 #include <sys/syscall.h> 28 #include <fcntl.h> 29 #include <sys/mman.h> 30 #include <pthread.h> 31 #include <signal.h> 32 #include <errno.h> 33 34 #include "tm.h" 35 36 37 #define UF_MEM_SIZE 655360 /* 10 x 64k pages */ 38 39 /* Memory handled by userfaultfd */ 40 static char *uf_mem; 41 static size_t uf_mem_offset = 0; 42 43 /* 44 * Data that will be copied into the faulting pages (instead of zero-filled 45 * pages). This is used to make the test more reliable and avoid segfaulting 46 * when we return from the signal handler. Since we are making the signal 47 * handler's ucontext point to newly allocated memory, when that memory is 48 * paged-in it will contain the expected content. 49 */ 50 static char backing_mem[UF_MEM_SIZE]; 51 52 static size_t pagesize; 53 54 /* 55 * Return a chunk of at least 'size' bytes of memory that will be handled by 56 * userfaultfd. If 'backing_data' is not NULL, its content will be save to 57 * 'backing_mem' and then copied into the faulting pages when the page fault 58 * is handled. 59 */ 60 void *get_uf_mem(size_t size, void *backing_data) 61 { 62 void *ret; 63 64 if (uf_mem_offset + size > UF_MEM_SIZE) { 65 fprintf(stderr, "Requesting more uf_mem than expected!\n"); 66 exit(EXIT_FAILURE); 67 } 68 69 ret = &uf_mem[uf_mem_offset]; 70 71 /* Save the data that will be copied into the faulting page */ 72 if (backing_data != NULL) 73 memcpy(&backing_mem[uf_mem_offset], backing_data, size); 74 75 /* Reserve the requested amount of uf_mem */ 76 uf_mem_offset += size; 77 /* Keep uf_mem_offset aligned to the page size (round up) */ 78 uf_mem_offset = (uf_mem_offset + pagesize - 1) & ~(pagesize - 1); 79 80 return ret; 81 } 82 83 void *fault_handler_thread(void *arg) 84 { 85 struct uffd_msg msg; /* Data read from userfaultfd */ 86 long uffd; /* userfaultfd file descriptor */ 87 struct uffdio_copy uffdio_copy; 88 struct pollfd pollfd; 89 ssize_t nread, offset; 90 91 uffd = (long) arg; 92 93 for (;;) { 94 pollfd.fd = uffd; 95 pollfd.events = POLLIN; 96 if (poll(&pollfd, 1, -1) == -1) { 97 perror("poll() failed"); 98 exit(EXIT_FAILURE); 99 } 100 101 nread = read(uffd, &msg, sizeof(msg)); 102 if (nread == 0) { 103 fprintf(stderr, "read(): EOF on userfaultfd\n"); 104 exit(EXIT_FAILURE); 105 } 106 107 if (nread == -1) { 108 perror("read() failed"); 109 exit(EXIT_FAILURE); 110 } 111 112 /* We expect only one kind of event */ 113 if (msg.event != UFFD_EVENT_PAGEFAULT) { 114 fprintf(stderr, "Unexpected event on userfaultfd\n"); 115 exit(EXIT_FAILURE); 116 } 117 118 /* 119 * We need to handle page faults in units of pages(!). 120 * So, round faulting address down to page boundary. 121 */ 122 uffdio_copy.dst = msg.arg.pagefault.address & ~(pagesize-1); 123 124 offset = (char *) uffdio_copy.dst - uf_mem; 125 uffdio_copy.src = (unsigned long) &backing_mem[offset]; 126 127 uffdio_copy.len = pagesize; 128 uffdio_copy.mode = 0; 129 uffdio_copy.copy = 0; 130 if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1) { 131 perror("ioctl-UFFDIO_COPY failed"); 132 exit(EXIT_FAILURE); 133 } 134 } 135 } 136 137 void setup_uf_mem(void) 138 { 139 long uffd; /* userfaultfd file descriptor */ 140 pthread_t thr; 141 struct uffdio_api uffdio_api; 142 struct uffdio_register uffdio_register; 143 int ret; 144 145 pagesize = sysconf(_SC_PAGE_SIZE); 146 147 /* Create and enable userfaultfd object */ 148 uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); 149 if (uffd == -1) { 150 perror("userfaultfd() failed"); 151 exit(EXIT_FAILURE); 152 } 153 uffdio_api.api = UFFD_API; 154 uffdio_api.features = 0; 155 if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1) { 156 perror("ioctl-UFFDIO_API failed"); 157 exit(EXIT_FAILURE); 158 } 159 160 /* 161 * Create a private anonymous mapping. The memory will be demand-zero 162 * paged, that is, not yet allocated. When we actually touch the memory 163 * the related page will be allocated via the userfaultfd mechanism. 164 */ 165 uf_mem = mmap(NULL, UF_MEM_SIZE, PROT_READ | PROT_WRITE, 166 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 167 if (uf_mem == MAP_FAILED) { 168 perror("mmap() failed"); 169 exit(EXIT_FAILURE); 170 } 171 172 /* 173 * Register the memory range of the mapping we've just mapped to be 174 * handled by the userfaultfd object. In 'mode' we request to track 175 * missing pages (i.e. pages that have not yet been faulted-in). 176 */ 177 uffdio_register.range.start = (unsigned long) uf_mem; 178 uffdio_register.range.len = UF_MEM_SIZE; 179 uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; 180 if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1) { 181 perror("ioctl-UFFDIO_REGISTER"); 182 exit(EXIT_FAILURE); 183 } 184 185 /* Create a thread that will process the userfaultfd events */ 186 ret = pthread_create(&thr, NULL, fault_handler_thread, (void *) uffd); 187 if (ret != 0) { 188 fprintf(stderr, "pthread_create(): Error. Returned %d\n", ret); 189 exit(EXIT_FAILURE); 190 } 191 } 192 193 /* 194 * Assumption: the signal was delivered while userspace was in transactional or 195 * suspended state, i.e. uc->uc_link != NULL. 196 */ 197 void signal_handler(int signo, siginfo_t *si, void *uc) 198 { 199 ucontext_t *ucp = uc; 200 201 /* Skip 'trap' after returning, otherwise we get a SIGTRAP again */ 202 ucp->uc_link->uc_mcontext.regs->nip += 4; 203 204 ucp->uc_mcontext.v_regs = 205 get_uf_mem(sizeof(elf_vrreg_t), ucp->uc_mcontext.v_regs); 206 207 ucp->uc_link->uc_mcontext.v_regs = 208 get_uf_mem(sizeof(elf_vrreg_t), ucp->uc_link->uc_mcontext.v_regs); 209 210 ucp->uc_link = get_uf_mem(sizeof(ucontext_t), ucp->uc_link); 211 } 212 213 bool have_userfaultfd(void) 214 { 215 long rc; 216 217 errno = 0; 218 rc = syscall(__NR_userfaultfd, -1); 219 220 return rc == 0 || errno != ENOSYS; 221 } 222 223 int tm_signal_pagefault(void) 224 { 225 struct sigaction sa; 226 stack_t ss; 227 228 SKIP_IF(!have_htm()); 229 SKIP_IF(htm_is_synthetic()); 230 SKIP_IF(!have_userfaultfd()); 231 232 setup_uf_mem(); 233 234 /* 235 * Set an alternative stack that will generate a page fault when the 236 * signal is raised. The page fault will be treated via userfaultfd, 237 * i.e. via fault_handler_thread. 238 */ 239 ss.ss_sp = get_uf_mem(SIGSTKSZ, NULL); 240 ss.ss_size = SIGSTKSZ; 241 ss.ss_flags = 0; 242 if (sigaltstack(&ss, NULL) == -1) { 243 perror("sigaltstack() failed"); 244 exit(EXIT_FAILURE); 245 } 246 247 sa.sa_flags = SA_SIGINFO | SA_ONSTACK; 248 sa.sa_sigaction = signal_handler; 249 if (sigaction(SIGTRAP, &sa, NULL) == -1) { 250 perror("sigaction() failed"); 251 exit(EXIT_FAILURE); 252 } 253 254 /* Trigger a SIGTRAP in transactional state */ 255 asm __volatile__( 256 "tbegin.;" 257 "beq 1f;" 258 "trap;" 259 "1: ;" 260 : : : "memory"); 261 262 /* Trigger a SIGTRAP in suspended state */ 263 asm __volatile__( 264 "tbegin.;" 265 "beq 1f;" 266 "tsuspend.;" 267 "trap;" 268 "tresume.;" 269 "1: ;" 270 : : : "memory"); 271 272 return EXIT_SUCCESS; 273 } 274 275 int main(int argc, char **argv) 276 { 277 /* 278 * Depending on kernel config, the TM Bad Thing might not result in a 279 * crash, instead the kernel never returns control back to userspace, so 280 * set a tight timeout. If the test passes it completes almost 281 * immediately. 282 */ 283 test_harness_set_timeout(2); 284 return test_harness(tm_signal_pagefault, "tm_signal_pagefault"); 285 } 286