xref: /openbmc/linux/tools/testing/selftests/powerpc/nx-gzip/gunz_test.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /* P9 gunzip sample code for demonstrating the P9 NX hardware
4  * interface.  Not intended for productive uses or for performance or
5  * compression ratio measurements.  Note also that /dev/crypto/gzip,
6  * VAS and skiboot support are required
7  *
8  * Copyright 2020 IBM Corp.
9  *
10  * Author: Bulent Abali <abali@us.ibm.com>
11  *
12  * https://github.com/libnxz/power-gzip for zlib api and other utils
13  * Definitions of acronyms used here.  See
14  * P9 NX Gzip Accelerator User's Manual for details:
15  * https://github.com/libnxz/power-gzip/blob/develop/doc/power_nx_gzip_um.pdf
16  *
17  * adler/crc: 32 bit checksums appended to stream tail
18  * ce:       completion extension
19  * cpb:      coprocessor parameter block (metadata)
20  * crb:      coprocessor request block (command)
21  * csb:      coprocessor status block (status)
22  * dht:      dynamic huffman table
23  * dde:      data descriptor element (address, length)
24  * ddl:      list of ddes
25  * dh/fh:    dynamic and fixed huffman types
26  * fc:       coprocessor function code
27  * histlen:  history/dictionary length
28  * history:  sliding window of up to 32KB of data
29  * lzcount:  Deflate LZ symbol counts
30  * rembytecnt: remaining byte count
31  * sfbt:     source final block type; last block's type during decomp
32  * spbc:     source processed byte count
33  * subc:     source unprocessed bit count
34  * tebc:     target ending bit count; valid bits in the last byte
35  * tpbc:     target processed byte count
36  * vas:      virtual accelerator switch; the user mode interface
37  */
38 
39 #define _ISOC11_SOURCE	// For aligned_alloc()
40 #define _DEFAULT_SOURCE	// For endian.h
41 
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <unistd.h>
46 #include <stdint.h>
47 #include <sys/types.h>
48 #include <sys/stat.h>
49 #include <sys/time.h>
50 #include <sys/fcntl.h>
51 #include <sys/mman.h>
52 #include <endian.h>
53 #include <bits/endian.h>
54 #include <sys/ioctl.h>
55 #include <assert.h>
56 #include <errno.h>
57 #include <signal.h>
58 #include "nxu.h"
59 #include "nx.h"
60 #include "crb.h"
61 
62 int nx_dbg;
63 FILE *nx_gzip_log;
64 
65 #define NX_MIN(X, Y) (((X) < (Y))?(X):(Y))
66 #define NX_MAX(X, Y) (((X) > (Y))?(X):(Y))
67 
68 #define GETINPC(X) fgetc(X)
69 #define FNAME_MAX 1024
70 
71 /* fifo queue management */
72 #define fifo_used_bytes(used) (used)
73 #define fifo_free_bytes(used, len) ((len)-(used))
74 /* amount of free bytes in the first and last parts */
75 #define fifo_free_first_bytes(cur, used, len)  ((((cur)+(used)) <= (len)) \
76 						  ? (len)-((cur)+(used)) : 0)
77 #define fifo_free_last_bytes(cur, used, len)   ((((cur)+(used)) <= (len)) \
78 						  ? (cur) : (len)-(used))
79 /* amount of used bytes in the first and last parts */
80 #define fifo_used_first_bytes(cur, used, len)  ((((cur)+(used)) <= (len)) \
81 						  ? (used) : (len)-(cur))
82 #define fifo_used_last_bytes(cur, used, len)   ((((cur)+(used)) <= (len)) \
83 						  ? 0 : ((used)+(cur))-(len))
84 /* first and last free parts start here */
85 #define fifo_free_first_offset(cur, used)      ((cur)+(used))
86 #define fifo_free_last_offset(cur, used, len)  \
87 					   fifo_used_last_bytes(cur, used, len)
88 /* first and last used parts start here */
89 #define fifo_used_first_offset(cur)            (cur)
90 #define fifo_used_last_offset(cur)             (0)
91 
92 const int fifo_in_len = 1<<24;
93 const int fifo_out_len = 1<<24;
94 const int page_sz = 1<<16;
95 const int line_sz = 1<<7;
96 const int window_max = 1<<15;
97 
98 /*
99  * Adds an (address, len) pair to the list of ddes (ddl) and updates
100  * the base dde.  ddl[0] is the only dde in a direct dde which
101  * contains a single (addr,len) pair.  For more pairs, ddl[0] becomes
102  * the indirect (base) dde that points to a list of direct ddes.
103  * See Section 6.4 of the NX-gzip user manual for DDE description.
104  * Addr=NULL, len=0 clears the ddl[0].  Returns the total number of
105  * bytes in ddl.  Caller is responsible for allocting the array of
106  * nx_dde_t *ddl.  If N addresses are required in the scatter-gather
107  * list, the ddl array must have N+1 entries minimum.
108  */
109 static inline uint32_t nx_append_dde(struct nx_dde_t *ddl, void *addr,
110 					uint32_t len)
111 {
112 	uint32_t ddecnt;
113 	uint32_t bytes;
114 
115 	if (addr == NULL && len == 0) {
116 		clearp_dde(ddl);
117 		return 0;
118 	}
119 
120 	NXPRT(fprintf(stderr, "%d: %s addr %p len %x\n", __LINE__, addr,
121 			__func__, len));
122 
123 	/* Number of ddes in the dde list ; == 0 when it is a direct dde */
124 	ddecnt = getpnn(ddl, dde_count);
125 	bytes = getp32(ddl, ddebc);
126 
127 	if (ddecnt == 0 && bytes == 0) {
128 		/* First dde is unused; make it a direct dde */
129 		bytes = len;
130 		putp32(ddl, ddebc, bytes);
131 		putp64(ddl, ddead, (uint64_t) addr);
132 	} else if (ddecnt == 0) {
133 		/* Converting direct to indirect dde
134 		 * ddl[0] becomes head dde of ddl
135 		 * copy direct to indirect first.
136 		 */
137 		ddl[1] = ddl[0];
138 
139 		/* Add the new dde next */
140 		clear_dde(ddl[2]);
141 		put32(ddl[2], ddebc, len);
142 		put64(ddl[2], ddead, (uint64_t) addr);
143 
144 		/* Ddl head points to 2 direct ddes */
145 		ddecnt = 2;
146 		putpnn(ddl, dde_count, ddecnt);
147 		bytes = bytes + len;
148 		putp32(ddl, ddebc, bytes);
149 		/* Pointer to the first direct dde */
150 		putp64(ddl, ddead, (uint64_t) &ddl[1]);
151 	} else {
152 		/* Append a dde to an existing indirect ddl */
153 		++ddecnt;
154 		clear_dde(ddl[ddecnt]);
155 		put64(ddl[ddecnt], ddead, (uint64_t) addr);
156 		put32(ddl[ddecnt], ddebc, len);
157 
158 		putpnn(ddl, dde_count, ddecnt);
159 		bytes = bytes + len;
160 		putp32(ddl, ddebc, bytes); /* byte sum of all dde */
161 	}
162 	return bytes;
163 }
164 
165 /*
166  * Touch specified number of pages represented in number bytes
167  * beginning from the first buffer in a dde list.
168  * Do not touch the pages past buf_sz-th byte's page.
169  *
170  * Set buf_sz = 0 to touch all pages described by the ddep.
171  */
172 static int nx_touch_pages_dde(struct nx_dde_t *ddep, long buf_sz, long page_sz,
173 				int wr)
174 {
175 	uint32_t indirect_count;
176 	uint32_t buf_len;
177 	long total;
178 	uint64_t buf_addr;
179 	struct nx_dde_t *dde_list;
180 	int i;
181 
182 	assert(!!ddep);
183 
184 	indirect_count = getpnn(ddep, dde_count);
185 
186 	NXPRT(fprintf(stderr, "%s dde_count %d request len ", __func__,
187 			indirect_count));
188 	NXPRT(fprintf(stderr, "0x%lx\n", buf_sz));
189 
190 	if (indirect_count == 0) {
191 		/* Direct dde */
192 		buf_len = getp32(ddep, ddebc);
193 		buf_addr = getp64(ddep, ddead);
194 
195 		NXPRT(fprintf(stderr, "touch direct ddebc 0x%x ddead %p\n",
196 				buf_len, (void *)buf_addr));
197 
198 		if (buf_sz == 0)
199 			nxu_touch_pages((void *)buf_addr, buf_len, page_sz, wr);
200 		else
201 			nxu_touch_pages((void *)buf_addr, NX_MIN(buf_len,
202 					buf_sz), page_sz, wr);
203 
204 		return ERR_NX_OK;
205 	}
206 
207 	/* Indirect dde */
208 	if (indirect_count > MAX_DDE_COUNT)
209 		return ERR_NX_EXCESSIVE_DDE;
210 
211 	/* First address of the list */
212 	dde_list = (struct nx_dde_t *) getp64(ddep, ddead);
213 
214 	if (buf_sz == 0)
215 		buf_sz = getp32(ddep, ddebc);
216 
217 	total = 0;
218 	for (i = 0; i < indirect_count; i++) {
219 		buf_len = get32(dde_list[i], ddebc);
220 		buf_addr = get64(dde_list[i], ddead);
221 		total += buf_len;
222 
223 		NXPRT(fprintf(stderr, "touch loop len 0x%x ddead %p total ",
224 				buf_len, (void *)buf_addr));
225 		NXPRT(fprintf(stderr, "0x%lx\n", total));
226 
227 		/* Touching fewer pages than encoded in the ddebc */
228 		if (total > buf_sz) {
229 			buf_len = NX_MIN(buf_len, total - buf_sz);
230 			nxu_touch_pages((void *)buf_addr, buf_len, page_sz, wr);
231 			NXPRT(fprintf(stderr, "touch loop break len 0x%x ",
232 				      buf_len));
233 			NXPRT(fprintf(stderr, "ddead %p\n", (void *)buf_addr));
234 			break;
235 		}
236 		nxu_touch_pages((void *)buf_addr, buf_len, page_sz, wr);
237 	}
238 	return ERR_NX_OK;
239 }
240 
241 /*
242  * Src and dst buffers are supplied in scatter gather lists.
243  * NX function code and other parameters supplied in cmdp.
244  */
245 static int nx_submit_job(struct nx_dde_t *src, struct nx_dde_t *dst,
246 			 struct nx_gzip_crb_cpb_t *cmdp, void *handle)
247 {
248 	uint64_t csbaddr;
249 
250 	memset((void *)&cmdp->crb.csb, 0, sizeof(cmdp->crb.csb));
251 
252 	cmdp->crb.source_dde = *src;
253 	cmdp->crb.target_dde = *dst;
254 
255 	/* Status, output byte count in tpbc */
256 	csbaddr = ((uint64_t) &cmdp->crb.csb) & csb_address_mask;
257 	put64(cmdp->crb, csb_address, csbaddr);
258 
259 	/* NX reports input bytes in spbc; cleared */
260 	cmdp->cpb.out_spbc_comp_wrap = 0;
261 	cmdp->cpb.out_spbc_comp_with_count = 0;
262 	cmdp->cpb.out_spbc_decomp = 0;
263 
264 	/* Clear output */
265 	put32(cmdp->cpb, out_crc, INIT_CRC);
266 	put32(cmdp->cpb, out_adler, INIT_ADLER);
267 
268 	/* Submit the crb, the job descriptor, to the accelerator. */
269 	return nxu_submit_job(cmdp, handle);
270 }
271 
272 int decompress_file(int argc, char **argv, void *devhandle)
273 {
274 	FILE *inpf = NULL;
275 	FILE *outf = NULL;
276 
277 	int c, expect, i, cc, rc = 0;
278 	char gzfname[FNAME_MAX];
279 
280 	/* Queuing, file ops, byte counting */
281 	char *fifo_in, *fifo_out;
282 	int used_in, cur_in, used_out, cur_out, read_sz, n;
283 	int first_free, last_free, first_used, last_used;
284 	int first_offset, last_offset;
285 	int write_sz, free_space, source_sz;
286 	int source_sz_estimate, target_sz_estimate;
287 	uint64_t last_comp_ratio = 0; /* 1000 max */
288 	uint64_t total_out = 0;
289 	int is_final, is_eof;
290 
291 	/* nx hardware */
292 	int sfbt, subc, spbc, tpbc, nx_ce, fc, resuming = 0;
293 	int history_len = 0;
294 	struct nx_gzip_crb_cpb_t cmd, *cmdp;
295 	struct nx_dde_t *ddl_in;
296 	struct nx_dde_t dde_in[6] __aligned(128);
297 	struct nx_dde_t *ddl_out;
298 	struct nx_dde_t dde_out[6] __aligned(128);
299 	int pgfault_retries;
300 
301 	/* when using mmap'ed files */
302 	off_t input_file_offset;
303 
304 	if (argc > 2) {
305 		fprintf(stderr, "usage: %s <fname> or stdin\n", argv[0]);
306 		fprintf(stderr, "    writes to stdout or <fname>.nx.gunzip\n");
307 		return -1;
308 	}
309 
310 	if (argc == 1) {
311 		inpf = stdin;
312 		outf = stdout;
313 	} else if (argc == 2) {
314 		char w[1024];
315 		char *wp;
316 
317 		inpf = fopen(argv[1], "r");
318 		if (inpf == NULL) {
319 			perror(argv[1]);
320 			return -1;
321 		}
322 
323 		/* Make a new file name to write to.  Ignoring '.gz' */
324 		wp = (NULL != (wp = strrchr(argv[1], '/'))) ? (wp+1) : argv[1];
325 		strcpy(w, wp);
326 		strcat(w, ".nx.gunzip");
327 
328 		outf = fopen(w, "w");
329 		if (outf == NULL) {
330 			perror(w);
331 			return -1;
332 		}
333 	}
334 
335 	/* Decode the gzip header */
336 	c = GETINPC(inpf); expect = 0x1f; /* ID1 */
337 	if (c != expect)
338 		goto err1;
339 
340 	c = GETINPC(inpf); expect = 0x8b; /* ID2 */
341 	if (c != expect)
342 		goto err1;
343 
344 	c = GETINPC(inpf); expect = 0x08; /* CM */
345 	if (c != expect)
346 		goto err1;
347 
348 	int flg = GETINPC(inpf); /* FLG */
349 
350 	if (flg & 0xE0 || flg & 0x4 || flg == EOF)
351 		goto err2;
352 
353 	fprintf(stderr, "gzHeader FLG %x\n", flg);
354 
355 	/* Read 6 bytes; ignoring the MTIME, XFL, OS fields in this
356 	 * sample code.
357 	 */
358 	for (i = 0; i < 6; i++) {
359 		char tmp[10];
360 
361 		tmp[i] = GETINPC(inpf);
362 		if (tmp[i] == EOF)
363 			goto err3;
364 		fprintf(stderr, "%02x ", tmp[i]);
365 		if (i == 5)
366 			fprintf(stderr, "\n");
367 	}
368 	fprintf(stderr, "gzHeader MTIME, XFL, OS ignored\n");
369 
370 	/* FNAME */
371 	if (flg & 0x8) {
372 		int k = 0;
373 
374 		do {
375 			c = GETINPC(inpf);
376 			if (c == EOF || k >= FNAME_MAX)
377 				goto err3;
378 			gzfname[k++] = c;
379 		} while (c);
380 		fprintf(stderr, "gzHeader FNAME: %s\n", gzfname);
381 	}
382 
383 	/* FHCRC */
384 	if (flg & 0x2) {
385 		c = GETINPC(inpf);
386 		if (c == EOF)
387 			goto err3;
388 		c = GETINPC(inpf);
389 		if (c == EOF)
390 			goto err3;
391 		fprintf(stderr, "gzHeader FHCRC: ignored\n");
392 	}
393 
394 	used_in = cur_in = used_out = cur_out = 0;
395 	is_final = is_eof = 0;
396 
397 	/* Allocate one page larger to prevent page faults due to NX
398 	 * overfetching.
399 	 * Either do this (char*)(uintptr_t)aligned_alloc or use
400 	 * -std=c11 flag to make the int-to-pointer warning go away.
401 	 */
402 	assert((fifo_in  = (char *)(uintptr_t)aligned_alloc(line_sz,
403 				   fifo_in_len + page_sz)) != NULL);
404 	assert((fifo_out = (char *)(uintptr_t)aligned_alloc(line_sz,
405 				   fifo_out_len + page_sz + line_sz)) != NULL);
406 	/* Leave unused space due to history rounding rules */
407 	fifo_out = fifo_out + line_sz;
408 	nxu_touch_pages(fifo_out, fifo_out_len, page_sz, 1);
409 
410 	ddl_in  = &dde_in[0];
411 	ddl_out = &dde_out[0];
412 	cmdp = &cmd;
413 	memset(&cmdp->crb, 0, sizeof(cmdp->crb));
414 
415 read_state:
416 
417 	/* Read from .gz file */
418 
419 	NXPRT(fprintf(stderr, "read_state:\n"));
420 
421 	if (is_eof != 0)
422 		goto write_state;
423 
424 	/* We read in to fifo_in in two steps: first: read in to from
425 	 * cur_in to the end of the buffer.  last: if free space wrapped
426 	 * around, read from fifo_in offset 0 to offset cur_in.
427 	 */
428 
429 	/* Reset fifo head to reduce unnecessary wrap arounds */
430 	cur_in = (used_in == 0) ? 0 : cur_in;
431 
432 	/* Free space total is reduced by a gap */
433 	free_space = NX_MAX(0, fifo_free_bytes(used_in, fifo_in_len)
434 			    - line_sz);
435 
436 	/* Free space may wrap around as first and last */
437 	first_free = fifo_free_first_bytes(cur_in, used_in, fifo_in_len);
438 	last_free  = fifo_free_last_bytes(cur_in, used_in, fifo_in_len);
439 
440 	/* Start offsets of the free memory */
441 	first_offset = fifo_free_first_offset(cur_in, used_in);
442 	last_offset  = fifo_free_last_offset(cur_in, used_in, fifo_in_len);
443 
444 	/* Reduce read_sz because of the line_sz gap */
445 	read_sz = NX_MIN(free_space, first_free);
446 	n = 0;
447 	if (read_sz > 0) {
448 		/* Read in to offset cur_in + used_in */
449 		n = fread(fifo_in + first_offset, 1, read_sz, inpf);
450 		used_in = used_in + n;
451 		free_space = free_space - n;
452 		assert(n <= read_sz);
453 		if (n != read_sz) {
454 			/* Either EOF or error; exit the read loop */
455 			is_eof = 1;
456 			goto write_state;
457 		}
458 	}
459 
460 	/* If free space wrapped around */
461 	if (last_free > 0) {
462 		/* Reduce read_sz because of the line_sz gap */
463 		read_sz = NX_MIN(free_space, last_free);
464 		n = 0;
465 		if (read_sz > 0) {
466 			n = fread(fifo_in + last_offset, 1, read_sz, inpf);
467 			used_in = used_in + n;       /* Increase used space */
468 			free_space = free_space - n; /* Decrease free space */
469 			assert(n <= read_sz);
470 			if (n != read_sz) {
471 				/* Either EOF or error; exit the read loop */
472 				is_eof = 1;
473 				goto write_state;
474 			}
475 		}
476 	}
477 
478 	/* At this point we have used_in bytes in fifo_in with the
479 	 * data head starting at cur_in and possibly wrapping around.
480 	 */
481 
482 write_state:
483 
484 	/* Write decompressed data to output file */
485 
486 	NXPRT(fprintf(stderr, "write_state:\n"));
487 
488 	if (used_out == 0)
489 		goto decomp_state;
490 
491 	/* If fifo_out has data waiting, write it out to the file to
492 	 * make free target space for the accelerator used bytes in
493 	 * the first and last parts of fifo_out.
494 	 */
495 
496 	first_used = fifo_used_first_bytes(cur_out, used_out, fifo_out_len);
497 	last_used  = fifo_used_last_bytes(cur_out, used_out, fifo_out_len);
498 
499 	write_sz = first_used;
500 
501 	n = 0;
502 	if (write_sz > 0) {
503 		n = fwrite(fifo_out + cur_out, 1, write_sz, outf);
504 		used_out = used_out - n;
505 		/* Move head of the fifo */
506 		cur_out = (cur_out + n) % fifo_out_len;
507 		assert(n <= write_sz);
508 		if (n != write_sz) {
509 			fprintf(stderr, "error: write\n");
510 			rc = -1;
511 			goto err5;
512 		}
513 	}
514 
515 	if (last_used > 0) { /* If more data available in the last part */
516 		write_sz = last_used; /* Keep it here for later */
517 		n = 0;
518 		if (write_sz > 0) {
519 			n = fwrite(fifo_out, 1, write_sz, outf);
520 			used_out = used_out - n;
521 			cur_out = (cur_out + n) % fifo_out_len;
522 			assert(n <= write_sz);
523 			if (n != write_sz) {
524 				fprintf(stderr, "error: write\n");
525 				rc = -1;
526 				goto err5;
527 			}
528 		}
529 	}
530 
531 decomp_state:
532 
533 	/* NX decompresses input data */
534 
535 	NXPRT(fprintf(stderr, "decomp_state:\n"));
536 
537 	if (is_final)
538 		goto finish_state;
539 
540 	/* Address/len lists */
541 	clearp_dde(ddl_in);
542 	clearp_dde(ddl_out);
543 
544 	/* FC, CRC, HistLen, Table 6-6 */
545 	if (resuming) {
546 		/* Resuming a partially decompressed input.
547 		 * The key to resume is supplying the 32KB
548 		 * dictionary (history) to NX, which is basically
549 		 * the last 32KB of output produced.
550 		 */
551 		fc = GZIP_FC_DECOMPRESS_RESUME;
552 
553 		cmdp->cpb.in_crc   = cmdp->cpb.out_crc;
554 		cmdp->cpb.in_adler = cmdp->cpb.out_adler;
555 
556 		/* Round up the history size to quadword.  Section 2.10 */
557 		history_len = (history_len + 15) / 16;
558 		putnn(cmdp->cpb, in_histlen, history_len);
559 		history_len = history_len * 16; /* bytes */
560 
561 		if (history_len > 0) {
562 			/* Chain in the history buffer to the DDE list */
563 			if (cur_out >= history_len) {
564 				nx_append_dde(ddl_in, fifo_out
565 					      + (cur_out - history_len),
566 					      history_len);
567 			} else {
568 				nx_append_dde(ddl_in, fifo_out
569 					      + ((fifo_out_len + cur_out)
570 					      - history_len),
571 					      history_len - cur_out);
572 				/* Up to 32KB history wraps around fifo_out */
573 				nx_append_dde(ddl_in, fifo_out, cur_out);
574 			}
575 
576 		}
577 	} else {
578 		/* First decompress job */
579 		fc = GZIP_FC_DECOMPRESS;
580 
581 		history_len = 0;
582 		/* Writing 0 clears out subc as well */
583 		cmdp->cpb.in_histlen = 0;
584 		total_out = 0;
585 
586 		put32(cmdp->cpb, in_crc, INIT_CRC);
587 		put32(cmdp->cpb, in_adler, INIT_ADLER);
588 		put32(cmdp->cpb, out_crc, INIT_CRC);
589 		put32(cmdp->cpb, out_adler, INIT_ADLER);
590 
591 		/* Assuming 10% compression ratio initially; use the
592 		 * most recently measured compression ratio as a
593 		 * heuristic to estimate the input and output
594 		 * sizes.  If we give too much input, the target buffer
595 		 * overflows and NX cycles are wasted, and then we
596 		 * must retry with smaller input size.  1000 is 100%.
597 		 */
598 		last_comp_ratio = 100UL;
599 	}
600 	cmdp->crb.gzip_fc = 0;
601 	putnn(cmdp->crb, gzip_fc, fc);
602 
603 	/*
604 	 * NX source buffers
605 	 */
606 	first_used = fifo_used_first_bytes(cur_in, used_in, fifo_in_len);
607 	last_used = fifo_used_last_bytes(cur_in, used_in, fifo_in_len);
608 
609 	if (first_used > 0)
610 		nx_append_dde(ddl_in, fifo_in + cur_in, first_used);
611 
612 	if (last_used > 0)
613 		nx_append_dde(ddl_in, fifo_in, last_used);
614 
615 	/*
616 	 * NX target buffers
617 	 */
618 	first_free = fifo_free_first_bytes(cur_out, used_out, fifo_out_len);
619 	last_free = fifo_free_last_bytes(cur_out, used_out, fifo_out_len);
620 
621 	/* Reduce output free space amount not to overwrite the history */
622 	int target_max = NX_MAX(0, fifo_free_bytes(used_out, fifo_out_len)
623 				- (1<<16));
624 
625 	NXPRT(fprintf(stderr, "target_max %d (0x%x)\n", target_max,
626 		      target_max));
627 
628 	first_free = NX_MIN(target_max, first_free);
629 	if (first_free > 0) {
630 		first_offset = fifo_free_first_offset(cur_out, used_out);
631 		nx_append_dde(ddl_out, fifo_out + first_offset, first_free);
632 	}
633 
634 	if (last_free > 0) {
635 		last_free = NX_MIN(target_max - first_free, last_free);
636 		if (last_free > 0) {
637 			last_offset = fifo_free_last_offset(cur_out, used_out,
638 							    fifo_out_len);
639 			nx_append_dde(ddl_out, fifo_out + last_offset,
640 				      last_free);
641 		}
642 	}
643 
644 	/* Target buffer size is used to limit the source data size
645 	 * based on previous measurements of compression ratio.
646 	 */
647 
648 	/* source_sz includes history */
649 	source_sz = getp32(ddl_in, ddebc);
650 	assert(source_sz > history_len);
651 	source_sz = source_sz - history_len;
652 
653 	/* Estimating how much source is needed to 3/4 fill a
654 	 * target_max size target buffer.  If we overshoot, then NX
655 	 * must repeat the job with smaller input and we waste
656 	 * bandwidth.  If we undershoot then we use more NX calls than
657 	 * necessary.
658 	 */
659 
660 	source_sz_estimate = ((uint64_t)target_max * last_comp_ratio * 3UL)
661 				/ 4000;
662 
663 	if (source_sz_estimate < source_sz) {
664 		/* Target might be small, therefore limiting the
665 		 * source data.
666 		 */
667 		source_sz = source_sz_estimate;
668 		target_sz_estimate = target_max;
669 	} else {
670 		/* Source file might be small, therefore limiting target
671 		 * touch pages to a smaller value to save processor cycles.
672 		 */
673 		target_sz_estimate = ((uint64_t)source_sz * 1000UL)
674 					/ (last_comp_ratio + 1);
675 		target_sz_estimate = NX_MIN(2 * target_sz_estimate,
676 					    target_max);
677 	}
678 
679 	source_sz = source_sz + history_len;
680 
681 	/* Some NX condition codes require submitting the NX job again.
682 	 * Kernel doesn't handle NX page faults. Expects user code to
683 	 * touch pages.
684 	 */
685 	pgfault_retries = NX_MAX_FAULTS;
686 
687 restart_nx:
688 
689 	putp32(ddl_in, ddebc, source_sz);
690 
691 	/* Fault in pages */
692 	nxu_touch_pages(cmdp, sizeof(struct nx_gzip_crb_cpb_t), page_sz, 1);
693 	nx_touch_pages_dde(ddl_in, 0, page_sz, 0);
694 	nx_touch_pages_dde(ddl_out, target_sz_estimate, page_sz, 1);
695 
696 	/* Send job to NX */
697 	cc = nx_submit_job(ddl_in, ddl_out, cmdp, devhandle);
698 
699 	switch (cc) {
700 
701 	case ERR_NX_AT_FAULT:
702 
703 		/* We touched the pages ahead of time.  In the most common case
704 		 * we shouldn't be here.  But may be some pages were paged out.
705 		 * Kernel should have placed the faulting address to fsaddr.
706 		 */
707 		NXPRT(fprintf(stderr, "ERR_NX_AT_FAULT %p\n",
708 			      (void *)cmdp->crb.csb.fsaddr));
709 
710 		if (pgfault_retries == NX_MAX_FAULTS) {
711 			/* Try once with exact number of pages */
712 			--pgfault_retries;
713 			goto restart_nx;
714 		} else if (pgfault_retries > 0) {
715 			/* If still faulting try fewer input pages
716 			 * assuming memory outage
717 			 */
718 			if (source_sz > page_sz)
719 				source_sz = NX_MAX(source_sz / 2, page_sz);
720 			--pgfault_retries;
721 			goto restart_nx;
722 		} else {
723 			fprintf(stderr, "cannot make progress; too many ");
724 			fprintf(stderr, "page fault retries cc= %d\n", cc);
725 			rc = -1;
726 			goto err5;
727 		}
728 
729 	case ERR_NX_DATA_LENGTH:
730 
731 		NXPRT(fprintf(stderr, "ERR_NX_DATA_LENGTH; "));
732 		NXPRT(fprintf(stderr, "stream may have trailing data\n"));
733 
734 		/* Not an error in the most common case; it just says
735 		 * there is trailing data that we must examine.
736 		 *
737 		 * CC=3 CE(1)=0 CE(0)=1 indicates partial completion
738 		 * Fig.6-7 and Table 6-8.
739 		 */
740 		nx_ce = get_csb_ce_ms3b(cmdp->crb.csb);
741 
742 		if (!csb_ce_termination(nx_ce) &&
743 		    csb_ce_partial_completion(nx_ce)) {
744 			/* Check CPB for more information
745 			 * spbc and tpbc are valid
746 			 */
747 			sfbt = getnn(cmdp->cpb, out_sfbt); /* Table 6-4 */
748 			subc = getnn(cmdp->cpb, out_subc); /* Table 6-4 */
749 			spbc = get32(cmdp->cpb, out_spbc_decomp);
750 			tpbc = get32(cmdp->crb.csb, tpbc);
751 			assert(target_max >= tpbc);
752 
753 			goto ok_cc3; /* not an error */
754 		} else {
755 			/* History length error when CE(1)=1 CE(0)=0. */
756 			rc = -1;
757 			fprintf(stderr, "history length error cc= %d\n", cc);
758 			goto err5;
759 		}
760 
761 	case ERR_NX_TARGET_SPACE:
762 
763 		/* Target buffer not large enough; retry smaller input
764 		 * data; give at least 1 byte.  SPBC/TPBC are not valid.
765 		 */
766 		assert(source_sz > history_len);
767 		source_sz = ((source_sz - history_len + 2) / 2) + history_len;
768 		NXPRT(fprintf(stderr, "ERR_NX_TARGET_SPACE; retry with "));
769 		NXPRT(fprintf(stderr, "smaller input data src %d hist %d\n",
770 			      source_sz, history_len));
771 		goto restart_nx;
772 
773 	case ERR_NX_OK:
774 
775 		/* This should not happen for gzip formatted data;
776 		 * we need trailing crc and isize
777 		 */
778 		fprintf(stderr, "ERR_NX_OK\n");
779 		spbc = get32(cmdp->cpb, out_spbc_decomp);
780 		tpbc = get32(cmdp->crb.csb, tpbc);
781 		assert(target_max >= tpbc);
782 		assert(spbc >= history_len);
783 		source_sz = spbc - history_len;
784 		goto offsets_state;
785 
786 	default:
787 		fprintf(stderr, "error: cc= %d\n", cc);
788 		rc = -1;
789 		goto err5;
790 	}
791 
792 ok_cc3:
793 
794 	NXPRT(fprintf(stderr, "cc3: sfbt: %x\n", sfbt));
795 
796 	assert(spbc > history_len);
797 	source_sz = spbc - history_len;
798 
799 	/* Table 6-4: Source Final Block Type (SFBT) describes the
800 	 * last processed deflate block and clues the software how to
801 	 * resume the next job.  SUBC indicates how many input bits NX
802 	 * consumed but did not process.  SPBC indicates how many
803 	 * bytes of source were given to the accelerator including
804 	 * history bytes.
805 	 */
806 
807 	switch (sfbt) {
808 		int dhtlen;
809 
810 	case 0x0: /* Deflate final EOB received */
811 
812 		/* Calculating the checksum start position. */
813 
814 		source_sz = source_sz - subc / 8;
815 		is_final = 1;
816 		break;
817 
818 		/* Resume decompression cases are below. Basically
819 		 * indicates where NX has suspended and how to resume
820 		 * the input stream.
821 		 */
822 
823 	case 0x8: /* Within a literal block; use rembytecount */
824 	case 0x9: /* Within a literal block; use rembytecount; bfinal=1 */
825 
826 		/* Supply the partially processed source byte again */
827 		source_sz = source_sz - ((subc + 7) / 8);
828 
829 		/* SUBC LS 3bits: number of bits in the first source byte need
830 		 * to be processed.
831 		 * 000 means all 8 bits;  Table 6-3
832 		 * Clear subc, histlen, sfbt, rembytecnt, dhtlen
833 		 */
834 		cmdp->cpb.in_subc = 0;
835 		cmdp->cpb.in_sfbt = 0;
836 		putnn(cmdp->cpb, in_subc, subc % 8);
837 		putnn(cmdp->cpb, in_sfbt, sfbt);
838 		putnn(cmdp->cpb, in_rembytecnt, getnn(cmdp->cpb,
839 						      out_rembytecnt));
840 		break;
841 
842 	case 0xA: /* Within a FH block; */
843 	case 0xB: /* Within a FH block; bfinal=1 */
844 
845 		source_sz = source_sz - ((subc + 7) / 8);
846 
847 		/* Clear subc, histlen, sfbt, rembytecnt, dhtlen */
848 		cmdp->cpb.in_subc = 0;
849 		cmdp->cpb.in_sfbt = 0;
850 		putnn(cmdp->cpb, in_subc, subc % 8);
851 		putnn(cmdp->cpb, in_sfbt, sfbt);
852 		break;
853 
854 	case 0xC: /* Within a DH block; */
855 	case 0xD: /* Within a DH block; bfinal=1 */
856 
857 		source_sz = source_sz - ((subc + 7) / 8);
858 
859 		/* Clear subc, histlen, sfbt, rembytecnt, dhtlen */
860 		cmdp->cpb.in_subc = 0;
861 		cmdp->cpb.in_sfbt = 0;
862 		putnn(cmdp->cpb, in_subc, subc % 8);
863 		putnn(cmdp->cpb, in_sfbt, sfbt);
864 
865 		dhtlen = getnn(cmdp->cpb, out_dhtlen);
866 		putnn(cmdp->cpb, in_dhtlen, dhtlen);
867 		assert(dhtlen >= 42);
868 
869 		/* Round up to a qword */
870 		dhtlen = (dhtlen + 127) / 128;
871 
872 		while (dhtlen > 0) { /* Copy dht from cpb.out to cpb.in */
873 			--dhtlen;
874 			cmdp->cpb.in_dht[dhtlen] = cmdp->cpb.out_dht[dhtlen];
875 		}
876 		break;
877 
878 	case 0xE: /* Within a block header; bfinal=0; */
879 		     /* Also given if source data exactly ends (SUBC=0) with
880 		      * EOB code with BFINAL=0.  Means the next byte will
881 		      * contain a block header.
882 		      */
883 	case 0xF: /* within a block header with BFINAL=1. */
884 
885 		source_sz = source_sz - ((subc + 7) / 8);
886 
887 		/* Clear subc, histlen, sfbt, rembytecnt, dhtlen */
888 		cmdp->cpb.in_subc = 0;
889 		cmdp->cpb.in_sfbt = 0;
890 		putnn(cmdp->cpb, in_subc, subc % 8);
891 		putnn(cmdp->cpb, in_sfbt, sfbt);
892 
893 		/* Engine did not process any data */
894 		if (is_eof && (source_sz == 0))
895 			is_final = 1;
896 	}
897 
898 offsets_state:
899 
900 	/* Adjust the source and target buffer offsets and lengths  */
901 
902 	NXPRT(fprintf(stderr, "offsets_state:\n"));
903 
904 	/* Delete input data from fifo_in */
905 	used_in = used_in - source_sz;
906 	cur_in = (cur_in + source_sz) % fifo_in_len;
907 	input_file_offset = input_file_offset + source_sz;
908 
909 	/* Add output data to fifo_out */
910 	used_out = used_out + tpbc;
911 
912 	assert(used_out <= fifo_out_len);
913 
914 	total_out = total_out + tpbc;
915 
916 	/* Deflate history is 32KB max.  No need to supply more
917 	 * than 32KB on a resume.
918 	 */
919 	history_len = (total_out > window_max) ? window_max : total_out;
920 
921 	/* To estimate expected expansion in the next NX job; 500 means 50%.
922 	 * Deflate best case is around 1 to 1000.
923 	 */
924 	last_comp_ratio = (1000UL * ((uint64_t)source_sz + 1))
925 			  / ((uint64_t)tpbc + 1);
926 	last_comp_ratio = NX_MAX(NX_MIN(1000UL, last_comp_ratio), 1);
927 	NXPRT(fprintf(stderr, "comp_ratio %ld source_sz %d spbc %d tpbc %d\n",
928 		      last_comp_ratio, source_sz, spbc, tpbc));
929 
930 	resuming = 1;
931 
932 finish_state:
933 
934 	NXPRT(fprintf(stderr, "finish_state:\n"));
935 
936 	if (is_final) {
937 		if (used_out)
938 			goto write_state; /* More data to write out */
939 		else if (used_in < 8) {
940 			/* Need at least 8 more bytes containing gzip crc
941 			 * and isize.
942 			 */
943 			rc = -1;
944 			goto err4;
945 		} else {
946 			/* Compare checksums and exit */
947 			int i;
948 			unsigned char tail[8];
949 			uint32_t cksum, isize;
950 
951 			for (i = 0; i < 8; i++)
952 				tail[i] = fifo_in[(cur_in + i) % fifo_in_len];
953 			fprintf(stderr, "computed checksum %08x isize %08x\n",
954 				cmdp->cpb.out_crc, (uint32_t) (total_out
955 				% (1ULL<<32)));
956 			cksum = ((uint32_t) tail[0] | (uint32_t) tail[1]<<8
957 				 | (uint32_t) tail[2]<<16
958 				 | (uint32_t) tail[3]<<24);
959 			isize = ((uint32_t) tail[4] | (uint32_t) tail[5]<<8
960 				 | (uint32_t) tail[6]<<16
961 				 | (uint32_t) tail[7]<<24);
962 			fprintf(stderr, "stored   checksum %08x isize %08x\n",
963 				cksum, isize);
964 
965 			if (cksum == cmdp->cpb.out_crc && isize == (uint32_t)
966 			    (total_out % (1ULL<<32))) {
967 				rc = 0;	goto ok1;
968 			} else {
969 				rc = -1; goto err4;
970 			}
971 		}
972 	} else
973 		goto read_state;
974 
975 	return -1;
976 
977 err1:
978 	fprintf(stderr, "error: not a gzip file, expect %x, read %x\n",
979 		expect, c);
980 	return -1;
981 
982 err2:
983 	fprintf(stderr, "error: the FLG byte is wrong or not being handled\n");
984 	return -1;
985 
986 err3:
987 	fprintf(stderr, "error: gzip header\n");
988 	return -1;
989 
990 err4:
991 	fprintf(stderr, "error: checksum missing or mismatch\n");
992 
993 err5:
994 ok1:
995 	fprintf(stderr, "decomp is complete: fclose\n");
996 	fclose(outf);
997 
998 	return rc;
999 }
1000 
1001 
1002 int main(int argc, char **argv)
1003 {
1004 	int rc;
1005 	struct sigaction act;
1006 	void *handle;
1007 
1008 	nx_dbg = 0;
1009 	nx_gzip_log = NULL;
1010 	act.sa_handler = 0;
1011 	act.sa_sigaction = nxu_sigsegv_handler;
1012 	act.sa_flags = SA_SIGINFO;
1013 	act.sa_restorer = 0;
1014 	sigemptyset(&act.sa_mask);
1015 	sigaction(SIGSEGV, &act, NULL);
1016 
1017 	handle = nx_function_begin(NX_FUNC_COMP_GZIP, 0);
1018 	if (!handle) {
1019 		fprintf(stderr, "Unable to init NX, errno %d\n", errno);
1020 		exit(-1);
1021 	}
1022 
1023 	rc = decompress_file(argc, argv, handle);
1024 
1025 	nx_function_end(handle);
1026 
1027 	return rc;
1028 }
1029