1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A memslot-related performance benchmark. 4 * 5 * Copyright (C) 2021 Oracle and/or its affiliates. 6 * 7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. 8 */ 9 #include <pthread.h> 10 #include <sched.h> 11 #include <semaphore.h> 12 #include <stdatomic.h> 13 #include <stdbool.h> 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <sys/mman.h> 19 #include <time.h> 20 #include <unistd.h> 21 22 #include <linux/compiler.h> 23 #include <linux/sizes.h> 24 25 #include <test_util.h> 26 #include <kvm_util.h> 27 #include <processor.h> 28 29 #define MEM_EXTRA_SIZE SZ_64K 30 31 #define MEM_SIZE (SZ_512M + MEM_EXTRA_SIZE) 32 #define MEM_GPA SZ_256M 33 #define MEM_AUX_GPA MEM_GPA 34 #define MEM_SYNC_GPA MEM_AUX_GPA 35 #define MEM_TEST_GPA (MEM_AUX_GPA + MEM_EXTRA_SIZE) 36 #define MEM_TEST_SIZE (MEM_SIZE - MEM_EXTRA_SIZE) 37 38 /* 39 * 32 MiB is max size that gets well over 100 iterations on 509 slots. 40 * Considering that each slot needs to have at least one page up to 41 * 8194 slots in use can then be tested (although with slightly 42 * limited resolution). 43 */ 44 #define MEM_SIZE_MAP (SZ_32M + MEM_EXTRA_SIZE) 45 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - MEM_EXTRA_SIZE) 46 47 /* 48 * 128 MiB is min size that fills 32k slots with at least one page in each 49 * while at the same time gets 100+ iterations in such test 50 * 51 * 2 MiB chunk size like a typical huge page 52 */ 53 #define MEM_TEST_UNMAP_SIZE SZ_128M 54 #define MEM_TEST_UNMAP_CHUNK_SIZE SZ_2M 55 56 /* 57 * For the move active test the middle of the test area is placed on 58 * a memslot boundary: half lies in the memslot being moved, half in 59 * other memslot(s). 60 * 61 * We have different number of memory slots, excluding the reserved 62 * memory slot 0, on various architectures and configurations. The 63 * memory size in this test is calculated by picking the maximal 64 * last memory slot's memory size, with alignment to the largest 65 * supported page size (64KB). In this way, the selected memory 66 * size for this test is compatible with test_memslot_move_prepare(). 67 * 68 * architecture slots memory-per-slot memory-on-last-slot 69 * -------------------------------------------------------------- 70 * x86-4KB 32763 16KB 160KB 71 * arm64-4KB 32766 16KB 112KB 72 * arm64-16KB 32766 16KB 112KB 73 * arm64-64KB 8192 64KB 128KB 74 */ 75 #define MEM_TEST_MOVE_SIZE (3 * SZ_64K) 76 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) 77 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, 78 "invalid move test region size"); 79 80 #define MEM_TEST_VAL_1 0x1122334455667788 81 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 82 83 struct vm_data { 84 struct kvm_vm *vm; 85 struct kvm_vcpu *vcpu; 86 pthread_t vcpu_thread; 87 uint32_t nslots; 88 uint64_t npages; 89 uint64_t pages_per_slot; 90 void **hva_slots; 91 bool mmio_ok; 92 uint64_t mmio_gpa_min; 93 uint64_t mmio_gpa_max; 94 }; 95 96 struct sync_area { 97 uint32_t guest_page_size; 98 atomic_bool start_flag; 99 atomic_bool exit_flag; 100 atomic_bool sync_flag; 101 void *move_area_ptr; 102 }; 103 104 /* 105 * Technically, we need also for the atomic bool to be address-free, which 106 * is recommended, but not strictly required, by C11 for lockless 107 * implementations. 108 * However, in practice both GCC and Clang fulfill this requirement on 109 * all KVM-supported platforms. 110 */ 111 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); 112 113 static sem_t vcpu_ready; 114 115 static bool map_unmap_verify; 116 117 static bool verbose; 118 #define pr_info_v(...) \ 119 do { \ 120 if (verbose) \ 121 pr_info(__VA_ARGS__); \ 122 } while (0) 123 124 static void check_mmio_access(struct vm_data *data, struct kvm_run *run) 125 { 126 TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit"); 127 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); 128 TEST_ASSERT(run->mmio.len == 8, 129 "Unexpected exit mmio size = %u", run->mmio.len); 130 TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min && 131 run->mmio.phys_addr <= data->mmio_gpa_max, 132 "Unexpected exit mmio address = 0x%llx", 133 run->mmio.phys_addr); 134 } 135 136 static void *vcpu_worker(void *__data) 137 { 138 struct vm_data *data = __data; 139 struct kvm_vcpu *vcpu = data->vcpu; 140 struct kvm_run *run = vcpu->run; 141 struct ucall uc; 142 143 while (1) { 144 vcpu_run(vcpu); 145 146 switch (get_ucall(vcpu, &uc)) { 147 case UCALL_SYNC: 148 TEST_ASSERT(uc.args[1] == 0, 149 "Unexpected sync ucall, got %lx", 150 (ulong)uc.args[1]); 151 sem_post(&vcpu_ready); 152 continue; 153 case UCALL_NONE: 154 if (run->exit_reason == KVM_EXIT_MMIO) 155 check_mmio_access(data, run); 156 else 157 goto done; 158 break; 159 case UCALL_ABORT: 160 REPORT_GUEST_ASSERT_1(uc, "val = %lu"); 161 break; 162 case UCALL_DONE: 163 goto done; 164 default: 165 TEST_FAIL("Unknown ucall %lu", uc.cmd); 166 } 167 } 168 169 done: 170 return NULL; 171 } 172 173 static void wait_for_vcpu(void) 174 { 175 struct timespec ts; 176 177 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), 178 "clock_gettime() failed: %d\n", errno); 179 180 ts.tv_sec += 2; 181 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), 182 "sem_timedwait() failed: %d\n", errno); 183 } 184 185 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) 186 { 187 uint64_t gpage, pgoffs; 188 uint32_t slot, slotoffs; 189 void *base; 190 uint32_t guest_page_size = data->vm->page_size; 191 192 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); 193 TEST_ASSERT(gpa < MEM_GPA + data->npages * guest_page_size, 194 "Too high gpa to translate"); 195 gpa -= MEM_GPA; 196 197 gpage = gpa / guest_page_size; 198 pgoffs = gpa % guest_page_size; 199 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); 200 slotoffs = gpage - (slot * data->pages_per_slot); 201 202 if (rempages) { 203 uint64_t slotpages; 204 205 if (slot == data->nslots - 1) 206 slotpages = data->npages - slot * data->pages_per_slot; 207 else 208 slotpages = data->pages_per_slot; 209 210 TEST_ASSERT(!pgoffs, 211 "Asking for remaining pages in slot but gpa not page aligned"); 212 *rempages = slotpages - slotoffs; 213 } 214 215 base = data->hva_slots[slot]; 216 return (uint8_t *)base + slotoffs * guest_page_size + pgoffs; 217 } 218 219 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) 220 { 221 uint32_t guest_page_size = data->vm->page_size; 222 223 TEST_ASSERT(slot < data->nslots, "Too high slot number"); 224 225 return MEM_GPA + slot * data->pages_per_slot * guest_page_size; 226 } 227 228 static struct vm_data *alloc_vm(void) 229 { 230 struct vm_data *data; 231 232 data = malloc(sizeof(*data)); 233 TEST_ASSERT(data, "malloc(vmdata) failed"); 234 235 data->vm = NULL; 236 data->vcpu = NULL; 237 data->hva_slots = NULL; 238 239 return data; 240 } 241 242 static bool check_slot_pages(uint32_t host_page_size, uint32_t guest_page_size, 243 uint64_t pages_per_slot, uint64_t rempages) 244 { 245 if (!pages_per_slot) 246 return false; 247 248 if ((pages_per_slot * guest_page_size) % host_page_size) 249 return false; 250 251 if ((rempages * guest_page_size) % host_page_size) 252 return false; 253 254 return true; 255 } 256 257 258 static uint64_t get_max_slots(struct vm_data *data, uint32_t host_page_size) 259 { 260 uint32_t guest_page_size = data->vm->page_size; 261 uint64_t mempages, pages_per_slot, rempages; 262 uint64_t slots; 263 264 mempages = data->npages; 265 slots = data->nslots; 266 while (--slots > 1) { 267 pages_per_slot = mempages / slots; 268 if (!pages_per_slot) 269 continue; 270 271 rempages = mempages % pages_per_slot; 272 if (check_slot_pages(host_page_size, guest_page_size, 273 pages_per_slot, rempages)) 274 return slots + 1; /* slot 0 is reserved */ 275 } 276 277 return 0; 278 } 279 280 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, 281 void *guest_code, uint64_t mem_size, 282 struct timespec *slot_runtime) 283 { 284 uint64_t mempages, rempages; 285 uint64_t guest_addr; 286 uint32_t slot, host_page_size, guest_page_size; 287 struct timespec tstart; 288 struct sync_area *sync; 289 290 host_page_size = getpagesize(); 291 guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 292 mempages = mem_size / guest_page_size; 293 294 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); 295 TEST_ASSERT(data->vm->page_size == guest_page_size, "Invalid VM page size"); 296 297 data->npages = mempages; 298 TEST_ASSERT(data->npages > 1, "Can't test without any memory"); 299 data->nslots = nslots; 300 data->pages_per_slot = data->npages / data->nslots; 301 rempages = data->npages % data->nslots; 302 if (!check_slot_pages(host_page_size, guest_page_size, 303 data->pages_per_slot, rempages)) { 304 *maxslots = get_max_slots(data, host_page_size); 305 return false; 306 } 307 308 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); 309 TEST_ASSERT(data->hva_slots, "malloc() fail"); 310 311 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); 312 313 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", 314 data->nslots, data->pages_per_slot, rempages); 315 316 clock_gettime(CLOCK_MONOTONIC, &tstart); 317 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 318 uint64_t npages; 319 320 npages = data->pages_per_slot; 321 if (slot == data->nslots) 322 npages += rempages; 323 324 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, 325 guest_addr, slot, npages, 326 0); 327 guest_addr += npages * guest_page_size; 328 } 329 *slot_runtime = timespec_elapsed(tstart); 330 331 for (slot = 1, guest_addr = MEM_GPA; slot <= data->nslots; slot++) { 332 uint64_t npages; 333 uint64_t gpa; 334 335 npages = data->pages_per_slot; 336 if (slot == data->nslots) 337 npages += rempages; 338 339 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, slot); 340 TEST_ASSERT(gpa == guest_addr, 341 "vm_phy_pages_alloc() failed\n"); 342 343 data->hva_slots[slot - 1] = addr_gpa2hva(data->vm, guest_addr); 344 memset(data->hva_slots[slot - 1], 0, npages * guest_page_size); 345 346 guest_addr += npages * guest_page_size; 347 } 348 349 virt_map(data->vm, MEM_GPA, MEM_GPA, data->npages); 350 351 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 352 atomic_init(&sync->start_flag, false); 353 atomic_init(&sync->exit_flag, false); 354 atomic_init(&sync->sync_flag, false); 355 356 data->mmio_ok = false; 357 358 return true; 359 } 360 361 static void launch_vm(struct vm_data *data) 362 { 363 pr_info_v("Launching the test VM\n"); 364 365 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); 366 367 /* Ensure the guest thread is spun up. */ 368 wait_for_vcpu(); 369 } 370 371 static void free_vm(struct vm_data *data) 372 { 373 kvm_vm_free(data->vm); 374 free(data->hva_slots); 375 free(data); 376 } 377 378 static void wait_guest_exit(struct vm_data *data) 379 { 380 pthread_join(data->vcpu_thread, NULL); 381 } 382 383 static void let_guest_run(struct sync_area *sync) 384 { 385 atomic_store_explicit(&sync->start_flag, true, memory_order_release); 386 } 387 388 static void guest_spin_until_start(void) 389 { 390 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 391 392 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) 393 ; 394 } 395 396 static void make_guest_exit(struct sync_area *sync) 397 { 398 atomic_store_explicit(&sync->exit_flag, true, memory_order_release); 399 } 400 401 static bool _guest_should_exit(void) 402 { 403 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 404 405 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); 406 } 407 408 #define guest_should_exit() unlikely(_guest_should_exit()) 409 410 /* 411 * noinline so we can easily see how much time the host spends waiting 412 * for the guest. 413 * For the same reason use alarm() instead of polling clock_gettime() 414 * to implement a wait timeout. 415 */ 416 static noinline void host_perform_sync(struct sync_area *sync) 417 { 418 alarm(2); 419 420 atomic_store_explicit(&sync->sync_flag, true, memory_order_release); 421 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) 422 ; 423 424 alarm(0); 425 } 426 427 static bool guest_perform_sync(void) 428 { 429 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 430 bool expected; 431 432 do { 433 if (guest_should_exit()) 434 return false; 435 436 expected = true; 437 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, 438 &expected, false, 439 memory_order_acq_rel, 440 memory_order_relaxed)); 441 442 return true; 443 } 444 445 static void guest_code_test_memslot_move(void) 446 { 447 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 448 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 449 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); 450 451 GUEST_SYNC(0); 452 453 guest_spin_until_start(); 454 455 while (!guest_should_exit()) { 456 uintptr_t ptr; 457 458 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; 459 ptr += page_size) 460 *(uint64_t *)ptr = MEM_TEST_VAL_1; 461 462 /* 463 * No host sync here since the MMIO exits are so expensive 464 * that the host would spend most of its time waiting for 465 * the guest and so instead of measuring memslot move 466 * performance we would measure the performance and 467 * likelihood of MMIO exits 468 */ 469 } 470 471 GUEST_DONE(); 472 } 473 474 static void guest_code_test_memslot_map(void) 475 { 476 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 477 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 478 479 GUEST_SYNC(0); 480 481 guest_spin_until_start(); 482 483 while (1) { 484 uintptr_t ptr; 485 486 for (ptr = MEM_TEST_GPA; 487 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 488 ptr += page_size) 489 *(uint64_t *)ptr = MEM_TEST_VAL_1; 490 491 if (!guest_perform_sync()) 492 break; 493 494 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 495 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; 496 ptr += page_size) 497 *(uint64_t *)ptr = MEM_TEST_VAL_2; 498 499 if (!guest_perform_sync()) 500 break; 501 } 502 503 GUEST_DONE(); 504 } 505 506 static void guest_code_test_memslot_unmap(void) 507 { 508 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 509 510 GUEST_SYNC(0); 511 512 guest_spin_until_start(); 513 514 while (1) { 515 uintptr_t ptr = MEM_TEST_GPA; 516 517 /* 518 * We can afford to access (map) just a small number of pages 519 * per host sync as otherwise the host will spend 520 * a significant amount of its time waiting for the guest 521 * (instead of doing unmap operations), so this will 522 * effectively turn this test into a map performance test. 523 * 524 * Just access a single page to be on the safe side. 525 */ 526 *(uint64_t *)ptr = MEM_TEST_VAL_1; 527 528 if (!guest_perform_sync()) 529 break; 530 531 ptr += MEM_TEST_UNMAP_SIZE / 2; 532 *(uint64_t *)ptr = MEM_TEST_VAL_2; 533 534 if (!guest_perform_sync()) 535 break; 536 } 537 538 GUEST_DONE(); 539 } 540 541 static void guest_code_test_memslot_rw(void) 542 { 543 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 544 uint32_t page_size = (typeof(page_size))READ_ONCE(sync->guest_page_size); 545 546 GUEST_SYNC(0); 547 548 guest_spin_until_start(); 549 550 while (1) { 551 uintptr_t ptr; 552 553 for (ptr = MEM_TEST_GPA; 554 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) 555 *(uint64_t *)ptr = MEM_TEST_VAL_1; 556 557 if (!guest_perform_sync()) 558 break; 559 560 for (ptr = MEM_TEST_GPA + page_size / 2; 561 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += page_size) { 562 uint64_t val = *(uint64_t *)ptr; 563 564 GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val); 565 *(uint64_t *)ptr = 0; 566 } 567 568 if (!guest_perform_sync()) 569 break; 570 } 571 572 GUEST_DONE(); 573 } 574 575 static bool test_memslot_move_prepare(struct vm_data *data, 576 struct sync_area *sync, 577 uint64_t *maxslots, bool isactive) 578 { 579 uint32_t guest_page_size = data->vm->page_size; 580 uint64_t movesrcgpa, movetestgpa; 581 582 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 583 584 if (isactive) { 585 uint64_t lastpages; 586 587 vm_gpa2hva(data, movesrcgpa, &lastpages); 588 if (lastpages * guest_page_size < MEM_TEST_MOVE_SIZE / 2) { 589 *maxslots = 0; 590 return false; 591 } 592 } 593 594 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); 595 sync->move_area_ptr = (void *)movetestgpa; 596 597 if (isactive) { 598 data->mmio_ok = true; 599 data->mmio_gpa_min = movesrcgpa; 600 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; 601 } 602 603 return true; 604 } 605 606 static bool test_memslot_move_prepare_active(struct vm_data *data, 607 struct sync_area *sync, 608 uint64_t *maxslots) 609 { 610 return test_memslot_move_prepare(data, sync, maxslots, true); 611 } 612 613 static bool test_memslot_move_prepare_inactive(struct vm_data *data, 614 struct sync_area *sync, 615 uint64_t *maxslots) 616 { 617 return test_memslot_move_prepare(data, sync, maxslots, false); 618 } 619 620 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) 621 { 622 uint64_t movesrcgpa; 623 624 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 625 vm_mem_region_move(data->vm, data->nslots - 1 + 1, 626 MEM_TEST_MOVE_GPA_DEST); 627 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); 628 } 629 630 static void test_memslot_do_unmap(struct vm_data *data, 631 uint64_t offsp, uint64_t count) 632 { 633 uint64_t gpa, ctr; 634 uint32_t guest_page_size = data->vm->page_size; 635 636 for (gpa = MEM_TEST_GPA + offsp * guest_page_size, ctr = 0; ctr < count; ) { 637 uint64_t npages; 638 void *hva; 639 int ret; 640 641 hva = vm_gpa2hva(data, gpa, &npages); 642 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); 643 npages = min(npages, count - ctr); 644 ret = madvise(hva, npages * guest_page_size, MADV_DONTNEED); 645 TEST_ASSERT(!ret, 646 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, 647 hva, gpa); 648 ctr += npages; 649 gpa += npages * guest_page_size; 650 } 651 TEST_ASSERT(ctr == count, 652 "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); 653 } 654 655 static void test_memslot_map_unmap_check(struct vm_data *data, 656 uint64_t offsp, uint64_t valexp) 657 { 658 uint64_t gpa; 659 uint64_t *val; 660 uint32_t guest_page_size = data->vm->page_size; 661 662 if (!map_unmap_verify) 663 return; 664 665 gpa = MEM_TEST_GPA + offsp * guest_page_size; 666 val = (typeof(val))vm_gpa2hva(data, gpa, NULL); 667 TEST_ASSERT(*val == valexp, 668 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", 669 *val, valexp, gpa); 670 *val = 0; 671 } 672 673 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) 674 { 675 uint32_t guest_page_size = data->vm->page_size; 676 uint64_t guest_pages = MEM_TEST_MAP_SIZE / guest_page_size; 677 678 /* 679 * Unmap the second half of the test area while guest writes to (maps) 680 * the first half. 681 */ 682 test_memslot_do_unmap(data, guest_pages / 2, guest_pages / 2); 683 684 /* 685 * Wait for the guest to finish writing the first half of the test 686 * area, verify the written value on the first and the last page of 687 * this area and then unmap it. 688 * Meanwhile, the guest is writing to (mapping) the second half of 689 * the test area. 690 */ 691 host_perform_sync(sync); 692 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 693 test_memslot_map_unmap_check(data, guest_pages / 2 - 1, MEM_TEST_VAL_1); 694 test_memslot_do_unmap(data, 0, guest_pages / 2); 695 696 697 /* 698 * Wait for the guest to finish writing the second half of the test 699 * area and verify the written value on the first and the last page 700 * of this area. 701 * The area will be unmapped at the beginning of the next loop 702 * iteration. 703 * Meanwhile, the guest is writing to (mapping) the first half of 704 * the test area. 705 */ 706 host_perform_sync(sync); 707 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 708 test_memslot_map_unmap_check(data, guest_pages - 1, MEM_TEST_VAL_2); 709 } 710 711 static void test_memslot_unmap_loop_common(struct vm_data *data, 712 struct sync_area *sync, 713 uint64_t chunk) 714 { 715 uint32_t guest_page_size = data->vm->page_size; 716 uint64_t guest_pages = MEM_TEST_UNMAP_SIZE / guest_page_size; 717 uint64_t ctr; 718 719 /* 720 * Wait for the guest to finish mapping page(s) in the first half 721 * of the test area, verify the written value and then perform unmap 722 * of this area. 723 * Meanwhile, the guest is writing to (mapping) page(s) in the second 724 * half of the test area. 725 */ 726 host_perform_sync(sync); 727 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 728 for (ctr = 0; ctr < guest_pages / 2; ctr += chunk) 729 test_memslot_do_unmap(data, ctr, chunk); 730 731 /* Likewise, but for the opposite host / guest areas */ 732 host_perform_sync(sync); 733 test_memslot_map_unmap_check(data, guest_pages / 2, MEM_TEST_VAL_2); 734 for (ctr = guest_pages / 2; ctr < guest_pages; ctr += chunk) 735 test_memslot_do_unmap(data, ctr, chunk); 736 } 737 738 static void test_memslot_unmap_loop(struct vm_data *data, 739 struct sync_area *sync) 740 { 741 uint32_t host_page_size = getpagesize(); 742 uint32_t guest_page_size = data->vm->page_size; 743 uint64_t guest_chunk_pages = guest_page_size >= host_page_size ? 744 1 : host_page_size / guest_page_size; 745 746 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 747 } 748 749 static void test_memslot_unmap_loop_chunked(struct vm_data *data, 750 struct sync_area *sync) 751 { 752 uint32_t guest_page_size = data->vm->page_size; 753 uint64_t guest_chunk_pages = MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size; 754 755 test_memslot_unmap_loop_common(data, sync, guest_chunk_pages); 756 } 757 758 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) 759 { 760 uint64_t gptr; 761 uint32_t guest_page_size = data->vm->page_size; 762 763 for (gptr = MEM_TEST_GPA + guest_page_size / 2; 764 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) 765 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; 766 767 host_perform_sync(sync); 768 769 for (gptr = MEM_TEST_GPA; 770 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += guest_page_size) { 771 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); 772 uint64_t val = *vptr; 773 774 TEST_ASSERT(val == MEM_TEST_VAL_1, 775 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", 776 val, gptr); 777 *vptr = 0; 778 } 779 780 host_perform_sync(sync); 781 } 782 783 struct test_data { 784 const char *name; 785 uint64_t mem_size; 786 void (*guest_code)(void); 787 bool (*prepare)(struct vm_data *data, struct sync_area *sync, 788 uint64_t *maxslots); 789 void (*loop)(struct vm_data *data, struct sync_area *sync); 790 }; 791 792 static bool test_execute(int nslots, uint64_t *maxslots, 793 unsigned int maxtime, 794 const struct test_data *tdata, 795 uint64_t *nloops, 796 struct timespec *slot_runtime, 797 struct timespec *guest_runtime) 798 { 799 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE; 800 struct vm_data *data; 801 struct sync_area *sync; 802 struct timespec tstart; 803 bool ret = true; 804 805 data = alloc_vm(); 806 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, 807 mem_size, slot_runtime)) { 808 ret = false; 809 goto exit_free; 810 } 811 812 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 813 814 sync->guest_page_size = data->vm->page_size; 815 if (tdata->prepare && 816 !tdata->prepare(data, sync, maxslots)) { 817 ret = false; 818 goto exit_free; 819 } 820 821 launch_vm(data); 822 823 clock_gettime(CLOCK_MONOTONIC, &tstart); 824 let_guest_run(sync); 825 826 while (1) { 827 *guest_runtime = timespec_elapsed(tstart); 828 if (guest_runtime->tv_sec >= maxtime) 829 break; 830 831 tdata->loop(data, sync); 832 833 (*nloops)++; 834 } 835 836 make_guest_exit(sync); 837 wait_guest_exit(data); 838 839 exit_free: 840 free_vm(data); 841 842 return ret; 843 } 844 845 static const struct test_data tests[] = { 846 { 847 .name = "map", 848 .mem_size = MEM_SIZE_MAP, 849 .guest_code = guest_code_test_memslot_map, 850 .loop = test_memslot_map_loop, 851 }, 852 { 853 .name = "unmap", 854 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 855 .guest_code = guest_code_test_memslot_unmap, 856 .loop = test_memslot_unmap_loop, 857 }, 858 { 859 .name = "unmap chunked", 860 .mem_size = MEM_TEST_UNMAP_SIZE + MEM_EXTRA_SIZE, 861 .guest_code = guest_code_test_memslot_unmap, 862 .loop = test_memslot_unmap_loop_chunked, 863 }, 864 { 865 .name = "move active area", 866 .guest_code = guest_code_test_memslot_move, 867 .prepare = test_memslot_move_prepare_active, 868 .loop = test_memslot_move_loop, 869 }, 870 { 871 .name = "move inactive area", 872 .guest_code = guest_code_test_memslot_move, 873 .prepare = test_memslot_move_prepare_inactive, 874 .loop = test_memslot_move_loop, 875 }, 876 { 877 .name = "RW", 878 .guest_code = guest_code_test_memslot_rw, 879 .loop = test_memslot_rw_loop 880 }, 881 }; 882 883 #define NTESTS ARRAY_SIZE(tests) 884 885 struct test_args { 886 int tfirst; 887 int tlast; 888 int nslots; 889 int seconds; 890 int runs; 891 }; 892 893 static void help(char *name, struct test_args *targs) 894 { 895 int ctr; 896 897 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", 898 name); 899 pr_info(" -h: print this help screen.\n"); 900 pr_info(" -v: enable verbose mode (not for benchmarking).\n"); 901 pr_info(" -d: enable extra debug checks.\n"); 902 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", 903 targs->nslots); 904 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", 905 targs->tfirst, NTESTS - 1); 906 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", 907 targs->tlast, NTESTS - 1); 908 pr_info(" -l: specify the test length in seconds (currently: %i)\n", 909 targs->seconds); 910 pr_info(" -r: specify the number of runs per test (currently: %i)\n", 911 targs->runs); 912 913 pr_info("\nAvailable tests:\n"); 914 for (ctr = 0; ctr < NTESTS; ctr++) 915 pr_info("%d: %s\n", ctr, tests[ctr].name); 916 } 917 918 static bool check_memory_sizes(void) 919 { 920 uint32_t host_page_size = getpagesize(); 921 uint32_t guest_page_size = vm_guest_mode_params[VM_MODE_DEFAULT].page_size; 922 923 if (host_page_size > SZ_64K || guest_page_size > SZ_64K) { 924 pr_info("Unsupported page size on host (0x%x) or guest (0x%x)\n", 925 host_page_size, guest_page_size); 926 return false; 927 } 928 929 if (MEM_SIZE % guest_page_size || 930 MEM_TEST_SIZE % guest_page_size) { 931 pr_info("invalid MEM_SIZE or MEM_TEST_SIZE\n"); 932 return false; 933 } 934 935 if (MEM_SIZE_MAP % guest_page_size || 936 MEM_TEST_MAP_SIZE % guest_page_size || 937 (MEM_TEST_MAP_SIZE / guest_page_size) <= 2 || 938 (MEM_TEST_MAP_SIZE / guest_page_size) % 2) { 939 pr_info("invalid MEM_SIZE_MAP or MEM_TEST_MAP_SIZE\n"); 940 return false; 941 } 942 943 if (MEM_TEST_UNMAP_SIZE > MEM_TEST_SIZE || 944 MEM_TEST_UNMAP_SIZE % guest_page_size || 945 (MEM_TEST_UNMAP_SIZE / guest_page_size) % 946 (2 * MEM_TEST_UNMAP_CHUNK_SIZE / guest_page_size)) { 947 pr_info("invalid MEM_TEST_UNMAP_SIZE or MEM_TEST_UNMAP_CHUNK_SIZE\n"); 948 return false; 949 } 950 951 return true; 952 } 953 954 static bool parse_args(int argc, char *argv[], 955 struct test_args *targs) 956 { 957 uint32_t max_mem_slots; 958 int opt; 959 960 while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { 961 switch (opt) { 962 case 'h': 963 default: 964 help(argv[0], targs); 965 return false; 966 case 'v': 967 verbose = true; 968 break; 969 case 'd': 970 map_unmap_verify = true; 971 break; 972 case 's': 973 targs->nslots = atoi_paranoid(optarg); 974 if (targs->nslots <= 1 && targs->nslots != -1) { 975 pr_info("Slot count cap must be larger than 1 or -1 for no cap\n"); 976 return false; 977 } 978 break; 979 case 'f': 980 targs->tfirst = atoi_non_negative("First test", optarg); 981 break; 982 case 'e': 983 targs->tlast = atoi_non_negative("Last test", optarg); 984 if (targs->tlast >= NTESTS) { 985 pr_info("Last test to run has to be non-negative and less than %zu\n", 986 NTESTS); 987 return false; 988 } 989 break; 990 case 'l': 991 targs->seconds = atoi_non_negative("Test length", optarg); 992 break; 993 case 'r': 994 targs->runs = atoi_positive("Runs per test", optarg); 995 break; 996 } 997 } 998 999 if (optind < argc) { 1000 help(argv[0], targs); 1001 return false; 1002 } 1003 1004 if (targs->tfirst > targs->tlast) { 1005 pr_info("First test to run cannot be greater than the last test to run\n"); 1006 return false; 1007 } 1008 1009 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); 1010 if (max_mem_slots <= 1) { 1011 pr_info("KVM_CAP_NR_MEMSLOTS should be greater than 1\n"); 1012 return false; 1013 } 1014 1015 /* Memory slot 0 is reserved */ 1016 if (targs->nslots == -1) 1017 targs->nslots = max_mem_slots - 1; 1018 else 1019 targs->nslots = min_t(int, targs->nslots, max_mem_slots) - 1; 1020 1021 pr_info_v("Allowed Number of memory slots: %"PRIu32"\n", 1022 targs->nslots + 1); 1023 1024 return true; 1025 } 1026 1027 struct test_result { 1028 struct timespec slot_runtime, guest_runtime, iter_runtime; 1029 int64_t slottimens, runtimens; 1030 uint64_t nloops; 1031 }; 1032 1033 static bool test_loop(const struct test_data *data, 1034 const struct test_args *targs, 1035 struct test_result *rbestslottime, 1036 struct test_result *rbestruntime) 1037 { 1038 uint64_t maxslots; 1039 struct test_result result; 1040 1041 result.nloops = 0; 1042 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, 1043 &result.nloops, 1044 &result.slot_runtime, &result.guest_runtime)) { 1045 if (maxslots) 1046 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", 1047 maxslots); 1048 else 1049 pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); 1050 1051 return false; 1052 } 1053 1054 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", 1055 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, 1056 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); 1057 if (!result.nloops) { 1058 pr_info("No full loops done - too short test time or system too loaded?\n"); 1059 return true; 1060 } 1061 1062 result.iter_runtime = timespec_div(result.guest_runtime, 1063 result.nloops); 1064 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", 1065 result.nloops, 1066 result.iter_runtime.tv_sec, 1067 result.iter_runtime.tv_nsec); 1068 result.slottimens = timespec_to_ns(result.slot_runtime); 1069 result.runtimens = timespec_to_ns(result.iter_runtime); 1070 1071 /* 1072 * Only rank the slot setup time for tests using the whole test memory 1073 * area so they are comparable 1074 */ 1075 if (!data->mem_size && 1076 (!rbestslottime->slottimens || 1077 result.slottimens < rbestslottime->slottimens)) 1078 *rbestslottime = result; 1079 if (!rbestruntime->runtimens || 1080 result.runtimens < rbestruntime->runtimens) 1081 *rbestruntime = result; 1082 1083 return true; 1084 } 1085 1086 int main(int argc, char *argv[]) 1087 { 1088 struct test_args targs = { 1089 .tfirst = 0, 1090 .tlast = NTESTS - 1, 1091 .nslots = -1, 1092 .seconds = 5, 1093 .runs = 1, 1094 }; 1095 struct test_result rbestslottime; 1096 int tctr; 1097 1098 if (!check_memory_sizes()) 1099 return -1; 1100 1101 if (!parse_args(argc, argv, &targs)) 1102 return -1; 1103 1104 rbestslottime.slottimens = 0; 1105 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { 1106 const struct test_data *data = &tests[tctr]; 1107 unsigned int runctr; 1108 struct test_result rbestruntime; 1109 1110 if (tctr > targs.tfirst) 1111 pr_info("\n"); 1112 1113 pr_info("Testing %s performance with %i runs, %d seconds each\n", 1114 data->name, targs.runs, targs.seconds); 1115 1116 rbestruntime.runtimens = 0; 1117 for (runctr = 0; runctr < targs.runs; runctr++) 1118 if (!test_loop(data, &targs, 1119 &rbestslottime, &rbestruntime)) 1120 break; 1121 1122 if (rbestruntime.runtimens) 1123 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", 1124 rbestruntime.iter_runtime.tv_sec, 1125 rbestruntime.iter_runtime.tv_nsec, 1126 rbestruntime.nloops); 1127 } 1128 1129 if (rbestslottime.slottimens) 1130 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", 1131 rbestslottime.slot_runtime.tv_sec, 1132 rbestslottime.slot_runtime.tv_nsec); 1133 1134 return 0; 1135 } 1136