1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A memslot-related performance benchmark. 4 * 5 * Copyright (C) 2021 Oracle and/or its affiliates. 6 * 7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. 8 */ 9 #include <pthread.h> 10 #include <sched.h> 11 #include <semaphore.h> 12 #include <stdatomic.h> 13 #include <stdbool.h> 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <sys/mman.h> 19 #include <time.h> 20 #include <unistd.h> 21 22 #include <linux/compiler.h> 23 24 #include <test_util.h> 25 #include <kvm_util.h> 26 #include <processor.h> 27 28 #define VCPU_ID 0 29 30 #define MEM_SIZE ((512U << 20) + 4096) 31 #define MEM_SIZE_PAGES (MEM_SIZE / 4096) 32 #define MEM_GPA 0x10000000UL 33 #define MEM_AUX_GPA MEM_GPA 34 #define MEM_SYNC_GPA MEM_AUX_GPA 35 #define MEM_TEST_GPA (MEM_AUX_GPA + 4096) 36 #define MEM_TEST_SIZE (MEM_SIZE - 4096) 37 static_assert(MEM_SIZE % 4096 == 0, "invalid mem size"); 38 static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size"); 39 40 /* 41 * 32 MiB is max size that gets well over 100 iterations on 509 slots. 42 * Considering that each slot needs to have at least one page up to 43 * 8194 slots in use can then be tested (although with slightly 44 * limited resolution). 45 */ 46 #define MEM_SIZE_MAP ((32U << 20) + 4096) 47 #define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096) 48 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096) 49 #define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096) 50 static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size"); 51 static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size"); 52 static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size"); 53 static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size"); 54 55 /* 56 * 128 MiB is min size that fills 32k slots with at least one page in each 57 * while at the same time gets 100+ iterations in such test 58 */ 59 #define MEM_TEST_UNMAP_SIZE (128U << 20) 60 #define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096) 61 /* 2 MiB chunk size like a typical huge page */ 62 #define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12)) 63 static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE, 64 "invalid unmap test region size"); 65 static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0, 66 "invalid unmap test region size"); 67 static_assert(MEM_TEST_UNMAP_SIZE_PAGES % 68 (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0, 69 "invalid unmap test region size"); 70 71 /* 72 * For the move active test the middle of the test area is placed on 73 * a memslot boundary: half lies in the memslot being moved, half in 74 * other memslot(s). 75 * 76 * When running this test with 32k memslots (32764, really) each memslot 77 * contains 4 pages. 78 * The last one additionally contains the remaining 21 pages of memory, 79 * for the total size of 25 pages. 80 * Hence, the maximum size here is 50 pages. 81 */ 82 #define MEM_TEST_MOVE_SIZE_PAGES (50) 83 #define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096) 84 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) 85 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, 86 "invalid move test region size"); 87 88 #define MEM_TEST_VAL_1 0x1122334455667788 89 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 90 91 struct vm_data { 92 struct kvm_vm *vm; 93 pthread_t vcpu_thread; 94 uint32_t nslots; 95 uint64_t npages; 96 uint64_t pages_per_slot; 97 void **hva_slots; 98 bool mmio_ok; 99 uint64_t mmio_gpa_min; 100 uint64_t mmio_gpa_max; 101 }; 102 103 struct sync_area { 104 atomic_bool start_flag; 105 atomic_bool exit_flag; 106 atomic_bool sync_flag; 107 void *move_area_ptr; 108 }; 109 110 /* 111 * Technically, we need also for the atomic bool to be address-free, which 112 * is recommended, but not strictly required, by C11 for lockless 113 * implementations. 114 * However, in practice both GCC and Clang fulfill this requirement on 115 * all KVM-supported platforms. 116 */ 117 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); 118 119 static sem_t vcpu_ready; 120 121 static bool map_unmap_verify; 122 123 static bool verbose; 124 #define pr_info_v(...) \ 125 do { \ 126 if (verbose) \ 127 pr_info(__VA_ARGS__); \ 128 } while (0) 129 130 static void *vcpu_worker(void *data) 131 { 132 struct vm_data *vm = data; 133 struct kvm_run *run; 134 struct ucall uc; 135 uint64_t cmd; 136 137 run = vcpu_state(vm->vm, VCPU_ID); 138 while (1) { 139 vcpu_run(vm->vm, VCPU_ID); 140 141 if (run->exit_reason == KVM_EXIT_IO) { 142 cmd = get_ucall(vm->vm, VCPU_ID, &uc); 143 if (cmd != UCALL_SYNC) 144 break; 145 146 sem_post(&vcpu_ready); 147 continue; 148 } 149 150 if (run->exit_reason != KVM_EXIT_MMIO) 151 break; 152 153 TEST_ASSERT(vm->mmio_ok, "Unexpected mmio exit"); 154 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); 155 TEST_ASSERT(run->mmio.len == 8, 156 "Unexpected exit mmio size = %u", run->mmio.len); 157 TEST_ASSERT(run->mmio.phys_addr >= vm->mmio_gpa_min && 158 run->mmio.phys_addr <= vm->mmio_gpa_max, 159 "Unexpected exit mmio address = 0x%llx", 160 run->mmio.phys_addr); 161 } 162 163 if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT) 164 TEST_FAIL("%s at %s:%ld, val = %lu", (const char *)uc.args[0], 165 __FILE__, uc.args[1], uc.args[2]); 166 167 return NULL; 168 } 169 170 static void wait_for_vcpu(void) 171 { 172 struct timespec ts; 173 174 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), 175 "clock_gettime() failed: %d\n", errno); 176 177 ts.tv_sec += 2; 178 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), 179 "sem_timedwait() failed: %d\n", errno); 180 } 181 182 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) 183 { 184 uint64_t gpage, pgoffs; 185 uint32_t slot, slotoffs; 186 void *base; 187 188 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); 189 TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096, 190 "Too high gpa to translate"); 191 gpa -= MEM_GPA; 192 193 gpage = gpa / 4096; 194 pgoffs = gpa % 4096; 195 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); 196 slotoffs = gpage - (slot * data->pages_per_slot); 197 198 if (rempages) { 199 uint64_t slotpages; 200 201 if (slot == data->nslots - 1) 202 slotpages = data->npages - slot * data->pages_per_slot; 203 else 204 slotpages = data->pages_per_slot; 205 206 TEST_ASSERT(!pgoffs, 207 "Asking for remaining pages in slot but gpa not page aligned"); 208 *rempages = slotpages - slotoffs; 209 } 210 211 base = data->hva_slots[slot]; 212 return (uint8_t *)base + slotoffs * 4096 + pgoffs; 213 } 214 215 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) 216 { 217 TEST_ASSERT(slot < data->nslots, "Too high slot number"); 218 219 return MEM_GPA + slot * data->pages_per_slot * 4096; 220 } 221 222 static struct vm_data *alloc_vm(void) 223 { 224 struct vm_data *data; 225 226 data = malloc(sizeof(*data)); 227 TEST_ASSERT(data, "malloc(vmdata) failed"); 228 229 data->vm = NULL; 230 data->hva_slots = NULL; 231 232 return data; 233 } 234 235 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, 236 void *guest_code, uint64_t mempages, 237 struct timespec *slot_runtime) 238 { 239 uint32_t max_mem_slots; 240 uint64_t rempages; 241 uint64_t guest_addr; 242 uint32_t slot; 243 struct timespec tstart; 244 struct sync_area *sync; 245 246 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); 247 TEST_ASSERT(max_mem_slots > 1, 248 "KVM_CAP_NR_MEMSLOTS should be greater than 1"); 249 TEST_ASSERT(nslots > 1 || nslots == -1, 250 "Slot count cap should be greater than 1"); 251 if (nslots != -1) 252 max_mem_slots = min(max_mem_slots, (uint32_t)nslots); 253 pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots); 254 255 TEST_ASSERT(mempages > 1, 256 "Can't test without any memory"); 257 258 data->npages = mempages; 259 data->nslots = max_mem_slots - 1; 260 data->pages_per_slot = mempages / data->nslots; 261 if (!data->pages_per_slot) { 262 *maxslots = mempages + 1; 263 return false; 264 } 265 266 rempages = mempages % data->nslots; 267 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); 268 TEST_ASSERT(data->hva_slots, "malloc() fail"); 269 270 data->vm = vm_create_default(VCPU_ID, mempages, guest_code); 271 272 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", 273 max_mem_slots - 1, data->pages_per_slot, rempages); 274 275 clock_gettime(CLOCK_MONOTONIC, &tstart); 276 for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) { 277 uint64_t npages; 278 279 npages = data->pages_per_slot; 280 if (slot == max_mem_slots - 1) 281 npages += rempages; 282 283 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, 284 guest_addr, slot, npages, 285 0); 286 guest_addr += npages * 4096; 287 } 288 *slot_runtime = timespec_elapsed(tstart); 289 290 for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) { 291 uint64_t npages; 292 uint64_t gpa; 293 294 npages = data->pages_per_slot; 295 if (slot == max_mem_slots - 2) 296 npages += rempages; 297 298 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, 299 slot + 1); 300 TEST_ASSERT(gpa == guest_addr, 301 "vm_phy_pages_alloc() failed\n"); 302 303 data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr); 304 memset(data->hva_slots[slot], 0, npages * 4096); 305 306 guest_addr += npages * 4096; 307 } 308 309 virt_map(data->vm, MEM_GPA, MEM_GPA, mempages); 310 311 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 312 atomic_init(&sync->start_flag, false); 313 atomic_init(&sync->exit_flag, false); 314 atomic_init(&sync->sync_flag, false); 315 316 data->mmio_ok = false; 317 318 return true; 319 } 320 321 static void launch_vm(struct vm_data *data) 322 { 323 pr_info_v("Launching the test VM\n"); 324 325 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); 326 327 /* Ensure the guest thread is spun up. */ 328 wait_for_vcpu(); 329 } 330 331 static void free_vm(struct vm_data *data) 332 { 333 kvm_vm_free(data->vm); 334 free(data->hva_slots); 335 free(data); 336 } 337 338 static void wait_guest_exit(struct vm_data *data) 339 { 340 pthread_join(data->vcpu_thread, NULL); 341 } 342 343 static void let_guest_run(struct sync_area *sync) 344 { 345 atomic_store_explicit(&sync->start_flag, true, memory_order_release); 346 } 347 348 static void guest_spin_until_start(void) 349 { 350 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 351 352 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) 353 ; 354 } 355 356 static void make_guest_exit(struct sync_area *sync) 357 { 358 atomic_store_explicit(&sync->exit_flag, true, memory_order_release); 359 } 360 361 static bool _guest_should_exit(void) 362 { 363 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 364 365 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); 366 } 367 368 #define guest_should_exit() unlikely(_guest_should_exit()) 369 370 /* 371 * noinline so we can easily see how much time the host spends waiting 372 * for the guest. 373 * For the same reason use alarm() instead of polling clock_gettime() 374 * to implement a wait timeout. 375 */ 376 static noinline void host_perform_sync(struct sync_area *sync) 377 { 378 alarm(2); 379 380 atomic_store_explicit(&sync->sync_flag, true, memory_order_release); 381 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) 382 ; 383 384 alarm(0); 385 } 386 387 static bool guest_perform_sync(void) 388 { 389 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 390 bool expected; 391 392 do { 393 if (guest_should_exit()) 394 return false; 395 396 expected = true; 397 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, 398 &expected, false, 399 memory_order_acq_rel, 400 memory_order_relaxed)); 401 402 return true; 403 } 404 405 static void guest_code_test_memslot_move(void) 406 { 407 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 408 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); 409 410 GUEST_SYNC(0); 411 412 guest_spin_until_start(); 413 414 while (!guest_should_exit()) { 415 uintptr_t ptr; 416 417 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; 418 ptr += 4096) 419 *(uint64_t *)ptr = MEM_TEST_VAL_1; 420 421 /* 422 * No host sync here since the MMIO exits are so expensive 423 * that the host would spend most of its time waiting for 424 * the guest and so instead of measuring memslot move 425 * performance we would measure the performance and 426 * likelihood of MMIO exits 427 */ 428 } 429 430 GUEST_DONE(); 431 } 432 433 static void guest_code_test_memslot_map(void) 434 { 435 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 436 437 GUEST_SYNC(0); 438 439 guest_spin_until_start(); 440 441 while (1) { 442 uintptr_t ptr; 443 444 for (ptr = MEM_TEST_GPA; 445 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096) 446 *(uint64_t *)ptr = MEM_TEST_VAL_1; 447 448 if (!guest_perform_sync()) 449 break; 450 451 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 452 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096) 453 *(uint64_t *)ptr = MEM_TEST_VAL_2; 454 455 if (!guest_perform_sync()) 456 break; 457 } 458 459 GUEST_DONE(); 460 } 461 462 static void guest_code_test_memslot_unmap(void) 463 { 464 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 465 466 GUEST_SYNC(0); 467 468 guest_spin_until_start(); 469 470 while (1) { 471 uintptr_t ptr = MEM_TEST_GPA; 472 473 /* 474 * We can afford to access (map) just a small number of pages 475 * per host sync as otherwise the host will spend 476 * a significant amount of its time waiting for the guest 477 * (instead of doing unmap operations), so this will 478 * effectively turn this test into a map performance test. 479 * 480 * Just access a single page to be on the safe side. 481 */ 482 *(uint64_t *)ptr = MEM_TEST_VAL_1; 483 484 if (!guest_perform_sync()) 485 break; 486 487 ptr += MEM_TEST_UNMAP_SIZE / 2; 488 *(uint64_t *)ptr = MEM_TEST_VAL_2; 489 490 if (!guest_perform_sync()) 491 break; 492 } 493 494 GUEST_DONE(); 495 } 496 497 static void guest_code_test_memslot_rw(void) 498 { 499 GUEST_SYNC(0); 500 501 guest_spin_until_start(); 502 503 while (1) { 504 uintptr_t ptr; 505 506 for (ptr = MEM_TEST_GPA; 507 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) 508 *(uint64_t *)ptr = MEM_TEST_VAL_1; 509 510 if (!guest_perform_sync()) 511 break; 512 513 for (ptr = MEM_TEST_GPA + 4096 / 2; 514 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) { 515 uint64_t val = *(uint64_t *)ptr; 516 517 GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val); 518 *(uint64_t *)ptr = 0; 519 } 520 521 if (!guest_perform_sync()) 522 break; 523 } 524 525 GUEST_DONE(); 526 } 527 528 static bool test_memslot_move_prepare(struct vm_data *data, 529 struct sync_area *sync, 530 uint64_t *maxslots, bool isactive) 531 { 532 uint64_t movesrcgpa, movetestgpa; 533 534 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 535 536 if (isactive) { 537 uint64_t lastpages; 538 539 vm_gpa2hva(data, movesrcgpa, &lastpages); 540 if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) { 541 *maxslots = 0; 542 return false; 543 } 544 } 545 546 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); 547 sync->move_area_ptr = (void *)movetestgpa; 548 549 if (isactive) { 550 data->mmio_ok = true; 551 data->mmio_gpa_min = movesrcgpa; 552 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; 553 } 554 555 return true; 556 } 557 558 static bool test_memslot_move_prepare_active(struct vm_data *data, 559 struct sync_area *sync, 560 uint64_t *maxslots) 561 { 562 return test_memslot_move_prepare(data, sync, maxslots, true); 563 } 564 565 static bool test_memslot_move_prepare_inactive(struct vm_data *data, 566 struct sync_area *sync, 567 uint64_t *maxslots) 568 { 569 return test_memslot_move_prepare(data, sync, maxslots, false); 570 } 571 572 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) 573 { 574 uint64_t movesrcgpa; 575 576 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 577 vm_mem_region_move(data->vm, data->nslots - 1 + 1, 578 MEM_TEST_MOVE_GPA_DEST); 579 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); 580 } 581 582 static void test_memslot_do_unmap(struct vm_data *data, 583 uint64_t offsp, uint64_t count) 584 { 585 uint64_t gpa, ctr; 586 587 for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) { 588 uint64_t npages; 589 void *hva; 590 int ret; 591 592 hva = vm_gpa2hva(data, gpa, &npages); 593 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); 594 npages = min(npages, count - ctr); 595 ret = madvise(hva, npages * 4096, MADV_DONTNEED); 596 TEST_ASSERT(!ret, 597 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, 598 hva, gpa); 599 ctr += npages; 600 gpa += npages * 4096; 601 } 602 TEST_ASSERT(ctr == count, 603 "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); 604 } 605 606 static void test_memslot_map_unmap_check(struct vm_data *data, 607 uint64_t offsp, uint64_t valexp) 608 { 609 uint64_t gpa; 610 uint64_t *val; 611 612 if (!map_unmap_verify) 613 return; 614 615 gpa = MEM_TEST_GPA + offsp * 4096; 616 val = (typeof(val))vm_gpa2hva(data, gpa, NULL); 617 TEST_ASSERT(*val == valexp, 618 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", 619 *val, valexp, gpa); 620 *val = 0; 621 } 622 623 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) 624 { 625 /* 626 * Unmap the second half of the test area while guest writes to (maps) 627 * the first half. 628 */ 629 test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2, 630 MEM_TEST_MAP_SIZE_PAGES / 2); 631 632 /* 633 * Wait for the guest to finish writing the first half of the test 634 * area, verify the written value on the first and the last page of 635 * this area and then unmap it. 636 * Meanwhile, the guest is writing to (mapping) the second half of 637 * the test area. 638 */ 639 host_perform_sync(sync); 640 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 641 test_memslot_map_unmap_check(data, 642 MEM_TEST_MAP_SIZE_PAGES / 2 - 1, 643 MEM_TEST_VAL_1); 644 test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2); 645 646 647 /* 648 * Wait for the guest to finish writing the second half of the test 649 * area and verify the written value on the first and the last page 650 * of this area. 651 * The area will be unmapped at the beginning of the next loop 652 * iteration. 653 * Meanwhile, the guest is writing to (mapping) the first half of 654 * the test area. 655 */ 656 host_perform_sync(sync); 657 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2, 658 MEM_TEST_VAL_2); 659 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1, 660 MEM_TEST_VAL_2); 661 } 662 663 static void test_memslot_unmap_loop_common(struct vm_data *data, 664 struct sync_area *sync, 665 uint64_t chunk) 666 { 667 uint64_t ctr; 668 669 /* 670 * Wait for the guest to finish mapping page(s) in the first half 671 * of the test area, verify the written value and then perform unmap 672 * of this area. 673 * Meanwhile, the guest is writing to (mapping) page(s) in the second 674 * half of the test area. 675 */ 676 host_perform_sync(sync); 677 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 678 for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk) 679 test_memslot_do_unmap(data, ctr, chunk); 680 681 /* Likewise, but for the opposite host / guest areas */ 682 host_perform_sync(sync); 683 test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2, 684 MEM_TEST_VAL_2); 685 for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2; 686 ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk) 687 test_memslot_do_unmap(data, ctr, chunk); 688 } 689 690 static void test_memslot_unmap_loop(struct vm_data *data, 691 struct sync_area *sync) 692 { 693 test_memslot_unmap_loop_common(data, sync, 1); 694 } 695 696 static void test_memslot_unmap_loop_chunked(struct vm_data *data, 697 struct sync_area *sync) 698 { 699 test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES); 700 } 701 702 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) 703 { 704 uint64_t gptr; 705 706 for (gptr = MEM_TEST_GPA + 4096 / 2; 707 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) 708 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; 709 710 host_perform_sync(sync); 711 712 for (gptr = MEM_TEST_GPA; 713 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) { 714 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); 715 uint64_t val = *vptr; 716 717 TEST_ASSERT(val == MEM_TEST_VAL_1, 718 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", 719 val, gptr); 720 *vptr = 0; 721 } 722 723 host_perform_sync(sync); 724 } 725 726 struct test_data { 727 const char *name; 728 uint64_t mem_size; 729 void (*guest_code)(void); 730 bool (*prepare)(struct vm_data *data, struct sync_area *sync, 731 uint64_t *maxslots); 732 void (*loop)(struct vm_data *data, struct sync_area *sync); 733 }; 734 735 static bool test_execute(int nslots, uint64_t *maxslots, 736 unsigned int maxtime, 737 const struct test_data *tdata, 738 uint64_t *nloops, 739 struct timespec *slot_runtime, 740 struct timespec *guest_runtime) 741 { 742 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES; 743 struct vm_data *data; 744 struct sync_area *sync; 745 struct timespec tstart; 746 bool ret = true; 747 748 data = alloc_vm(); 749 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, 750 mem_size, slot_runtime)) { 751 ret = false; 752 goto exit_free; 753 } 754 755 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 756 757 if (tdata->prepare && 758 !tdata->prepare(data, sync, maxslots)) { 759 ret = false; 760 goto exit_free; 761 } 762 763 launch_vm(data); 764 765 clock_gettime(CLOCK_MONOTONIC, &tstart); 766 let_guest_run(sync); 767 768 while (1) { 769 *guest_runtime = timespec_elapsed(tstart); 770 if (guest_runtime->tv_sec >= maxtime) 771 break; 772 773 tdata->loop(data, sync); 774 775 (*nloops)++; 776 } 777 778 make_guest_exit(sync); 779 wait_guest_exit(data); 780 781 exit_free: 782 free_vm(data); 783 784 return ret; 785 } 786 787 static const struct test_data tests[] = { 788 { 789 .name = "map", 790 .mem_size = MEM_SIZE_MAP_PAGES, 791 .guest_code = guest_code_test_memslot_map, 792 .loop = test_memslot_map_loop, 793 }, 794 { 795 .name = "unmap", 796 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, 797 .guest_code = guest_code_test_memslot_unmap, 798 .loop = test_memslot_unmap_loop, 799 }, 800 { 801 .name = "unmap chunked", 802 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, 803 .guest_code = guest_code_test_memslot_unmap, 804 .loop = test_memslot_unmap_loop_chunked, 805 }, 806 { 807 .name = "move active area", 808 .guest_code = guest_code_test_memslot_move, 809 .prepare = test_memslot_move_prepare_active, 810 .loop = test_memslot_move_loop, 811 }, 812 { 813 .name = "move inactive area", 814 .guest_code = guest_code_test_memslot_move, 815 .prepare = test_memslot_move_prepare_inactive, 816 .loop = test_memslot_move_loop, 817 }, 818 { 819 .name = "RW", 820 .guest_code = guest_code_test_memslot_rw, 821 .loop = test_memslot_rw_loop 822 }, 823 }; 824 825 #define NTESTS ARRAY_SIZE(tests) 826 827 struct test_args { 828 int tfirst; 829 int tlast; 830 int nslots; 831 int seconds; 832 int runs; 833 }; 834 835 static void help(char *name, struct test_args *targs) 836 { 837 int ctr; 838 839 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", 840 name); 841 pr_info(" -h: print this help screen.\n"); 842 pr_info(" -v: enable verbose mode (not for benchmarking).\n"); 843 pr_info(" -d: enable extra debug checks.\n"); 844 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", 845 targs->nslots); 846 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", 847 targs->tfirst, NTESTS - 1); 848 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", 849 targs->tlast, NTESTS - 1); 850 pr_info(" -l: specify the test length in seconds (currently: %i)\n", 851 targs->seconds); 852 pr_info(" -r: specify the number of runs per test (currently: %i)\n", 853 targs->runs); 854 855 pr_info("\nAvailable tests:\n"); 856 for (ctr = 0; ctr < NTESTS; ctr++) 857 pr_info("%d: %s\n", ctr, tests[ctr].name); 858 } 859 860 static bool parse_args(int argc, char *argv[], 861 struct test_args *targs) 862 { 863 int opt; 864 865 while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { 866 switch (opt) { 867 case 'h': 868 default: 869 help(argv[0], targs); 870 return false; 871 case 'v': 872 verbose = true; 873 break; 874 case 'd': 875 map_unmap_verify = true; 876 break; 877 case 's': 878 targs->nslots = atoi(optarg); 879 if (targs->nslots <= 0 && targs->nslots != -1) { 880 pr_info("Slot count cap has to be positive or -1 for no cap\n"); 881 return false; 882 } 883 break; 884 case 'f': 885 targs->tfirst = atoi(optarg); 886 if (targs->tfirst < 0) { 887 pr_info("First test to run has to be non-negative\n"); 888 return false; 889 } 890 break; 891 case 'e': 892 targs->tlast = atoi(optarg); 893 if (targs->tlast < 0 || targs->tlast >= NTESTS) { 894 pr_info("Last test to run has to be non-negative and less than %zu\n", 895 NTESTS); 896 return false; 897 } 898 break; 899 case 'l': 900 targs->seconds = atoi(optarg); 901 if (targs->seconds < 0) { 902 pr_info("Test length in seconds has to be non-negative\n"); 903 return false; 904 } 905 break; 906 case 'r': 907 targs->runs = atoi(optarg); 908 if (targs->runs <= 0) { 909 pr_info("Runs per test has to be positive\n"); 910 return false; 911 } 912 break; 913 } 914 } 915 916 if (optind < argc) { 917 help(argv[0], targs); 918 return false; 919 } 920 921 if (targs->tfirst > targs->tlast) { 922 pr_info("First test to run cannot be greater than the last test to run\n"); 923 return false; 924 } 925 926 return true; 927 } 928 929 struct test_result { 930 struct timespec slot_runtime, guest_runtime, iter_runtime; 931 int64_t slottimens, runtimens; 932 uint64_t nloops; 933 }; 934 935 static bool test_loop(const struct test_data *data, 936 const struct test_args *targs, 937 struct test_result *rbestslottime, 938 struct test_result *rbestruntime) 939 { 940 uint64_t maxslots; 941 struct test_result result; 942 943 result.nloops = 0; 944 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, 945 &result.nloops, 946 &result.slot_runtime, &result.guest_runtime)) { 947 if (maxslots) 948 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", 949 maxslots); 950 else 951 pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); 952 953 return false; 954 } 955 956 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", 957 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, 958 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); 959 if (!result.nloops) { 960 pr_info("No full loops done - too short test time or system too loaded?\n"); 961 return true; 962 } 963 964 result.iter_runtime = timespec_div(result.guest_runtime, 965 result.nloops); 966 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", 967 result.nloops, 968 result.iter_runtime.tv_sec, 969 result.iter_runtime.tv_nsec); 970 result.slottimens = timespec_to_ns(result.slot_runtime); 971 result.runtimens = timespec_to_ns(result.iter_runtime); 972 973 /* 974 * Only rank the slot setup time for tests using the whole test memory 975 * area so they are comparable 976 */ 977 if (!data->mem_size && 978 (!rbestslottime->slottimens || 979 result.slottimens < rbestslottime->slottimens)) 980 *rbestslottime = result; 981 if (!rbestruntime->runtimens || 982 result.runtimens < rbestruntime->runtimens) 983 *rbestruntime = result; 984 985 return true; 986 } 987 988 int main(int argc, char *argv[]) 989 { 990 struct test_args targs = { 991 .tfirst = 0, 992 .tlast = NTESTS - 1, 993 .nslots = -1, 994 .seconds = 5, 995 .runs = 1, 996 }; 997 struct test_result rbestslottime; 998 int tctr; 999 1000 /* Tell stdout not to buffer its content */ 1001 setbuf(stdout, NULL); 1002 1003 if (!parse_args(argc, argv, &targs)) 1004 return -1; 1005 1006 rbestslottime.slottimens = 0; 1007 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { 1008 const struct test_data *data = &tests[tctr]; 1009 unsigned int runctr; 1010 struct test_result rbestruntime; 1011 1012 if (tctr > targs.tfirst) 1013 pr_info("\n"); 1014 1015 pr_info("Testing %s performance with %i runs, %d seconds each\n", 1016 data->name, targs.runs, targs.seconds); 1017 1018 rbestruntime.runtimens = 0; 1019 for (runctr = 0; runctr < targs.runs; runctr++) 1020 if (!test_loop(data, &targs, 1021 &rbestslottime, &rbestruntime)) 1022 break; 1023 1024 if (rbestruntime.runtimens) 1025 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", 1026 rbestruntime.iter_runtime.tv_sec, 1027 rbestruntime.iter_runtime.tv_nsec, 1028 rbestruntime.nloops); 1029 } 1030 1031 if (rbestslottime.slottimens) 1032 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", 1033 rbestslottime.slot_runtime.tv_sec, 1034 rbestslottime.slot_runtime.tv_nsec); 1035 1036 return 0; 1037 } 1038