1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A memslot-related performance benchmark. 4 * 5 * Copyright (C) 2021 Oracle and/or its affiliates. 6 * 7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. 8 */ 9 #include <pthread.h> 10 #include <sched.h> 11 #include <semaphore.h> 12 #include <stdatomic.h> 13 #include <stdbool.h> 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <sys/mman.h> 19 #include <time.h> 20 #include <unistd.h> 21 22 #include <linux/compiler.h> 23 24 #include <test_util.h> 25 #include <kvm_util.h> 26 #include <processor.h> 27 28 #define MEM_SIZE ((512U << 20) + 4096) 29 #define MEM_SIZE_PAGES (MEM_SIZE / 4096) 30 #define MEM_GPA 0x10000000UL 31 #define MEM_AUX_GPA MEM_GPA 32 #define MEM_SYNC_GPA MEM_AUX_GPA 33 #define MEM_TEST_GPA (MEM_AUX_GPA + 4096) 34 #define MEM_TEST_SIZE (MEM_SIZE - 4096) 35 static_assert(MEM_SIZE % 4096 == 0, "invalid mem size"); 36 static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size"); 37 38 /* 39 * 32 MiB is max size that gets well over 100 iterations on 509 slots. 40 * Considering that each slot needs to have at least one page up to 41 * 8194 slots in use can then be tested (although with slightly 42 * limited resolution). 43 */ 44 #define MEM_SIZE_MAP ((32U << 20) + 4096) 45 #define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096) 46 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096) 47 #define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096) 48 static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size"); 49 static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size"); 50 static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size"); 51 static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size"); 52 53 /* 54 * 128 MiB is min size that fills 32k slots with at least one page in each 55 * while at the same time gets 100+ iterations in such test 56 */ 57 #define MEM_TEST_UNMAP_SIZE (128U << 20) 58 #define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096) 59 /* 2 MiB chunk size like a typical huge page */ 60 #define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12)) 61 static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE, 62 "invalid unmap test region size"); 63 static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0, 64 "invalid unmap test region size"); 65 static_assert(MEM_TEST_UNMAP_SIZE_PAGES % 66 (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0, 67 "invalid unmap test region size"); 68 69 /* 70 * For the move active test the middle of the test area is placed on 71 * a memslot boundary: half lies in the memslot being moved, half in 72 * other memslot(s). 73 * 74 * When running this test with 32k memslots (32764, really) each memslot 75 * contains 4 pages. 76 * The last one additionally contains the remaining 21 pages of memory, 77 * for the total size of 25 pages. 78 * Hence, the maximum size here is 50 pages. 79 */ 80 #define MEM_TEST_MOVE_SIZE_PAGES (50) 81 #define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096) 82 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) 83 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, 84 "invalid move test region size"); 85 86 #define MEM_TEST_VAL_1 0x1122334455667788 87 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 88 89 struct vm_data { 90 struct kvm_vm *vm; 91 struct kvm_vcpu *vcpu; 92 pthread_t vcpu_thread; 93 uint32_t nslots; 94 uint64_t npages; 95 uint64_t pages_per_slot; 96 void **hva_slots; 97 bool mmio_ok; 98 uint64_t mmio_gpa_min; 99 uint64_t mmio_gpa_max; 100 }; 101 102 struct sync_area { 103 atomic_bool start_flag; 104 atomic_bool exit_flag; 105 atomic_bool sync_flag; 106 void *move_area_ptr; 107 }; 108 109 /* 110 * Technically, we need also for the atomic bool to be address-free, which 111 * is recommended, but not strictly required, by C11 for lockless 112 * implementations. 113 * However, in practice both GCC and Clang fulfill this requirement on 114 * all KVM-supported platforms. 115 */ 116 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); 117 118 static sem_t vcpu_ready; 119 120 static bool map_unmap_verify; 121 122 static bool verbose; 123 #define pr_info_v(...) \ 124 do { \ 125 if (verbose) \ 126 pr_info(__VA_ARGS__); \ 127 } while (0) 128 129 static void check_mmio_access(struct vm_data *data, struct kvm_run *run) 130 { 131 TEST_ASSERT(data->mmio_ok, "Unexpected mmio exit"); 132 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); 133 TEST_ASSERT(run->mmio.len == 8, 134 "Unexpected exit mmio size = %u", run->mmio.len); 135 TEST_ASSERT(run->mmio.phys_addr >= data->mmio_gpa_min && 136 run->mmio.phys_addr <= data->mmio_gpa_max, 137 "Unexpected exit mmio address = 0x%llx", 138 run->mmio.phys_addr); 139 } 140 141 static void *vcpu_worker(void *__data) 142 { 143 struct vm_data *data = __data; 144 struct kvm_vcpu *vcpu = data->vcpu; 145 struct kvm_run *run = vcpu->run; 146 struct ucall uc; 147 148 while (1) { 149 vcpu_run(vcpu); 150 151 switch (get_ucall(vcpu, &uc)) { 152 case UCALL_SYNC: 153 TEST_ASSERT(uc.args[1] == 0, 154 "Unexpected sync ucall, got %lx", 155 (ulong)uc.args[1]); 156 sem_post(&vcpu_ready); 157 continue; 158 case UCALL_NONE: 159 if (run->exit_reason == KVM_EXIT_MMIO) 160 check_mmio_access(data, run); 161 else 162 goto done; 163 break; 164 case UCALL_ABORT: 165 REPORT_GUEST_ASSERT_1(uc, "val = %lu"); 166 break; 167 case UCALL_DONE: 168 goto done; 169 default: 170 TEST_FAIL("Unknown ucall %lu", uc.cmd); 171 } 172 } 173 174 done: 175 return NULL; 176 } 177 178 static void wait_for_vcpu(void) 179 { 180 struct timespec ts; 181 182 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), 183 "clock_gettime() failed: %d\n", errno); 184 185 ts.tv_sec += 2; 186 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), 187 "sem_timedwait() failed: %d\n", errno); 188 } 189 190 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) 191 { 192 uint64_t gpage, pgoffs; 193 uint32_t slot, slotoffs; 194 void *base; 195 196 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); 197 TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096, 198 "Too high gpa to translate"); 199 gpa -= MEM_GPA; 200 201 gpage = gpa / 4096; 202 pgoffs = gpa % 4096; 203 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); 204 slotoffs = gpage - (slot * data->pages_per_slot); 205 206 if (rempages) { 207 uint64_t slotpages; 208 209 if (slot == data->nslots - 1) 210 slotpages = data->npages - slot * data->pages_per_slot; 211 else 212 slotpages = data->pages_per_slot; 213 214 TEST_ASSERT(!pgoffs, 215 "Asking for remaining pages in slot but gpa not page aligned"); 216 *rempages = slotpages - slotoffs; 217 } 218 219 base = data->hva_slots[slot]; 220 return (uint8_t *)base + slotoffs * 4096 + pgoffs; 221 } 222 223 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) 224 { 225 TEST_ASSERT(slot < data->nslots, "Too high slot number"); 226 227 return MEM_GPA + slot * data->pages_per_slot * 4096; 228 } 229 230 static struct vm_data *alloc_vm(void) 231 { 232 struct vm_data *data; 233 234 data = malloc(sizeof(*data)); 235 TEST_ASSERT(data, "malloc(vmdata) failed"); 236 237 data->vm = NULL; 238 data->vcpu = NULL; 239 data->hva_slots = NULL; 240 241 return data; 242 } 243 244 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, 245 void *guest_code, uint64_t mempages, 246 struct timespec *slot_runtime) 247 { 248 uint32_t max_mem_slots; 249 uint64_t rempages; 250 uint64_t guest_addr; 251 uint32_t slot; 252 struct timespec tstart; 253 struct sync_area *sync; 254 255 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); 256 TEST_ASSERT(max_mem_slots > 1, 257 "KVM_CAP_NR_MEMSLOTS should be greater than 1"); 258 TEST_ASSERT(nslots > 1 || nslots == -1, 259 "Slot count cap should be greater than 1"); 260 if (nslots != -1) 261 max_mem_slots = min(max_mem_slots, (uint32_t)nslots); 262 pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots); 263 264 TEST_ASSERT(mempages > 1, 265 "Can't test without any memory"); 266 267 data->npages = mempages; 268 data->nslots = max_mem_slots - 1; 269 data->pages_per_slot = mempages / data->nslots; 270 if (!data->pages_per_slot) { 271 *maxslots = mempages + 1; 272 return false; 273 } 274 275 rempages = mempages % data->nslots; 276 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); 277 TEST_ASSERT(data->hva_slots, "malloc() fail"); 278 279 data->vm = __vm_create_with_one_vcpu(&data->vcpu, mempages, guest_code); 280 ucall_init(data->vm, NULL); 281 282 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", 283 max_mem_slots - 1, data->pages_per_slot, rempages); 284 285 clock_gettime(CLOCK_MONOTONIC, &tstart); 286 for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) { 287 uint64_t npages; 288 289 npages = data->pages_per_slot; 290 if (slot == max_mem_slots - 1) 291 npages += rempages; 292 293 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, 294 guest_addr, slot, npages, 295 0); 296 guest_addr += npages * 4096; 297 } 298 *slot_runtime = timespec_elapsed(tstart); 299 300 for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) { 301 uint64_t npages; 302 uint64_t gpa; 303 304 npages = data->pages_per_slot; 305 if (slot == max_mem_slots - 2) 306 npages += rempages; 307 308 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, 309 slot + 1); 310 TEST_ASSERT(gpa == guest_addr, 311 "vm_phy_pages_alloc() failed\n"); 312 313 data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr); 314 memset(data->hva_slots[slot], 0, npages * 4096); 315 316 guest_addr += npages * 4096; 317 } 318 319 virt_map(data->vm, MEM_GPA, MEM_GPA, mempages); 320 321 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 322 atomic_init(&sync->start_flag, false); 323 atomic_init(&sync->exit_flag, false); 324 atomic_init(&sync->sync_flag, false); 325 326 data->mmio_ok = false; 327 328 return true; 329 } 330 331 static void launch_vm(struct vm_data *data) 332 { 333 pr_info_v("Launching the test VM\n"); 334 335 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); 336 337 /* Ensure the guest thread is spun up. */ 338 wait_for_vcpu(); 339 } 340 341 static void free_vm(struct vm_data *data) 342 { 343 kvm_vm_free(data->vm); 344 free(data->hva_slots); 345 free(data); 346 } 347 348 static void wait_guest_exit(struct vm_data *data) 349 { 350 pthread_join(data->vcpu_thread, NULL); 351 } 352 353 static void let_guest_run(struct sync_area *sync) 354 { 355 atomic_store_explicit(&sync->start_flag, true, memory_order_release); 356 } 357 358 static void guest_spin_until_start(void) 359 { 360 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 361 362 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) 363 ; 364 } 365 366 static void make_guest_exit(struct sync_area *sync) 367 { 368 atomic_store_explicit(&sync->exit_flag, true, memory_order_release); 369 } 370 371 static bool _guest_should_exit(void) 372 { 373 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 374 375 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); 376 } 377 378 #define guest_should_exit() unlikely(_guest_should_exit()) 379 380 /* 381 * noinline so we can easily see how much time the host spends waiting 382 * for the guest. 383 * For the same reason use alarm() instead of polling clock_gettime() 384 * to implement a wait timeout. 385 */ 386 static noinline void host_perform_sync(struct sync_area *sync) 387 { 388 alarm(2); 389 390 atomic_store_explicit(&sync->sync_flag, true, memory_order_release); 391 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) 392 ; 393 394 alarm(0); 395 } 396 397 static bool guest_perform_sync(void) 398 { 399 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 400 bool expected; 401 402 do { 403 if (guest_should_exit()) 404 return false; 405 406 expected = true; 407 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, 408 &expected, false, 409 memory_order_acq_rel, 410 memory_order_relaxed)); 411 412 return true; 413 } 414 415 static void guest_code_test_memslot_move(void) 416 { 417 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 418 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); 419 420 GUEST_SYNC(0); 421 422 guest_spin_until_start(); 423 424 while (!guest_should_exit()) { 425 uintptr_t ptr; 426 427 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; 428 ptr += 4096) 429 *(uint64_t *)ptr = MEM_TEST_VAL_1; 430 431 /* 432 * No host sync here since the MMIO exits are so expensive 433 * that the host would spend most of its time waiting for 434 * the guest and so instead of measuring memslot move 435 * performance we would measure the performance and 436 * likelihood of MMIO exits 437 */ 438 } 439 440 GUEST_DONE(); 441 } 442 443 static void guest_code_test_memslot_map(void) 444 { 445 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 446 447 GUEST_SYNC(0); 448 449 guest_spin_until_start(); 450 451 while (1) { 452 uintptr_t ptr; 453 454 for (ptr = MEM_TEST_GPA; 455 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096) 456 *(uint64_t *)ptr = MEM_TEST_VAL_1; 457 458 if (!guest_perform_sync()) 459 break; 460 461 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 462 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096) 463 *(uint64_t *)ptr = MEM_TEST_VAL_2; 464 465 if (!guest_perform_sync()) 466 break; 467 } 468 469 GUEST_DONE(); 470 } 471 472 static void guest_code_test_memslot_unmap(void) 473 { 474 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 475 476 GUEST_SYNC(0); 477 478 guest_spin_until_start(); 479 480 while (1) { 481 uintptr_t ptr = MEM_TEST_GPA; 482 483 /* 484 * We can afford to access (map) just a small number of pages 485 * per host sync as otherwise the host will spend 486 * a significant amount of its time waiting for the guest 487 * (instead of doing unmap operations), so this will 488 * effectively turn this test into a map performance test. 489 * 490 * Just access a single page to be on the safe side. 491 */ 492 *(uint64_t *)ptr = MEM_TEST_VAL_1; 493 494 if (!guest_perform_sync()) 495 break; 496 497 ptr += MEM_TEST_UNMAP_SIZE / 2; 498 *(uint64_t *)ptr = MEM_TEST_VAL_2; 499 500 if (!guest_perform_sync()) 501 break; 502 } 503 504 GUEST_DONE(); 505 } 506 507 static void guest_code_test_memslot_rw(void) 508 { 509 GUEST_SYNC(0); 510 511 guest_spin_until_start(); 512 513 while (1) { 514 uintptr_t ptr; 515 516 for (ptr = MEM_TEST_GPA; 517 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) 518 *(uint64_t *)ptr = MEM_TEST_VAL_1; 519 520 if (!guest_perform_sync()) 521 break; 522 523 for (ptr = MEM_TEST_GPA + 4096 / 2; 524 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) { 525 uint64_t val = *(uint64_t *)ptr; 526 527 GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val); 528 *(uint64_t *)ptr = 0; 529 } 530 531 if (!guest_perform_sync()) 532 break; 533 } 534 535 GUEST_DONE(); 536 } 537 538 static bool test_memslot_move_prepare(struct vm_data *data, 539 struct sync_area *sync, 540 uint64_t *maxslots, bool isactive) 541 { 542 uint64_t movesrcgpa, movetestgpa; 543 544 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 545 546 if (isactive) { 547 uint64_t lastpages; 548 549 vm_gpa2hva(data, movesrcgpa, &lastpages); 550 if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) { 551 *maxslots = 0; 552 return false; 553 } 554 } 555 556 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); 557 sync->move_area_ptr = (void *)movetestgpa; 558 559 if (isactive) { 560 data->mmio_ok = true; 561 data->mmio_gpa_min = movesrcgpa; 562 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; 563 } 564 565 return true; 566 } 567 568 static bool test_memslot_move_prepare_active(struct vm_data *data, 569 struct sync_area *sync, 570 uint64_t *maxslots) 571 { 572 return test_memslot_move_prepare(data, sync, maxslots, true); 573 } 574 575 static bool test_memslot_move_prepare_inactive(struct vm_data *data, 576 struct sync_area *sync, 577 uint64_t *maxslots) 578 { 579 return test_memslot_move_prepare(data, sync, maxslots, false); 580 } 581 582 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) 583 { 584 uint64_t movesrcgpa; 585 586 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 587 vm_mem_region_move(data->vm, data->nslots - 1 + 1, 588 MEM_TEST_MOVE_GPA_DEST); 589 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); 590 } 591 592 static void test_memslot_do_unmap(struct vm_data *data, 593 uint64_t offsp, uint64_t count) 594 { 595 uint64_t gpa, ctr; 596 597 for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) { 598 uint64_t npages; 599 void *hva; 600 int ret; 601 602 hva = vm_gpa2hva(data, gpa, &npages); 603 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); 604 npages = min(npages, count - ctr); 605 ret = madvise(hva, npages * 4096, MADV_DONTNEED); 606 TEST_ASSERT(!ret, 607 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, 608 hva, gpa); 609 ctr += npages; 610 gpa += npages * 4096; 611 } 612 TEST_ASSERT(ctr == count, 613 "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); 614 } 615 616 static void test_memslot_map_unmap_check(struct vm_data *data, 617 uint64_t offsp, uint64_t valexp) 618 { 619 uint64_t gpa; 620 uint64_t *val; 621 622 if (!map_unmap_verify) 623 return; 624 625 gpa = MEM_TEST_GPA + offsp * 4096; 626 val = (typeof(val))vm_gpa2hva(data, gpa, NULL); 627 TEST_ASSERT(*val == valexp, 628 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", 629 *val, valexp, gpa); 630 *val = 0; 631 } 632 633 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) 634 { 635 /* 636 * Unmap the second half of the test area while guest writes to (maps) 637 * the first half. 638 */ 639 test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2, 640 MEM_TEST_MAP_SIZE_PAGES / 2); 641 642 /* 643 * Wait for the guest to finish writing the first half of the test 644 * area, verify the written value on the first and the last page of 645 * this area and then unmap it. 646 * Meanwhile, the guest is writing to (mapping) the second half of 647 * the test area. 648 */ 649 host_perform_sync(sync); 650 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 651 test_memslot_map_unmap_check(data, 652 MEM_TEST_MAP_SIZE_PAGES / 2 - 1, 653 MEM_TEST_VAL_1); 654 test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2); 655 656 657 /* 658 * Wait for the guest to finish writing the second half of the test 659 * area and verify the written value on the first and the last page 660 * of this area. 661 * The area will be unmapped at the beginning of the next loop 662 * iteration. 663 * Meanwhile, the guest is writing to (mapping) the first half of 664 * the test area. 665 */ 666 host_perform_sync(sync); 667 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2, 668 MEM_TEST_VAL_2); 669 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1, 670 MEM_TEST_VAL_2); 671 } 672 673 static void test_memslot_unmap_loop_common(struct vm_data *data, 674 struct sync_area *sync, 675 uint64_t chunk) 676 { 677 uint64_t ctr; 678 679 /* 680 * Wait for the guest to finish mapping page(s) in the first half 681 * of the test area, verify the written value and then perform unmap 682 * of this area. 683 * Meanwhile, the guest is writing to (mapping) page(s) in the second 684 * half of the test area. 685 */ 686 host_perform_sync(sync); 687 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 688 for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk) 689 test_memslot_do_unmap(data, ctr, chunk); 690 691 /* Likewise, but for the opposite host / guest areas */ 692 host_perform_sync(sync); 693 test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2, 694 MEM_TEST_VAL_2); 695 for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2; 696 ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk) 697 test_memslot_do_unmap(data, ctr, chunk); 698 } 699 700 static void test_memslot_unmap_loop(struct vm_data *data, 701 struct sync_area *sync) 702 { 703 test_memslot_unmap_loop_common(data, sync, 1); 704 } 705 706 static void test_memslot_unmap_loop_chunked(struct vm_data *data, 707 struct sync_area *sync) 708 { 709 test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES); 710 } 711 712 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) 713 { 714 uint64_t gptr; 715 716 for (gptr = MEM_TEST_GPA + 4096 / 2; 717 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) 718 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; 719 720 host_perform_sync(sync); 721 722 for (gptr = MEM_TEST_GPA; 723 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) { 724 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); 725 uint64_t val = *vptr; 726 727 TEST_ASSERT(val == MEM_TEST_VAL_1, 728 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", 729 val, gptr); 730 *vptr = 0; 731 } 732 733 host_perform_sync(sync); 734 } 735 736 struct test_data { 737 const char *name; 738 uint64_t mem_size; 739 void (*guest_code)(void); 740 bool (*prepare)(struct vm_data *data, struct sync_area *sync, 741 uint64_t *maxslots); 742 void (*loop)(struct vm_data *data, struct sync_area *sync); 743 }; 744 745 static bool test_execute(int nslots, uint64_t *maxslots, 746 unsigned int maxtime, 747 const struct test_data *tdata, 748 uint64_t *nloops, 749 struct timespec *slot_runtime, 750 struct timespec *guest_runtime) 751 { 752 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES; 753 struct vm_data *data; 754 struct sync_area *sync; 755 struct timespec tstart; 756 bool ret = true; 757 758 data = alloc_vm(); 759 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, 760 mem_size, slot_runtime)) { 761 ret = false; 762 goto exit_free; 763 } 764 765 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 766 767 if (tdata->prepare && 768 !tdata->prepare(data, sync, maxslots)) { 769 ret = false; 770 goto exit_free; 771 } 772 773 launch_vm(data); 774 775 clock_gettime(CLOCK_MONOTONIC, &tstart); 776 let_guest_run(sync); 777 778 while (1) { 779 *guest_runtime = timespec_elapsed(tstart); 780 if (guest_runtime->tv_sec >= maxtime) 781 break; 782 783 tdata->loop(data, sync); 784 785 (*nloops)++; 786 } 787 788 make_guest_exit(sync); 789 wait_guest_exit(data); 790 791 exit_free: 792 free_vm(data); 793 794 return ret; 795 } 796 797 static const struct test_data tests[] = { 798 { 799 .name = "map", 800 .mem_size = MEM_SIZE_MAP_PAGES, 801 .guest_code = guest_code_test_memslot_map, 802 .loop = test_memslot_map_loop, 803 }, 804 { 805 .name = "unmap", 806 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, 807 .guest_code = guest_code_test_memslot_unmap, 808 .loop = test_memslot_unmap_loop, 809 }, 810 { 811 .name = "unmap chunked", 812 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, 813 .guest_code = guest_code_test_memslot_unmap, 814 .loop = test_memslot_unmap_loop_chunked, 815 }, 816 { 817 .name = "move active area", 818 .guest_code = guest_code_test_memslot_move, 819 .prepare = test_memslot_move_prepare_active, 820 .loop = test_memslot_move_loop, 821 }, 822 { 823 .name = "move inactive area", 824 .guest_code = guest_code_test_memslot_move, 825 .prepare = test_memslot_move_prepare_inactive, 826 .loop = test_memslot_move_loop, 827 }, 828 { 829 .name = "RW", 830 .guest_code = guest_code_test_memslot_rw, 831 .loop = test_memslot_rw_loop 832 }, 833 }; 834 835 #define NTESTS ARRAY_SIZE(tests) 836 837 struct test_args { 838 int tfirst; 839 int tlast; 840 int nslots; 841 int seconds; 842 int runs; 843 }; 844 845 static void help(char *name, struct test_args *targs) 846 { 847 int ctr; 848 849 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", 850 name); 851 pr_info(" -h: print this help screen.\n"); 852 pr_info(" -v: enable verbose mode (not for benchmarking).\n"); 853 pr_info(" -d: enable extra debug checks.\n"); 854 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", 855 targs->nslots); 856 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", 857 targs->tfirst, NTESTS - 1); 858 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", 859 targs->tlast, NTESTS - 1); 860 pr_info(" -l: specify the test length in seconds (currently: %i)\n", 861 targs->seconds); 862 pr_info(" -r: specify the number of runs per test (currently: %i)\n", 863 targs->runs); 864 865 pr_info("\nAvailable tests:\n"); 866 for (ctr = 0; ctr < NTESTS; ctr++) 867 pr_info("%d: %s\n", ctr, tests[ctr].name); 868 } 869 870 static bool parse_args(int argc, char *argv[], 871 struct test_args *targs) 872 { 873 int opt; 874 875 while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { 876 switch (opt) { 877 case 'h': 878 default: 879 help(argv[0], targs); 880 return false; 881 case 'v': 882 verbose = true; 883 break; 884 case 'd': 885 map_unmap_verify = true; 886 break; 887 case 's': 888 targs->nslots = atoi(optarg); 889 if (targs->nslots <= 0 && targs->nslots != -1) { 890 pr_info("Slot count cap has to be positive or -1 for no cap\n"); 891 return false; 892 } 893 break; 894 case 'f': 895 targs->tfirst = atoi(optarg); 896 if (targs->tfirst < 0) { 897 pr_info("First test to run has to be non-negative\n"); 898 return false; 899 } 900 break; 901 case 'e': 902 targs->tlast = atoi(optarg); 903 if (targs->tlast < 0 || targs->tlast >= NTESTS) { 904 pr_info("Last test to run has to be non-negative and less than %zu\n", 905 NTESTS); 906 return false; 907 } 908 break; 909 case 'l': 910 targs->seconds = atoi(optarg); 911 if (targs->seconds < 0) { 912 pr_info("Test length in seconds has to be non-negative\n"); 913 return false; 914 } 915 break; 916 case 'r': 917 targs->runs = atoi(optarg); 918 if (targs->runs <= 0) { 919 pr_info("Runs per test has to be positive\n"); 920 return false; 921 } 922 break; 923 } 924 } 925 926 if (optind < argc) { 927 help(argv[0], targs); 928 return false; 929 } 930 931 if (targs->tfirst > targs->tlast) { 932 pr_info("First test to run cannot be greater than the last test to run\n"); 933 return false; 934 } 935 936 return true; 937 } 938 939 struct test_result { 940 struct timespec slot_runtime, guest_runtime, iter_runtime; 941 int64_t slottimens, runtimens; 942 uint64_t nloops; 943 }; 944 945 static bool test_loop(const struct test_data *data, 946 const struct test_args *targs, 947 struct test_result *rbestslottime, 948 struct test_result *rbestruntime) 949 { 950 uint64_t maxslots; 951 struct test_result result; 952 953 result.nloops = 0; 954 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, 955 &result.nloops, 956 &result.slot_runtime, &result.guest_runtime)) { 957 if (maxslots) 958 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", 959 maxslots); 960 else 961 pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); 962 963 return false; 964 } 965 966 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", 967 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, 968 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); 969 if (!result.nloops) { 970 pr_info("No full loops done - too short test time or system too loaded?\n"); 971 return true; 972 } 973 974 result.iter_runtime = timespec_div(result.guest_runtime, 975 result.nloops); 976 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", 977 result.nloops, 978 result.iter_runtime.tv_sec, 979 result.iter_runtime.tv_nsec); 980 result.slottimens = timespec_to_ns(result.slot_runtime); 981 result.runtimens = timespec_to_ns(result.iter_runtime); 982 983 /* 984 * Only rank the slot setup time for tests using the whole test memory 985 * area so they are comparable 986 */ 987 if (!data->mem_size && 988 (!rbestslottime->slottimens || 989 result.slottimens < rbestslottime->slottimens)) 990 *rbestslottime = result; 991 if (!rbestruntime->runtimens || 992 result.runtimens < rbestruntime->runtimens) 993 *rbestruntime = result; 994 995 return true; 996 } 997 998 int main(int argc, char *argv[]) 999 { 1000 struct test_args targs = { 1001 .tfirst = 0, 1002 .tlast = NTESTS - 1, 1003 .nslots = -1, 1004 .seconds = 5, 1005 .runs = 1, 1006 }; 1007 struct test_result rbestslottime; 1008 int tctr; 1009 1010 /* Tell stdout not to buffer its content */ 1011 setbuf(stdout, NULL); 1012 1013 if (!parse_args(argc, argv, &targs)) 1014 return -1; 1015 1016 rbestslottime.slottimens = 0; 1017 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { 1018 const struct test_data *data = &tests[tctr]; 1019 unsigned int runctr; 1020 struct test_result rbestruntime; 1021 1022 if (tctr > targs.tfirst) 1023 pr_info("\n"); 1024 1025 pr_info("Testing %s performance with %i runs, %d seconds each\n", 1026 data->name, targs.runs, targs.seconds); 1027 1028 rbestruntime.runtimens = 0; 1029 for (runctr = 0; runctr < targs.runs; runctr++) 1030 if (!test_loop(data, &targs, 1031 &rbestslottime, &rbestruntime)) 1032 break; 1033 1034 if (rbestruntime.runtimens) 1035 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", 1036 rbestruntime.iter_runtime.tv_sec, 1037 rbestruntime.iter_runtime.tv_nsec, 1038 rbestruntime.nloops); 1039 } 1040 1041 if (rbestslottime.slottimens) 1042 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", 1043 rbestslottime.slot_runtime.tv_sec, 1044 rbestslottime.slot_runtime.tv_nsec); 1045 1046 return 0; 1047 } 1048