1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * A memslot-related performance benchmark. 4 * 5 * Copyright (C) 2021 Oracle and/or its affiliates. 6 * 7 * Basic guest setup / host vCPU thread code lifted from set_memory_region_test. 8 */ 9 #include <pthread.h> 10 #include <sched.h> 11 #include <semaphore.h> 12 #include <stdatomic.h> 13 #include <stdbool.h> 14 #include <stdint.h> 15 #include <stdio.h> 16 #include <stdlib.h> 17 #include <string.h> 18 #include <sys/mman.h> 19 #include <time.h> 20 #include <unistd.h> 21 22 #include <linux/compiler.h> 23 24 #include <test_util.h> 25 #include <kvm_util.h> 26 #include <processor.h> 27 28 #define VCPU_ID 0 29 30 #define MEM_SIZE ((512U << 20) + 4096) 31 #define MEM_SIZE_PAGES (MEM_SIZE / 4096) 32 #define MEM_GPA 0x10000000UL 33 #define MEM_AUX_GPA MEM_GPA 34 #define MEM_SYNC_GPA MEM_AUX_GPA 35 #define MEM_TEST_GPA (MEM_AUX_GPA + 4096) 36 #define MEM_TEST_SIZE (MEM_SIZE - 4096) 37 static_assert(MEM_SIZE % 4096 == 0, "invalid mem size"); 38 static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size"); 39 40 /* 41 * 32 MiB is max size that gets well over 100 iterations on 509 slots. 42 * Considering that each slot needs to have at least one page up to 43 * 8194 slots in use can then be tested (although with slightly 44 * limited resolution). 45 */ 46 #define MEM_SIZE_MAP ((32U << 20) + 4096) 47 #define MEM_SIZE_MAP_PAGES (MEM_SIZE_MAP / 4096) 48 #define MEM_TEST_MAP_SIZE (MEM_SIZE_MAP - 4096) 49 #define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096) 50 static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size"); 51 static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size"); 52 static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size"); 53 static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size"); 54 55 /* 56 * 128 MiB is min size that fills 32k slots with at least one page in each 57 * while at the same time gets 100+ iterations in such test 58 */ 59 #define MEM_TEST_UNMAP_SIZE (128U << 20) 60 #define MEM_TEST_UNMAP_SIZE_PAGES (MEM_TEST_UNMAP_SIZE / 4096) 61 /* 2 MiB chunk size like a typical huge page */ 62 #define MEM_TEST_UNMAP_CHUNK_PAGES (2U << (20 - 12)) 63 static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE, 64 "invalid unmap test region size"); 65 static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0, 66 "invalid unmap test region size"); 67 static_assert(MEM_TEST_UNMAP_SIZE_PAGES % 68 (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0, 69 "invalid unmap test region size"); 70 71 /* 72 * For the move active test the middle of the test area is placed on 73 * a memslot boundary: half lies in the memslot being moved, half in 74 * other memslot(s). 75 * 76 * When running this test with 32k memslots (32764, really) each memslot 77 * contains 4 pages. 78 * The last one additionally contains the remaining 21 pages of memory, 79 * for the total size of 25 pages. 80 * Hence, the maximum size here is 50 pages. 81 */ 82 #define MEM_TEST_MOVE_SIZE_PAGES (50) 83 #define MEM_TEST_MOVE_SIZE (MEM_TEST_MOVE_SIZE_PAGES * 4096) 84 #define MEM_TEST_MOVE_GPA_DEST (MEM_GPA + MEM_SIZE) 85 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE, 86 "invalid move test region size"); 87 88 #define MEM_TEST_VAL_1 0x1122334455667788 89 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00 90 91 struct vm_data { 92 struct kvm_vm *vm; 93 pthread_t vcpu_thread; 94 uint32_t nslots; 95 uint64_t npages; 96 uint64_t pages_per_slot; 97 void **hva_slots; 98 bool mmio_ok; 99 uint64_t mmio_gpa_min; 100 uint64_t mmio_gpa_max; 101 }; 102 103 struct sync_area { 104 atomic_bool start_flag; 105 atomic_bool exit_flag; 106 atomic_bool sync_flag; 107 void *move_area_ptr; 108 }; 109 110 /* 111 * Technically, we need also for the atomic bool to be address-free, which 112 * is recommended, but not strictly required, by C11 for lockless 113 * implementations. 114 * However, in practice both GCC and Clang fulfill this requirement on 115 * all KVM-supported platforms. 116 */ 117 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless"); 118 119 static sem_t vcpu_ready; 120 121 static bool map_unmap_verify; 122 123 static bool verbose; 124 #define pr_info_v(...) \ 125 do { \ 126 if (verbose) \ 127 pr_info(__VA_ARGS__); \ 128 } while (0) 129 130 static void check_mmio_access(struct vm_data *vm, struct kvm_run *run) 131 { 132 TEST_ASSERT(vm->mmio_ok, "Unexpected mmio exit"); 133 TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read"); 134 TEST_ASSERT(run->mmio.len == 8, 135 "Unexpected exit mmio size = %u", run->mmio.len); 136 TEST_ASSERT(run->mmio.phys_addr >= vm->mmio_gpa_min && 137 run->mmio.phys_addr <= vm->mmio_gpa_max, 138 "Unexpected exit mmio address = 0x%llx", 139 run->mmio.phys_addr); 140 } 141 142 static void *vcpu_worker(void *data) 143 { 144 struct vm_data *vm = data; 145 struct kvm_run *run; 146 struct ucall uc; 147 148 run = vcpu_state(vm->vm, VCPU_ID); 149 while (1) { 150 vcpu_run(vm->vm, VCPU_ID); 151 152 switch (get_ucall(vm->vm, VCPU_ID, &uc)) { 153 case UCALL_SYNC: 154 TEST_ASSERT(uc.args[1] == 0, 155 "Unexpected sync ucall, got %lx", 156 (ulong)uc.args[1]); 157 sem_post(&vcpu_ready); 158 continue; 159 case UCALL_NONE: 160 if (run->exit_reason == KVM_EXIT_MMIO) 161 check_mmio_access(vm, run); 162 else 163 goto done; 164 break; 165 case UCALL_ABORT: 166 TEST_FAIL("%s at %s:%ld, val = %lu", 167 (const char *)uc.args[0], 168 __FILE__, uc.args[1], uc.args[2]); 169 break; 170 case UCALL_DONE: 171 goto done; 172 default: 173 TEST_FAIL("Unknown ucall %lu", uc.cmd); 174 } 175 } 176 177 done: 178 return NULL; 179 } 180 181 static void wait_for_vcpu(void) 182 { 183 struct timespec ts; 184 185 TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), 186 "clock_gettime() failed: %d\n", errno); 187 188 ts.tv_sec += 2; 189 TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), 190 "sem_timedwait() failed: %d\n", errno); 191 } 192 193 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages) 194 { 195 uint64_t gpage, pgoffs; 196 uint32_t slot, slotoffs; 197 void *base; 198 199 TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate"); 200 TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096, 201 "Too high gpa to translate"); 202 gpa -= MEM_GPA; 203 204 gpage = gpa / 4096; 205 pgoffs = gpa % 4096; 206 slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1); 207 slotoffs = gpage - (slot * data->pages_per_slot); 208 209 if (rempages) { 210 uint64_t slotpages; 211 212 if (slot == data->nslots - 1) 213 slotpages = data->npages - slot * data->pages_per_slot; 214 else 215 slotpages = data->pages_per_slot; 216 217 TEST_ASSERT(!pgoffs, 218 "Asking for remaining pages in slot but gpa not page aligned"); 219 *rempages = slotpages - slotoffs; 220 } 221 222 base = data->hva_slots[slot]; 223 return (uint8_t *)base + slotoffs * 4096 + pgoffs; 224 } 225 226 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot) 227 { 228 TEST_ASSERT(slot < data->nslots, "Too high slot number"); 229 230 return MEM_GPA + slot * data->pages_per_slot * 4096; 231 } 232 233 static struct vm_data *alloc_vm(void) 234 { 235 struct vm_data *data; 236 237 data = malloc(sizeof(*data)); 238 TEST_ASSERT(data, "malloc(vmdata) failed"); 239 240 data->vm = NULL; 241 data->hva_slots = NULL; 242 243 return data; 244 } 245 246 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots, 247 void *guest_code, uint64_t mempages, 248 struct timespec *slot_runtime) 249 { 250 uint32_t max_mem_slots; 251 uint64_t rempages; 252 uint64_t guest_addr; 253 uint32_t slot; 254 struct timespec tstart; 255 struct sync_area *sync; 256 257 max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); 258 TEST_ASSERT(max_mem_slots > 1, 259 "KVM_CAP_NR_MEMSLOTS should be greater than 1"); 260 TEST_ASSERT(nslots > 1 || nslots == -1, 261 "Slot count cap should be greater than 1"); 262 if (nslots != -1) 263 max_mem_slots = min(max_mem_slots, (uint32_t)nslots); 264 pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots); 265 266 TEST_ASSERT(mempages > 1, 267 "Can't test without any memory"); 268 269 data->npages = mempages; 270 data->nslots = max_mem_slots - 1; 271 data->pages_per_slot = mempages / data->nslots; 272 if (!data->pages_per_slot) { 273 *maxslots = mempages + 1; 274 return false; 275 } 276 277 rempages = mempages % data->nslots; 278 data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots); 279 TEST_ASSERT(data->hva_slots, "malloc() fail"); 280 281 data->vm = vm_create_default(VCPU_ID, mempages, guest_code); 282 ucall_init(data->vm, NULL); 283 284 pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n", 285 max_mem_slots - 1, data->pages_per_slot, rempages); 286 287 clock_gettime(CLOCK_MONOTONIC, &tstart); 288 for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) { 289 uint64_t npages; 290 291 npages = data->pages_per_slot; 292 if (slot == max_mem_slots - 1) 293 npages += rempages; 294 295 vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS, 296 guest_addr, slot, npages, 297 0); 298 guest_addr += npages * 4096; 299 } 300 *slot_runtime = timespec_elapsed(tstart); 301 302 for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) { 303 uint64_t npages; 304 uint64_t gpa; 305 306 npages = data->pages_per_slot; 307 if (slot == max_mem_slots - 2) 308 npages += rempages; 309 310 gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr, 311 slot + 1); 312 TEST_ASSERT(gpa == guest_addr, 313 "vm_phy_pages_alloc() failed\n"); 314 315 data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr); 316 memset(data->hva_slots[slot], 0, npages * 4096); 317 318 guest_addr += npages * 4096; 319 } 320 321 virt_map(data->vm, MEM_GPA, MEM_GPA, mempages); 322 323 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 324 atomic_init(&sync->start_flag, false); 325 atomic_init(&sync->exit_flag, false); 326 atomic_init(&sync->sync_flag, false); 327 328 data->mmio_ok = false; 329 330 return true; 331 } 332 333 static void launch_vm(struct vm_data *data) 334 { 335 pr_info_v("Launching the test VM\n"); 336 337 pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data); 338 339 /* Ensure the guest thread is spun up. */ 340 wait_for_vcpu(); 341 } 342 343 static void free_vm(struct vm_data *data) 344 { 345 kvm_vm_free(data->vm); 346 free(data->hva_slots); 347 free(data); 348 } 349 350 static void wait_guest_exit(struct vm_data *data) 351 { 352 pthread_join(data->vcpu_thread, NULL); 353 } 354 355 static void let_guest_run(struct sync_area *sync) 356 { 357 atomic_store_explicit(&sync->start_flag, true, memory_order_release); 358 } 359 360 static void guest_spin_until_start(void) 361 { 362 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 363 364 while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire)) 365 ; 366 } 367 368 static void make_guest_exit(struct sync_area *sync) 369 { 370 atomic_store_explicit(&sync->exit_flag, true, memory_order_release); 371 } 372 373 static bool _guest_should_exit(void) 374 { 375 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 376 377 return atomic_load_explicit(&sync->exit_flag, memory_order_acquire); 378 } 379 380 #define guest_should_exit() unlikely(_guest_should_exit()) 381 382 /* 383 * noinline so we can easily see how much time the host spends waiting 384 * for the guest. 385 * For the same reason use alarm() instead of polling clock_gettime() 386 * to implement a wait timeout. 387 */ 388 static noinline void host_perform_sync(struct sync_area *sync) 389 { 390 alarm(2); 391 392 atomic_store_explicit(&sync->sync_flag, true, memory_order_release); 393 while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire)) 394 ; 395 396 alarm(0); 397 } 398 399 static bool guest_perform_sync(void) 400 { 401 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 402 bool expected; 403 404 do { 405 if (guest_should_exit()) 406 return false; 407 408 expected = true; 409 } while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag, 410 &expected, false, 411 memory_order_acq_rel, 412 memory_order_relaxed)); 413 414 return true; 415 } 416 417 static void guest_code_test_memslot_move(void) 418 { 419 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 420 uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr); 421 422 GUEST_SYNC(0); 423 424 guest_spin_until_start(); 425 426 while (!guest_should_exit()) { 427 uintptr_t ptr; 428 429 for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE; 430 ptr += 4096) 431 *(uint64_t *)ptr = MEM_TEST_VAL_1; 432 433 /* 434 * No host sync here since the MMIO exits are so expensive 435 * that the host would spend most of its time waiting for 436 * the guest and so instead of measuring memslot move 437 * performance we would measure the performance and 438 * likelihood of MMIO exits 439 */ 440 } 441 442 GUEST_DONE(); 443 } 444 445 static void guest_code_test_memslot_map(void) 446 { 447 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 448 449 GUEST_SYNC(0); 450 451 guest_spin_until_start(); 452 453 while (1) { 454 uintptr_t ptr; 455 456 for (ptr = MEM_TEST_GPA; 457 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096) 458 *(uint64_t *)ptr = MEM_TEST_VAL_1; 459 460 if (!guest_perform_sync()) 461 break; 462 463 for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; 464 ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096) 465 *(uint64_t *)ptr = MEM_TEST_VAL_2; 466 467 if (!guest_perform_sync()) 468 break; 469 } 470 471 GUEST_DONE(); 472 } 473 474 static void guest_code_test_memslot_unmap(void) 475 { 476 struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA; 477 478 GUEST_SYNC(0); 479 480 guest_spin_until_start(); 481 482 while (1) { 483 uintptr_t ptr = MEM_TEST_GPA; 484 485 /* 486 * We can afford to access (map) just a small number of pages 487 * per host sync as otherwise the host will spend 488 * a significant amount of its time waiting for the guest 489 * (instead of doing unmap operations), so this will 490 * effectively turn this test into a map performance test. 491 * 492 * Just access a single page to be on the safe side. 493 */ 494 *(uint64_t *)ptr = MEM_TEST_VAL_1; 495 496 if (!guest_perform_sync()) 497 break; 498 499 ptr += MEM_TEST_UNMAP_SIZE / 2; 500 *(uint64_t *)ptr = MEM_TEST_VAL_2; 501 502 if (!guest_perform_sync()) 503 break; 504 } 505 506 GUEST_DONE(); 507 } 508 509 static void guest_code_test_memslot_rw(void) 510 { 511 GUEST_SYNC(0); 512 513 guest_spin_until_start(); 514 515 while (1) { 516 uintptr_t ptr; 517 518 for (ptr = MEM_TEST_GPA; 519 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) 520 *(uint64_t *)ptr = MEM_TEST_VAL_1; 521 522 if (!guest_perform_sync()) 523 break; 524 525 for (ptr = MEM_TEST_GPA + 4096 / 2; 526 ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) { 527 uint64_t val = *(uint64_t *)ptr; 528 529 GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val); 530 *(uint64_t *)ptr = 0; 531 } 532 533 if (!guest_perform_sync()) 534 break; 535 } 536 537 GUEST_DONE(); 538 } 539 540 static bool test_memslot_move_prepare(struct vm_data *data, 541 struct sync_area *sync, 542 uint64_t *maxslots, bool isactive) 543 { 544 uint64_t movesrcgpa, movetestgpa; 545 546 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 547 548 if (isactive) { 549 uint64_t lastpages; 550 551 vm_gpa2hva(data, movesrcgpa, &lastpages); 552 if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) { 553 *maxslots = 0; 554 return false; 555 } 556 } 557 558 movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1)); 559 sync->move_area_ptr = (void *)movetestgpa; 560 561 if (isactive) { 562 data->mmio_ok = true; 563 data->mmio_gpa_min = movesrcgpa; 564 data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1; 565 } 566 567 return true; 568 } 569 570 static bool test_memslot_move_prepare_active(struct vm_data *data, 571 struct sync_area *sync, 572 uint64_t *maxslots) 573 { 574 return test_memslot_move_prepare(data, sync, maxslots, true); 575 } 576 577 static bool test_memslot_move_prepare_inactive(struct vm_data *data, 578 struct sync_area *sync, 579 uint64_t *maxslots) 580 { 581 return test_memslot_move_prepare(data, sync, maxslots, false); 582 } 583 584 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync) 585 { 586 uint64_t movesrcgpa; 587 588 movesrcgpa = vm_slot2gpa(data, data->nslots - 1); 589 vm_mem_region_move(data->vm, data->nslots - 1 + 1, 590 MEM_TEST_MOVE_GPA_DEST); 591 vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa); 592 } 593 594 static void test_memslot_do_unmap(struct vm_data *data, 595 uint64_t offsp, uint64_t count) 596 { 597 uint64_t gpa, ctr; 598 599 for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) { 600 uint64_t npages; 601 void *hva; 602 int ret; 603 604 hva = vm_gpa2hva(data, gpa, &npages); 605 TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa); 606 npages = min(npages, count - ctr); 607 ret = madvise(hva, npages * 4096, MADV_DONTNEED); 608 TEST_ASSERT(!ret, 609 "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64, 610 hva, gpa); 611 ctr += npages; 612 gpa += npages * 4096; 613 } 614 TEST_ASSERT(ctr == count, 615 "madvise(MADV_DONTNEED) should exactly cover all of the requested area"); 616 } 617 618 static void test_memslot_map_unmap_check(struct vm_data *data, 619 uint64_t offsp, uint64_t valexp) 620 { 621 uint64_t gpa; 622 uint64_t *val; 623 624 if (!map_unmap_verify) 625 return; 626 627 gpa = MEM_TEST_GPA + offsp * 4096; 628 val = (typeof(val))vm_gpa2hva(data, gpa, NULL); 629 TEST_ASSERT(*val == valexp, 630 "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")", 631 *val, valexp, gpa); 632 *val = 0; 633 } 634 635 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync) 636 { 637 /* 638 * Unmap the second half of the test area while guest writes to (maps) 639 * the first half. 640 */ 641 test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2, 642 MEM_TEST_MAP_SIZE_PAGES / 2); 643 644 /* 645 * Wait for the guest to finish writing the first half of the test 646 * area, verify the written value on the first and the last page of 647 * this area and then unmap it. 648 * Meanwhile, the guest is writing to (mapping) the second half of 649 * the test area. 650 */ 651 host_perform_sync(sync); 652 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 653 test_memslot_map_unmap_check(data, 654 MEM_TEST_MAP_SIZE_PAGES / 2 - 1, 655 MEM_TEST_VAL_1); 656 test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2); 657 658 659 /* 660 * Wait for the guest to finish writing the second half of the test 661 * area and verify the written value on the first and the last page 662 * of this area. 663 * The area will be unmapped at the beginning of the next loop 664 * iteration. 665 * Meanwhile, the guest is writing to (mapping) the first half of 666 * the test area. 667 */ 668 host_perform_sync(sync); 669 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2, 670 MEM_TEST_VAL_2); 671 test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1, 672 MEM_TEST_VAL_2); 673 } 674 675 static void test_memslot_unmap_loop_common(struct vm_data *data, 676 struct sync_area *sync, 677 uint64_t chunk) 678 { 679 uint64_t ctr; 680 681 /* 682 * Wait for the guest to finish mapping page(s) in the first half 683 * of the test area, verify the written value and then perform unmap 684 * of this area. 685 * Meanwhile, the guest is writing to (mapping) page(s) in the second 686 * half of the test area. 687 */ 688 host_perform_sync(sync); 689 test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1); 690 for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk) 691 test_memslot_do_unmap(data, ctr, chunk); 692 693 /* Likewise, but for the opposite host / guest areas */ 694 host_perform_sync(sync); 695 test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2, 696 MEM_TEST_VAL_2); 697 for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2; 698 ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk) 699 test_memslot_do_unmap(data, ctr, chunk); 700 } 701 702 static void test_memslot_unmap_loop(struct vm_data *data, 703 struct sync_area *sync) 704 { 705 test_memslot_unmap_loop_common(data, sync, 1); 706 } 707 708 static void test_memslot_unmap_loop_chunked(struct vm_data *data, 709 struct sync_area *sync) 710 { 711 test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES); 712 } 713 714 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync) 715 { 716 uint64_t gptr; 717 718 for (gptr = MEM_TEST_GPA + 4096 / 2; 719 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) 720 *(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2; 721 722 host_perform_sync(sync); 723 724 for (gptr = MEM_TEST_GPA; 725 gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) { 726 uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL); 727 uint64_t val = *vptr; 728 729 TEST_ASSERT(val == MEM_TEST_VAL_1, 730 "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")", 731 val, gptr); 732 *vptr = 0; 733 } 734 735 host_perform_sync(sync); 736 } 737 738 struct test_data { 739 const char *name; 740 uint64_t mem_size; 741 void (*guest_code)(void); 742 bool (*prepare)(struct vm_data *data, struct sync_area *sync, 743 uint64_t *maxslots); 744 void (*loop)(struct vm_data *data, struct sync_area *sync); 745 }; 746 747 static bool test_execute(int nslots, uint64_t *maxslots, 748 unsigned int maxtime, 749 const struct test_data *tdata, 750 uint64_t *nloops, 751 struct timespec *slot_runtime, 752 struct timespec *guest_runtime) 753 { 754 uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES; 755 struct vm_data *data; 756 struct sync_area *sync; 757 struct timespec tstart; 758 bool ret = true; 759 760 data = alloc_vm(); 761 if (!prepare_vm(data, nslots, maxslots, tdata->guest_code, 762 mem_size, slot_runtime)) { 763 ret = false; 764 goto exit_free; 765 } 766 767 sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL); 768 769 if (tdata->prepare && 770 !tdata->prepare(data, sync, maxslots)) { 771 ret = false; 772 goto exit_free; 773 } 774 775 launch_vm(data); 776 777 clock_gettime(CLOCK_MONOTONIC, &tstart); 778 let_guest_run(sync); 779 780 while (1) { 781 *guest_runtime = timespec_elapsed(tstart); 782 if (guest_runtime->tv_sec >= maxtime) 783 break; 784 785 tdata->loop(data, sync); 786 787 (*nloops)++; 788 } 789 790 make_guest_exit(sync); 791 wait_guest_exit(data); 792 793 exit_free: 794 free_vm(data); 795 796 return ret; 797 } 798 799 static const struct test_data tests[] = { 800 { 801 .name = "map", 802 .mem_size = MEM_SIZE_MAP_PAGES, 803 .guest_code = guest_code_test_memslot_map, 804 .loop = test_memslot_map_loop, 805 }, 806 { 807 .name = "unmap", 808 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, 809 .guest_code = guest_code_test_memslot_unmap, 810 .loop = test_memslot_unmap_loop, 811 }, 812 { 813 .name = "unmap chunked", 814 .mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1, 815 .guest_code = guest_code_test_memslot_unmap, 816 .loop = test_memslot_unmap_loop_chunked, 817 }, 818 { 819 .name = "move active area", 820 .guest_code = guest_code_test_memslot_move, 821 .prepare = test_memslot_move_prepare_active, 822 .loop = test_memslot_move_loop, 823 }, 824 { 825 .name = "move inactive area", 826 .guest_code = guest_code_test_memslot_move, 827 .prepare = test_memslot_move_prepare_inactive, 828 .loop = test_memslot_move_loop, 829 }, 830 { 831 .name = "RW", 832 .guest_code = guest_code_test_memslot_rw, 833 .loop = test_memslot_rw_loop 834 }, 835 }; 836 837 #define NTESTS ARRAY_SIZE(tests) 838 839 struct test_args { 840 int tfirst; 841 int tlast; 842 int nslots; 843 int seconds; 844 int runs; 845 }; 846 847 static void help(char *name, struct test_args *targs) 848 { 849 int ctr; 850 851 pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n", 852 name); 853 pr_info(" -h: print this help screen.\n"); 854 pr_info(" -v: enable verbose mode (not for benchmarking).\n"); 855 pr_info(" -d: enable extra debug checks.\n"); 856 pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n", 857 targs->nslots); 858 pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n", 859 targs->tfirst, NTESTS - 1); 860 pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n", 861 targs->tlast, NTESTS - 1); 862 pr_info(" -l: specify the test length in seconds (currently: %i)\n", 863 targs->seconds); 864 pr_info(" -r: specify the number of runs per test (currently: %i)\n", 865 targs->runs); 866 867 pr_info("\nAvailable tests:\n"); 868 for (ctr = 0; ctr < NTESTS; ctr++) 869 pr_info("%d: %s\n", ctr, tests[ctr].name); 870 } 871 872 static bool parse_args(int argc, char *argv[], 873 struct test_args *targs) 874 { 875 int opt; 876 877 while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) { 878 switch (opt) { 879 case 'h': 880 default: 881 help(argv[0], targs); 882 return false; 883 case 'v': 884 verbose = true; 885 break; 886 case 'd': 887 map_unmap_verify = true; 888 break; 889 case 's': 890 targs->nslots = atoi(optarg); 891 if (targs->nslots <= 0 && targs->nslots != -1) { 892 pr_info("Slot count cap has to be positive or -1 for no cap\n"); 893 return false; 894 } 895 break; 896 case 'f': 897 targs->tfirst = atoi(optarg); 898 if (targs->tfirst < 0) { 899 pr_info("First test to run has to be non-negative\n"); 900 return false; 901 } 902 break; 903 case 'e': 904 targs->tlast = atoi(optarg); 905 if (targs->tlast < 0 || targs->tlast >= NTESTS) { 906 pr_info("Last test to run has to be non-negative and less than %zu\n", 907 NTESTS); 908 return false; 909 } 910 break; 911 case 'l': 912 targs->seconds = atoi(optarg); 913 if (targs->seconds < 0) { 914 pr_info("Test length in seconds has to be non-negative\n"); 915 return false; 916 } 917 break; 918 case 'r': 919 targs->runs = atoi(optarg); 920 if (targs->runs <= 0) { 921 pr_info("Runs per test has to be positive\n"); 922 return false; 923 } 924 break; 925 } 926 } 927 928 if (optind < argc) { 929 help(argv[0], targs); 930 return false; 931 } 932 933 if (targs->tfirst > targs->tlast) { 934 pr_info("First test to run cannot be greater than the last test to run\n"); 935 return false; 936 } 937 938 return true; 939 } 940 941 struct test_result { 942 struct timespec slot_runtime, guest_runtime, iter_runtime; 943 int64_t slottimens, runtimens; 944 uint64_t nloops; 945 }; 946 947 static bool test_loop(const struct test_data *data, 948 const struct test_args *targs, 949 struct test_result *rbestslottime, 950 struct test_result *rbestruntime) 951 { 952 uint64_t maxslots; 953 struct test_result result; 954 955 result.nloops = 0; 956 if (!test_execute(targs->nslots, &maxslots, targs->seconds, data, 957 &result.nloops, 958 &result.slot_runtime, &result.guest_runtime)) { 959 if (maxslots) 960 pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n", 961 maxslots); 962 else 963 pr_info("Memslot count may be too high for this test, try adjusting the cap\n"); 964 965 return false; 966 } 967 968 pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n", 969 result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec, 970 result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec); 971 if (!result.nloops) { 972 pr_info("No full loops done - too short test time or system too loaded?\n"); 973 return true; 974 } 975 976 result.iter_runtime = timespec_div(result.guest_runtime, 977 result.nloops); 978 pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n", 979 result.nloops, 980 result.iter_runtime.tv_sec, 981 result.iter_runtime.tv_nsec); 982 result.slottimens = timespec_to_ns(result.slot_runtime); 983 result.runtimens = timespec_to_ns(result.iter_runtime); 984 985 /* 986 * Only rank the slot setup time for tests using the whole test memory 987 * area so they are comparable 988 */ 989 if (!data->mem_size && 990 (!rbestslottime->slottimens || 991 result.slottimens < rbestslottime->slottimens)) 992 *rbestslottime = result; 993 if (!rbestruntime->runtimens || 994 result.runtimens < rbestruntime->runtimens) 995 *rbestruntime = result; 996 997 return true; 998 } 999 1000 int main(int argc, char *argv[]) 1001 { 1002 struct test_args targs = { 1003 .tfirst = 0, 1004 .tlast = NTESTS - 1, 1005 .nslots = -1, 1006 .seconds = 5, 1007 .runs = 1, 1008 }; 1009 struct test_result rbestslottime; 1010 int tctr; 1011 1012 /* Tell stdout not to buffer its content */ 1013 setbuf(stdout, NULL); 1014 1015 if (!parse_args(argc, argv, &targs)) 1016 return -1; 1017 1018 rbestslottime.slottimens = 0; 1019 for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) { 1020 const struct test_data *data = &tests[tctr]; 1021 unsigned int runctr; 1022 struct test_result rbestruntime; 1023 1024 if (tctr > targs.tfirst) 1025 pr_info("\n"); 1026 1027 pr_info("Testing %s performance with %i runs, %d seconds each\n", 1028 data->name, targs.runs, targs.seconds); 1029 1030 rbestruntime.runtimens = 0; 1031 for (runctr = 0; runctr < targs.runs; runctr++) 1032 if (!test_loop(data, &targs, 1033 &rbestslottime, &rbestruntime)) 1034 break; 1035 1036 if (rbestruntime.runtimens) 1037 pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n", 1038 rbestruntime.iter_runtime.tv_sec, 1039 rbestruntime.iter_runtime.tv_nsec, 1040 rbestruntime.nloops); 1041 } 1042 1043 if (rbestslottime.slottimens) 1044 pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n", 1045 rbestslottime.slot_runtime.tv_sec, 1046 rbestslottime.slot_runtime.tv_nsec); 1047 1048 return 0; 1049 } 1050