1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * A memslot-related performance benchmark.
4  *
5  * Copyright (C) 2021 Oracle and/or its affiliates.
6  *
7  * Basic guest setup / host vCPU thread code lifted from set_memory_region_test.
8  */
9 #include <pthread.h>
10 #include <sched.h>
11 #include <semaphore.h>
12 #include <stdatomic.h>
13 #include <stdbool.h>
14 #include <stdint.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <sys/mman.h>
19 #include <time.h>
20 #include <unistd.h>
21 
22 #include <linux/compiler.h>
23 
24 #include <test_util.h>
25 #include <kvm_util.h>
26 #include <processor.h>
27 
28 #define VCPU_ID 0
29 
30 #define MEM_SIZE		((512U << 20) + 4096)
31 #define MEM_SIZE_PAGES		(MEM_SIZE / 4096)
32 #define MEM_GPA		0x10000000UL
33 #define MEM_AUX_GPA		MEM_GPA
34 #define MEM_SYNC_GPA		MEM_AUX_GPA
35 #define MEM_TEST_GPA		(MEM_AUX_GPA + 4096)
36 #define MEM_TEST_SIZE		(MEM_SIZE - 4096)
37 static_assert(MEM_SIZE % 4096 == 0, "invalid mem size");
38 static_assert(MEM_TEST_SIZE % 4096 == 0, "invalid mem test size");
39 
40 /*
41  * 32 MiB is max size that gets well over 100 iterations on 509 slots.
42  * Considering that each slot needs to have at least one page up to
43  * 8194 slots in use can then be tested (although with slightly
44  * limited resolution).
45  */
46 #define MEM_SIZE_MAP		((32U << 20) + 4096)
47 #define MEM_SIZE_MAP_PAGES	(MEM_SIZE_MAP / 4096)
48 #define MEM_TEST_MAP_SIZE	(MEM_SIZE_MAP - 4096)
49 #define MEM_TEST_MAP_SIZE_PAGES (MEM_TEST_MAP_SIZE / 4096)
50 static_assert(MEM_SIZE_MAP % 4096 == 0, "invalid map test region size");
51 static_assert(MEM_TEST_MAP_SIZE % 4096 == 0, "invalid map test region size");
52 static_assert(MEM_TEST_MAP_SIZE_PAGES % 2 == 0, "invalid map test region size");
53 static_assert(MEM_TEST_MAP_SIZE_PAGES > 2, "invalid map test region size");
54 
55 /*
56  * 128 MiB is min size that fills 32k slots with at least one page in each
57  * while at the same time gets 100+ iterations in such test
58  */
59 #define MEM_TEST_UNMAP_SIZE		(128U << 20)
60 #define MEM_TEST_UNMAP_SIZE_PAGES	(MEM_TEST_UNMAP_SIZE / 4096)
61 /* 2 MiB chunk size like a typical huge page */
62 #define MEM_TEST_UNMAP_CHUNK_PAGES	(2U << (20 - 12))
63 static_assert(MEM_TEST_UNMAP_SIZE <= MEM_TEST_SIZE,
64 	      "invalid unmap test region size");
65 static_assert(MEM_TEST_UNMAP_SIZE % 4096 == 0,
66 	      "invalid unmap test region size");
67 static_assert(MEM_TEST_UNMAP_SIZE_PAGES %
68 	      (2 * MEM_TEST_UNMAP_CHUNK_PAGES) == 0,
69 	      "invalid unmap test region size");
70 
71 /*
72  * For the move active test the middle of the test area is placed on
73  * a memslot boundary: half lies in the memslot being moved, half in
74  * other memslot(s).
75  *
76  * When running this test with 32k memslots (32764, really) each memslot
77  * contains 4 pages.
78  * The last one additionally contains the remaining 21 pages of memory,
79  * for the total size of 25 pages.
80  * Hence, the maximum size here is 50 pages.
81  */
82 #define MEM_TEST_MOVE_SIZE_PAGES	(50)
83 #define MEM_TEST_MOVE_SIZE		(MEM_TEST_MOVE_SIZE_PAGES * 4096)
84 #define MEM_TEST_MOVE_GPA_DEST		(MEM_GPA + MEM_SIZE)
85 static_assert(MEM_TEST_MOVE_SIZE <= MEM_TEST_SIZE,
86 	      "invalid move test region size");
87 
88 #define MEM_TEST_VAL_1 0x1122334455667788
89 #define MEM_TEST_VAL_2 0x99AABBCCDDEEFF00
90 
91 struct vm_data {
92 	struct kvm_vm *vm;
93 	pthread_t vcpu_thread;
94 	uint32_t nslots;
95 	uint64_t npages;
96 	uint64_t pages_per_slot;
97 	void **hva_slots;
98 	bool mmio_ok;
99 	uint64_t mmio_gpa_min;
100 	uint64_t mmio_gpa_max;
101 };
102 
103 struct sync_area {
104 	atomic_bool start_flag;
105 	atomic_bool exit_flag;
106 	atomic_bool sync_flag;
107 	void *move_area_ptr;
108 };
109 
110 /*
111  * Technically, we need also for the atomic bool to be address-free, which
112  * is recommended, but not strictly required, by C11 for lockless
113  * implementations.
114  * However, in practice both GCC and Clang fulfill this requirement on
115  * all KVM-supported platforms.
116  */
117 static_assert(ATOMIC_BOOL_LOCK_FREE == 2, "atomic bool is not lockless");
118 
119 static sem_t vcpu_ready;
120 
121 static bool map_unmap_verify;
122 
123 static bool verbose;
124 #define pr_info_v(...)				\
125 	do {					\
126 		if (verbose)			\
127 			pr_info(__VA_ARGS__);	\
128 	} while (0)
129 
130 static void *vcpu_worker(void *data)
131 {
132 	struct vm_data *vm = data;
133 	struct kvm_run *run;
134 	struct ucall uc;
135 	uint64_t cmd;
136 
137 	run = vcpu_state(vm->vm, VCPU_ID);
138 	while (1) {
139 		vcpu_run(vm->vm, VCPU_ID);
140 
141 		if (run->exit_reason == KVM_EXIT_IO) {
142 			cmd = get_ucall(vm->vm, VCPU_ID, &uc);
143 			if (cmd != UCALL_SYNC)
144 				break;
145 
146 			sem_post(&vcpu_ready);
147 			continue;
148 		}
149 
150 		if (run->exit_reason != KVM_EXIT_MMIO)
151 			break;
152 
153 		TEST_ASSERT(vm->mmio_ok, "Unexpected mmio exit");
154 		TEST_ASSERT(run->mmio.is_write, "Unexpected mmio read");
155 		TEST_ASSERT(run->mmio.len == 8,
156 			    "Unexpected exit mmio size = %u", run->mmio.len);
157 		TEST_ASSERT(run->mmio.phys_addr >= vm->mmio_gpa_min &&
158 			    run->mmio.phys_addr <= vm->mmio_gpa_max,
159 			    "Unexpected exit mmio address = 0x%llx",
160 			    run->mmio.phys_addr);
161 	}
162 
163 	if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT)
164 		TEST_FAIL("%s at %s:%ld, val = %lu", (const char *)uc.args[0],
165 			  __FILE__, uc.args[1], uc.args[2]);
166 
167 	return NULL;
168 }
169 
170 static void wait_for_vcpu(void)
171 {
172 	struct timespec ts;
173 
174 	TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts),
175 		    "clock_gettime() failed: %d\n", errno);
176 
177 	ts.tv_sec += 2;
178 	TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts),
179 		    "sem_timedwait() failed: %d\n", errno);
180 }
181 
182 static void *vm_gpa2hva(struct vm_data *data, uint64_t gpa, uint64_t *rempages)
183 {
184 	uint64_t gpage, pgoffs;
185 	uint32_t slot, slotoffs;
186 	void *base;
187 
188 	TEST_ASSERT(gpa >= MEM_GPA, "Too low gpa to translate");
189 	TEST_ASSERT(gpa < MEM_GPA + data->npages * 4096,
190 		    "Too high gpa to translate");
191 	gpa -= MEM_GPA;
192 
193 	gpage = gpa / 4096;
194 	pgoffs = gpa % 4096;
195 	slot = min(gpage / data->pages_per_slot, (uint64_t)data->nslots - 1);
196 	slotoffs = gpage - (slot * data->pages_per_slot);
197 
198 	if (rempages) {
199 		uint64_t slotpages;
200 
201 		if (slot == data->nslots - 1)
202 			slotpages = data->npages - slot * data->pages_per_slot;
203 		else
204 			slotpages = data->pages_per_slot;
205 
206 		TEST_ASSERT(!pgoffs,
207 			    "Asking for remaining pages in slot but gpa not page aligned");
208 		*rempages = slotpages - slotoffs;
209 	}
210 
211 	base = data->hva_slots[slot];
212 	return (uint8_t *)base + slotoffs * 4096 + pgoffs;
213 }
214 
215 static uint64_t vm_slot2gpa(struct vm_data *data, uint32_t slot)
216 {
217 	TEST_ASSERT(slot < data->nslots, "Too high slot number");
218 
219 	return MEM_GPA + slot * data->pages_per_slot * 4096;
220 }
221 
222 static struct vm_data *alloc_vm(void)
223 {
224 	struct vm_data *data;
225 
226 	data = malloc(sizeof(*data));
227 	TEST_ASSERT(data, "malloc(vmdata) failed");
228 
229 	data->vm = NULL;
230 	data->hva_slots = NULL;
231 
232 	return data;
233 }
234 
235 static bool prepare_vm(struct vm_data *data, int nslots, uint64_t *maxslots,
236 		       void *guest_code, uint64_t mempages,
237 		       struct timespec *slot_runtime)
238 {
239 	uint32_t max_mem_slots;
240 	uint64_t rempages;
241 	uint64_t guest_addr;
242 	uint32_t slot;
243 	struct timespec tstart;
244 	struct sync_area *sync;
245 
246 	max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS);
247 	TEST_ASSERT(max_mem_slots > 1,
248 		    "KVM_CAP_NR_MEMSLOTS should be greater than 1");
249 	TEST_ASSERT(nslots > 1 || nslots == -1,
250 		    "Slot count cap should be greater than 1");
251 	if (nslots != -1)
252 		max_mem_slots = min(max_mem_slots, (uint32_t)nslots);
253 	pr_info_v("Allowed number of memory slots: %"PRIu32"\n", max_mem_slots);
254 
255 	TEST_ASSERT(mempages > 1,
256 		    "Can't test without any memory");
257 
258 	data->npages = mempages;
259 	data->nslots = max_mem_slots - 1;
260 	data->pages_per_slot = mempages / data->nslots;
261 	if (!data->pages_per_slot) {
262 		*maxslots = mempages + 1;
263 		return false;
264 	}
265 
266 	rempages = mempages % data->nslots;
267 	data->hva_slots = malloc(sizeof(*data->hva_slots) * data->nslots);
268 	TEST_ASSERT(data->hva_slots, "malloc() fail");
269 
270 	data->vm = vm_create_default(VCPU_ID, 1024, guest_code);
271 
272 	pr_info_v("Adding slots 1..%i, each slot with %"PRIu64" pages + %"PRIu64" extra pages last\n",
273 		max_mem_slots - 1, data->pages_per_slot, rempages);
274 
275 	clock_gettime(CLOCK_MONOTONIC, &tstart);
276 	for (slot = 1, guest_addr = MEM_GPA; slot < max_mem_slots; slot++) {
277 		uint64_t npages;
278 
279 		npages = data->pages_per_slot;
280 		if (slot == max_mem_slots - 1)
281 			npages += rempages;
282 
283 		vm_userspace_mem_region_add(data->vm, VM_MEM_SRC_ANONYMOUS,
284 					    guest_addr, slot, npages,
285 					    0);
286 		guest_addr += npages * 4096;
287 	}
288 	*slot_runtime = timespec_elapsed(tstart);
289 
290 	for (slot = 0, guest_addr = MEM_GPA; slot < max_mem_slots - 1; slot++) {
291 		uint64_t npages;
292 		uint64_t gpa;
293 
294 		npages = data->pages_per_slot;
295 		if (slot == max_mem_slots - 2)
296 			npages += rempages;
297 
298 		gpa = vm_phy_pages_alloc(data->vm, npages, guest_addr,
299 					 slot + 1);
300 		TEST_ASSERT(gpa == guest_addr,
301 			    "vm_phy_pages_alloc() failed\n");
302 
303 		data->hva_slots[slot] = addr_gpa2hva(data->vm, guest_addr);
304 		memset(data->hva_slots[slot], 0, npages * 4096);
305 
306 		guest_addr += npages * 4096;
307 	}
308 
309 	virt_map(data->vm, MEM_GPA, MEM_GPA, mempages, 0);
310 
311 	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
312 	atomic_init(&sync->start_flag, false);
313 	atomic_init(&sync->exit_flag, false);
314 	atomic_init(&sync->sync_flag, false);
315 
316 	data->mmio_ok = false;
317 
318 	return true;
319 }
320 
321 static void launch_vm(struct vm_data *data)
322 {
323 	pr_info_v("Launching the test VM\n");
324 
325 	pthread_create(&data->vcpu_thread, NULL, vcpu_worker, data);
326 
327 	/* Ensure the guest thread is spun up. */
328 	wait_for_vcpu();
329 }
330 
331 static void free_vm(struct vm_data *data)
332 {
333 	kvm_vm_free(data->vm);
334 	free(data->hva_slots);
335 	free(data);
336 }
337 
338 static void wait_guest_exit(struct vm_data *data)
339 {
340 	pthread_join(data->vcpu_thread, NULL);
341 }
342 
343 static void let_guest_run(struct sync_area *sync)
344 {
345 	atomic_store_explicit(&sync->start_flag, true, memory_order_release);
346 }
347 
348 static void guest_spin_until_start(void)
349 {
350 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
351 
352 	while (!atomic_load_explicit(&sync->start_flag, memory_order_acquire))
353 		;
354 }
355 
356 static void make_guest_exit(struct sync_area *sync)
357 {
358 	atomic_store_explicit(&sync->exit_flag, true, memory_order_release);
359 }
360 
361 static bool _guest_should_exit(void)
362 {
363 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
364 
365 	return atomic_load_explicit(&sync->exit_flag, memory_order_acquire);
366 }
367 
368 #define guest_should_exit() unlikely(_guest_should_exit())
369 
370 /*
371  * noinline so we can easily see how much time the host spends waiting
372  * for the guest.
373  * For the same reason use alarm() instead of polling clock_gettime()
374  * to implement a wait timeout.
375  */
376 static noinline void host_perform_sync(struct sync_area *sync)
377 {
378 	alarm(2);
379 
380 	atomic_store_explicit(&sync->sync_flag, true, memory_order_release);
381 	while (atomic_load_explicit(&sync->sync_flag, memory_order_acquire))
382 		;
383 
384 	alarm(0);
385 }
386 
387 static bool guest_perform_sync(void)
388 {
389 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
390 	bool expected;
391 
392 	do {
393 		if (guest_should_exit())
394 			return false;
395 
396 		expected = true;
397 	} while (!atomic_compare_exchange_weak_explicit(&sync->sync_flag,
398 							&expected, false,
399 							memory_order_acq_rel,
400 							memory_order_relaxed));
401 
402 	return true;
403 }
404 
405 static void guest_code_test_memslot_move(void)
406 {
407 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
408 	uintptr_t base = (typeof(base))READ_ONCE(sync->move_area_ptr);
409 
410 	GUEST_SYNC(0);
411 
412 	guest_spin_until_start();
413 
414 	while (!guest_should_exit()) {
415 		uintptr_t ptr;
416 
417 		for (ptr = base; ptr < base + MEM_TEST_MOVE_SIZE;
418 		     ptr += 4096)
419 			*(uint64_t *)ptr = MEM_TEST_VAL_1;
420 
421 		/*
422 		 * No host sync here since the MMIO exits are so expensive
423 		 * that the host would spend most of its time waiting for
424 		 * the guest and so instead of measuring memslot move
425 		 * performance we would measure the performance and
426 		 * likelihood of MMIO exits
427 		 */
428 	}
429 
430 	GUEST_DONE();
431 }
432 
433 static void guest_code_test_memslot_map(void)
434 {
435 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
436 
437 	GUEST_SYNC(0);
438 
439 	guest_spin_until_start();
440 
441 	while (1) {
442 		uintptr_t ptr;
443 
444 		for (ptr = MEM_TEST_GPA;
445 		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2; ptr += 4096)
446 			*(uint64_t *)ptr = MEM_TEST_VAL_1;
447 
448 		if (!guest_perform_sync())
449 			break;
450 
451 		for (ptr = MEM_TEST_GPA + MEM_TEST_MAP_SIZE / 2;
452 		     ptr < MEM_TEST_GPA + MEM_TEST_MAP_SIZE; ptr += 4096)
453 			*(uint64_t *)ptr = MEM_TEST_VAL_2;
454 
455 		if (!guest_perform_sync())
456 			break;
457 	}
458 
459 	GUEST_DONE();
460 }
461 
462 static void guest_code_test_memslot_unmap(void)
463 {
464 	struct sync_area *sync = (typeof(sync))MEM_SYNC_GPA;
465 
466 	GUEST_SYNC(0);
467 
468 	guest_spin_until_start();
469 
470 	while (1) {
471 		uintptr_t ptr = MEM_TEST_GPA;
472 
473 		/*
474 		 * We can afford to access (map) just a small number of pages
475 		 * per host sync as otherwise the host will spend
476 		 * a significant amount of its time waiting for the guest
477 		 * (instead of doing unmap operations), so this will
478 		 * effectively turn this test into a map performance test.
479 		 *
480 		 * Just access a single page to be on the safe side.
481 		 */
482 		*(uint64_t *)ptr = MEM_TEST_VAL_1;
483 
484 		if (!guest_perform_sync())
485 			break;
486 
487 		ptr += MEM_TEST_UNMAP_SIZE / 2;
488 		*(uint64_t *)ptr = MEM_TEST_VAL_2;
489 
490 		if (!guest_perform_sync())
491 			break;
492 	}
493 
494 	GUEST_DONE();
495 }
496 
497 static void guest_code_test_memslot_rw(void)
498 {
499 	GUEST_SYNC(0);
500 
501 	guest_spin_until_start();
502 
503 	while (1) {
504 		uintptr_t ptr;
505 
506 		for (ptr = MEM_TEST_GPA;
507 		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096)
508 			*(uint64_t *)ptr = MEM_TEST_VAL_1;
509 
510 		if (!guest_perform_sync())
511 			break;
512 
513 		for (ptr = MEM_TEST_GPA + 4096 / 2;
514 		     ptr < MEM_TEST_GPA + MEM_TEST_SIZE; ptr += 4096) {
515 			uint64_t val = *(uint64_t *)ptr;
516 
517 			GUEST_ASSERT_1(val == MEM_TEST_VAL_2, val);
518 			*(uint64_t *)ptr = 0;
519 		}
520 
521 		if (!guest_perform_sync())
522 			break;
523 	}
524 
525 	GUEST_DONE();
526 }
527 
528 static bool test_memslot_move_prepare(struct vm_data *data,
529 				      struct sync_area *sync,
530 				      uint64_t *maxslots, bool isactive)
531 {
532 	uint64_t movesrcgpa, movetestgpa;
533 
534 	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
535 
536 	if (isactive) {
537 		uint64_t lastpages;
538 
539 		vm_gpa2hva(data, movesrcgpa, &lastpages);
540 		if (lastpages < MEM_TEST_MOVE_SIZE_PAGES / 2) {
541 			*maxslots = 0;
542 			return false;
543 		}
544 	}
545 
546 	movetestgpa = movesrcgpa - (MEM_TEST_MOVE_SIZE / (isactive ? 2 : 1));
547 	sync->move_area_ptr = (void *)movetestgpa;
548 
549 	if (isactive) {
550 		data->mmio_ok = true;
551 		data->mmio_gpa_min = movesrcgpa;
552 		data->mmio_gpa_max = movesrcgpa + MEM_TEST_MOVE_SIZE / 2 - 1;
553 	}
554 
555 	return true;
556 }
557 
558 static bool test_memslot_move_prepare_active(struct vm_data *data,
559 					     struct sync_area *sync,
560 					     uint64_t *maxslots)
561 {
562 	return test_memslot_move_prepare(data, sync, maxslots, true);
563 }
564 
565 static bool test_memslot_move_prepare_inactive(struct vm_data *data,
566 					       struct sync_area *sync,
567 					       uint64_t *maxslots)
568 {
569 	return test_memslot_move_prepare(data, sync, maxslots, false);
570 }
571 
572 static void test_memslot_move_loop(struct vm_data *data, struct sync_area *sync)
573 {
574 	uint64_t movesrcgpa;
575 
576 	movesrcgpa = vm_slot2gpa(data, data->nslots - 1);
577 	vm_mem_region_move(data->vm, data->nslots - 1 + 1,
578 			   MEM_TEST_MOVE_GPA_DEST);
579 	vm_mem_region_move(data->vm, data->nslots - 1 + 1, movesrcgpa);
580 }
581 
582 static void test_memslot_do_unmap(struct vm_data *data,
583 				  uint64_t offsp, uint64_t count)
584 {
585 	uint64_t gpa, ctr;
586 
587 	for (gpa = MEM_TEST_GPA + offsp * 4096, ctr = 0; ctr < count; ) {
588 		uint64_t npages;
589 		void *hva;
590 		int ret;
591 
592 		hva = vm_gpa2hva(data, gpa, &npages);
593 		TEST_ASSERT(npages, "Empty memory slot at gptr 0x%"PRIx64, gpa);
594 		npages = min(npages, count - ctr);
595 		ret = madvise(hva, npages * 4096, MADV_DONTNEED);
596 		TEST_ASSERT(!ret,
597 			    "madvise(%p, MADV_DONTNEED) on VM memory should not fail for gptr 0x%"PRIx64,
598 			    hva, gpa);
599 		ctr += npages;
600 		gpa += npages * 4096;
601 	}
602 	TEST_ASSERT(ctr == count,
603 		    "madvise(MADV_DONTNEED) should exactly cover all of the requested area");
604 }
605 
606 static void test_memslot_map_unmap_check(struct vm_data *data,
607 					 uint64_t offsp, uint64_t valexp)
608 {
609 	uint64_t gpa;
610 	uint64_t *val;
611 
612 	if (!map_unmap_verify)
613 		return;
614 
615 	gpa = MEM_TEST_GPA + offsp * 4096;
616 	val = (typeof(val))vm_gpa2hva(data, gpa, NULL);
617 	TEST_ASSERT(*val == valexp,
618 		    "Guest written values should read back correctly before unmap (%"PRIu64" vs %"PRIu64" @ %"PRIx64")",
619 		    *val, valexp, gpa);
620 	*val = 0;
621 }
622 
623 static void test_memslot_map_loop(struct vm_data *data, struct sync_area *sync)
624 {
625 	/*
626 	 * Unmap the second half of the test area while guest writes to (maps)
627 	 * the first half.
628 	 */
629 	test_memslot_do_unmap(data, MEM_TEST_MAP_SIZE_PAGES / 2,
630 			      MEM_TEST_MAP_SIZE_PAGES / 2);
631 
632 	/*
633 	 * Wait for the guest to finish writing the first half of the test
634 	 * area, verify the written value on the first and the last page of
635 	 * this area and then unmap it.
636 	 * Meanwhile, the guest is writing to (mapping) the second half of
637 	 * the test area.
638 	 */
639 	host_perform_sync(sync);
640 	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
641 	test_memslot_map_unmap_check(data,
642 				     MEM_TEST_MAP_SIZE_PAGES / 2 - 1,
643 				     MEM_TEST_VAL_1);
644 	test_memslot_do_unmap(data, 0, MEM_TEST_MAP_SIZE_PAGES / 2);
645 
646 
647 	/*
648 	 * Wait for the guest to finish writing the second half of the test
649 	 * area and verify the written value on the first and the last page
650 	 * of this area.
651 	 * The area will be unmapped at the beginning of the next loop
652 	 * iteration.
653 	 * Meanwhile, the guest is writing to (mapping) the first half of
654 	 * the test area.
655 	 */
656 	host_perform_sync(sync);
657 	test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES / 2,
658 				     MEM_TEST_VAL_2);
659 	test_memslot_map_unmap_check(data, MEM_TEST_MAP_SIZE_PAGES - 1,
660 				     MEM_TEST_VAL_2);
661 }
662 
663 static void test_memslot_unmap_loop_common(struct vm_data *data,
664 					   struct sync_area *sync,
665 					   uint64_t chunk)
666 {
667 	uint64_t ctr;
668 
669 	/*
670 	 * Wait for the guest to finish mapping page(s) in the first half
671 	 * of the test area, verify the written value and then perform unmap
672 	 * of this area.
673 	 * Meanwhile, the guest is writing to (mapping) page(s) in the second
674 	 * half of the test area.
675 	 */
676 	host_perform_sync(sync);
677 	test_memslot_map_unmap_check(data, 0, MEM_TEST_VAL_1);
678 	for (ctr = 0; ctr < MEM_TEST_UNMAP_SIZE_PAGES / 2; ctr += chunk)
679 		test_memslot_do_unmap(data, ctr, chunk);
680 
681 	/* Likewise, but for the opposite host / guest areas */
682 	host_perform_sync(sync);
683 	test_memslot_map_unmap_check(data, MEM_TEST_UNMAP_SIZE_PAGES / 2,
684 				     MEM_TEST_VAL_2);
685 	for (ctr = MEM_TEST_UNMAP_SIZE_PAGES / 2;
686 	     ctr < MEM_TEST_UNMAP_SIZE_PAGES; ctr += chunk)
687 		test_memslot_do_unmap(data, ctr, chunk);
688 }
689 
690 static void test_memslot_unmap_loop(struct vm_data *data,
691 				    struct sync_area *sync)
692 {
693 	test_memslot_unmap_loop_common(data, sync, 1);
694 }
695 
696 static void test_memslot_unmap_loop_chunked(struct vm_data *data,
697 					    struct sync_area *sync)
698 {
699 	test_memslot_unmap_loop_common(data, sync, MEM_TEST_UNMAP_CHUNK_PAGES);
700 }
701 
702 static void test_memslot_rw_loop(struct vm_data *data, struct sync_area *sync)
703 {
704 	uint64_t gptr;
705 
706 	for (gptr = MEM_TEST_GPA + 4096 / 2;
707 	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096)
708 		*(uint64_t *)vm_gpa2hva(data, gptr, NULL) = MEM_TEST_VAL_2;
709 
710 	host_perform_sync(sync);
711 
712 	for (gptr = MEM_TEST_GPA;
713 	     gptr < MEM_TEST_GPA + MEM_TEST_SIZE; gptr += 4096) {
714 		uint64_t *vptr = (typeof(vptr))vm_gpa2hva(data, gptr, NULL);
715 		uint64_t val = *vptr;
716 
717 		TEST_ASSERT(val == MEM_TEST_VAL_1,
718 			    "Guest written values should read back correctly (is %"PRIu64" @ %"PRIx64")",
719 			    val, gptr);
720 		*vptr = 0;
721 	}
722 
723 	host_perform_sync(sync);
724 }
725 
726 struct test_data {
727 	const char *name;
728 	uint64_t mem_size;
729 	void (*guest_code)(void);
730 	bool (*prepare)(struct vm_data *data, struct sync_area *sync,
731 			uint64_t *maxslots);
732 	void (*loop)(struct vm_data *data, struct sync_area *sync);
733 };
734 
735 static bool test_execute(int nslots, uint64_t *maxslots,
736 			 unsigned int maxtime,
737 			 const struct test_data *tdata,
738 			 uint64_t *nloops,
739 			 struct timespec *slot_runtime,
740 			 struct timespec *guest_runtime)
741 {
742 	uint64_t mem_size = tdata->mem_size ? : MEM_SIZE_PAGES;
743 	struct vm_data *data;
744 	struct sync_area *sync;
745 	struct timespec tstart;
746 	bool ret = true;
747 
748 	data = alloc_vm();
749 	if (!prepare_vm(data, nslots, maxslots, tdata->guest_code,
750 			mem_size, slot_runtime)) {
751 		ret = false;
752 		goto exit_free;
753 	}
754 
755 	sync = (typeof(sync))vm_gpa2hva(data, MEM_SYNC_GPA, NULL);
756 
757 	if (tdata->prepare &&
758 	    !tdata->prepare(data, sync, maxslots)) {
759 		ret = false;
760 		goto exit_free;
761 	}
762 
763 	launch_vm(data);
764 
765 	clock_gettime(CLOCK_MONOTONIC, &tstart);
766 	let_guest_run(sync);
767 
768 	while (1) {
769 		*guest_runtime = timespec_elapsed(tstart);
770 		if (guest_runtime->tv_sec >= maxtime)
771 			break;
772 
773 		tdata->loop(data, sync);
774 
775 		(*nloops)++;
776 	}
777 
778 	make_guest_exit(sync);
779 	wait_guest_exit(data);
780 
781 exit_free:
782 	free_vm(data);
783 
784 	return ret;
785 }
786 
787 static const struct test_data tests[] = {
788 	{
789 		.name = "map",
790 		.mem_size = MEM_SIZE_MAP_PAGES,
791 		.guest_code = guest_code_test_memslot_map,
792 		.loop = test_memslot_map_loop,
793 	},
794 	{
795 		.name = "unmap",
796 		.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
797 		.guest_code = guest_code_test_memslot_unmap,
798 		.loop = test_memslot_unmap_loop,
799 	},
800 	{
801 		.name = "unmap chunked",
802 		.mem_size = MEM_TEST_UNMAP_SIZE_PAGES + 1,
803 		.guest_code = guest_code_test_memslot_unmap,
804 		.loop = test_memslot_unmap_loop_chunked,
805 	},
806 	{
807 		.name = "move active area",
808 		.guest_code = guest_code_test_memslot_move,
809 		.prepare = test_memslot_move_prepare_active,
810 		.loop = test_memslot_move_loop,
811 	},
812 	{
813 		.name = "move inactive area",
814 		.guest_code = guest_code_test_memslot_move,
815 		.prepare = test_memslot_move_prepare_inactive,
816 		.loop = test_memslot_move_loop,
817 	},
818 	{
819 		.name = "RW",
820 		.guest_code = guest_code_test_memslot_rw,
821 		.loop = test_memslot_rw_loop
822 	},
823 };
824 
825 #define NTESTS ARRAY_SIZE(tests)
826 
827 struct test_args {
828 	int tfirst;
829 	int tlast;
830 	int nslots;
831 	int seconds;
832 	int runs;
833 };
834 
835 static void help(char *name, struct test_args *targs)
836 {
837 	int ctr;
838 
839 	pr_info("usage: %s [-h] [-v] [-d] [-s slots] [-f first_test] [-e last_test] [-l test_length] [-r run_count]\n",
840 		name);
841 	pr_info(" -h: print this help screen.\n");
842 	pr_info(" -v: enable verbose mode (not for benchmarking).\n");
843 	pr_info(" -d: enable extra debug checks.\n");
844 	pr_info(" -s: specify memslot count cap (-1 means no cap; currently: %i)\n",
845 		targs->nslots);
846 	pr_info(" -f: specify the first test to run (currently: %i; max %zu)\n",
847 		targs->tfirst, NTESTS - 1);
848 	pr_info(" -e: specify the last test to run (currently: %i; max %zu)\n",
849 		targs->tlast, NTESTS - 1);
850 	pr_info(" -l: specify the test length in seconds (currently: %i)\n",
851 		targs->seconds);
852 	pr_info(" -r: specify the number of runs per test (currently: %i)\n",
853 		targs->runs);
854 
855 	pr_info("\nAvailable tests:\n");
856 	for (ctr = 0; ctr < NTESTS; ctr++)
857 		pr_info("%d: %s\n", ctr, tests[ctr].name);
858 }
859 
860 static bool parse_args(int argc, char *argv[],
861 		       struct test_args *targs)
862 {
863 	int opt;
864 
865 	while ((opt = getopt(argc, argv, "hvds:f:e:l:r:")) != -1) {
866 		switch (opt) {
867 		case 'h':
868 		default:
869 			help(argv[0], targs);
870 			return false;
871 		case 'v':
872 			verbose = true;
873 			break;
874 		case 'd':
875 			map_unmap_verify = true;
876 			break;
877 		case 's':
878 			targs->nslots = atoi(optarg);
879 			if (targs->nslots <= 0 && targs->nslots != -1) {
880 				pr_info("Slot count cap has to be positive or -1 for no cap\n");
881 				return false;
882 			}
883 			break;
884 		case 'f':
885 			targs->tfirst = atoi(optarg);
886 			if (targs->tfirst < 0) {
887 				pr_info("First test to run has to be non-negative\n");
888 				return false;
889 			}
890 			break;
891 		case 'e':
892 			targs->tlast = atoi(optarg);
893 			if (targs->tlast < 0 || targs->tlast >= NTESTS) {
894 				pr_info("Last test to run has to be non-negative and less than %zu\n",
895 					NTESTS);
896 				return false;
897 			}
898 			break;
899 		case 'l':
900 			targs->seconds = atoi(optarg);
901 			if (targs->seconds < 0) {
902 				pr_info("Test length in seconds has to be non-negative\n");
903 				return false;
904 			}
905 			break;
906 		case 'r':
907 			targs->runs = atoi(optarg);
908 			if (targs->runs <= 0) {
909 				pr_info("Runs per test has to be positive\n");
910 				return false;
911 			}
912 			break;
913 		}
914 	}
915 
916 	if (optind < argc) {
917 		help(argv[0], targs);
918 		return false;
919 	}
920 
921 	if (targs->tfirst > targs->tlast) {
922 		pr_info("First test to run cannot be greater than the last test to run\n");
923 		return false;
924 	}
925 
926 	return true;
927 }
928 
929 struct test_result {
930 	struct timespec slot_runtime, guest_runtime, iter_runtime;
931 	int64_t slottimens, runtimens;
932 	uint64_t nloops;
933 };
934 
935 static bool test_loop(const struct test_data *data,
936 		      const struct test_args *targs,
937 		      struct test_result *rbestslottime,
938 		      struct test_result *rbestruntime)
939 {
940 	uint64_t maxslots;
941 	struct test_result result;
942 
943 	result.nloops = 0;
944 	if (!test_execute(targs->nslots, &maxslots, targs->seconds, data,
945 			  &result.nloops,
946 			  &result.slot_runtime, &result.guest_runtime)) {
947 		if (maxslots)
948 			pr_info("Memslot count too high for this test, decrease the cap (max is %"PRIu64")\n",
949 				maxslots);
950 		else
951 			pr_info("Memslot count may be too high for this test, try adjusting the cap\n");
952 
953 		return false;
954 	}
955 
956 	pr_info("Test took %ld.%.9lds for slot setup + %ld.%.9lds all iterations\n",
957 		result.slot_runtime.tv_sec, result.slot_runtime.tv_nsec,
958 		result.guest_runtime.tv_sec, result.guest_runtime.tv_nsec);
959 	if (!result.nloops) {
960 		pr_info("No full loops done - too short test time or system too loaded?\n");
961 		return true;
962 	}
963 
964 	result.iter_runtime = timespec_div(result.guest_runtime,
965 					   result.nloops);
966 	pr_info("Done %"PRIu64" iterations, avg %ld.%.9lds each\n",
967 		result.nloops,
968 		result.iter_runtime.tv_sec,
969 		result.iter_runtime.tv_nsec);
970 	result.slottimens = timespec_to_ns(result.slot_runtime);
971 	result.runtimens = timespec_to_ns(result.iter_runtime);
972 
973 	/*
974 	 * Only rank the slot setup time for tests using the whole test memory
975 	 * area so they are comparable
976 	 */
977 	if (!data->mem_size &&
978 	    (!rbestslottime->slottimens ||
979 	     result.slottimens < rbestslottime->slottimens))
980 		*rbestslottime = result;
981 	if (!rbestruntime->runtimens ||
982 	    result.runtimens < rbestruntime->runtimens)
983 		*rbestruntime = result;
984 
985 	return true;
986 }
987 
988 int main(int argc, char *argv[])
989 {
990 	struct test_args targs = {
991 		.tfirst = 0,
992 		.tlast = NTESTS - 1,
993 		.nslots = -1,
994 		.seconds = 5,
995 		.runs = 1,
996 	};
997 	struct test_result rbestslottime;
998 	int tctr;
999 
1000 	/* Tell stdout not to buffer its content */
1001 	setbuf(stdout, NULL);
1002 
1003 	if (!parse_args(argc, argv, &targs))
1004 		return -1;
1005 
1006 	rbestslottime.slottimens = 0;
1007 	for (tctr = targs.tfirst; tctr <= targs.tlast; tctr++) {
1008 		const struct test_data *data = &tests[tctr];
1009 		unsigned int runctr;
1010 		struct test_result rbestruntime;
1011 
1012 		if (tctr > targs.tfirst)
1013 			pr_info("\n");
1014 
1015 		pr_info("Testing %s performance with %i runs, %d seconds each\n",
1016 			data->name, targs.runs, targs.seconds);
1017 
1018 		rbestruntime.runtimens = 0;
1019 		for (runctr = 0; runctr < targs.runs; runctr++)
1020 			if (!test_loop(data, &targs,
1021 				       &rbestslottime, &rbestruntime))
1022 				break;
1023 
1024 		if (rbestruntime.runtimens)
1025 			pr_info("Best runtime result was %ld.%.9lds per iteration (with %"PRIu64" iterations)\n",
1026 				rbestruntime.iter_runtime.tv_sec,
1027 				rbestruntime.iter_runtime.tv_nsec,
1028 				rbestruntime.nloops);
1029 	}
1030 
1031 	if (rbestslottime.slottimens)
1032 		pr_info("Best slot setup time for the whole test area was %ld.%.9lds\n",
1033 			rbestslottime.slot_runtime.tv_sec,
1034 			rbestslottime.slot_runtime.tv_nsec);
1035 
1036 	return 0;
1037 }
1038