xref: /openbmc/linux/tools/testing/selftests/kvm/lib/x86_64/vmx.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/vmx.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12 #include "vmx.h"
13 
14 #define PAGE_SHIFT_4K  12
15 
16 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
17 
18 bool enable_evmcs;
19 
20 struct hv_enlightened_vmcs *current_evmcs;
21 struct hv_vp_assist_page *current_vp_assist;
22 
23 struct eptPageTableEntry {
24 	uint64_t readable:1;
25 	uint64_t writable:1;
26 	uint64_t executable:1;
27 	uint64_t memory_type:3;
28 	uint64_t ignore_pat:1;
29 	uint64_t page_size:1;
30 	uint64_t accessed:1;
31 	uint64_t dirty:1;
32 	uint64_t ignored_11_10:2;
33 	uint64_t address:40;
34 	uint64_t ignored_62_52:11;
35 	uint64_t suppress_ve:1;
36 };
37 
38 struct eptPageTablePointer {
39 	uint64_t memory_type:3;
40 	uint64_t page_walk_length:3;
41 	uint64_t ad_enabled:1;
42 	uint64_t reserved_11_07:5;
43 	uint64_t address:40;
44 	uint64_t reserved_63_52:12;
45 };
46 int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id)
47 {
48 	uint16_t evmcs_ver;
49 
50 	struct kvm_enable_cap enable_evmcs_cap = {
51 		.cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
52 		 .args[0] = (unsigned long)&evmcs_ver
53 	};
54 
55 	vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap);
56 
57 	/* KVM should return supported EVMCS version range */
58 	TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
59 		    (evmcs_ver & 0xff) > 0,
60 		    "Incorrect EVMCS version range: %x:%x\n",
61 		    evmcs_ver & 0xff, evmcs_ver >> 8);
62 
63 	return evmcs_ver;
64 }
65 
66 /* Allocate memory regions for nested VMX tests.
67  *
68  * Input Args:
69  *   vm - The VM to allocate guest-virtual addresses in.
70  *
71  * Output Args:
72  *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
73  *
74  * Return:
75  *   Pointer to structure with the addresses of the VMX areas.
76  */
77 struct vmx_pages *
78 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
79 {
80 	vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
81 	struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
82 
83 	/* Setup of a region of guest memory for the vmxon region. */
84 	vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
85 	vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
86 	vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
87 
88 	/* Setup of a region of guest memory for a vmcs. */
89 	vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
90 	vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
91 	vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
92 
93 	/* Setup of a region of guest memory for the MSR bitmap. */
94 	vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
95 	vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
96 	vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
97 	memset(vmx->msr_hva, 0, getpagesize());
98 
99 	/* Setup of a region of guest memory for the shadow VMCS. */
100 	vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
101 	vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
102 	vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
103 
104 	/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
105 	vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
106 	vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
107 	vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
108 	memset(vmx->vmread_hva, 0, getpagesize());
109 
110 	vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
111 	vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
112 	vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
113 	memset(vmx->vmwrite_hva, 0, getpagesize());
114 
115 	/* Setup of a region of guest memory for the VP Assist page. */
116 	vmx->vp_assist = (void *)vm_vaddr_alloc(vm, getpagesize(),
117 						0x10000, 0, 0);
118 	vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
119 	vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);
120 
121 	/* Setup of a region of guest memory for the enlightened VMCS. */
122 	vmx->enlightened_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(),
123 						       0x10000, 0, 0);
124 	vmx->enlightened_vmcs_hva =
125 		addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
126 	vmx->enlightened_vmcs_gpa =
127 		addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);
128 
129 	*p_vmx_gva = vmx_gva;
130 	return vmx;
131 }
132 
133 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
134 {
135 	uint64_t feature_control;
136 	uint64_t required;
137 	unsigned long cr0;
138 	unsigned long cr4;
139 
140 	/*
141 	 * Ensure bits in CR0 and CR4 are valid in VMX operation:
142 	 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
143 	 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
144 	 */
145 	__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
146 	cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
147 	cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
148 	__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
149 
150 	__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
151 	cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
152 	cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
153 	/* Enable VMX operation */
154 	cr4 |= X86_CR4_VMXE;
155 	__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
156 
157 	/*
158 	 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
159 	 *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
160 	 *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
161 	 *    outside of SMX causes a #GP.
162 	 */
163 	required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
164 	required |= FEAT_CTL_LOCKED;
165 	feature_control = rdmsr(MSR_IA32_FEAT_CTL);
166 	if ((feature_control & required) != required)
167 		wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
168 
169 	/* Enter VMX root operation. */
170 	*(uint32_t *)(vmx->vmxon) = vmcs_revision();
171 	if (vmxon(vmx->vmxon_gpa))
172 		return false;
173 
174 	return true;
175 }
176 
177 bool load_vmcs(struct vmx_pages *vmx)
178 {
179 	if (!enable_evmcs) {
180 		/* Load a VMCS. */
181 		*(uint32_t *)(vmx->vmcs) = vmcs_revision();
182 		if (vmclear(vmx->vmcs_gpa))
183 			return false;
184 
185 		if (vmptrld(vmx->vmcs_gpa))
186 			return false;
187 
188 		/* Setup shadow VMCS, do not load it yet. */
189 		*(uint32_t *)(vmx->shadow_vmcs) =
190 			vmcs_revision() | 0x80000000ul;
191 		if (vmclear(vmx->shadow_vmcs_gpa))
192 			return false;
193 	} else {
194 		if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
195 				  vmx->enlightened_vmcs))
196 			return false;
197 		current_evmcs->revision_id = EVMCS_VERSION;
198 	}
199 
200 	return true;
201 }
202 
203 /*
204  * Initialize the control fields to the most basic settings possible.
205  */
206 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
207 {
208 	uint32_t sec_exec_ctl = 0;
209 
210 	vmwrite(VIRTUAL_PROCESSOR_ID, 0);
211 	vmwrite(POSTED_INTR_NV, 0);
212 
213 	vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
214 
215 	if (vmx->eptp_gpa) {
216 		uint64_t ept_paddr;
217 		struct eptPageTablePointer eptp = {
218 			.memory_type = VMX_BASIC_MEM_TYPE_WB,
219 			.page_walk_length = 3, /* + 1 */
220 			.ad_enabled = !!(rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & VMX_EPT_VPID_CAP_AD_BITS),
221 			.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
222 		};
223 
224 		memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
225 		vmwrite(EPT_POINTER, ept_paddr);
226 		sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
227 	}
228 
229 	if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
230 		vmwrite(CPU_BASED_VM_EXEC_CONTROL,
231 			rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
232 	else {
233 		vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
234 		GUEST_ASSERT(!sec_exec_ctl);
235 	}
236 
237 	vmwrite(EXCEPTION_BITMAP, 0);
238 	vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
239 	vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
240 	vmwrite(CR3_TARGET_COUNT, 0);
241 	vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
242 		VM_EXIT_HOST_ADDR_SPACE_SIZE);	  /* 64-bit host */
243 	vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
244 	vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
245 	vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
246 		VM_ENTRY_IA32E_MODE);		  /* 64-bit guest */
247 	vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
248 	vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
249 	vmwrite(TPR_THRESHOLD, 0);
250 
251 	vmwrite(CR0_GUEST_HOST_MASK, 0);
252 	vmwrite(CR4_GUEST_HOST_MASK, 0);
253 	vmwrite(CR0_READ_SHADOW, get_cr0());
254 	vmwrite(CR4_READ_SHADOW, get_cr4());
255 
256 	vmwrite(MSR_BITMAP, vmx->msr_gpa);
257 	vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
258 	vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
259 }
260 
261 /*
262  * Initialize the host state fields based on the current host state, with
263  * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
264  * or vmresume.
265  */
266 static inline void init_vmcs_host_state(void)
267 {
268 	uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
269 
270 	vmwrite(HOST_ES_SELECTOR, get_es());
271 	vmwrite(HOST_CS_SELECTOR, get_cs());
272 	vmwrite(HOST_SS_SELECTOR, get_ss());
273 	vmwrite(HOST_DS_SELECTOR, get_ds());
274 	vmwrite(HOST_FS_SELECTOR, get_fs());
275 	vmwrite(HOST_GS_SELECTOR, get_gs());
276 	vmwrite(HOST_TR_SELECTOR, get_tr());
277 
278 	if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
279 		vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
280 	if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
281 		vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
282 	if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
283 		vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
284 			rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
285 
286 	vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
287 
288 	vmwrite(HOST_CR0, get_cr0());
289 	vmwrite(HOST_CR3, get_cr3());
290 	vmwrite(HOST_CR4, get_cr4());
291 	vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
292 	vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
293 	vmwrite(HOST_TR_BASE,
294 		get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
295 	vmwrite(HOST_GDTR_BASE, get_gdt().address);
296 	vmwrite(HOST_IDTR_BASE, get_idt().address);
297 	vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
298 	vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
299 }
300 
301 /*
302  * Initialize the guest state fields essentially as a clone of
303  * the host state fields. Some host state fields have fixed
304  * values, and we set the corresponding guest state fields accordingly.
305  */
306 static inline void init_vmcs_guest_state(void *rip, void *rsp)
307 {
308 	vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
309 	vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
310 	vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
311 	vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
312 	vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
313 	vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
314 	vmwrite(GUEST_LDTR_SELECTOR, 0);
315 	vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
316 	vmwrite(GUEST_INTR_STATUS, 0);
317 	vmwrite(GUEST_PML_INDEX, 0);
318 
319 	vmwrite(VMCS_LINK_POINTER, -1ll);
320 	vmwrite(GUEST_IA32_DEBUGCTL, 0);
321 	vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
322 	vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
323 	vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
324 		vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
325 
326 	vmwrite(GUEST_ES_LIMIT, -1);
327 	vmwrite(GUEST_CS_LIMIT, -1);
328 	vmwrite(GUEST_SS_LIMIT, -1);
329 	vmwrite(GUEST_DS_LIMIT, -1);
330 	vmwrite(GUEST_FS_LIMIT, -1);
331 	vmwrite(GUEST_GS_LIMIT, -1);
332 	vmwrite(GUEST_LDTR_LIMIT, -1);
333 	vmwrite(GUEST_TR_LIMIT, 0x67);
334 	vmwrite(GUEST_GDTR_LIMIT, 0xffff);
335 	vmwrite(GUEST_IDTR_LIMIT, 0xffff);
336 	vmwrite(GUEST_ES_AR_BYTES,
337 		vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
338 	vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
339 	vmwrite(GUEST_SS_AR_BYTES, 0xc093);
340 	vmwrite(GUEST_DS_AR_BYTES,
341 		vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
342 	vmwrite(GUEST_FS_AR_BYTES,
343 		vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
344 	vmwrite(GUEST_GS_AR_BYTES,
345 		vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
346 	vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
347 	vmwrite(GUEST_TR_AR_BYTES, 0x8b);
348 	vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
349 	vmwrite(GUEST_ACTIVITY_STATE, 0);
350 	vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
351 	vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
352 
353 	vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
354 	vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
355 	vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
356 	vmwrite(GUEST_ES_BASE, 0);
357 	vmwrite(GUEST_CS_BASE, 0);
358 	vmwrite(GUEST_SS_BASE, 0);
359 	vmwrite(GUEST_DS_BASE, 0);
360 	vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
361 	vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
362 	vmwrite(GUEST_LDTR_BASE, 0);
363 	vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
364 	vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
365 	vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
366 	vmwrite(GUEST_DR7, 0x400);
367 	vmwrite(GUEST_RSP, (uint64_t)rsp);
368 	vmwrite(GUEST_RIP, (uint64_t)rip);
369 	vmwrite(GUEST_RFLAGS, 2);
370 	vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
371 	vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
372 	vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
373 }
374 
375 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
376 {
377 	init_vmcs_control_fields(vmx);
378 	init_vmcs_host_state();
379 	init_vmcs_guest_state(guest_rip, guest_rsp);
380 }
381 
382 bool nested_vmx_supported(void)
383 {
384 	struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1);
385 
386 	return entry->ecx & CPUID_VMX;
387 }
388 
389 void nested_vmx_check_supported(void)
390 {
391 	if (!nested_vmx_supported()) {
392 		print_skip("nested VMX not enabled");
393 		exit(KSFT_SKIP);
394 	}
395 }
396 
397 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
398 	 	   uint64_t nested_paddr, uint64_t paddr, uint32_t eptp_memslot)
399 {
400 	uint16_t index[4];
401 	struct eptPageTableEntry *pml4e;
402 
403 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
404 		    "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
405 
406 	TEST_ASSERT((nested_paddr % vm->page_size) == 0,
407 		    "Nested physical address not on page boundary,\n"
408 		    "  nested_paddr: 0x%lx vm->page_size: 0x%x",
409 		    nested_paddr, vm->page_size);
410 	TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
411 		    "Physical address beyond beyond maximum supported,\n"
412 		    "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
413 		    paddr, vm->max_gfn, vm->page_size);
414 	TEST_ASSERT((paddr % vm->page_size) == 0,
415 		    "Physical address not on page boundary,\n"
416 		    "  paddr: 0x%lx vm->page_size: 0x%x",
417 		    paddr, vm->page_size);
418 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
419 		    "Physical address beyond beyond maximum supported,\n"
420 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
421 		    paddr, vm->max_gfn, vm->page_size);
422 
423 	index[0] = (nested_paddr >> 12) & 0x1ffu;
424 	index[1] = (nested_paddr >> 21) & 0x1ffu;
425 	index[2] = (nested_paddr >> 30) & 0x1ffu;
426 	index[3] = (nested_paddr >> 39) & 0x1ffu;
427 
428 	/* Allocate page directory pointer table if not present. */
429 	pml4e = vmx->eptp_hva;
430 	if (!pml4e[index[3]].readable) {
431 		pml4e[index[3]].address = vm_phy_page_alloc(vm,
432 			  KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
433 			>> vm->page_shift;
434 		pml4e[index[3]].writable = true;
435 		pml4e[index[3]].readable = true;
436 		pml4e[index[3]].executable = true;
437 	}
438 
439 	/* Allocate page directory table if not present. */
440 	struct eptPageTableEntry *pdpe;
441 	pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
442 	if (!pdpe[index[2]].readable) {
443 		pdpe[index[2]].address = vm_phy_page_alloc(vm,
444 			  KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
445 			>> vm->page_shift;
446 		pdpe[index[2]].writable = true;
447 		pdpe[index[2]].readable = true;
448 		pdpe[index[2]].executable = true;
449 	}
450 
451 	/* Allocate page table if not present. */
452 	struct eptPageTableEntry *pde;
453 	pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
454 	if (!pde[index[1]].readable) {
455 		pde[index[1]].address = vm_phy_page_alloc(vm,
456 			  KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot)
457 			>> vm->page_shift;
458 		pde[index[1]].writable = true;
459 		pde[index[1]].readable = true;
460 		pde[index[1]].executable = true;
461 	}
462 
463 	/* Fill in page table entry. */
464 	struct eptPageTableEntry *pte;
465 	pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
466 	pte[index[0]].address = paddr >> vm->page_shift;
467 	pte[index[0]].writable = true;
468 	pte[index[0]].readable = true;
469 	pte[index[0]].executable = true;
470 
471 	/*
472 	 * For now mark these as accessed and dirty because the only
473 	 * testcase we have needs that.  Can be reconsidered later.
474 	 */
475 	pte[index[0]].accessed = true;
476 	pte[index[0]].dirty = true;
477 }
478 
479 /*
480  * Map a range of EPT guest physical addresses to the VM's physical address
481  *
482  * Input Args:
483  *   vm - Virtual Machine
484  *   nested_paddr - Nested guest physical address to map
485  *   paddr - VM Physical Address
486  *   size - The size of the range to map
487  *   eptp_memslot - Memory region slot for new virtual translation tables
488  *
489  * Output Args: None
490  *
491  * Return: None
492  *
493  * Within the VM given by vm, creates a nested guest translation for the
494  * page range starting at nested_paddr to the page range starting at paddr.
495  */
496 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
497 		uint64_t nested_paddr, uint64_t paddr, uint64_t size,
498 		uint32_t eptp_memslot)
499 {
500 	size_t page_size = vm->page_size;
501 	size_t npages = size / page_size;
502 
503 	TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
504 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
505 
506 	while (npages--) {
507 		nested_pg_map(vmx, vm, nested_paddr, paddr, eptp_memslot);
508 		nested_paddr += page_size;
509 		paddr += page_size;
510 	}
511 }
512 
513 /* Prepare an identity extended page table that maps all the
514  * physical pages in VM.
515  */
516 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
517 			uint32_t memslot, uint32_t eptp_memslot)
518 {
519 	sparsebit_idx_t i, last;
520 	struct userspace_mem_region *region =
521 		memslot2region(vm, memslot);
522 
523 	i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
524 	last = i + (region->region.memory_size >> vm->page_shift);
525 	for (;;) {
526 		i = sparsebit_next_clear(region->unused_phy_pages, i);
527 		if (i > last)
528 			break;
529 
530 		nested_map(vmx, vm,
531 			   (uint64_t)i << vm->page_shift,
532 			   (uint64_t)i << vm->page_shift,
533 			   1 << vm->page_shift,
534 			   eptp_memslot);
535 	}
536 }
537 
538 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
539 		  uint32_t eptp_memslot)
540 {
541 	vmx->eptp = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0);
542 	vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
543 	vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
544 }
545