1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/vmx.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12 #include "vmx.h"
13 
14 #define PAGE_SHIFT_4K  12
15 
16 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
17 
18 bool enable_evmcs;
19 
20 struct hv_enlightened_vmcs *current_evmcs;
21 struct hv_vp_assist_page *current_vp_assist;
22 
23 struct eptPageTableEntry {
24 	uint64_t readable:1;
25 	uint64_t writable:1;
26 	uint64_t executable:1;
27 	uint64_t memory_type:3;
28 	uint64_t ignore_pat:1;
29 	uint64_t page_size:1;
30 	uint64_t accessed:1;
31 	uint64_t dirty:1;
32 	uint64_t ignored_11_10:2;
33 	uint64_t address:40;
34 	uint64_t ignored_62_52:11;
35 	uint64_t suppress_ve:1;
36 };
37 
38 struct eptPageTablePointer {
39 	uint64_t memory_type:3;
40 	uint64_t page_walk_length:3;
41 	uint64_t ad_enabled:1;
42 	uint64_t reserved_11_07:5;
43 	uint64_t address:40;
44 	uint64_t reserved_63_52:12;
45 };
46 int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id)
47 {
48 	uint16_t evmcs_ver;
49 
50 	struct kvm_enable_cap enable_evmcs_cap = {
51 		.cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
52 		 .args[0] = (unsigned long)&evmcs_ver
53 	};
54 
55 	vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap);
56 
57 	/* KVM should return supported EVMCS version range */
58 	TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
59 		    (evmcs_ver & 0xff) > 0,
60 		    "Incorrect EVMCS version range: %x:%x\n",
61 		    evmcs_ver & 0xff, evmcs_ver >> 8);
62 
63 	return evmcs_ver;
64 }
65 
66 /* Allocate memory regions for nested VMX tests.
67  *
68  * Input Args:
69  *   vm - The VM to allocate guest-virtual addresses in.
70  *
71  * Output Args:
72  *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
73  *
74  * Return:
75  *   Pointer to structure with the addresses of the VMX areas.
76  */
77 struct vmx_pages *
78 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
79 {
80 	vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
81 	struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
82 
83 	/* Setup of a region of guest memory for the vmxon region. */
84 	vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
85 	vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
86 	vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
87 
88 	/* Setup of a region of guest memory for a vmcs. */
89 	vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
90 	vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
91 	vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
92 
93 	/* Setup of a region of guest memory for the MSR bitmap. */
94 	vmx->msr = (void *)vm_vaddr_alloc_page(vm);
95 	vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
96 	vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
97 	memset(vmx->msr_hva, 0, getpagesize());
98 
99 	/* Setup of a region of guest memory for the shadow VMCS. */
100 	vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
101 	vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
102 	vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
103 
104 	/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
105 	vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
106 	vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
107 	vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
108 	memset(vmx->vmread_hva, 0, getpagesize());
109 
110 	vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
111 	vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
112 	vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
113 	memset(vmx->vmwrite_hva, 0, getpagesize());
114 
115 	/* Setup of a region of guest memory for the VP Assist page. */
116 	vmx->vp_assist = (void *)vm_vaddr_alloc_page(vm);
117 	vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist);
118 	vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist);
119 
120 	/* Setup of a region of guest memory for the enlightened VMCS. */
121 	vmx->enlightened_vmcs = (void *)vm_vaddr_alloc_page(vm);
122 	vmx->enlightened_vmcs_hva =
123 		addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs);
124 	vmx->enlightened_vmcs_gpa =
125 		addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs);
126 
127 	*p_vmx_gva = vmx_gva;
128 	return vmx;
129 }
130 
131 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
132 {
133 	uint64_t feature_control;
134 	uint64_t required;
135 	unsigned long cr0;
136 	unsigned long cr4;
137 
138 	/*
139 	 * Ensure bits in CR0 and CR4 are valid in VMX operation:
140 	 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
141 	 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
142 	 */
143 	__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
144 	cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
145 	cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
146 	__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
147 
148 	__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
149 	cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
150 	cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
151 	/* Enable VMX operation */
152 	cr4 |= X86_CR4_VMXE;
153 	__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
154 
155 	/*
156 	 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
157 	 *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
158 	 *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
159 	 *    outside of SMX causes a #GP.
160 	 */
161 	required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
162 	required |= FEAT_CTL_LOCKED;
163 	feature_control = rdmsr(MSR_IA32_FEAT_CTL);
164 	if ((feature_control & required) != required)
165 		wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
166 
167 	/* Enter VMX root operation. */
168 	*(uint32_t *)(vmx->vmxon) = vmcs_revision();
169 	if (vmxon(vmx->vmxon_gpa))
170 		return false;
171 
172 	return true;
173 }
174 
175 bool load_vmcs(struct vmx_pages *vmx)
176 {
177 	if (!enable_evmcs) {
178 		/* Load a VMCS. */
179 		*(uint32_t *)(vmx->vmcs) = vmcs_revision();
180 		if (vmclear(vmx->vmcs_gpa))
181 			return false;
182 
183 		if (vmptrld(vmx->vmcs_gpa))
184 			return false;
185 
186 		/* Setup shadow VMCS, do not load it yet. */
187 		*(uint32_t *)(vmx->shadow_vmcs) =
188 			vmcs_revision() | 0x80000000ul;
189 		if (vmclear(vmx->shadow_vmcs_gpa))
190 			return false;
191 	} else {
192 		if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa,
193 				  vmx->enlightened_vmcs))
194 			return false;
195 		current_evmcs->revision_id = EVMCS_VERSION;
196 	}
197 
198 	return true;
199 }
200 
201 static bool ept_vpid_cap_supported(uint64_t mask)
202 {
203 	return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
204 }
205 
206 bool ept_1g_pages_supported(void)
207 {
208 	return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
209 }
210 
211 /*
212  * Initialize the control fields to the most basic settings possible.
213  */
214 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
215 {
216 	uint32_t sec_exec_ctl = 0;
217 
218 	vmwrite(VIRTUAL_PROCESSOR_ID, 0);
219 	vmwrite(POSTED_INTR_NV, 0);
220 
221 	vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
222 
223 	if (vmx->eptp_gpa) {
224 		uint64_t ept_paddr;
225 		struct eptPageTablePointer eptp = {
226 			.memory_type = VMX_BASIC_MEM_TYPE_WB,
227 			.page_walk_length = 3, /* + 1 */
228 			.ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
229 			.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
230 		};
231 
232 		memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
233 		vmwrite(EPT_POINTER, ept_paddr);
234 		sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
235 	}
236 
237 	if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
238 		vmwrite(CPU_BASED_VM_EXEC_CONTROL,
239 			rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
240 	else {
241 		vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
242 		GUEST_ASSERT(!sec_exec_ctl);
243 	}
244 
245 	vmwrite(EXCEPTION_BITMAP, 0);
246 	vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
247 	vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
248 	vmwrite(CR3_TARGET_COUNT, 0);
249 	vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
250 		VM_EXIT_HOST_ADDR_SPACE_SIZE);	  /* 64-bit host */
251 	vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
252 	vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
253 	vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
254 		VM_ENTRY_IA32E_MODE);		  /* 64-bit guest */
255 	vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
256 	vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
257 	vmwrite(TPR_THRESHOLD, 0);
258 
259 	vmwrite(CR0_GUEST_HOST_MASK, 0);
260 	vmwrite(CR4_GUEST_HOST_MASK, 0);
261 	vmwrite(CR0_READ_SHADOW, get_cr0());
262 	vmwrite(CR4_READ_SHADOW, get_cr4());
263 
264 	vmwrite(MSR_BITMAP, vmx->msr_gpa);
265 	vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
266 	vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
267 }
268 
269 /*
270  * Initialize the host state fields based on the current host state, with
271  * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
272  * or vmresume.
273  */
274 static inline void init_vmcs_host_state(void)
275 {
276 	uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
277 
278 	vmwrite(HOST_ES_SELECTOR, get_es());
279 	vmwrite(HOST_CS_SELECTOR, get_cs());
280 	vmwrite(HOST_SS_SELECTOR, get_ss());
281 	vmwrite(HOST_DS_SELECTOR, get_ds());
282 	vmwrite(HOST_FS_SELECTOR, get_fs());
283 	vmwrite(HOST_GS_SELECTOR, get_gs());
284 	vmwrite(HOST_TR_SELECTOR, get_tr());
285 
286 	if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
287 		vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
288 	if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
289 		vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
290 	if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
291 		vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
292 			rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
293 
294 	vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
295 
296 	vmwrite(HOST_CR0, get_cr0());
297 	vmwrite(HOST_CR3, get_cr3());
298 	vmwrite(HOST_CR4, get_cr4());
299 	vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
300 	vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
301 	vmwrite(HOST_TR_BASE,
302 		get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
303 	vmwrite(HOST_GDTR_BASE, get_gdt().address);
304 	vmwrite(HOST_IDTR_BASE, get_idt().address);
305 	vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
306 	vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
307 }
308 
309 /*
310  * Initialize the guest state fields essentially as a clone of
311  * the host state fields. Some host state fields have fixed
312  * values, and we set the corresponding guest state fields accordingly.
313  */
314 static inline void init_vmcs_guest_state(void *rip, void *rsp)
315 {
316 	vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
317 	vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
318 	vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
319 	vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
320 	vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
321 	vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
322 	vmwrite(GUEST_LDTR_SELECTOR, 0);
323 	vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
324 	vmwrite(GUEST_INTR_STATUS, 0);
325 	vmwrite(GUEST_PML_INDEX, 0);
326 
327 	vmwrite(VMCS_LINK_POINTER, -1ll);
328 	vmwrite(GUEST_IA32_DEBUGCTL, 0);
329 	vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
330 	vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
331 	vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
332 		vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
333 
334 	vmwrite(GUEST_ES_LIMIT, -1);
335 	vmwrite(GUEST_CS_LIMIT, -1);
336 	vmwrite(GUEST_SS_LIMIT, -1);
337 	vmwrite(GUEST_DS_LIMIT, -1);
338 	vmwrite(GUEST_FS_LIMIT, -1);
339 	vmwrite(GUEST_GS_LIMIT, -1);
340 	vmwrite(GUEST_LDTR_LIMIT, -1);
341 	vmwrite(GUEST_TR_LIMIT, 0x67);
342 	vmwrite(GUEST_GDTR_LIMIT, 0xffff);
343 	vmwrite(GUEST_IDTR_LIMIT, 0xffff);
344 	vmwrite(GUEST_ES_AR_BYTES,
345 		vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
346 	vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
347 	vmwrite(GUEST_SS_AR_BYTES, 0xc093);
348 	vmwrite(GUEST_DS_AR_BYTES,
349 		vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
350 	vmwrite(GUEST_FS_AR_BYTES,
351 		vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
352 	vmwrite(GUEST_GS_AR_BYTES,
353 		vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
354 	vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
355 	vmwrite(GUEST_TR_AR_BYTES, 0x8b);
356 	vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
357 	vmwrite(GUEST_ACTIVITY_STATE, 0);
358 	vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
359 	vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
360 
361 	vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
362 	vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
363 	vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
364 	vmwrite(GUEST_ES_BASE, 0);
365 	vmwrite(GUEST_CS_BASE, 0);
366 	vmwrite(GUEST_SS_BASE, 0);
367 	vmwrite(GUEST_DS_BASE, 0);
368 	vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
369 	vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
370 	vmwrite(GUEST_LDTR_BASE, 0);
371 	vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
372 	vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
373 	vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
374 	vmwrite(GUEST_DR7, 0x400);
375 	vmwrite(GUEST_RSP, (uint64_t)rsp);
376 	vmwrite(GUEST_RIP, (uint64_t)rip);
377 	vmwrite(GUEST_RFLAGS, 2);
378 	vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
379 	vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
380 	vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
381 }
382 
383 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
384 {
385 	init_vmcs_control_fields(vmx);
386 	init_vmcs_host_state();
387 	init_vmcs_guest_state(guest_rip, guest_rsp);
388 }
389 
390 bool nested_vmx_supported(void)
391 {
392 	struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1);
393 
394 	return entry->ecx & CPUID_VMX;
395 }
396 
397 void nested_vmx_check_supported(void)
398 {
399 	if (!nested_vmx_supported()) {
400 		print_skip("nested VMX not enabled");
401 		exit(KSFT_SKIP);
402 	}
403 }
404 
405 static void nested_create_pte(struct kvm_vm *vm,
406 			      struct eptPageTableEntry *pte,
407 			      uint64_t nested_paddr,
408 			      uint64_t paddr,
409 			      int current_level,
410 			      int target_level)
411 {
412 	if (!pte->readable) {
413 		pte->writable = true;
414 		pte->readable = true;
415 		pte->executable = true;
416 		pte->page_size = (current_level == target_level);
417 		if (pte->page_size)
418 			pte->address = paddr >> vm->page_shift;
419 		else
420 			pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
421 	} else {
422 		/*
423 		 * Entry already present.  Assert that the caller doesn't want
424 		 * a hugepage at this level, and that there isn't a hugepage at
425 		 * this level.
426 		 */
427 		TEST_ASSERT(current_level != target_level,
428 			    "Cannot create hugepage at level: %u, nested_paddr: 0x%lx\n",
429 			    current_level, nested_paddr);
430 		TEST_ASSERT(!pte->page_size,
431 			    "Cannot create page table at level: %u, nested_paddr: 0x%lx\n",
432 			    current_level, nested_paddr);
433 	}
434 }
435 
436 
437 void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
438 		     uint64_t nested_paddr, uint64_t paddr, int target_level)
439 {
440 	const uint64_t page_size = PG_LEVEL_SIZE(target_level);
441 	struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
442 	uint16_t index;
443 
444 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
445 		    "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
446 
447 	TEST_ASSERT((nested_paddr >> 48) == 0,
448 		    "Nested physical address 0x%lx requires 5-level paging",
449 		    nested_paddr);
450 	TEST_ASSERT((nested_paddr % page_size) == 0,
451 		    "Nested physical address not on page boundary,\n"
452 		    "  nested_paddr: 0x%lx page_size: 0x%lx",
453 		    nested_paddr, page_size);
454 	TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
455 		    "Physical address beyond beyond maximum supported,\n"
456 		    "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
457 		    paddr, vm->max_gfn, vm->page_size);
458 	TEST_ASSERT((paddr % page_size) == 0,
459 		    "Physical address not on page boundary,\n"
460 		    "  paddr: 0x%lx page_size: 0x%lx",
461 		    paddr, page_size);
462 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
463 		    "Physical address beyond beyond maximum supported,\n"
464 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
465 		    paddr, vm->max_gfn, vm->page_size);
466 
467 	for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
468 		index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
469 		pte = &pt[index];
470 
471 		nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
472 
473 		if (pte->page_size)
474 			break;
475 
476 		pt = addr_gpa2hva(vm, pte->address * vm->page_size);
477 	}
478 
479 	/*
480 	 * For now mark these as accessed and dirty because the only
481 	 * testcase we have needs that.  Can be reconsidered later.
482 	 */
483 	pte->accessed = true;
484 	pte->dirty = true;
485 
486 }
487 
488 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
489 		   uint64_t nested_paddr, uint64_t paddr)
490 {
491 	__nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
492 }
493 
494 /*
495  * Map a range of EPT guest physical addresses to the VM's physical address
496  *
497  * Input Args:
498  *   vm - Virtual Machine
499  *   nested_paddr - Nested guest physical address to map
500  *   paddr - VM Physical Address
501  *   size - The size of the range to map
502  *   level - The level at which to map the range
503  *
504  * Output Args: None
505  *
506  * Return: None
507  *
508  * Within the VM given by vm, creates a nested guest translation for the
509  * page range starting at nested_paddr to the page range starting at paddr.
510  */
511 void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
512 		  uint64_t nested_paddr, uint64_t paddr, uint64_t size,
513 		  int level)
514 {
515 	size_t page_size = PG_LEVEL_SIZE(level);
516 	size_t npages = size / page_size;
517 
518 	TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
519 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
520 
521 	while (npages--) {
522 		__nested_pg_map(vmx, vm, nested_paddr, paddr, level);
523 		nested_paddr += page_size;
524 		paddr += page_size;
525 	}
526 }
527 
528 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
529 		uint64_t nested_paddr, uint64_t paddr, uint64_t size)
530 {
531 	__nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
532 }
533 
534 /* Prepare an identity extended page table that maps all the
535  * physical pages in VM.
536  */
537 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
538 			uint32_t memslot)
539 {
540 	sparsebit_idx_t i, last;
541 	struct userspace_mem_region *region =
542 		memslot2region(vm, memslot);
543 
544 	i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
545 	last = i + (region->region.memory_size >> vm->page_shift);
546 	for (;;) {
547 		i = sparsebit_next_clear(region->unused_phy_pages, i);
548 		if (i > last)
549 			break;
550 
551 		nested_map(vmx, vm,
552 			   (uint64_t)i << vm->page_shift,
553 			   (uint64_t)i << vm->page_shift,
554 			   1 << vm->page_shift);
555 	}
556 }
557 
558 /* Identity map a region with 1GiB Pages. */
559 void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
560 			    uint64_t addr, uint64_t size)
561 {
562 	__nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
563 }
564 
565 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
566 		  uint32_t eptp_memslot)
567 {
568 	vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
569 	vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
570 	vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
571 }
572 
573 void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
574 {
575 	vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
576 	vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
577 	vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
578 }
579