1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/vmx.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "test_util.h" 9 #include "kvm_util.h" 10 #include "../kvm_util_internal.h" 11 #include "processor.h" 12 #include "vmx.h" 13 14 #define PAGE_SHIFT_4K 12 15 16 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000 17 18 bool enable_evmcs; 19 20 struct hv_enlightened_vmcs *current_evmcs; 21 struct hv_vp_assist_page *current_vp_assist; 22 23 struct eptPageTableEntry { 24 uint64_t readable:1; 25 uint64_t writable:1; 26 uint64_t executable:1; 27 uint64_t memory_type:3; 28 uint64_t ignore_pat:1; 29 uint64_t page_size:1; 30 uint64_t accessed:1; 31 uint64_t dirty:1; 32 uint64_t ignored_11_10:2; 33 uint64_t address:40; 34 uint64_t ignored_62_52:11; 35 uint64_t suppress_ve:1; 36 }; 37 38 struct eptPageTablePointer { 39 uint64_t memory_type:3; 40 uint64_t page_walk_length:3; 41 uint64_t ad_enabled:1; 42 uint64_t reserved_11_07:5; 43 uint64_t address:40; 44 uint64_t reserved_63_52:12; 45 }; 46 int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id) 47 { 48 uint16_t evmcs_ver; 49 50 struct kvm_enable_cap enable_evmcs_cap = { 51 .cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 52 .args[0] = (unsigned long)&evmcs_ver 53 }; 54 55 vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap); 56 57 /* KVM should return supported EVMCS version range */ 58 TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) && 59 (evmcs_ver & 0xff) > 0, 60 "Incorrect EVMCS version range: %x:%x\n", 61 evmcs_ver & 0xff, evmcs_ver >> 8); 62 63 return evmcs_ver; 64 } 65 66 /* Allocate memory regions for nested VMX tests. 67 * 68 * Input Args: 69 * vm - The VM to allocate guest-virtual addresses in. 70 * 71 * Output Args: 72 * p_vmx_gva - The guest virtual address for the struct vmx_pages. 73 * 74 * Return: 75 * Pointer to structure with the addresses of the VMX areas. 76 */ 77 struct vmx_pages * 78 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva) 79 { 80 vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 81 struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva); 82 83 /* Setup of a region of guest memory for the vmxon region. */ 84 vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 85 vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon); 86 vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon); 87 88 /* Setup of a region of guest memory for a vmcs. */ 89 vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 90 vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs); 91 vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs); 92 93 /* Setup of a region of guest memory for the MSR bitmap. */ 94 vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 95 vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr); 96 vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr); 97 memset(vmx->msr_hva, 0, getpagesize()); 98 99 /* Setup of a region of guest memory for the shadow VMCS. */ 100 vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 101 vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs); 102 vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs); 103 104 /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */ 105 vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 106 vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread); 107 vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread); 108 memset(vmx->vmread_hva, 0, getpagesize()); 109 110 vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 111 vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite); 112 vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite); 113 memset(vmx->vmwrite_hva, 0, getpagesize()); 114 115 /* Setup of a region of guest memory for the VP Assist page. */ 116 vmx->vp_assist = (void *)vm_vaddr_alloc(vm, getpagesize(), 117 0x10000, 0, 0); 118 vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist); 119 vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist); 120 121 /* Setup of a region of guest memory for the enlightened VMCS. */ 122 vmx->enlightened_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 123 0x10000, 0, 0); 124 vmx->enlightened_vmcs_hva = 125 addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs); 126 vmx->enlightened_vmcs_gpa = 127 addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs); 128 129 *p_vmx_gva = vmx_gva; 130 return vmx; 131 } 132 133 bool prepare_for_vmx_operation(struct vmx_pages *vmx) 134 { 135 uint64_t feature_control; 136 uint64_t required; 137 unsigned long cr0; 138 unsigned long cr4; 139 140 /* 141 * Ensure bits in CR0 and CR4 are valid in VMX operation: 142 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx. 143 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx. 144 */ 145 __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory"); 146 cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1); 147 cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0); 148 __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory"); 149 150 __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory"); 151 cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1); 152 cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0); 153 /* Enable VMX operation */ 154 cr4 |= X86_CR4_VMXE; 155 __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory"); 156 157 /* 158 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON: 159 * Bit 0: Lock bit. If clear, VMXON causes a #GP. 160 * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON 161 * outside of SMX causes a #GP. 162 */ 163 required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 164 required |= FEAT_CTL_LOCKED; 165 feature_control = rdmsr(MSR_IA32_FEAT_CTL); 166 if ((feature_control & required) != required) 167 wrmsr(MSR_IA32_FEAT_CTL, feature_control | required); 168 169 /* Enter VMX root operation. */ 170 *(uint32_t *)(vmx->vmxon) = vmcs_revision(); 171 if (vmxon(vmx->vmxon_gpa)) 172 return false; 173 174 return true; 175 } 176 177 bool load_vmcs(struct vmx_pages *vmx) 178 { 179 if (!enable_evmcs) { 180 /* Load a VMCS. */ 181 *(uint32_t *)(vmx->vmcs) = vmcs_revision(); 182 if (vmclear(vmx->vmcs_gpa)) 183 return false; 184 185 if (vmptrld(vmx->vmcs_gpa)) 186 return false; 187 188 /* Setup shadow VMCS, do not load it yet. */ 189 *(uint32_t *)(vmx->shadow_vmcs) = 190 vmcs_revision() | 0x80000000ul; 191 if (vmclear(vmx->shadow_vmcs_gpa)) 192 return false; 193 } else { 194 if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa, 195 vmx->enlightened_vmcs)) 196 return false; 197 current_evmcs->revision_id = EVMCS_VERSION; 198 } 199 200 return true; 201 } 202 203 /* 204 * Initialize the control fields to the most basic settings possible. 205 */ 206 static inline void init_vmcs_control_fields(struct vmx_pages *vmx) 207 { 208 uint32_t sec_exec_ctl = 0; 209 210 vmwrite(VIRTUAL_PROCESSOR_ID, 0); 211 vmwrite(POSTED_INTR_NV, 0); 212 213 vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS)); 214 215 if (vmx->eptp_gpa) { 216 uint64_t ept_paddr; 217 struct eptPageTablePointer eptp = { 218 .memory_type = VMX_BASIC_MEM_TYPE_WB, 219 .page_walk_length = 3, /* + 1 */ 220 .ad_enabled = !!(rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & VMX_EPT_VPID_CAP_AD_BITS), 221 .address = vmx->eptp_gpa >> PAGE_SHIFT_4K, 222 }; 223 224 memcpy(&ept_paddr, &eptp, sizeof(ept_paddr)); 225 vmwrite(EPT_POINTER, ept_paddr); 226 sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT; 227 } 228 229 if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl)) 230 vmwrite(CPU_BASED_VM_EXEC_CONTROL, 231 rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS); 232 else { 233 vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS)); 234 GUEST_ASSERT(!sec_exec_ctl); 235 } 236 237 vmwrite(EXCEPTION_BITMAP, 0); 238 vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0); 239 vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */ 240 vmwrite(CR3_TARGET_COUNT, 0); 241 vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) | 242 VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */ 243 vmwrite(VM_EXIT_MSR_STORE_COUNT, 0); 244 vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0); 245 vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) | 246 VM_ENTRY_IA32E_MODE); /* 64-bit guest */ 247 vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0); 248 vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0); 249 vmwrite(TPR_THRESHOLD, 0); 250 251 vmwrite(CR0_GUEST_HOST_MASK, 0); 252 vmwrite(CR4_GUEST_HOST_MASK, 0); 253 vmwrite(CR0_READ_SHADOW, get_cr0()); 254 vmwrite(CR4_READ_SHADOW, get_cr4()); 255 256 vmwrite(MSR_BITMAP, vmx->msr_gpa); 257 vmwrite(VMREAD_BITMAP, vmx->vmread_gpa); 258 vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa); 259 } 260 261 /* 262 * Initialize the host state fields based on the current host state, with 263 * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch 264 * or vmresume. 265 */ 266 static inline void init_vmcs_host_state(void) 267 { 268 uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS); 269 270 vmwrite(HOST_ES_SELECTOR, get_es()); 271 vmwrite(HOST_CS_SELECTOR, get_cs()); 272 vmwrite(HOST_SS_SELECTOR, get_ss()); 273 vmwrite(HOST_DS_SELECTOR, get_ds()); 274 vmwrite(HOST_FS_SELECTOR, get_fs()); 275 vmwrite(HOST_GS_SELECTOR, get_gs()); 276 vmwrite(HOST_TR_SELECTOR, get_tr()); 277 278 if (exit_controls & VM_EXIT_LOAD_IA32_PAT) 279 vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT)); 280 if (exit_controls & VM_EXIT_LOAD_IA32_EFER) 281 vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER)); 282 if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 283 vmwrite(HOST_IA32_PERF_GLOBAL_CTRL, 284 rdmsr(MSR_CORE_PERF_GLOBAL_CTRL)); 285 286 vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS)); 287 288 vmwrite(HOST_CR0, get_cr0()); 289 vmwrite(HOST_CR3, get_cr3()); 290 vmwrite(HOST_CR4, get_cr4()); 291 vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE)); 292 vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE)); 293 vmwrite(HOST_TR_BASE, 294 get_desc64_base((struct desc64 *)(get_gdt().address + get_tr()))); 295 vmwrite(HOST_GDTR_BASE, get_gdt().address); 296 vmwrite(HOST_IDTR_BASE, get_idt().address); 297 vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP)); 298 vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP)); 299 } 300 301 /* 302 * Initialize the guest state fields essentially as a clone of 303 * the host state fields. Some host state fields have fixed 304 * values, and we set the corresponding guest state fields accordingly. 305 */ 306 static inline void init_vmcs_guest_state(void *rip, void *rsp) 307 { 308 vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR)); 309 vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR)); 310 vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR)); 311 vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR)); 312 vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR)); 313 vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR)); 314 vmwrite(GUEST_LDTR_SELECTOR, 0); 315 vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR)); 316 vmwrite(GUEST_INTR_STATUS, 0); 317 vmwrite(GUEST_PML_INDEX, 0); 318 319 vmwrite(VMCS_LINK_POINTER, -1ll); 320 vmwrite(GUEST_IA32_DEBUGCTL, 0); 321 vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT)); 322 vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER)); 323 vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL, 324 vmreadz(HOST_IA32_PERF_GLOBAL_CTRL)); 325 326 vmwrite(GUEST_ES_LIMIT, -1); 327 vmwrite(GUEST_CS_LIMIT, -1); 328 vmwrite(GUEST_SS_LIMIT, -1); 329 vmwrite(GUEST_DS_LIMIT, -1); 330 vmwrite(GUEST_FS_LIMIT, -1); 331 vmwrite(GUEST_GS_LIMIT, -1); 332 vmwrite(GUEST_LDTR_LIMIT, -1); 333 vmwrite(GUEST_TR_LIMIT, 0x67); 334 vmwrite(GUEST_GDTR_LIMIT, 0xffff); 335 vmwrite(GUEST_IDTR_LIMIT, 0xffff); 336 vmwrite(GUEST_ES_AR_BYTES, 337 vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093); 338 vmwrite(GUEST_CS_AR_BYTES, 0xa09b); 339 vmwrite(GUEST_SS_AR_BYTES, 0xc093); 340 vmwrite(GUEST_DS_AR_BYTES, 341 vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093); 342 vmwrite(GUEST_FS_AR_BYTES, 343 vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093); 344 vmwrite(GUEST_GS_AR_BYTES, 345 vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093); 346 vmwrite(GUEST_LDTR_AR_BYTES, 0x10000); 347 vmwrite(GUEST_TR_AR_BYTES, 0x8b); 348 vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0); 349 vmwrite(GUEST_ACTIVITY_STATE, 0); 350 vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS)); 351 vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0); 352 353 vmwrite(GUEST_CR0, vmreadz(HOST_CR0)); 354 vmwrite(GUEST_CR3, vmreadz(HOST_CR3)); 355 vmwrite(GUEST_CR4, vmreadz(HOST_CR4)); 356 vmwrite(GUEST_ES_BASE, 0); 357 vmwrite(GUEST_CS_BASE, 0); 358 vmwrite(GUEST_SS_BASE, 0); 359 vmwrite(GUEST_DS_BASE, 0); 360 vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE)); 361 vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE)); 362 vmwrite(GUEST_LDTR_BASE, 0); 363 vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE)); 364 vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE)); 365 vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE)); 366 vmwrite(GUEST_DR7, 0x400); 367 vmwrite(GUEST_RSP, (uint64_t)rsp); 368 vmwrite(GUEST_RIP, (uint64_t)rip); 369 vmwrite(GUEST_RFLAGS, 2); 370 vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0); 371 vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP)); 372 vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP)); 373 } 374 375 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp) 376 { 377 init_vmcs_control_fields(vmx); 378 init_vmcs_host_state(); 379 init_vmcs_guest_state(guest_rip, guest_rsp); 380 } 381 382 void nested_vmx_check_supported(void) 383 { 384 struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1); 385 386 if (!(entry->ecx & CPUID_VMX)) { 387 print_skip("nested VMX not enabled"); 388 exit(KSFT_SKIP); 389 } 390 } 391 392 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm, 393 uint64_t nested_paddr, uint64_t paddr, uint32_t eptp_memslot) 394 { 395 uint16_t index[4]; 396 struct eptPageTableEntry *pml4e; 397 398 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 399 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 400 401 TEST_ASSERT((nested_paddr % vm->page_size) == 0, 402 "Nested physical address not on page boundary,\n" 403 " nested_paddr: 0x%lx vm->page_size: 0x%x", 404 nested_paddr, vm->page_size); 405 TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn, 406 "Physical address beyond beyond maximum supported,\n" 407 " nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 408 paddr, vm->max_gfn, vm->page_size); 409 TEST_ASSERT((paddr % vm->page_size) == 0, 410 "Physical address not on page boundary,\n" 411 " paddr: 0x%lx vm->page_size: 0x%x", 412 paddr, vm->page_size); 413 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 414 "Physical address beyond beyond maximum supported,\n" 415 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 416 paddr, vm->max_gfn, vm->page_size); 417 418 index[0] = (nested_paddr >> 12) & 0x1ffu; 419 index[1] = (nested_paddr >> 21) & 0x1ffu; 420 index[2] = (nested_paddr >> 30) & 0x1ffu; 421 index[3] = (nested_paddr >> 39) & 0x1ffu; 422 423 /* Allocate page directory pointer table if not present. */ 424 pml4e = vmx->eptp_hva; 425 if (!pml4e[index[3]].readable) { 426 pml4e[index[3]].address = vm_phy_page_alloc(vm, 427 KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot) 428 >> vm->page_shift; 429 pml4e[index[3]].writable = true; 430 pml4e[index[3]].readable = true; 431 pml4e[index[3]].executable = true; 432 } 433 434 /* Allocate page directory table if not present. */ 435 struct eptPageTableEntry *pdpe; 436 pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); 437 if (!pdpe[index[2]].readable) { 438 pdpe[index[2]].address = vm_phy_page_alloc(vm, 439 KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot) 440 >> vm->page_shift; 441 pdpe[index[2]].writable = true; 442 pdpe[index[2]].readable = true; 443 pdpe[index[2]].executable = true; 444 } 445 446 /* Allocate page table if not present. */ 447 struct eptPageTableEntry *pde; 448 pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); 449 if (!pde[index[1]].readable) { 450 pde[index[1]].address = vm_phy_page_alloc(vm, 451 KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot) 452 >> vm->page_shift; 453 pde[index[1]].writable = true; 454 pde[index[1]].readable = true; 455 pde[index[1]].executable = true; 456 } 457 458 /* Fill in page table entry. */ 459 struct eptPageTableEntry *pte; 460 pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); 461 pte[index[0]].address = paddr >> vm->page_shift; 462 pte[index[0]].writable = true; 463 pte[index[0]].readable = true; 464 pte[index[0]].executable = true; 465 466 /* 467 * For now mark these as accessed and dirty because the only 468 * testcase we have needs that. Can be reconsidered later. 469 */ 470 pte[index[0]].accessed = true; 471 pte[index[0]].dirty = true; 472 } 473 474 /* 475 * Map a range of EPT guest physical addresses to the VM's physical address 476 * 477 * Input Args: 478 * vm - Virtual Machine 479 * nested_paddr - Nested guest physical address to map 480 * paddr - VM Physical Address 481 * size - The size of the range to map 482 * eptp_memslot - Memory region slot for new virtual translation tables 483 * 484 * Output Args: None 485 * 486 * Return: None 487 * 488 * Within the VM given by vm, creates a nested guest translation for the 489 * page range starting at nested_paddr to the page range starting at paddr. 490 */ 491 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm, 492 uint64_t nested_paddr, uint64_t paddr, uint64_t size, 493 uint32_t eptp_memslot) 494 { 495 size_t page_size = vm->page_size; 496 size_t npages = size / page_size; 497 498 TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow"); 499 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 500 501 while (npages--) { 502 nested_pg_map(vmx, vm, nested_paddr, paddr, eptp_memslot); 503 nested_paddr += page_size; 504 paddr += page_size; 505 } 506 } 507 508 /* Prepare an identity extended page table that maps all the 509 * physical pages in VM. 510 */ 511 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm, 512 uint32_t memslot, uint32_t eptp_memslot) 513 { 514 sparsebit_idx_t i, last; 515 struct userspace_mem_region *region = 516 memslot2region(vm, memslot); 517 518 i = (region->region.guest_phys_addr >> vm->page_shift) - 1; 519 last = i + (region->region.memory_size >> vm->page_shift); 520 for (;;) { 521 i = sparsebit_next_clear(region->unused_phy_pages, i); 522 if (i > last) 523 break; 524 525 nested_map(vmx, vm, 526 (uint64_t)i << vm->page_shift, 527 (uint64_t)i << vm->page_shift, 528 1 << vm->page_shift, 529 eptp_memslot); 530 } 531 } 532 533 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm, 534 uint32_t eptp_memslot) 535 { 536 vmx->eptp = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 537 vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp); 538 vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp); 539 } 540