1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/vmx.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "test_util.h" 9 #include "kvm_util.h" 10 #include "../kvm_util_internal.h" 11 #include "processor.h" 12 #include "vmx.h" 13 14 #define PAGE_SHIFT_4K 12 15 16 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000 17 18 bool enable_evmcs; 19 20 struct eptPageTableEntry { 21 uint64_t readable:1; 22 uint64_t writable:1; 23 uint64_t executable:1; 24 uint64_t memory_type:3; 25 uint64_t ignore_pat:1; 26 uint64_t page_size:1; 27 uint64_t accessed:1; 28 uint64_t dirty:1; 29 uint64_t ignored_11_10:2; 30 uint64_t address:40; 31 uint64_t ignored_62_52:11; 32 uint64_t suppress_ve:1; 33 }; 34 35 struct eptPageTablePointer { 36 uint64_t memory_type:3; 37 uint64_t page_walk_length:3; 38 uint64_t ad_enabled:1; 39 uint64_t reserved_11_07:5; 40 uint64_t address:40; 41 uint64_t reserved_63_52:12; 42 }; 43 int vcpu_enable_evmcs(struct kvm_vm *vm, int vcpu_id) 44 { 45 uint16_t evmcs_ver; 46 47 struct kvm_enable_cap enable_evmcs_cap = { 48 .cap = KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 49 .args[0] = (unsigned long)&evmcs_ver 50 }; 51 52 vcpu_ioctl(vm, vcpu_id, KVM_ENABLE_CAP, &enable_evmcs_cap); 53 54 /* KVM should return supported EVMCS version range */ 55 TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) && 56 (evmcs_ver & 0xff) > 0, 57 "Incorrect EVMCS version range: %x:%x\n", 58 evmcs_ver & 0xff, evmcs_ver >> 8); 59 60 return evmcs_ver; 61 } 62 63 /* Allocate memory regions for nested VMX tests. 64 * 65 * Input Args: 66 * vm - The VM to allocate guest-virtual addresses in. 67 * 68 * Output Args: 69 * p_vmx_gva - The guest virtual address for the struct vmx_pages. 70 * 71 * Return: 72 * Pointer to structure with the addresses of the VMX areas. 73 */ 74 struct vmx_pages * 75 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva) 76 { 77 vm_vaddr_t vmx_gva = vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 78 struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva); 79 80 /* Setup of a region of guest memory for the vmxon region. */ 81 vmx->vmxon = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 82 vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon); 83 vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon); 84 85 /* Setup of a region of guest memory for a vmcs. */ 86 vmx->vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 87 vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs); 88 vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs); 89 90 /* Setup of a region of guest memory for the MSR bitmap. */ 91 vmx->msr = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 92 vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr); 93 vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr); 94 memset(vmx->msr_hva, 0, getpagesize()); 95 96 /* Setup of a region of guest memory for the shadow VMCS. */ 97 vmx->shadow_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 98 vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs); 99 vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs); 100 101 /* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */ 102 vmx->vmread = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 103 vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread); 104 vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread); 105 memset(vmx->vmread_hva, 0, getpagesize()); 106 107 vmx->vmwrite = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 108 vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite); 109 vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite); 110 memset(vmx->vmwrite_hva, 0, getpagesize()); 111 112 /* Setup of a region of guest memory for the VP Assist page. */ 113 vmx->vp_assist = (void *)vm_vaddr_alloc(vm, getpagesize(), 114 0x10000, 0, 0); 115 vmx->vp_assist_hva = addr_gva2hva(vm, (uintptr_t)vmx->vp_assist); 116 vmx->vp_assist_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vp_assist); 117 118 /* Setup of a region of guest memory for the enlightened VMCS. */ 119 vmx->enlightened_vmcs = (void *)vm_vaddr_alloc(vm, getpagesize(), 120 0x10000, 0, 0); 121 vmx->enlightened_vmcs_hva = 122 addr_gva2hva(vm, (uintptr_t)vmx->enlightened_vmcs); 123 vmx->enlightened_vmcs_gpa = 124 addr_gva2gpa(vm, (uintptr_t)vmx->enlightened_vmcs); 125 126 *p_vmx_gva = vmx_gva; 127 return vmx; 128 } 129 130 bool prepare_for_vmx_operation(struct vmx_pages *vmx) 131 { 132 uint64_t feature_control; 133 uint64_t required; 134 unsigned long cr0; 135 unsigned long cr4; 136 137 /* 138 * Ensure bits in CR0 and CR4 are valid in VMX operation: 139 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx. 140 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx. 141 */ 142 __asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory"); 143 cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1); 144 cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0); 145 __asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory"); 146 147 __asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory"); 148 cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1); 149 cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0); 150 /* Enable VMX operation */ 151 cr4 |= X86_CR4_VMXE; 152 __asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory"); 153 154 /* 155 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON: 156 * Bit 0: Lock bit. If clear, VMXON causes a #GP. 157 * Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON 158 * outside of SMX causes a #GP. 159 */ 160 required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 161 required |= FEAT_CTL_LOCKED; 162 feature_control = rdmsr(MSR_IA32_FEAT_CTL); 163 if ((feature_control & required) != required) 164 wrmsr(MSR_IA32_FEAT_CTL, feature_control | required); 165 166 /* Enter VMX root operation. */ 167 *(uint32_t *)(vmx->vmxon) = vmcs_revision(); 168 if (vmxon(vmx->vmxon_gpa)) 169 return false; 170 171 return true; 172 } 173 174 bool load_vmcs(struct vmx_pages *vmx) 175 { 176 if (!enable_evmcs) { 177 /* Load a VMCS. */ 178 *(uint32_t *)(vmx->vmcs) = vmcs_revision(); 179 if (vmclear(vmx->vmcs_gpa)) 180 return false; 181 182 if (vmptrld(vmx->vmcs_gpa)) 183 return false; 184 185 /* Setup shadow VMCS, do not load it yet. */ 186 *(uint32_t *)(vmx->shadow_vmcs) = 187 vmcs_revision() | 0x80000000ul; 188 if (vmclear(vmx->shadow_vmcs_gpa)) 189 return false; 190 } else { 191 if (evmcs_vmptrld(vmx->enlightened_vmcs_gpa, 192 vmx->enlightened_vmcs)) 193 return false; 194 current_evmcs->revision_id = EVMCS_VERSION; 195 } 196 197 return true; 198 } 199 200 /* 201 * Initialize the control fields to the most basic settings possible. 202 */ 203 static inline void init_vmcs_control_fields(struct vmx_pages *vmx) 204 { 205 uint32_t sec_exec_ctl = 0; 206 207 vmwrite(VIRTUAL_PROCESSOR_ID, 0); 208 vmwrite(POSTED_INTR_NV, 0); 209 210 vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS)); 211 212 if (vmx->eptp_gpa) { 213 uint64_t ept_paddr; 214 struct eptPageTablePointer eptp = { 215 .memory_type = VMX_BASIC_MEM_TYPE_WB, 216 .page_walk_length = 3, /* + 1 */ 217 .ad_enabled = !!(rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & VMX_EPT_VPID_CAP_AD_BITS), 218 .address = vmx->eptp_gpa >> PAGE_SHIFT_4K, 219 }; 220 221 memcpy(&ept_paddr, &eptp, sizeof(ept_paddr)); 222 vmwrite(EPT_POINTER, ept_paddr); 223 sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT; 224 } 225 226 if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl)) 227 vmwrite(CPU_BASED_VM_EXEC_CONTROL, 228 rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS); 229 else { 230 vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS)); 231 GUEST_ASSERT(!sec_exec_ctl); 232 } 233 234 vmwrite(EXCEPTION_BITMAP, 0); 235 vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0); 236 vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */ 237 vmwrite(CR3_TARGET_COUNT, 0); 238 vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) | 239 VM_EXIT_HOST_ADDR_SPACE_SIZE); /* 64-bit host */ 240 vmwrite(VM_EXIT_MSR_STORE_COUNT, 0); 241 vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0); 242 vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) | 243 VM_ENTRY_IA32E_MODE); /* 64-bit guest */ 244 vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0); 245 vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0); 246 vmwrite(TPR_THRESHOLD, 0); 247 248 vmwrite(CR0_GUEST_HOST_MASK, 0); 249 vmwrite(CR4_GUEST_HOST_MASK, 0); 250 vmwrite(CR0_READ_SHADOW, get_cr0()); 251 vmwrite(CR4_READ_SHADOW, get_cr4()); 252 253 vmwrite(MSR_BITMAP, vmx->msr_gpa); 254 vmwrite(VMREAD_BITMAP, vmx->vmread_gpa); 255 vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa); 256 } 257 258 /* 259 * Initialize the host state fields based on the current host state, with 260 * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch 261 * or vmresume. 262 */ 263 static inline void init_vmcs_host_state(void) 264 { 265 uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS); 266 267 vmwrite(HOST_ES_SELECTOR, get_es()); 268 vmwrite(HOST_CS_SELECTOR, get_cs()); 269 vmwrite(HOST_SS_SELECTOR, get_ss()); 270 vmwrite(HOST_DS_SELECTOR, get_ds()); 271 vmwrite(HOST_FS_SELECTOR, get_fs()); 272 vmwrite(HOST_GS_SELECTOR, get_gs()); 273 vmwrite(HOST_TR_SELECTOR, get_tr()); 274 275 if (exit_controls & VM_EXIT_LOAD_IA32_PAT) 276 vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT)); 277 if (exit_controls & VM_EXIT_LOAD_IA32_EFER) 278 vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER)); 279 if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 280 vmwrite(HOST_IA32_PERF_GLOBAL_CTRL, 281 rdmsr(MSR_CORE_PERF_GLOBAL_CTRL)); 282 283 vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS)); 284 285 vmwrite(HOST_CR0, get_cr0()); 286 vmwrite(HOST_CR3, get_cr3()); 287 vmwrite(HOST_CR4, get_cr4()); 288 vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE)); 289 vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE)); 290 vmwrite(HOST_TR_BASE, 291 get_desc64_base((struct desc64 *)(get_gdt().address + get_tr()))); 292 vmwrite(HOST_GDTR_BASE, get_gdt().address); 293 vmwrite(HOST_IDTR_BASE, get_idt().address); 294 vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP)); 295 vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP)); 296 } 297 298 /* 299 * Initialize the guest state fields essentially as a clone of 300 * the host state fields. Some host state fields have fixed 301 * values, and we set the corresponding guest state fields accordingly. 302 */ 303 static inline void init_vmcs_guest_state(void *rip, void *rsp) 304 { 305 vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR)); 306 vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR)); 307 vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR)); 308 vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR)); 309 vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR)); 310 vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR)); 311 vmwrite(GUEST_LDTR_SELECTOR, 0); 312 vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR)); 313 vmwrite(GUEST_INTR_STATUS, 0); 314 vmwrite(GUEST_PML_INDEX, 0); 315 316 vmwrite(VMCS_LINK_POINTER, -1ll); 317 vmwrite(GUEST_IA32_DEBUGCTL, 0); 318 vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT)); 319 vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER)); 320 vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL, 321 vmreadz(HOST_IA32_PERF_GLOBAL_CTRL)); 322 323 vmwrite(GUEST_ES_LIMIT, -1); 324 vmwrite(GUEST_CS_LIMIT, -1); 325 vmwrite(GUEST_SS_LIMIT, -1); 326 vmwrite(GUEST_DS_LIMIT, -1); 327 vmwrite(GUEST_FS_LIMIT, -1); 328 vmwrite(GUEST_GS_LIMIT, -1); 329 vmwrite(GUEST_LDTR_LIMIT, -1); 330 vmwrite(GUEST_TR_LIMIT, 0x67); 331 vmwrite(GUEST_GDTR_LIMIT, 0xffff); 332 vmwrite(GUEST_IDTR_LIMIT, 0xffff); 333 vmwrite(GUEST_ES_AR_BYTES, 334 vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093); 335 vmwrite(GUEST_CS_AR_BYTES, 0xa09b); 336 vmwrite(GUEST_SS_AR_BYTES, 0xc093); 337 vmwrite(GUEST_DS_AR_BYTES, 338 vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093); 339 vmwrite(GUEST_FS_AR_BYTES, 340 vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093); 341 vmwrite(GUEST_GS_AR_BYTES, 342 vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093); 343 vmwrite(GUEST_LDTR_AR_BYTES, 0x10000); 344 vmwrite(GUEST_TR_AR_BYTES, 0x8b); 345 vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0); 346 vmwrite(GUEST_ACTIVITY_STATE, 0); 347 vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS)); 348 vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0); 349 350 vmwrite(GUEST_CR0, vmreadz(HOST_CR0)); 351 vmwrite(GUEST_CR3, vmreadz(HOST_CR3)); 352 vmwrite(GUEST_CR4, vmreadz(HOST_CR4)); 353 vmwrite(GUEST_ES_BASE, 0); 354 vmwrite(GUEST_CS_BASE, 0); 355 vmwrite(GUEST_SS_BASE, 0); 356 vmwrite(GUEST_DS_BASE, 0); 357 vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE)); 358 vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE)); 359 vmwrite(GUEST_LDTR_BASE, 0); 360 vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE)); 361 vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE)); 362 vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE)); 363 vmwrite(GUEST_DR7, 0x400); 364 vmwrite(GUEST_RSP, (uint64_t)rsp); 365 vmwrite(GUEST_RIP, (uint64_t)rip); 366 vmwrite(GUEST_RFLAGS, 2); 367 vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0); 368 vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP)); 369 vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP)); 370 } 371 372 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp) 373 { 374 init_vmcs_control_fields(vmx); 375 init_vmcs_host_state(); 376 init_vmcs_guest_state(guest_rip, guest_rsp); 377 } 378 379 void nested_vmx_check_supported(void) 380 { 381 struct kvm_cpuid_entry2 *entry = kvm_get_supported_cpuid_entry(1); 382 383 if (!(entry->ecx & CPUID_VMX)) { 384 print_skip("nested VMX not enabled"); 385 exit(KSFT_SKIP); 386 } 387 } 388 389 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm, 390 uint64_t nested_paddr, uint64_t paddr, uint32_t eptp_memslot) 391 { 392 uint16_t index[4]; 393 struct eptPageTableEntry *pml4e; 394 395 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 396 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 397 398 TEST_ASSERT((nested_paddr % vm->page_size) == 0, 399 "Nested physical address not on page boundary,\n" 400 " nested_paddr: 0x%lx vm->page_size: 0x%x", 401 nested_paddr, vm->page_size); 402 TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn, 403 "Physical address beyond beyond maximum supported,\n" 404 " nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 405 paddr, vm->max_gfn, vm->page_size); 406 TEST_ASSERT((paddr % vm->page_size) == 0, 407 "Physical address not on page boundary,\n" 408 " paddr: 0x%lx vm->page_size: 0x%x", 409 paddr, vm->page_size); 410 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 411 "Physical address beyond beyond maximum supported,\n" 412 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 413 paddr, vm->max_gfn, vm->page_size); 414 415 index[0] = (nested_paddr >> 12) & 0x1ffu; 416 index[1] = (nested_paddr >> 21) & 0x1ffu; 417 index[2] = (nested_paddr >> 30) & 0x1ffu; 418 index[3] = (nested_paddr >> 39) & 0x1ffu; 419 420 /* Allocate page directory pointer table if not present. */ 421 pml4e = vmx->eptp_hva; 422 if (!pml4e[index[3]].readable) { 423 pml4e[index[3]].address = vm_phy_page_alloc(vm, 424 KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot) 425 >> vm->page_shift; 426 pml4e[index[3]].writable = true; 427 pml4e[index[3]].readable = true; 428 pml4e[index[3]].executable = true; 429 } 430 431 /* Allocate page directory table if not present. */ 432 struct eptPageTableEntry *pdpe; 433 pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); 434 if (!pdpe[index[2]].readable) { 435 pdpe[index[2]].address = vm_phy_page_alloc(vm, 436 KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot) 437 >> vm->page_shift; 438 pdpe[index[2]].writable = true; 439 pdpe[index[2]].readable = true; 440 pdpe[index[2]].executable = true; 441 } 442 443 /* Allocate page table if not present. */ 444 struct eptPageTableEntry *pde; 445 pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); 446 if (!pde[index[1]].readable) { 447 pde[index[1]].address = vm_phy_page_alloc(vm, 448 KVM_EPT_PAGE_TABLE_MIN_PADDR, eptp_memslot) 449 >> vm->page_shift; 450 pde[index[1]].writable = true; 451 pde[index[1]].readable = true; 452 pde[index[1]].executable = true; 453 } 454 455 /* Fill in page table entry. */ 456 struct eptPageTableEntry *pte; 457 pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); 458 pte[index[0]].address = paddr >> vm->page_shift; 459 pte[index[0]].writable = true; 460 pte[index[0]].readable = true; 461 pte[index[0]].executable = true; 462 463 /* 464 * For now mark these as accessed and dirty because the only 465 * testcase we have needs that. Can be reconsidered later. 466 */ 467 pte[index[0]].accessed = true; 468 pte[index[0]].dirty = true; 469 } 470 471 /* 472 * Map a range of EPT guest physical addresses to the VM's physical address 473 * 474 * Input Args: 475 * vm - Virtual Machine 476 * nested_paddr - Nested guest physical address to map 477 * paddr - VM Physical Address 478 * size - The size of the range to map 479 * eptp_memslot - Memory region slot for new virtual translation tables 480 * 481 * Output Args: None 482 * 483 * Return: None 484 * 485 * Within the VM given by vm, creates a nested guest translation for the 486 * page range starting at nested_paddr to the page range starting at paddr. 487 */ 488 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm, 489 uint64_t nested_paddr, uint64_t paddr, uint64_t size, 490 uint32_t eptp_memslot) 491 { 492 size_t page_size = vm->page_size; 493 size_t npages = size / page_size; 494 495 TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow"); 496 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 497 498 while (npages--) { 499 nested_pg_map(vmx, vm, nested_paddr, paddr, eptp_memslot); 500 nested_paddr += page_size; 501 paddr += page_size; 502 } 503 } 504 505 /* Prepare an identity extended page table that maps all the 506 * physical pages in VM. 507 */ 508 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm, 509 uint32_t memslot, uint32_t eptp_memslot) 510 { 511 sparsebit_idx_t i, last; 512 struct userspace_mem_region *region = 513 memslot2region(vm, memslot); 514 515 i = (region->region.guest_phys_addr >> vm->page_shift) - 1; 516 last = i + (region->region.memory_size >> vm->page_shift); 517 for (;;) { 518 i = sparsebit_next_clear(region->unused_phy_pages, i); 519 if (i > last) 520 break; 521 522 nested_map(vmx, vm, 523 (uint64_t)i << vm->page_shift, 524 (uint64_t)i << vm->page_shift, 525 1 << vm->page_shift, 526 eptp_memslot); 527 } 528 } 529 530 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm, 531 uint32_t eptp_memslot) 532 { 533 vmx->eptp = (void *)vm_vaddr_alloc(vm, getpagesize(), 0x10000, 0, 0); 534 vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp); 535 vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp); 536 } 537