1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/processor.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "linux/bitmap.h" 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "processor.h" 12 13 #ifndef NUM_INTERRUPTS 14 #define NUM_INTERRUPTS 256 15 #endif 16 17 #define DEFAULT_CODE_SELECTOR 0x8 18 #define DEFAULT_DATA_SELECTOR 0x10 19 20 #define MAX_NR_CPUID_ENTRIES 100 21 22 vm_vaddr_t exception_handlers; 23 bool host_cpu_is_amd; 24 bool host_cpu_is_intel; 25 26 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) 27 { 28 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " 29 "rcx: 0x%.16llx rdx: 0x%.16llx\n", 30 indent, "", 31 regs->rax, regs->rbx, regs->rcx, regs->rdx); 32 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " 33 "rsp: 0x%.16llx rbp: 0x%.16llx\n", 34 indent, "", 35 regs->rsi, regs->rdi, regs->rsp, regs->rbp); 36 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " 37 "r10: 0x%.16llx r11: 0x%.16llx\n", 38 indent, "", 39 regs->r8, regs->r9, regs->r10, regs->r11); 40 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " 41 "r14: 0x%.16llx r15: 0x%.16llx\n", 42 indent, "", 43 regs->r12, regs->r13, regs->r14, regs->r15); 44 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", 45 indent, "", 46 regs->rip, regs->rflags); 47 } 48 49 static void segment_dump(FILE *stream, struct kvm_segment *segment, 50 uint8_t indent) 51 { 52 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " 53 "selector: 0x%.4x type: 0x%.2x\n", 54 indent, "", segment->base, segment->limit, 55 segment->selector, segment->type); 56 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " 57 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", 58 indent, "", segment->present, segment->dpl, 59 segment->db, segment->s, segment->l); 60 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " 61 "unusable: 0x%.2x padding: 0x%.2x\n", 62 indent, "", segment->g, segment->avl, 63 segment->unusable, segment->padding); 64 } 65 66 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, 67 uint8_t indent) 68 { 69 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " 70 "padding: 0x%.4x 0x%.4x 0x%.4x\n", 71 indent, "", dtable->base, dtable->limit, 72 dtable->padding[0], dtable->padding[1], dtable->padding[2]); 73 } 74 75 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) 76 { 77 unsigned int i; 78 79 fprintf(stream, "%*scs:\n", indent, ""); 80 segment_dump(stream, &sregs->cs, indent + 2); 81 fprintf(stream, "%*sds:\n", indent, ""); 82 segment_dump(stream, &sregs->ds, indent + 2); 83 fprintf(stream, "%*ses:\n", indent, ""); 84 segment_dump(stream, &sregs->es, indent + 2); 85 fprintf(stream, "%*sfs:\n", indent, ""); 86 segment_dump(stream, &sregs->fs, indent + 2); 87 fprintf(stream, "%*sgs:\n", indent, ""); 88 segment_dump(stream, &sregs->gs, indent + 2); 89 fprintf(stream, "%*sss:\n", indent, ""); 90 segment_dump(stream, &sregs->ss, indent + 2); 91 fprintf(stream, "%*str:\n", indent, ""); 92 segment_dump(stream, &sregs->tr, indent + 2); 93 fprintf(stream, "%*sldt:\n", indent, ""); 94 segment_dump(stream, &sregs->ldt, indent + 2); 95 96 fprintf(stream, "%*sgdt:\n", indent, ""); 97 dtable_dump(stream, &sregs->gdt, indent + 2); 98 fprintf(stream, "%*sidt:\n", indent, ""); 99 dtable_dump(stream, &sregs->idt, indent + 2); 100 101 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " 102 "cr3: 0x%.16llx cr4: 0x%.16llx\n", 103 indent, "", 104 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); 105 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " 106 "apic_base: 0x%.16llx\n", 107 indent, "", 108 sregs->cr8, sregs->efer, sregs->apic_base); 109 110 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); 111 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { 112 fprintf(stream, "%*s%.16llx\n", indent + 2, "", 113 sregs->interrupt_bitmap[i]); 114 } 115 } 116 117 bool kvm_is_tdp_enabled(void) 118 { 119 if (host_cpu_is_intel) 120 return get_kvm_intel_param_bool("ept"); 121 else 122 return get_kvm_amd_param_bool("npt"); 123 } 124 125 void virt_arch_pgd_alloc(struct kvm_vm *vm) 126 { 127 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 128 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 129 130 /* If needed, create page map l4 table. */ 131 if (!vm->pgd_created) { 132 vm->pgd = vm_alloc_page_table(vm); 133 vm->pgd_created = true; 134 } 135 } 136 137 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte, 138 uint64_t vaddr, int level) 139 { 140 uint64_t pt_gpa = PTE_GET_PA(*parent_pte); 141 uint64_t *page_table = addr_gpa2hva(vm, pt_gpa); 142 int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu; 143 144 TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd, 145 "Parent PTE (level %d) not PRESENT for gva: 0x%08lx", 146 level + 1, vaddr); 147 148 return &page_table[index]; 149 } 150 151 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm, 152 uint64_t *parent_pte, 153 uint64_t vaddr, 154 uint64_t paddr, 155 int current_level, 156 int target_level) 157 { 158 uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level); 159 160 if (!(*pte & PTE_PRESENT_MASK)) { 161 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK; 162 if (current_level == target_level) 163 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK); 164 else 165 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK; 166 } else { 167 /* 168 * Entry already present. Assert that the caller doesn't want 169 * a hugepage at this level, and that there isn't a hugepage at 170 * this level. 171 */ 172 TEST_ASSERT(current_level != target_level, 173 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n", 174 current_level, vaddr); 175 TEST_ASSERT(!(*pte & PTE_LARGE_MASK), 176 "Cannot create page table at level: %u, vaddr: 0x%lx\n", 177 current_level, vaddr); 178 } 179 return pte; 180 } 181 182 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level) 183 { 184 const uint64_t pg_size = PG_LEVEL_SIZE(level); 185 uint64_t *pml4e, *pdpe, *pde; 186 uint64_t *pte; 187 188 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, 189 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); 190 191 TEST_ASSERT((vaddr % pg_size) == 0, 192 "Virtual address not aligned,\n" 193 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); 194 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), 195 "Invalid virtual address, vaddr: 0x%lx", vaddr); 196 TEST_ASSERT((paddr % pg_size) == 0, 197 "Physical address not aligned,\n" 198 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); 199 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 200 "Physical address beyond maximum supported,\n" 201 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 202 paddr, vm->max_gfn, vm->page_size); 203 204 /* 205 * Allocate upper level page tables, if not already present. Return 206 * early if a hugepage was created. 207 */ 208 pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level); 209 if (*pml4e & PTE_LARGE_MASK) 210 return; 211 212 pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level); 213 if (*pdpe & PTE_LARGE_MASK) 214 return; 215 216 pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level); 217 if (*pde & PTE_LARGE_MASK) 218 return; 219 220 /* Fill in page table entry. */ 221 pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 222 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK), 223 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr); 224 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK); 225 } 226 227 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 228 { 229 __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K); 230 } 231 232 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 233 uint64_t nr_bytes, int level) 234 { 235 uint64_t pg_size = PG_LEVEL_SIZE(level); 236 uint64_t nr_pages = nr_bytes / pg_size; 237 int i; 238 239 TEST_ASSERT(nr_bytes % pg_size == 0, 240 "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx", 241 nr_bytes, pg_size); 242 243 for (i = 0; i < nr_pages; i++) { 244 __virt_pg_map(vm, vaddr, paddr, level); 245 246 vaddr += pg_size; 247 paddr += pg_size; 248 } 249 } 250 251 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level) 252 { 253 if (*pte & PTE_LARGE_MASK) { 254 TEST_ASSERT(*level == PG_LEVEL_NONE || 255 *level == current_level, 256 "Unexpected hugepage at level %d\n", current_level); 257 *level = current_level; 258 } 259 260 return *level == current_level; 261 } 262 263 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 264 int *level) 265 { 266 uint64_t *pml4e, *pdpe, *pde; 267 268 TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM, 269 "Invalid PG_LEVEL_* '%d'", *level); 270 271 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 272 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 273 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 274 (vaddr >> vm->page_shift)), 275 "Invalid virtual address, vaddr: 0x%lx", 276 vaddr); 277 /* 278 * Based on the mode check above there are 48 bits in the vaddr, so 279 * shift 16 to sign extend the last bit (bit-47), 280 */ 281 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), 282 "Canonical check failed. The virtual address is invalid."); 283 284 pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G); 285 if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G)) 286 return pml4e; 287 288 pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G); 289 if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G)) 290 return pdpe; 291 292 pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M); 293 if (vm_is_target_pte(pde, level, PG_LEVEL_2M)) 294 return pde; 295 296 return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 297 } 298 299 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr) 300 { 301 int level = PG_LEVEL_4K; 302 303 return __vm_get_page_table_entry(vm, vaddr, &level); 304 } 305 306 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 307 { 308 uint64_t *pml4e, *pml4e_start; 309 uint64_t *pdpe, *pdpe_start; 310 uint64_t *pde, *pde_start; 311 uint64_t *pte, *pte_start; 312 313 if (!vm->pgd_created) 314 return; 315 316 fprintf(stream, "%*s " 317 " no\n", indent, ""); 318 fprintf(stream, "%*s index hvaddr gpaddr " 319 "addr w exec dirty\n", 320 indent, ""); 321 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd); 322 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { 323 pml4e = &pml4e_start[n1]; 324 if (!(*pml4e & PTE_PRESENT_MASK)) 325 continue; 326 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u " 327 " %u\n", 328 indent, "", 329 pml4e - pml4e_start, pml4e, 330 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e), 331 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK)); 332 333 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK); 334 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { 335 pdpe = &pdpe_start[n2]; 336 if (!(*pdpe & PTE_PRESENT_MASK)) 337 continue; 338 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx " 339 "%u %u\n", 340 indent, "", 341 pdpe - pdpe_start, pdpe, 342 addr_hva2gpa(vm, pdpe), 343 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK), 344 !!(*pdpe & PTE_NX_MASK)); 345 346 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK); 347 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { 348 pde = &pde_start[n3]; 349 if (!(*pde & PTE_PRESENT_MASK)) 350 continue; 351 fprintf(stream, "%*spde 0x%-3zx %p " 352 "0x%-12lx 0x%-10llx %u %u\n", 353 indent, "", pde - pde_start, pde, 354 addr_hva2gpa(vm, pde), 355 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK), 356 !!(*pde & PTE_NX_MASK)); 357 358 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK); 359 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { 360 pte = &pte_start[n4]; 361 if (!(*pte & PTE_PRESENT_MASK)) 362 continue; 363 fprintf(stream, "%*spte 0x%-3zx %p " 364 "0x%-12lx 0x%-10llx %u %u " 365 " %u 0x%-10lx\n", 366 indent, "", 367 pte - pte_start, pte, 368 addr_hva2gpa(vm, pte), 369 PTE_GET_PFN(*pte), 370 !!(*pte & PTE_WRITABLE_MASK), 371 !!(*pte & PTE_NX_MASK), 372 !!(*pte & PTE_DIRTY_MASK), 373 ((uint64_t) n1 << 27) 374 | ((uint64_t) n2 << 18) 375 | ((uint64_t) n3 << 9) 376 | ((uint64_t) n4)); 377 } 378 } 379 } 380 } 381 } 382 383 /* 384 * Set Unusable Segment 385 * 386 * Input Args: None 387 * 388 * Output Args: 389 * segp - Pointer to segment register 390 * 391 * Return: None 392 * 393 * Sets the segment register pointed to by @segp to an unusable state. 394 */ 395 static void kvm_seg_set_unusable(struct kvm_segment *segp) 396 { 397 memset(segp, 0, sizeof(*segp)); 398 segp->unusable = true; 399 } 400 401 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) 402 { 403 void *gdt = addr_gva2hva(vm, vm->gdt); 404 struct desc64 *desc = gdt + (segp->selector >> 3) * 8; 405 406 desc->limit0 = segp->limit & 0xFFFF; 407 desc->base0 = segp->base & 0xFFFF; 408 desc->base1 = segp->base >> 16; 409 desc->type = segp->type; 410 desc->s = segp->s; 411 desc->dpl = segp->dpl; 412 desc->p = segp->present; 413 desc->limit1 = segp->limit >> 16; 414 desc->avl = segp->avl; 415 desc->l = segp->l; 416 desc->db = segp->db; 417 desc->g = segp->g; 418 desc->base2 = segp->base >> 24; 419 if (!segp->s) 420 desc->base3 = segp->base >> 32; 421 } 422 423 424 /* 425 * Set Long Mode Flat Kernel Code Segment 426 * 427 * Input Args: 428 * vm - VM whose GDT is being filled, or NULL to only write segp 429 * selector - selector value 430 * 431 * Output Args: 432 * segp - Pointer to KVM segment 433 * 434 * Return: None 435 * 436 * Sets up the KVM segment pointed to by @segp, to be a code segment 437 * with the selector value given by @selector. 438 */ 439 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, 440 struct kvm_segment *segp) 441 { 442 memset(segp, 0, sizeof(*segp)); 443 segp->selector = selector; 444 segp->limit = 0xFFFFFFFFu; 445 segp->s = 0x1; /* kTypeCodeData */ 446 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed 447 * | kFlagCodeReadable 448 */ 449 segp->g = true; 450 segp->l = true; 451 segp->present = 1; 452 if (vm) 453 kvm_seg_fill_gdt_64bit(vm, segp); 454 } 455 456 /* 457 * Set Long Mode Flat Kernel Data Segment 458 * 459 * Input Args: 460 * vm - VM whose GDT is being filled, or NULL to only write segp 461 * selector - selector value 462 * 463 * Output Args: 464 * segp - Pointer to KVM segment 465 * 466 * Return: None 467 * 468 * Sets up the KVM segment pointed to by @segp, to be a data segment 469 * with the selector value given by @selector. 470 */ 471 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, 472 struct kvm_segment *segp) 473 { 474 memset(segp, 0, sizeof(*segp)); 475 segp->selector = selector; 476 segp->limit = 0xFFFFFFFFu; 477 segp->s = 0x1; /* kTypeCodeData */ 478 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed 479 * | kFlagDataWritable 480 */ 481 segp->g = true; 482 segp->present = true; 483 if (vm) 484 kvm_seg_fill_gdt_64bit(vm, segp); 485 } 486 487 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 488 { 489 int level = PG_LEVEL_NONE; 490 uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level); 491 492 TEST_ASSERT(*pte & PTE_PRESENT_MASK, 493 "Leaf PTE not PRESENT for gva: 0x%08lx", gva); 494 495 /* 496 * No need for a hugepage mask on the PTE, x86-64 requires the "unused" 497 * address bits to be zero. 498 */ 499 return PTE_GET_PA(*pte) | (gva & ~HUGEPAGE_MASK(level)); 500 } 501 502 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt) 503 { 504 if (!vm->gdt) 505 vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 506 507 dt->base = vm->gdt; 508 dt->limit = getpagesize(); 509 } 510 511 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, 512 int selector) 513 { 514 if (!vm->tss) 515 vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 516 517 memset(segp, 0, sizeof(*segp)); 518 segp->base = vm->tss; 519 segp->limit = 0x67; 520 segp->selector = selector; 521 segp->type = 0xb; 522 segp->present = 1; 523 kvm_seg_fill_gdt_64bit(vm, segp); 524 } 525 526 static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 527 { 528 struct kvm_sregs sregs; 529 530 /* Set mode specific system register values. */ 531 vcpu_sregs_get(vcpu, &sregs); 532 533 sregs.idt.limit = 0; 534 535 kvm_setup_gdt(vm, &sregs.gdt); 536 537 switch (vm->mode) { 538 case VM_MODE_PXXV48_4K: 539 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; 540 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; 541 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); 542 543 kvm_seg_set_unusable(&sregs.ldt); 544 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); 545 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); 546 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); 547 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18); 548 break; 549 550 default: 551 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 552 } 553 554 sregs.cr3 = vm->pgd; 555 vcpu_sregs_set(vcpu, &sregs); 556 } 557 558 void kvm_arch_vm_post_create(struct kvm_vm *vm) 559 { 560 vm_create_irqchip(vm); 561 sync_global_to_guest(vm, host_cpu_is_intel); 562 sync_global_to_guest(vm, host_cpu_is_amd); 563 } 564 565 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 566 void *guest_code) 567 { 568 struct kvm_mp_state mp_state; 569 struct kvm_regs regs; 570 vm_vaddr_t stack_vaddr; 571 struct kvm_vcpu *vcpu; 572 573 stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), 574 DEFAULT_GUEST_STACK_VADDR_MIN, 575 MEM_REGION_DATA); 576 577 stack_vaddr += DEFAULT_STACK_PGS * getpagesize(); 578 579 /* 580 * Align stack to match calling sequence requirements in section "The 581 * Stack Frame" of the System V ABI AMD64 Architecture Processor 582 * Supplement, which requires the value (%rsp + 8) to be a multiple of 583 * 16 when control is transferred to the function entry point. 584 * 585 * If this code is ever used to launch a vCPU with 32-bit entry point it 586 * may need to subtract 4 bytes instead of 8 bytes. 587 */ 588 TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE), 589 "__vm_vaddr_alloc() did not provide a page-aligned address"); 590 stack_vaddr -= 8; 591 592 vcpu = __vm_vcpu_add(vm, vcpu_id); 593 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 594 vcpu_setup(vm, vcpu); 595 596 /* Setup guest general purpose registers */ 597 vcpu_regs_get(vcpu, ®s); 598 regs.rflags = regs.rflags | 0x2; 599 regs.rsp = stack_vaddr; 600 regs.rip = (unsigned long) guest_code; 601 vcpu_regs_set(vcpu, ®s); 602 603 /* Setup the MP state */ 604 mp_state.mp_state = 0; 605 vcpu_mp_state_set(vcpu, &mp_state); 606 607 return vcpu; 608 } 609 610 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id) 611 { 612 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id); 613 614 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 615 616 return vcpu; 617 } 618 619 void vcpu_arch_free(struct kvm_vcpu *vcpu) 620 { 621 if (vcpu->cpuid) 622 free(vcpu->cpuid); 623 } 624 625 /* Do not use kvm_supported_cpuid directly except for validity checks. */ 626 static void *kvm_supported_cpuid; 627 628 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void) 629 { 630 int kvm_fd; 631 632 if (kvm_supported_cpuid) 633 return kvm_supported_cpuid; 634 635 kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 636 kvm_fd = open_kvm_dev_path_or_exit(); 637 638 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, 639 (struct kvm_cpuid2 *)kvm_supported_cpuid); 640 641 close(kvm_fd); 642 return kvm_supported_cpuid; 643 } 644 645 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid, 646 uint32_t function, uint32_t index, 647 uint8_t reg, uint8_t lo, uint8_t hi) 648 { 649 const struct kvm_cpuid_entry2 *entry; 650 int i; 651 652 for (i = 0; i < cpuid->nent; i++) { 653 entry = &cpuid->entries[i]; 654 655 /* 656 * The output registers in kvm_cpuid_entry2 are in alphabetical 657 * order, but kvm_x86_cpu_feature matches that mess, so yay 658 * pointer shenanigans! 659 */ 660 if (entry->function == function && entry->index == index) 661 return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo; 662 } 663 664 return 0; 665 } 666 667 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 668 struct kvm_x86_cpu_feature feature) 669 { 670 return __kvm_cpu_has(cpuid, feature.function, feature.index, 671 feature.reg, feature.bit, feature.bit); 672 } 673 674 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 675 struct kvm_x86_cpu_property property) 676 { 677 return __kvm_cpu_has(cpuid, property.function, property.index, 678 property.reg, property.lo_bit, property.hi_bit); 679 } 680 681 uint64_t kvm_get_feature_msr(uint64_t msr_index) 682 { 683 struct { 684 struct kvm_msrs header; 685 struct kvm_msr_entry entry; 686 } buffer = {}; 687 int r, kvm_fd; 688 689 buffer.header.nmsrs = 1; 690 buffer.entry.index = msr_index; 691 kvm_fd = open_kvm_dev_path_or_exit(); 692 693 r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); 694 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r)); 695 696 close(kvm_fd); 697 return buffer.entry.data; 698 } 699 700 void __vm_xsave_require_permission(uint64_t xfeature, const char *name) 701 { 702 int kvm_fd; 703 u64 bitmask; 704 long rc; 705 struct kvm_device_attr attr = { 706 .group = 0, 707 .attr = KVM_X86_XCOMP_GUEST_SUPP, 708 .addr = (unsigned long) &bitmask, 709 }; 710 711 TEST_ASSERT(!kvm_supported_cpuid, 712 "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM"); 713 714 TEST_ASSERT(is_power_of_2(xfeature), 715 "Dynamic XFeatures must be enabled one at a time"); 716 717 kvm_fd = open_kvm_dev_path_or_exit(); 718 rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr); 719 close(kvm_fd); 720 721 if (rc == -1 && (errno == ENXIO || errno == EINVAL)) 722 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported"); 723 724 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc); 725 726 __TEST_REQUIRE(bitmask & xfeature, 727 "Required XSAVE feature '%s' not supported", name); 728 729 TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature))); 730 731 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); 732 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); 733 TEST_ASSERT(bitmask & xfeature, 734 "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx", 735 name, xfeature, bitmask); 736 } 737 738 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid) 739 { 740 TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID"); 741 742 /* Allow overriding the default CPUID. */ 743 if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) { 744 free(vcpu->cpuid); 745 vcpu->cpuid = NULL; 746 } 747 748 if (!vcpu->cpuid) 749 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent); 750 751 memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent)); 752 vcpu_set_cpuid(vcpu); 753 } 754 755 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr) 756 { 757 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008); 758 759 entry->eax = (entry->eax & ~0xff) | maxphyaddr; 760 vcpu_set_cpuid(vcpu); 761 } 762 763 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function) 764 { 765 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function); 766 767 entry->eax = 0; 768 entry->ebx = 0; 769 entry->ecx = 0; 770 entry->edx = 0; 771 vcpu_set_cpuid(vcpu); 772 } 773 774 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 775 struct kvm_x86_cpu_feature feature, 776 bool set) 777 { 778 struct kvm_cpuid_entry2 *entry; 779 u32 *reg; 780 781 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); 782 reg = (&entry->eax) + feature.reg; 783 784 if (set) 785 *reg |= BIT(feature.bit); 786 else 787 *reg &= ~BIT(feature.bit); 788 789 vcpu_set_cpuid(vcpu); 790 } 791 792 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index) 793 { 794 struct { 795 struct kvm_msrs header; 796 struct kvm_msr_entry entry; 797 } buffer = {}; 798 799 buffer.header.nmsrs = 1; 800 buffer.entry.index = msr_index; 801 802 vcpu_msrs_get(vcpu, &buffer.header); 803 804 return buffer.entry.data; 805 } 806 807 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value) 808 { 809 struct { 810 struct kvm_msrs header; 811 struct kvm_msr_entry entry; 812 } buffer = {}; 813 814 memset(&buffer, 0, sizeof(buffer)); 815 buffer.header.nmsrs = 1; 816 buffer.entry.index = msr_index; 817 buffer.entry.data = msr_value; 818 819 return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header); 820 } 821 822 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) 823 { 824 va_list ap; 825 struct kvm_regs regs; 826 827 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" 828 " num: %u\n", 829 num); 830 831 va_start(ap, num); 832 vcpu_regs_get(vcpu, ®s); 833 834 if (num >= 1) 835 regs.rdi = va_arg(ap, uint64_t); 836 837 if (num >= 2) 838 regs.rsi = va_arg(ap, uint64_t); 839 840 if (num >= 3) 841 regs.rdx = va_arg(ap, uint64_t); 842 843 if (num >= 4) 844 regs.rcx = va_arg(ap, uint64_t); 845 846 if (num >= 5) 847 regs.r8 = va_arg(ap, uint64_t); 848 849 if (num >= 6) 850 regs.r9 = va_arg(ap, uint64_t); 851 852 vcpu_regs_set(vcpu, ®s); 853 va_end(ap); 854 } 855 856 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) 857 { 858 struct kvm_regs regs; 859 struct kvm_sregs sregs; 860 861 fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id); 862 863 fprintf(stream, "%*sregs:\n", indent + 2, ""); 864 vcpu_regs_get(vcpu, ®s); 865 regs_dump(stream, ®s, indent + 4); 866 867 fprintf(stream, "%*ssregs:\n", indent + 2, ""); 868 vcpu_sregs_get(vcpu, &sregs); 869 sregs_dump(stream, &sregs, indent + 4); 870 } 871 872 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs) 873 { 874 struct kvm_msr_list *list; 875 struct kvm_msr_list nmsrs; 876 int kvm_fd, r; 877 878 kvm_fd = open_kvm_dev_path_or_exit(); 879 880 nmsrs.nmsrs = 0; 881 if (!feature_msrs) 882 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); 883 else 884 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs); 885 886 TEST_ASSERT(r == -1 && errno == E2BIG, 887 "Expected -E2BIG, got rc: %i errno: %i (%s)", 888 r, errno, strerror(errno)); 889 890 list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0])); 891 TEST_ASSERT(list, "-ENOMEM when allocating MSR index list"); 892 list->nmsrs = nmsrs.nmsrs; 893 894 if (!feature_msrs) 895 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 896 else 897 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list); 898 close(kvm_fd); 899 900 TEST_ASSERT(list->nmsrs == nmsrs.nmsrs, 901 "Number of MSRs in list changed, was %d, now %d", 902 nmsrs.nmsrs, list->nmsrs); 903 return list; 904 } 905 906 const struct kvm_msr_list *kvm_get_msr_index_list(void) 907 { 908 static const struct kvm_msr_list *list; 909 910 if (!list) 911 list = __kvm_get_msr_index_list(false); 912 return list; 913 } 914 915 916 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void) 917 { 918 static const struct kvm_msr_list *list; 919 920 if (!list) 921 list = __kvm_get_msr_index_list(true); 922 return list; 923 } 924 925 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index) 926 { 927 const struct kvm_msr_list *list = kvm_get_msr_index_list(); 928 int i; 929 930 for (i = 0; i < list->nmsrs; ++i) { 931 if (list->indices[i] == msr_index) 932 return true; 933 } 934 935 return false; 936 } 937 938 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu, 939 struct kvm_x86_state *state) 940 { 941 int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2); 942 943 if (size) { 944 state->xsave = malloc(size); 945 vcpu_xsave2_get(vcpu, state->xsave); 946 } else { 947 state->xsave = malloc(sizeof(struct kvm_xsave)); 948 vcpu_xsave_get(vcpu, state->xsave); 949 } 950 } 951 952 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu) 953 { 954 const struct kvm_msr_list *msr_list = kvm_get_msr_index_list(); 955 struct kvm_x86_state *state; 956 int i; 957 958 static int nested_size = -1; 959 960 if (nested_size == -1) { 961 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); 962 TEST_ASSERT(nested_size <= sizeof(state->nested_), 963 "Nested state size too big, %i > %zi", 964 nested_size, sizeof(state->nested_)); 965 } 966 967 /* 968 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees 969 * guest state is consistent only after userspace re-enters the 970 * kernel with KVM_RUN. Complete IO prior to migrating state 971 * to a new VM. 972 */ 973 vcpu_run_complete_io(vcpu); 974 975 state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0])); 976 TEST_ASSERT(state, "-ENOMEM when allocating kvm state"); 977 978 vcpu_events_get(vcpu, &state->events); 979 vcpu_mp_state_get(vcpu, &state->mp_state); 980 vcpu_regs_get(vcpu, &state->regs); 981 vcpu_save_xsave_state(vcpu, state); 982 983 if (kvm_has_cap(KVM_CAP_XCRS)) 984 vcpu_xcrs_get(vcpu, &state->xcrs); 985 986 vcpu_sregs_get(vcpu, &state->sregs); 987 988 if (nested_size) { 989 state->nested.size = sizeof(state->nested_); 990 991 vcpu_nested_state_get(vcpu, &state->nested); 992 TEST_ASSERT(state->nested.size <= nested_size, 993 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", 994 state->nested.size, nested_size); 995 } else { 996 state->nested.size = 0; 997 } 998 999 state->msrs.nmsrs = msr_list->nmsrs; 1000 for (i = 0; i < msr_list->nmsrs; i++) 1001 state->msrs.entries[i].index = msr_list->indices[i]; 1002 vcpu_msrs_get(vcpu, &state->msrs); 1003 1004 vcpu_debugregs_get(vcpu, &state->debugregs); 1005 1006 return state; 1007 } 1008 1009 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state) 1010 { 1011 vcpu_sregs_set(vcpu, &state->sregs); 1012 vcpu_msrs_set(vcpu, &state->msrs); 1013 1014 if (kvm_has_cap(KVM_CAP_XCRS)) 1015 vcpu_xcrs_set(vcpu, &state->xcrs); 1016 1017 vcpu_xsave_set(vcpu, state->xsave); 1018 vcpu_events_set(vcpu, &state->events); 1019 vcpu_mp_state_set(vcpu, &state->mp_state); 1020 vcpu_debugregs_set(vcpu, &state->debugregs); 1021 vcpu_regs_set(vcpu, &state->regs); 1022 1023 if (state->nested.size) 1024 vcpu_nested_state_set(vcpu, &state->nested); 1025 } 1026 1027 void kvm_x86_state_cleanup(struct kvm_x86_state *state) 1028 { 1029 free(state->xsave); 1030 free(state); 1031 } 1032 1033 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) 1034 { 1035 if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) { 1036 *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32; 1037 *va_bits = 32; 1038 } else { 1039 *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1040 *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR); 1041 } 1042 } 1043 1044 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, 1045 int dpl, unsigned short selector) 1046 { 1047 struct idt_entry *base = 1048 (struct idt_entry *)addr_gva2hva(vm, vm->idt); 1049 struct idt_entry *e = &base[vector]; 1050 1051 memset(e, 0, sizeof(*e)); 1052 e->offset0 = addr; 1053 e->selector = selector; 1054 e->ist = 0; 1055 e->type = 14; 1056 e->dpl = dpl; 1057 e->p = 1; 1058 e->offset1 = addr >> 16; 1059 e->offset2 = addr >> 32; 1060 } 1061 1062 1063 static bool kvm_fixup_exception(struct ex_regs *regs) 1064 { 1065 if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10) 1066 return false; 1067 1068 if (regs->vector == DE_VECTOR) 1069 return false; 1070 1071 regs->rip = regs->r11; 1072 regs->r9 = regs->vector; 1073 regs->r10 = regs->error_code; 1074 return true; 1075 } 1076 1077 void kvm_exit_unexpected_vector(uint32_t value) 1078 { 1079 ucall(UCALL_UNHANDLED, 1, value); 1080 } 1081 1082 void route_exception(struct ex_regs *regs) 1083 { 1084 typedef void(*handler)(struct ex_regs *); 1085 handler *handlers = (handler *)exception_handlers; 1086 1087 if (handlers && handlers[regs->vector]) { 1088 handlers[regs->vector](regs); 1089 return; 1090 } 1091 1092 if (kvm_fixup_exception(regs)) 1093 return; 1094 1095 kvm_exit_unexpected_vector(regs->vector); 1096 } 1097 1098 void vm_init_descriptor_tables(struct kvm_vm *vm) 1099 { 1100 extern void *idt_handlers; 1101 int i; 1102 1103 vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 1104 vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 1105 /* Handlers have the same address in both address spaces.*/ 1106 for (i = 0; i < NUM_INTERRUPTS; i++) 1107 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, 1108 DEFAULT_CODE_SELECTOR); 1109 } 1110 1111 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu) 1112 { 1113 struct kvm_vm *vm = vcpu->vm; 1114 struct kvm_sregs sregs; 1115 1116 vcpu_sregs_get(vcpu, &sregs); 1117 sregs.idt.base = vm->idt; 1118 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; 1119 sregs.gdt.base = vm->gdt; 1120 sregs.gdt.limit = getpagesize() - 1; 1121 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); 1122 vcpu_sregs_set(vcpu, &sregs); 1123 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 1124 } 1125 1126 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1127 void (*handler)(struct ex_regs *)) 1128 { 1129 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); 1130 1131 handlers[vector] = (vm_vaddr_t)handler; 1132 } 1133 1134 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) 1135 { 1136 struct ucall uc; 1137 1138 if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) { 1139 uint64_t vector = uc.args[0]; 1140 1141 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)", 1142 vector); 1143 } 1144 } 1145 1146 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 1147 uint32_t function, uint32_t index) 1148 { 1149 int i; 1150 1151 for (i = 0; i < cpuid->nent; i++) { 1152 if (cpuid->entries[i].function == function && 1153 cpuid->entries[i].index == index) 1154 return &cpuid->entries[i]; 1155 } 1156 1157 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); 1158 1159 return NULL; 1160 } 1161 1162 #define X86_HYPERCALL(inputs...) \ 1163 ({ \ 1164 uint64_t r; \ 1165 \ 1166 asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t" \ 1167 "jnz 1f\n\t" \ 1168 "vmcall\n\t" \ 1169 "jmp 2f\n\t" \ 1170 "1: vmmcall\n\t" \ 1171 "2:" \ 1172 : "=a"(r) \ 1173 : [use_vmmcall] "r" (host_cpu_is_amd), inputs); \ 1174 \ 1175 r; \ 1176 }) 1177 1178 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1179 uint64_t a3) 1180 { 1181 return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3)); 1182 } 1183 1184 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1) 1185 { 1186 return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1)); 1187 } 1188 1189 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1) 1190 { 1191 GUEST_ASSERT(!__xen_hypercall(nr, a0, a1)); 1192 } 1193 1194 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) 1195 { 1196 static struct kvm_cpuid2 *cpuid; 1197 int kvm_fd; 1198 1199 if (cpuid) 1200 return cpuid; 1201 1202 cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 1203 kvm_fd = open_kvm_dev_path_or_exit(); 1204 1205 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1206 1207 close(kvm_fd); 1208 return cpuid; 1209 } 1210 1211 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu) 1212 { 1213 static struct kvm_cpuid2 *cpuid_full; 1214 const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; 1215 int i, nent = 0; 1216 1217 if (!cpuid_full) { 1218 cpuid_sys = kvm_get_supported_cpuid(); 1219 cpuid_hv = kvm_get_supported_hv_cpuid(); 1220 1221 cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent); 1222 if (!cpuid_full) { 1223 perror("malloc"); 1224 abort(); 1225 } 1226 1227 /* Need to skip KVM CPUID leaves 0x400000xx */ 1228 for (i = 0; i < cpuid_sys->nent; i++) { 1229 if (cpuid_sys->entries[i].function >= 0x40000000 && 1230 cpuid_sys->entries[i].function < 0x40000100) 1231 continue; 1232 cpuid_full->entries[nent] = cpuid_sys->entries[i]; 1233 nent++; 1234 } 1235 1236 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, 1237 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); 1238 cpuid_full->nent = nent + cpuid_hv->nent; 1239 } 1240 1241 vcpu_init_cpuid(vcpu, cpuid_full); 1242 } 1243 1244 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu) 1245 { 1246 struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 1247 1248 vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1249 1250 return cpuid; 1251 } 1252 1253 unsigned long vm_compute_max_gfn(struct kvm_vm *vm) 1254 { 1255 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ 1256 unsigned long ht_gfn, max_gfn, max_pfn; 1257 uint8_t maxphyaddr; 1258 1259 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1; 1260 1261 /* Avoid reserved HyperTransport region on AMD processors. */ 1262 if (!host_cpu_is_amd) 1263 return max_gfn; 1264 1265 /* On parts with <40 physical address bits, the area is fully hidden */ 1266 if (vm->pa_bits < 40) 1267 return max_gfn; 1268 1269 /* Before family 17h, the HyperTransport area is just below 1T. */ 1270 ht_gfn = (1 << 28) - num_ht_pages; 1271 if (this_cpu_family() < 0x17) 1272 goto done; 1273 1274 /* 1275 * Otherwise it's at the top of the physical address space, possibly 1276 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use 1277 * the old conservative value if MAXPHYADDR is not enumerated. 1278 */ 1279 if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) 1280 goto done; 1281 1282 maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1283 max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1; 1284 1285 if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION)) 1286 max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION); 1287 1288 ht_gfn = max_pfn - num_ht_pages; 1289 done: 1290 return min(max_gfn, ht_gfn - 1); 1291 } 1292 1293 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */ 1294 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 1295 { 1296 /* Ensure that a KVM vendor-specific module is loaded. */ 1297 if (vm == NULL) 1298 close(open_kvm_dev_path_or_exit()); 1299 1300 return get_kvm_intel_param_bool("unrestricted_guest"); 1301 } 1302 1303 void kvm_selftest_arch_init(void) 1304 { 1305 host_cpu_is_intel = this_cpu_is_intel(); 1306 host_cpu_is_amd = this_cpu_is_amd(); 1307 } 1308