1 /*
2  * tools/testing/selftests/kvm/lib/x86_64/processor.c
3  *
4  * Copyright (C) 2018, Google LLC.
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2.
7  */
8 
9 #define _GNU_SOURCE /* for program_invocation_name */
10 
11 #include "test_util.h"
12 #include "kvm_util.h"
13 #include "../kvm_util_internal.h"
14 #include "processor.h"
15 
16 /* Minimum physical address used for virtual translation tables. */
17 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
18 
19 /* Virtual translation table structure declarations */
20 struct pageMapL4Entry {
21 	uint64_t present:1;
22 	uint64_t writable:1;
23 	uint64_t user:1;
24 	uint64_t write_through:1;
25 	uint64_t cache_disable:1;
26 	uint64_t accessed:1;
27 	uint64_t ignored_06:1;
28 	uint64_t page_size:1;
29 	uint64_t ignored_11_08:4;
30 	uint64_t address:40;
31 	uint64_t ignored_62_52:11;
32 	uint64_t execute_disable:1;
33 };
34 
35 struct pageDirectoryPointerEntry {
36 	uint64_t present:1;
37 	uint64_t writable:1;
38 	uint64_t user:1;
39 	uint64_t write_through:1;
40 	uint64_t cache_disable:1;
41 	uint64_t accessed:1;
42 	uint64_t ignored_06:1;
43 	uint64_t page_size:1;
44 	uint64_t ignored_11_08:4;
45 	uint64_t address:40;
46 	uint64_t ignored_62_52:11;
47 	uint64_t execute_disable:1;
48 };
49 
50 struct pageDirectoryEntry {
51 	uint64_t present:1;
52 	uint64_t writable:1;
53 	uint64_t user:1;
54 	uint64_t write_through:1;
55 	uint64_t cache_disable:1;
56 	uint64_t accessed:1;
57 	uint64_t ignored_06:1;
58 	uint64_t page_size:1;
59 	uint64_t ignored_11_08:4;
60 	uint64_t address:40;
61 	uint64_t ignored_62_52:11;
62 	uint64_t execute_disable:1;
63 };
64 
65 struct pageTableEntry {
66 	uint64_t present:1;
67 	uint64_t writable:1;
68 	uint64_t user:1;
69 	uint64_t write_through:1;
70 	uint64_t cache_disable:1;
71 	uint64_t accessed:1;
72 	uint64_t dirty:1;
73 	uint64_t reserved_07:1;
74 	uint64_t global:1;
75 	uint64_t ignored_11_09:3;
76 	uint64_t address:40;
77 	uint64_t ignored_62_52:11;
78 	uint64_t execute_disable:1;
79 };
80 
81 /* Register Dump
82  *
83  * Input Args:
84  *   indent - Left margin indent amount
85  *   regs - register
86  *
87  * Output Args:
88  *   stream - Output FILE stream
89  *
90  * Return: None
91  *
92  * Dumps the state of the registers given by regs, to the FILE stream
93  * given by steam.
94  */
95 void regs_dump(FILE *stream, struct kvm_regs *regs,
96 	       uint8_t indent)
97 {
98 	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
99 		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
100 		indent, "",
101 		regs->rax, regs->rbx, regs->rcx, regs->rdx);
102 	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
103 		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
104 		indent, "",
105 		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
106 	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
107 		"r10: 0x%.16llx r11: 0x%.16llx\n",
108 		indent, "",
109 		regs->r8, regs->r9, regs->r10, regs->r11);
110 	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
111 		"r14: 0x%.16llx r15: 0x%.16llx\n",
112 		indent, "",
113 		regs->r12, regs->r13, regs->r14, regs->r15);
114 	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
115 		indent, "",
116 		regs->rip, regs->rflags);
117 }
118 
119 /* Segment Dump
120  *
121  * Input Args:
122  *   indent - Left margin indent amount
123  *   segment - KVM segment
124  *
125  * Output Args:
126  *   stream - Output FILE stream
127  *
128  * Return: None
129  *
130  * Dumps the state of the KVM segment given by segment, to the FILE stream
131  * given by steam.
132  */
133 static void segment_dump(FILE *stream, struct kvm_segment *segment,
134 			 uint8_t indent)
135 {
136 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
137 		"selector: 0x%.4x type: 0x%.2x\n",
138 		indent, "", segment->base, segment->limit,
139 		segment->selector, segment->type);
140 	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
141 		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
142 		indent, "", segment->present, segment->dpl,
143 		segment->db, segment->s, segment->l);
144 	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
145 		"unusable: 0x%.2x padding: 0x%.2x\n",
146 		indent, "", segment->g, segment->avl,
147 		segment->unusable, segment->padding);
148 }
149 
150 /* dtable Dump
151  *
152  * Input Args:
153  *   indent - Left margin indent amount
154  *   dtable - KVM dtable
155  *
156  * Output Args:
157  *   stream - Output FILE stream
158  *
159  * Return: None
160  *
161  * Dumps the state of the KVM dtable given by dtable, to the FILE stream
162  * given by steam.
163  */
164 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
165 			uint8_t indent)
166 {
167 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
168 		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
169 		indent, "", dtable->base, dtable->limit,
170 		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
171 }
172 
173 /* System Register Dump
174  *
175  * Input Args:
176  *   indent - Left margin indent amount
177  *   sregs - System registers
178  *
179  * Output Args:
180  *   stream - Output FILE stream
181  *
182  * Return: None
183  *
184  * Dumps the state of the system registers given by sregs, to the FILE stream
185  * given by steam.
186  */
187 void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
188 		uint8_t indent)
189 {
190 	unsigned int i;
191 
192 	fprintf(stream, "%*scs:\n", indent, "");
193 	segment_dump(stream, &sregs->cs, indent + 2);
194 	fprintf(stream, "%*sds:\n", indent, "");
195 	segment_dump(stream, &sregs->ds, indent + 2);
196 	fprintf(stream, "%*ses:\n", indent, "");
197 	segment_dump(stream, &sregs->es, indent + 2);
198 	fprintf(stream, "%*sfs:\n", indent, "");
199 	segment_dump(stream, &sregs->fs, indent + 2);
200 	fprintf(stream, "%*sgs:\n", indent, "");
201 	segment_dump(stream, &sregs->gs, indent + 2);
202 	fprintf(stream, "%*sss:\n", indent, "");
203 	segment_dump(stream, &sregs->ss, indent + 2);
204 	fprintf(stream, "%*str:\n", indent, "");
205 	segment_dump(stream, &sregs->tr, indent + 2);
206 	fprintf(stream, "%*sldt:\n", indent, "");
207 	segment_dump(stream, &sregs->ldt, indent + 2);
208 
209 	fprintf(stream, "%*sgdt:\n", indent, "");
210 	dtable_dump(stream, &sregs->gdt, indent + 2);
211 	fprintf(stream, "%*sidt:\n", indent, "");
212 	dtable_dump(stream, &sregs->idt, indent + 2);
213 
214 	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
215 		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
216 		indent, "",
217 		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
218 	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
219 		"apic_base: 0x%.16llx\n",
220 		indent, "",
221 		sregs->cr8, sregs->efer, sregs->apic_base);
222 
223 	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
224 	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
225 		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
226 			sregs->interrupt_bitmap[i]);
227 	}
228 }
229 
230 void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot)
231 {
232 	int rc;
233 
234 	TEST_ASSERT(vm->mode == VM_MODE_P52V48_4K, "Attempt to use "
235 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
236 
237 	/* If needed, create page map l4 table. */
238 	if (!vm->pgd_created) {
239 		vm_paddr_t paddr = vm_phy_page_alloc(vm,
240 			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
241 		vm->pgd = paddr;
242 		vm->pgd_created = true;
243 	}
244 }
245 
246 /* VM Virtual Page Map
247  *
248  * Input Args:
249  *   vm - Virtual Machine
250  *   vaddr - VM Virtual Address
251  *   paddr - VM Physical Address
252  *   pgd_memslot - Memory region slot for new virtual translation tables
253  *
254  * Output Args: None
255  *
256  * Return: None
257  *
258  * Within the VM given by vm, creates a virtual translation for the page
259  * starting at vaddr to the page starting at paddr.
260  */
261 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
262 	uint32_t pgd_memslot)
263 {
264 	uint16_t index[4];
265 	struct pageMapL4Entry *pml4e;
266 
267 	TEST_ASSERT(vm->mode == VM_MODE_P52V48_4K, "Attempt to use "
268 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
269 
270 	TEST_ASSERT((vaddr % vm->page_size) == 0,
271 		"Virtual address not on page boundary,\n"
272 		"  vaddr: 0x%lx vm->page_size: 0x%x",
273 		vaddr, vm->page_size);
274 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
275 		(vaddr >> vm->page_shift)),
276 		"Invalid virtual address, vaddr: 0x%lx",
277 		vaddr);
278 	TEST_ASSERT((paddr % vm->page_size) == 0,
279 		"Physical address not on page boundary,\n"
280 		"  paddr: 0x%lx vm->page_size: 0x%x",
281 		paddr, vm->page_size);
282 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
283 		"Physical address beyond beyond maximum supported,\n"
284 		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
285 		paddr, vm->max_gfn, vm->page_size);
286 
287 	index[0] = (vaddr >> 12) & 0x1ffu;
288 	index[1] = (vaddr >> 21) & 0x1ffu;
289 	index[2] = (vaddr >> 30) & 0x1ffu;
290 	index[3] = (vaddr >> 39) & 0x1ffu;
291 
292 	/* Allocate page directory pointer table if not present. */
293 	pml4e = addr_gpa2hva(vm, vm->pgd);
294 	if (!pml4e[index[3]].present) {
295 		pml4e[index[3]].address = vm_phy_page_alloc(vm,
296 			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
297 			>> vm->page_shift;
298 		pml4e[index[3]].writable = true;
299 		pml4e[index[3]].present = true;
300 	}
301 
302 	/* Allocate page directory table if not present. */
303 	struct pageDirectoryPointerEntry *pdpe;
304 	pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
305 	if (!pdpe[index[2]].present) {
306 		pdpe[index[2]].address = vm_phy_page_alloc(vm,
307 			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
308 			>> vm->page_shift;
309 		pdpe[index[2]].writable = true;
310 		pdpe[index[2]].present = true;
311 	}
312 
313 	/* Allocate page table if not present. */
314 	struct pageDirectoryEntry *pde;
315 	pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
316 	if (!pde[index[1]].present) {
317 		pde[index[1]].address = vm_phy_page_alloc(vm,
318 			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
319 			>> vm->page_shift;
320 		pde[index[1]].writable = true;
321 		pde[index[1]].present = true;
322 	}
323 
324 	/* Fill in page table entry. */
325 	struct pageTableEntry *pte;
326 	pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
327 	pte[index[0]].address = paddr >> vm->page_shift;
328 	pte[index[0]].writable = true;
329 	pte[index[0]].present = 1;
330 }
331 
332 /* Virtual Translation Tables Dump
333  *
334  * Input Args:
335  *   vm - Virtual Machine
336  *   indent - Left margin indent amount
337  *
338  * Output Args:
339  *   stream - Output FILE stream
340  *
341  * Return: None
342  *
343  * Dumps to the FILE stream given by stream, the contents of all the
344  * virtual translation tables for the VM given by vm.
345  */
346 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
347 {
348 	struct pageMapL4Entry *pml4e, *pml4e_start;
349 	struct pageDirectoryPointerEntry *pdpe, *pdpe_start;
350 	struct pageDirectoryEntry *pde, *pde_start;
351 	struct pageTableEntry *pte, *pte_start;
352 
353 	if (!vm->pgd_created)
354 		return;
355 
356 	fprintf(stream, "%*s                                          "
357 		"                no\n", indent, "");
358 	fprintf(stream, "%*s      index hvaddr         gpaddr         "
359 		"addr         w exec dirty\n",
360 		indent, "");
361 	pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm,
362 		vm->pgd);
363 	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
364 		pml4e = &pml4e_start[n1];
365 		if (!pml4e->present)
366 			continue;
367 		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
368 			" %u\n",
369 			indent, "",
370 			pml4e - pml4e_start, pml4e,
371 			addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address,
372 			pml4e->writable, pml4e->execute_disable);
373 
374 		pdpe_start = addr_gpa2hva(vm, pml4e->address
375 			* vm->page_size);
376 		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
377 			pdpe = &pdpe_start[n2];
378 			if (!pdpe->present)
379 				continue;
380 			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10lx "
381 				"%u  %u\n",
382 				indent, "",
383 				pdpe - pdpe_start, pdpe,
384 				addr_hva2gpa(vm, pdpe),
385 				(uint64_t) pdpe->address, pdpe->writable,
386 				pdpe->execute_disable);
387 
388 			pde_start = addr_gpa2hva(vm,
389 				pdpe->address * vm->page_size);
390 			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
391 				pde = &pde_start[n3];
392 				if (!pde->present)
393 					continue;
394 				fprintf(stream, "%*spde   0x%-3zx %p "
395 					"0x%-12lx 0x%-10lx %u  %u\n",
396 					indent, "", pde - pde_start, pde,
397 					addr_hva2gpa(vm, pde),
398 					(uint64_t) pde->address, pde->writable,
399 					pde->execute_disable);
400 
401 				pte_start = addr_gpa2hva(vm,
402 					pde->address * vm->page_size);
403 				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
404 					pte = &pte_start[n4];
405 					if (!pte->present)
406 						continue;
407 					fprintf(stream, "%*spte   0x%-3zx %p "
408 						"0x%-12lx 0x%-10lx %u  %u "
409 						"    %u    0x%-10lx\n",
410 						indent, "",
411 						pte - pte_start, pte,
412 						addr_hva2gpa(vm, pte),
413 						(uint64_t) pte->address,
414 						pte->writable,
415 						pte->execute_disable,
416 						pte->dirty,
417 						((uint64_t) n1 << 27)
418 							| ((uint64_t) n2 << 18)
419 							| ((uint64_t) n3 << 9)
420 							| ((uint64_t) n4));
421 				}
422 			}
423 		}
424 	}
425 }
426 
427 /* Set Unusable Segment
428  *
429  * Input Args: None
430  *
431  * Output Args:
432  *   segp - Pointer to segment register
433  *
434  * Return: None
435  *
436  * Sets the segment register pointed to by segp to an unusable state.
437  */
438 static void kvm_seg_set_unusable(struct kvm_segment *segp)
439 {
440 	memset(segp, 0, sizeof(*segp));
441 	segp->unusable = true;
442 }
443 
444 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
445 {
446 	void *gdt = addr_gva2hva(vm, vm->gdt);
447 	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
448 
449 	desc->limit0 = segp->limit & 0xFFFF;
450 	desc->base0 = segp->base & 0xFFFF;
451 	desc->base1 = segp->base >> 16;
452 	desc->s = segp->s;
453 	desc->type = segp->type;
454 	desc->dpl = segp->dpl;
455 	desc->p = segp->present;
456 	desc->limit1 = segp->limit >> 16;
457 	desc->l = segp->l;
458 	desc->db = segp->db;
459 	desc->g = segp->g;
460 	desc->base2 = segp->base >> 24;
461 	if (!segp->s)
462 		desc->base3 = segp->base >> 32;
463 }
464 
465 
466 /* Set Long Mode Flat Kernel Code Segment
467  *
468  * Input Args:
469  *   vm - VM whose GDT is being filled, or NULL to only write segp
470  *   selector - selector value
471  *
472  * Output Args:
473  *   segp - Pointer to KVM segment
474  *
475  * Return: None
476  *
477  * Sets up the KVM segment pointed to by segp, to be a code segment
478  * with the selector value given by selector.
479  */
480 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
481 	struct kvm_segment *segp)
482 {
483 	memset(segp, 0, sizeof(*segp));
484 	segp->selector = selector;
485 	segp->limit = 0xFFFFFFFFu;
486 	segp->s = 0x1; /* kTypeCodeData */
487 	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
488 					  * | kFlagCodeReadable
489 					  */
490 	segp->g = true;
491 	segp->l = true;
492 	segp->present = 1;
493 	if (vm)
494 		kvm_seg_fill_gdt_64bit(vm, segp);
495 }
496 
497 /* Set Long Mode Flat Kernel Data Segment
498  *
499  * Input Args:
500  *   vm - VM whose GDT is being filled, or NULL to only write segp
501  *   selector - selector value
502  *
503  * Output Args:
504  *   segp - Pointer to KVM segment
505  *
506  * Return: None
507  *
508  * Sets up the KVM segment pointed to by segp, to be a data segment
509  * with the selector value given by selector.
510  */
511 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
512 	struct kvm_segment *segp)
513 {
514 	memset(segp, 0, sizeof(*segp));
515 	segp->selector = selector;
516 	segp->limit = 0xFFFFFFFFu;
517 	segp->s = 0x1; /* kTypeCodeData */
518 	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
519 					  * | kFlagDataWritable
520 					  */
521 	segp->g = true;
522 	segp->present = true;
523 	if (vm)
524 		kvm_seg_fill_gdt_64bit(vm, segp);
525 }
526 
527 /* Address Guest Virtual to Guest Physical
528  *
529  * Input Args:
530  *   vm - Virtual Machine
531  *   gpa - VM virtual address
532  *
533  * Output Args: None
534  *
535  * Return:
536  *   Equivalent VM physical address
537  *
538  * Translates the VM virtual address given by gva to a VM physical
539  * address and then locates the memory region containing the VM
540  * physical address, within the VM given by vm.  When found, the host
541  * virtual address providing the memory to the vm physical address is returned.
542  * A TEST_ASSERT failure occurs if no region containing translated
543  * VM virtual address exists.
544  */
545 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
546 {
547 	uint16_t index[4];
548 	struct pageMapL4Entry *pml4e;
549 	struct pageDirectoryPointerEntry *pdpe;
550 	struct pageDirectoryEntry *pde;
551 	struct pageTableEntry *pte;
552 	void *hva;
553 
554 	TEST_ASSERT(vm->mode == VM_MODE_P52V48_4K, "Attempt to use "
555 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
556 
557 	index[0] = (gva >> 12) & 0x1ffu;
558 	index[1] = (gva >> 21) & 0x1ffu;
559 	index[2] = (gva >> 30) & 0x1ffu;
560 	index[3] = (gva >> 39) & 0x1ffu;
561 
562 	if (!vm->pgd_created)
563 		goto unmapped_gva;
564 	pml4e = addr_gpa2hva(vm, vm->pgd);
565 	if (!pml4e[index[3]].present)
566 		goto unmapped_gva;
567 
568 	pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
569 	if (!pdpe[index[2]].present)
570 		goto unmapped_gva;
571 
572 	pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
573 	if (!pde[index[1]].present)
574 		goto unmapped_gva;
575 
576 	pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
577 	if (!pte[index[0]].present)
578 		goto unmapped_gva;
579 
580 	return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu);
581 
582 unmapped_gva:
583 	TEST_ASSERT(false, "No mapping for vm virtual address, "
584 		    "gva: 0x%lx", gva);
585 }
586 
587 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot,
588 			  int pgd_memslot)
589 {
590 	if (!vm->gdt)
591 		vm->gdt = vm_vaddr_alloc(vm, getpagesize(),
592 			KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
593 
594 	dt->base = vm->gdt;
595 	dt->limit = getpagesize();
596 }
597 
598 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
599 				int selector, int gdt_memslot,
600 				int pgd_memslot)
601 {
602 	if (!vm->tss)
603 		vm->tss = vm_vaddr_alloc(vm, getpagesize(),
604 			KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
605 
606 	memset(segp, 0, sizeof(*segp));
607 	segp->base = vm->tss;
608 	segp->limit = 0x67;
609 	segp->selector = selector;
610 	segp->type = 0xb;
611 	segp->present = 1;
612 	kvm_seg_fill_gdt_64bit(vm, segp);
613 }
614 
615 void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot)
616 {
617 	struct kvm_sregs sregs;
618 
619 	/* Set mode specific system register values. */
620 	vcpu_sregs_get(vm, vcpuid, &sregs);
621 
622 	sregs.idt.limit = 0;
623 
624 	kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot);
625 
626 	switch (vm->mode) {
627 	case VM_MODE_P52V48_4K:
628 		sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
629 		sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
630 		sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
631 
632 		kvm_seg_set_unusable(&sregs.ldt);
633 		kvm_seg_set_kernel_code_64bit(vm, 0x8, &sregs.cs);
634 		kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.ds);
635 		kvm_seg_set_kernel_data_64bit(vm, 0x10, &sregs.es);
636 		kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot);
637 		break;
638 
639 	default:
640 		TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", vm->mode);
641 	}
642 
643 	sregs.cr3 = vm->pgd;
644 	vcpu_sregs_set(vm, vcpuid, &sregs);
645 }
646 /* Adds a vCPU with reasonable defaults (i.e., a stack)
647  *
648  * Input Args:
649  *   vcpuid - The id of the VCPU to add to the VM.
650  *   guest_code - The vCPU's entry point
651  */
652 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
653 {
654 	struct kvm_mp_state mp_state;
655 	struct kvm_regs regs;
656 	vm_vaddr_t stack_vaddr;
657 	stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
658 				     DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0);
659 
660 	/* Create VCPU */
661 	vm_vcpu_add(vm, vcpuid, 0, 0);
662 
663 	/* Setup guest general purpose registers */
664 	vcpu_regs_get(vm, vcpuid, &regs);
665 	regs.rflags = regs.rflags | 0x2;
666 	regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
667 	regs.rip = (unsigned long) guest_code;
668 	vcpu_regs_set(vm, vcpuid, &regs);
669 
670 	/* Setup the MP state */
671 	mp_state.mp_state = 0;
672 	vcpu_set_mp_state(vm, vcpuid, &mp_state);
673 }
674 
675 /* Allocate an instance of struct kvm_cpuid2
676  *
677  * Input Args: None
678  *
679  * Output Args: None
680  *
681  * Return: A pointer to the allocated struct. The caller is responsible
682  * for freeing this struct.
683  *
684  * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
685  * array to be decided at allocation time, allocation is slightly
686  * complicated. This function uses a reasonable default length for
687  * the array and performs the appropriate allocation.
688  */
689 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
690 {
691 	struct kvm_cpuid2 *cpuid;
692 	int nent = 100;
693 	size_t size;
694 
695 	size = sizeof(*cpuid);
696 	size += nent * sizeof(struct kvm_cpuid_entry2);
697 	cpuid = malloc(size);
698 	if (!cpuid) {
699 		perror("malloc");
700 		abort();
701 	}
702 
703 	cpuid->nent = nent;
704 
705 	return cpuid;
706 }
707 
708 /* KVM Supported CPUID Get
709  *
710  * Input Args: None
711  *
712  * Output Args:
713  *
714  * Return: The supported KVM CPUID
715  *
716  * Get the guest CPUID supported by KVM.
717  */
718 struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
719 {
720 	static struct kvm_cpuid2 *cpuid;
721 	int ret;
722 	int kvm_fd;
723 
724 	if (cpuid)
725 		return cpuid;
726 
727 	cpuid = allocate_kvm_cpuid2();
728 	kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
729 	if (kvm_fd < 0)
730 		exit(KSFT_SKIP);
731 
732 	ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
733 	TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
734 		    ret, errno);
735 
736 	close(kvm_fd);
737 	return cpuid;
738 }
739 
740 /* Locate a cpuid entry.
741  *
742  * Input Args:
743  *   cpuid: The cpuid.
744  *   function: The function of the cpuid entry to find.
745  *
746  * Output Args: None
747  *
748  * Return: A pointer to the cpuid entry. Never returns NULL.
749  */
750 struct kvm_cpuid_entry2 *
751 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
752 {
753 	struct kvm_cpuid2 *cpuid;
754 	struct kvm_cpuid_entry2 *entry = NULL;
755 	int i;
756 
757 	cpuid = kvm_get_supported_cpuid();
758 	for (i = 0; i < cpuid->nent; i++) {
759 		if (cpuid->entries[i].function == function &&
760 		    cpuid->entries[i].index == index) {
761 			entry = &cpuid->entries[i];
762 			break;
763 		}
764 	}
765 
766 	TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
767 		    function, index);
768 	return entry;
769 }
770 
771 /* VM VCPU CPUID Set
772  *
773  * Input Args:
774  *   vm - Virtual Machine
775  *   vcpuid - VCPU id
776  *   cpuid - The CPUID values to set.
777  *
778  * Output Args: None
779  *
780  * Return: void
781  *
782  * Set the VCPU's CPUID.
783  */
784 void vcpu_set_cpuid(struct kvm_vm *vm,
785 		uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
786 {
787 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
788 	int rc;
789 
790 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
791 
792 	rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
793 	TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
794 		    rc, errno);
795 
796 }
797 
798 /* Create a VM with reasonable defaults
799  *
800  * Input Args:
801  *   vcpuid - The id of the single VCPU to add to the VM.
802  *   extra_mem_pages - The size of extra memories to add (this will
803  *                     decide how much extra space we will need to
804  *                     setup the page tables using mem slot 0)
805  *   guest_code - The vCPU's entry point
806  *
807  * Output Args: None
808  *
809  * Return:
810  *   Pointer to opaque structure that describes the created VM.
811  */
812 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
813 				 void *guest_code)
814 {
815 	struct kvm_vm *vm;
816 	/*
817 	 * For x86 the maximum page table size for a memory region
818 	 * will be when only 4K pages are used.  In that case the
819 	 * total extra size for page tables (for extra N pages) will
820 	 * be: N/512+N/512^2+N/512^3+... which is definitely smaller
821 	 * than N/512*2.
822 	 */
823 	uint64_t extra_pg_pages = extra_mem_pages / 512 * 2;
824 
825 	/* Create VM */
826 	vm = vm_create(VM_MODE_P52V48_4K,
827 		       DEFAULT_GUEST_PHY_PAGES + extra_pg_pages,
828 		       O_RDWR);
829 
830 	/* Setup guest code */
831 	kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
832 
833 	/* Setup IRQ Chip */
834 	vm_create_irqchip(vm);
835 
836 	/* Add the first vCPU. */
837 	vm_vcpu_add_default(vm, vcpuid, guest_code);
838 
839 	return vm;
840 }
841 
842 /* VCPU Get MSR
843  *
844  * Input Args:
845  *   vm - Virtual Machine
846  *   vcpuid - VCPU ID
847  *   msr_index - Index of MSR
848  *
849  * Output Args: None
850  *
851  * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
852  *
853  * Get value of MSR for VCPU.
854  */
855 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
856 {
857 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
858 	struct {
859 		struct kvm_msrs header;
860 		struct kvm_msr_entry entry;
861 	} buffer = {};
862 	int r;
863 
864 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
865 	buffer.header.nmsrs = 1;
866 	buffer.entry.index = msr_index;
867 	r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
868 	TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
869 		"  rc: %i errno: %i", r, errno);
870 
871 	return buffer.entry.data;
872 }
873 
874 /* VCPU Set MSR
875  *
876  * Input Args:
877  *   vm - Virtual Machine
878  *   vcpuid - VCPU ID
879  *   msr_index - Index of MSR
880  *   msr_value - New value of MSR
881  *
882  * Output Args: None
883  *
884  * Return: On success, nothing. On failure a TEST_ASSERT is produced.
885  *
886  * Set value of MSR for VCPU.
887  */
888 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
889 	uint64_t msr_value)
890 {
891 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
892 	struct {
893 		struct kvm_msrs header;
894 		struct kvm_msr_entry entry;
895 	} buffer = {};
896 	int r;
897 
898 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
899 	memset(&buffer, 0, sizeof(buffer));
900 	buffer.header.nmsrs = 1;
901 	buffer.entry.index = msr_index;
902 	buffer.entry.data = msr_value;
903 	r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
904 	TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
905 		"  rc: %i errno: %i", r, errno);
906 }
907 
908 /* VM VCPU Args Set
909  *
910  * Input Args:
911  *   vm - Virtual Machine
912  *   vcpuid - VCPU ID
913  *   num - number of arguments
914  *   ... - arguments, each of type uint64_t
915  *
916  * Output Args: None
917  *
918  * Return: None
919  *
920  * Sets the first num function input arguments to the values
921  * given as variable args.  Each of the variable args is expected to
922  * be of type uint64_t.
923  */
924 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
925 {
926 	va_list ap;
927 	struct kvm_regs regs;
928 
929 	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
930 		    "  num: %u\n",
931 		    num);
932 
933 	va_start(ap, num);
934 	vcpu_regs_get(vm, vcpuid, &regs);
935 
936 	if (num >= 1)
937 		regs.rdi = va_arg(ap, uint64_t);
938 
939 	if (num >= 2)
940 		regs.rsi = va_arg(ap, uint64_t);
941 
942 	if (num >= 3)
943 		regs.rdx = va_arg(ap, uint64_t);
944 
945 	if (num >= 4)
946 		regs.rcx = va_arg(ap, uint64_t);
947 
948 	if (num >= 5)
949 		regs.r8 = va_arg(ap, uint64_t);
950 
951 	if (num >= 6)
952 		regs.r9 = va_arg(ap, uint64_t);
953 
954 	vcpu_regs_set(vm, vcpuid, &regs);
955 	va_end(ap);
956 }
957 
958 /*
959  * VM VCPU Dump
960  *
961  * Input Args:
962  *   vm - Virtual Machine
963  *   vcpuid - VCPU ID
964  *   indent - Left margin indent amount
965  *
966  * Output Args:
967  *   stream - Output FILE stream
968  *
969  * Return: None
970  *
971  * Dumps the current state of the VCPU specified by vcpuid, within the VM
972  * given by vm, to the FILE stream given by stream.
973  */
974 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
975 {
976 	struct kvm_regs regs;
977 	struct kvm_sregs sregs;
978 
979 	fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
980 
981 	fprintf(stream, "%*sregs:\n", indent + 2, "");
982 	vcpu_regs_get(vm, vcpuid, &regs);
983 	regs_dump(stream, &regs, indent + 4);
984 
985 	fprintf(stream, "%*ssregs:\n", indent + 2, "");
986 	vcpu_sregs_get(vm, vcpuid, &sregs);
987 	sregs_dump(stream, &sregs, indent + 4);
988 }
989 
990 struct kvm_x86_state {
991 	struct kvm_vcpu_events events;
992 	struct kvm_mp_state mp_state;
993 	struct kvm_regs regs;
994 	struct kvm_xsave xsave;
995 	struct kvm_xcrs xcrs;
996 	struct kvm_sregs sregs;
997 	struct kvm_debugregs debugregs;
998 	union {
999 		struct kvm_nested_state nested;
1000 		char nested_[16384];
1001 	};
1002 	struct kvm_msrs msrs;
1003 };
1004 
1005 static int kvm_get_num_msrs(struct kvm_vm *vm)
1006 {
1007 	struct kvm_msr_list nmsrs;
1008 	int r;
1009 
1010 	nmsrs.nmsrs = 0;
1011 	r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1012 	TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1013 		r);
1014 
1015 	return nmsrs.nmsrs;
1016 }
1017 
1018 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1019 {
1020 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1021 	struct kvm_msr_list *list;
1022 	struct kvm_x86_state *state;
1023 	int nmsrs, r, i;
1024 	static int nested_size = -1;
1025 
1026 	if (nested_size == -1) {
1027 		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1028 		TEST_ASSERT(nested_size <= sizeof(state->nested_),
1029 			    "Nested state size too big, %i > %zi",
1030 			    nested_size, sizeof(state->nested_));
1031 	}
1032 
1033 	/*
1034 	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1035 	 * guest state is consistent only after userspace re-enters the
1036 	 * kernel with KVM_RUN.  Complete IO prior to migrating state
1037 	 * to a new VM.
1038 	 */
1039 	vcpu_run_complete_io(vm, vcpuid);
1040 
1041 	nmsrs = kvm_get_num_msrs(vm);
1042 	list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1043 	list->nmsrs = nmsrs;
1044 	r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1045         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1046                 r);
1047 
1048 	state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1049 	r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1050         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1051                 r);
1052 
1053 	r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1054         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1055                 r);
1056 
1057 	r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1058         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1059                 r);
1060 
1061 	r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
1062         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1063                 r);
1064 
1065 	r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1066         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1067                 r);
1068 
1069 	r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1070         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1071                 r);
1072 
1073 	if (nested_size) {
1074 		state->nested.size = sizeof(state->nested_);
1075 		r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1076 		TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1077 			r);
1078 		TEST_ASSERT(state->nested.size <= nested_size,
1079 			"Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1080 			state->nested.size, nested_size);
1081 	} else
1082 		state->nested.size = 0;
1083 
1084 	state->msrs.nmsrs = nmsrs;
1085 	for (i = 0; i < nmsrs; i++)
1086 		state->msrs.entries[i].index = list->indices[i];
1087 	r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1088         TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed at %x)",
1089                 r, r == nmsrs ? -1 : list->indices[r]);
1090 
1091 	r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1092         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1093                 r);
1094 
1095 	free(list);
1096 	return state;
1097 }
1098 
1099 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1100 {
1101 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1102 	int r;
1103 
1104 	r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
1105         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1106                 r);
1107 
1108 	r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1109         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1110                 r);
1111 
1112 	r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1113         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1114                 r);
1115 
1116 	r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1117         TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1118                 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1119 
1120 	r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1121         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1122                 r);
1123 
1124 	r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1125         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1126                 r);
1127 
1128 	r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1129         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1130                 r);
1131 
1132 	r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1133         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1134                 r);
1135 
1136 	if (state->nested.size) {
1137 		r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1138 		TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1139 			r);
1140 	}
1141 }
1142