1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/processor.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "test_util.h" 9 #include "kvm_util.h" 10 #include "processor.h" 11 12 #ifndef NUM_INTERRUPTS 13 #define NUM_INTERRUPTS 256 14 #endif 15 16 #define DEFAULT_CODE_SELECTOR 0x8 17 #define DEFAULT_DATA_SELECTOR 0x10 18 19 #define MAX_NR_CPUID_ENTRIES 100 20 21 vm_vaddr_t exception_handlers; 22 bool host_cpu_is_amd; 23 bool host_cpu_is_intel; 24 25 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) 26 { 27 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " 28 "rcx: 0x%.16llx rdx: 0x%.16llx\n", 29 indent, "", 30 regs->rax, regs->rbx, regs->rcx, regs->rdx); 31 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " 32 "rsp: 0x%.16llx rbp: 0x%.16llx\n", 33 indent, "", 34 regs->rsi, regs->rdi, regs->rsp, regs->rbp); 35 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " 36 "r10: 0x%.16llx r11: 0x%.16llx\n", 37 indent, "", 38 regs->r8, regs->r9, regs->r10, regs->r11); 39 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " 40 "r14: 0x%.16llx r15: 0x%.16llx\n", 41 indent, "", 42 regs->r12, regs->r13, regs->r14, regs->r15); 43 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", 44 indent, "", 45 regs->rip, regs->rflags); 46 } 47 48 static void segment_dump(FILE *stream, struct kvm_segment *segment, 49 uint8_t indent) 50 { 51 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " 52 "selector: 0x%.4x type: 0x%.2x\n", 53 indent, "", segment->base, segment->limit, 54 segment->selector, segment->type); 55 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " 56 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", 57 indent, "", segment->present, segment->dpl, 58 segment->db, segment->s, segment->l); 59 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " 60 "unusable: 0x%.2x padding: 0x%.2x\n", 61 indent, "", segment->g, segment->avl, 62 segment->unusable, segment->padding); 63 } 64 65 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, 66 uint8_t indent) 67 { 68 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " 69 "padding: 0x%.4x 0x%.4x 0x%.4x\n", 70 indent, "", dtable->base, dtable->limit, 71 dtable->padding[0], dtable->padding[1], dtable->padding[2]); 72 } 73 74 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) 75 { 76 unsigned int i; 77 78 fprintf(stream, "%*scs:\n", indent, ""); 79 segment_dump(stream, &sregs->cs, indent + 2); 80 fprintf(stream, "%*sds:\n", indent, ""); 81 segment_dump(stream, &sregs->ds, indent + 2); 82 fprintf(stream, "%*ses:\n", indent, ""); 83 segment_dump(stream, &sregs->es, indent + 2); 84 fprintf(stream, "%*sfs:\n", indent, ""); 85 segment_dump(stream, &sregs->fs, indent + 2); 86 fprintf(stream, "%*sgs:\n", indent, ""); 87 segment_dump(stream, &sregs->gs, indent + 2); 88 fprintf(stream, "%*sss:\n", indent, ""); 89 segment_dump(stream, &sregs->ss, indent + 2); 90 fprintf(stream, "%*str:\n", indent, ""); 91 segment_dump(stream, &sregs->tr, indent + 2); 92 fprintf(stream, "%*sldt:\n", indent, ""); 93 segment_dump(stream, &sregs->ldt, indent + 2); 94 95 fprintf(stream, "%*sgdt:\n", indent, ""); 96 dtable_dump(stream, &sregs->gdt, indent + 2); 97 fprintf(stream, "%*sidt:\n", indent, ""); 98 dtable_dump(stream, &sregs->idt, indent + 2); 99 100 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " 101 "cr3: 0x%.16llx cr4: 0x%.16llx\n", 102 indent, "", 103 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); 104 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " 105 "apic_base: 0x%.16llx\n", 106 indent, "", 107 sregs->cr8, sregs->efer, sregs->apic_base); 108 109 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); 110 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { 111 fprintf(stream, "%*s%.16llx\n", indent + 2, "", 112 sregs->interrupt_bitmap[i]); 113 } 114 } 115 116 bool kvm_is_tdp_enabled(void) 117 { 118 if (host_cpu_is_intel) 119 return get_kvm_intel_param_bool("ept"); 120 else 121 return get_kvm_amd_param_bool("npt"); 122 } 123 124 void virt_arch_pgd_alloc(struct kvm_vm *vm) 125 { 126 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 127 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 128 129 /* If needed, create page map l4 table. */ 130 if (!vm->pgd_created) { 131 vm->pgd = vm_alloc_page_table(vm); 132 vm->pgd_created = true; 133 } 134 } 135 136 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte, 137 uint64_t vaddr, int level) 138 { 139 uint64_t pt_gpa = PTE_GET_PA(*parent_pte); 140 uint64_t *page_table = addr_gpa2hva(vm, pt_gpa); 141 int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu; 142 143 TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd, 144 "Parent PTE (level %d) not PRESENT for gva: 0x%08lx", 145 level + 1, vaddr); 146 147 return &page_table[index]; 148 } 149 150 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm, 151 uint64_t *parent_pte, 152 uint64_t vaddr, 153 uint64_t paddr, 154 int current_level, 155 int target_level) 156 { 157 uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level); 158 159 if (!(*pte & PTE_PRESENT_MASK)) { 160 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK; 161 if (current_level == target_level) 162 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK); 163 else 164 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK; 165 } else { 166 /* 167 * Entry already present. Assert that the caller doesn't want 168 * a hugepage at this level, and that there isn't a hugepage at 169 * this level. 170 */ 171 TEST_ASSERT(current_level != target_level, 172 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n", 173 current_level, vaddr); 174 TEST_ASSERT(!(*pte & PTE_LARGE_MASK), 175 "Cannot create page table at level: %u, vaddr: 0x%lx\n", 176 current_level, vaddr); 177 } 178 return pte; 179 } 180 181 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level) 182 { 183 const uint64_t pg_size = PG_LEVEL_SIZE(level); 184 uint64_t *pml4e, *pdpe, *pde; 185 uint64_t *pte; 186 187 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, 188 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); 189 190 TEST_ASSERT((vaddr % pg_size) == 0, 191 "Virtual address not aligned,\n" 192 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); 193 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), 194 "Invalid virtual address, vaddr: 0x%lx", vaddr); 195 TEST_ASSERT((paddr % pg_size) == 0, 196 "Physical address not aligned,\n" 197 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); 198 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 199 "Physical address beyond maximum supported,\n" 200 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 201 paddr, vm->max_gfn, vm->page_size); 202 203 /* 204 * Allocate upper level page tables, if not already present. Return 205 * early if a hugepage was created. 206 */ 207 pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level); 208 if (*pml4e & PTE_LARGE_MASK) 209 return; 210 211 pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level); 212 if (*pdpe & PTE_LARGE_MASK) 213 return; 214 215 pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level); 216 if (*pde & PTE_LARGE_MASK) 217 return; 218 219 /* Fill in page table entry. */ 220 pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 221 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK), 222 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr); 223 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK); 224 } 225 226 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 227 { 228 __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K); 229 } 230 231 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 232 uint64_t nr_bytes, int level) 233 { 234 uint64_t pg_size = PG_LEVEL_SIZE(level); 235 uint64_t nr_pages = nr_bytes / pg_size; 236 int i; 237 238 TEST_ASSERT(nr_bytes % pg_size == 0, 239 "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx", 240 nr_bytes, pg_size); 241 242 for (i = 0; i < nr_pages; i++) { 243 __virt_pg_map(vm, vaddr, paddr, level); 244 245 vaddr += pg_size; 246 paddr += pg_size; 247 } 248 } 249 250 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level) 251 { 252 if (*pte & PTE_LARGE_MASK) { 253 TEST_ASSERT(*level == PG_LEVEL_NONE || 254 *level == current_level, 255 "Unexpected hugepage at level %d\n", current_level); 256 *level = current_level; 257 } 258 259 return *level == current_level; 260 } 261 262 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 263 int *level) 264 { 265 uint64_t *pml4e, *pdpe, *pde; 266 267 TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM, 268 "Invalid PG_LEVEL_* '%d'", *level); 269 270 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 271 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 272 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 273 (vaddr >> vm->page_shift)), 274 "Invalid virtual address, vaddr: 0x%lx", 275 vaddr); 276 /* 277 * Based on the mode check above there are 48 bits in the vaddr, so 278 * shift 16 to sign extend the last bit (bit-47), 279 */ 280 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), 281 "Canonical check failed. The virtual address is invalid."); 282 283 pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G); 284 if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G)) 285 return pml4e; 286 287 pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G); 288 if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G)) 289 return pdpe; 290 291 pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M); 292 if (vm_is_target_pte(pde, level, PG_LEVEL_2M)) 293 return pde; 294 295 return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 296 } 297 298 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr) 299 { 300 int level = PG_LEVEL_4K; 301 302 return __vm_get_page_table_entry(vm, vaddr, &level); 303 } 304 305 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 306 { 307 uint64_t *pml4e, *pml4e_start; 308 uint64_t *pdpe, *pdpe_start; 309 uint64_t *pde, *pde_start; 310 uint64_t *pte, *pte_start; 311 312 if (!vm->pgd_created) 313 return; 314 315 fprintf(stream, "%*s " 316 " no\n", indent, ""); 317 fprintf(stream, "%*s index hvaddr gpaddr " 318 "addr w exec dirty\n", 319 indent, ""); 320 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd); 321 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { 322 pml4e = &pml4e_start[n1]; 323 if (!(*pml4e & PTE_PRESENT_MASK)) 324 continue; 325 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u " 326 " %u\n", 327 indent, "", 328 pml4e - pml4e_start, pml4e, 329 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e), 330 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK)); 331 332 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK); 333 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { 334 pdpe = &pdpe_start[n2]; 335 if (!(*pdpe & PTE_PRESENT_MASK)) 336 continue; 337 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx " 338 "%u %u\n", 339 indent, "", 340 pdpe - pdpe_start, pdpe, 341 addr_hva2gpa(vm, pdpe), 342 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK), 343 !!(*pdpe & PTE_NX_MASK)); 344 345 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK); 346 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { 347 pde = &pde_start[n3]; 348 if (!(*pde & PTE_PRESENT_MASK)) 349 continue; 350 fprintf(stream, "%*spde 0x%-3zx %p " 351 "0x%-12lx 0x%-10llx %u %u\n", 352 indent, "", pde - pde_start, pde, 353 addr_hva2gpa(vm, pde), 354 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK), 355 !!(*pde & PTE_NX_MASK)); 356 357 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK); 358 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { 359 pte = &pte_start[n4]; 360 if (!(*pte & PTE_PRESENT_MASK)) 361 continue; 362 fprintf(stream, "%*spte 0x%-3zx %p " 363 "0x%-12lx 0x%-10llx %u %u " 364 " %u 0x%-10lx\n", 365 indent, "", 366 pte - pte_start, pte, 367 addr_hva2gpa(vm, pte), 368 PTE_GET_PFN(*pte), 369 !!(*pte & PTE_WRITABLE_MASK), 370 !!(*pte & PTE_NX_MASK), 371 !!(*pte & PTE_DIRTY_MASK), 372 ((uint64_t) n1 << 27) 373 | ((uint64_t) n2 << 18) 374 | ((uint64_t) n3 << 9) 375 | ((uint64_t) n4)); 376 } 377 } 378 } 379 } 380 } 381 382 /* 383 * Set Unusable Segment 384 * 385 * Input Args: None 386 * 387 * Output Args: 388 * segp - Pointer to segment register 389 * 390 * Return: None 391 * 392 * Sets the segment register pointed to by @segp to an unusable state. 393 */ 394 static void kvm_seg_set_unusable(struct kvm_segment *segp) 395 { 396 memset(segp, 0, sizeof(*segp)); 397 segp->unusable = true; 398 } 399 400 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) 401 { 402 void *gdt = addr_gva2hva(vm, vm->gdt); 403 struct desc64 *desc = gdt + (segp->selector >> 3) * 8; 404 405 desc->limit0 = segp->limit & 0xFFFF; 406 desc->base0 = segp->base & 0xFFFF; 407 desc->base1 = segp->base >> 16; 408 desc->type = segp->type; 409 desc->s = segp->s; 410 desc->dpl = segp->dpl; 411 desc->p = segp->present; 412 desc->limit1 = segp->limit >> 16; 413 desc->avl = segp->avl; 414 desc->l = segp->l; 415 desc->db = segp->db; 416 desc->g = segp->g; 417 desc->base2 = segp->base >> 24; 418 if (!segp->s) 419 desc->base3 = segp->base >> 32; 420 } 421 422 423 /* 424 * Set Long Mode Flat Kernel Code Segment 425 * 426 * Input Args: 427 * vm - VM whose GDT is being filled, or NULL to only write segp 428 * selector - selector value 429 * 430 * Output Args: 431 * segp - Pointer to KVM segment 432 * 433 * Return: None 434 * 435 * Sets up the KVM segment pointed to by @segp, to be a code segment 436 * with the selector value given by @selector. 437 */ 438 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, 439 struct kvm_segment *segp) 440 { 441 memset(segp, 0, sizeof(*segp)); 442 segp->selector = selector; 443 segp->limit = 0xFFFFFFFFu; 444 segp->s = 0x1; /* kTypeCodeData */ 445 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed 446 * | kFlagCodeReadable 447 */ 448 segp->g = true; 449 segp->l = true; 450 segp->present = 1; 451 if (vm) 452 kvm_seg_fill_gdt_64bit(vm, segp); 453 } 454 455 /* 456 * Set Long Mode Flat Kernel Data Segment 457 * 458 * Input Args: 459 * vm - VM whose GDT is being filled, or NULL to only write segp 460 * selector - selector value 461 * 462 * Output Args: 463 * segp - Pointer to KVM segment 464 * 465 * Return: None 466 * 467 * Sets up the KVM segment pointed to by @segp, to be a data segment 468 * with the selector value given by @selector. 469 */ 470 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, 471 struct kvm_segment *segp) 472 { 473 memset(segp, 0, sizeof(*segp)); 474 segp->selector = selector; 475 segp->limit = 0xFFFFFFFFu; 476 segp->s = 0x1; /* kTypeCodeData */ 477 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed 478 * | kFlagDataWritable 479 */ 480 segp->g = true; 481 segp->present = true; 482 if (vm) 483 kvm_seg_fill_gdt_64bit(vm, segp); 484 } 485 486 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 487 { 488 int level = PG_LEVEL_NONE; 489 uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level); 490 491 TEST_ASSERT(*pte & PTE_PRESENT_MASK, 492 "Leaf PTE not PRESENT for gva: 0x%08lx", gva); 493 494 /* 495 * No need for a hugepage mask on the PTE, x86-64 requires the "unused" 496 * address bits to be zero. 497 */ 498 return PTE_GET_PA(*pte) | (gva & ~HUGEPAGE_MASK(level)); 499 } 500 501 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt) 502 { 503 if (!vm->gdt) 504 vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 505 506 dt->base = vm->gdt; 507 dt->limit = getpagesize(); 508 } 509 510 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, 511 int selector) 512 { 513 if (!vm->tss) 514 vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 515 516 memset(segp, 0, sizeof(*segp)); 517 segp->base = vm->tss; 518 segp->limit = 0x67; 519 segp->selector = selector; 520 segp->type = 0xb; 521 segp->present = 1; 522 kvm_seg_fill_gdt_64bit(vm, segp); 523 } 524 525 static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 526 { 527 struct kvm_sregs sregs; 528 529 /* Set mode specific system register values. */ 530 vcpu_sregs_get(vcpu, &sregs); 531 532 sregs.idt.limit = 0; 533 534 kvm_setup_gdt(vm, &sregs.gdt); 535 536 switch (vm->mode) { 537 case VM_MODE_PXXV48_4K: 538 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; 539 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; 540 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); 541 542 kvm_seg_set_unusable(&sregs.ldt); 543 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); 544 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); 545 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); 546 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18); 547 break; 548 549 default: 550 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 551 } 552 553 sregs.cr3 = vm->pgd; 554 vcpu_sregs_set(vcpu, &sregs); 555 } 556 557 void kvm_arch_vm_post_create(struct kvm_vm *vm) 558 { 559 vm_create_irqchip(vm); 560 sync_global_to_guest(vm, host_cpu_is_intel); 561 sync_global_to_guest(vm, host_cpu_is_amd); 562 } 563 564 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 565 void *guest_code) 566 { 567 struct kvm_mp_state mp_state; 568 struct kvm_regs regs; 569 vm_vaddr_t stack_vaddr; 570 struct kvm_vcpu *vcpu; 571 572 stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), 573 DEFAULT_GUEST_STACK_VADDR_MIN, 574 MEM_REGION_DATA); 575 576 vcpu = __vm_vcpu_add(vm, vcpu_id); 577 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 578 vcpu_setup(vm, vcpu); 579 580 /* Setup guest general purpose registers */ 581 vcpu_regs_get(vcpu, ®s); 582 regs.rflags = regs.rflags | 0x2; 583 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); 584 regs.rip = (unsigned long) guest_code; 585 vcpu_regs_set(vcpu, ®s); 586 587 /* Setup the MP state */ 588 mp_state.mp_state = 0; 589 vcpu_mp_state_set(vcpu, &mp_state); 590 591 return vcpu; 592 } 593 594 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id) 595 { 596 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id); 597 598 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 599 600 return vcpu; 601 } 602 603 void vcpu_arch_free(struct kvm_vcpu *vcpu) 604 { 605 if (vcpu->cpuid) 606 free(vcpu->cpuid); 607 } 608 609 /* Do not use kvm_supported_cpuid directly except for validity checks. */ 610 static void *kvm_supported_cpuid; 611 612 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void) 613 { 614 int kvm_fd; 615 616 if (kvm_supported_cpuid) 617 return kvm_supported_cpuid; 618 619 kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 620 kvm_fd = open_kvm_dev_path_or_exit(); 621 622 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, 623 (struct kvm_cpuid2 *)kvm_supported_cpuid); 624 625 close(kvm_fd); 626 return kvm_supported_cpuid; 627 } 628 629 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid, 630 uint32_t function, uint32_t index, 631 uint8_t reg, uint8_t lo, uint8_t hi) 632 { 633 const struct kvm_cpuid_entry2 *entry; 634 int i; 635 636 for (i = 0; i < cpuid->nent; i++) { 637 entry = &cpuid->entries[i]; 638 639 /* 640 * The output registers in kvm_cpuid_entry2 are in alphabetical 641 * order, but kvm_x86_cpu_feature matches that mess, so yay 642 * pointer shenanigans! 643 */ 644 if (entry->function == function && entry->index == index) 645 return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo; 646 } 647 648 return 0; 649 } 650 651 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 652 struct kvm_x86_cpu_feature feature) 653 { 654 return __kvm_cpu_has(cpuid, feature.function, feature.index, 655 feature.reg, feature.bit, feature.bit); 656 } 657 658 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 659 struct kvm_x86_cpu_property property) 660 { 661 return __kvm_cpu_has(cpuid, property.function, property.index, 662 property.reg, property.lo_bit, property.hi_bit); 663 } 664 665 uint64_t kvm_get_feature_msr(uint64_t msr_index) 666 { 667 struct { 668 struct kvm_msrs header; 669 struct kvm_msr_entry entry; 670 } buffer = {}; 671 int r, kvm_fd; 672 673 buffer.header.nmsrs = 1; 674 buffer.entry.index = msr_index; 675 kvm_fd = open_kvm_dev_path_or_exit(); 676 677 r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); 678 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r)); 679 680 close(kvm_fd); 681 return buffer.entry.data; 682 } 683 684 void __vm_xsave_require_permission(int bit, const char *name) 685 { 686 int kvm_fd; 687 u64 bitmask; 688 long rc; 689 struct kvm_device_attr attr = { 690 .group = 0, 691 .attr = KVM_X86_XCOMP_GUEST_SUPP, 692 .addr = (unsigned long) &bitmask 693 }; 694 695 TEST_ASSERT(!kvm_supported_cpuid, 696 "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM"); 697 698 kvm_fd = open_kvm_dev_path_or_exit(); 699 rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr); 700 close(kvm_fd); 701 702 if (rc == -1 && (errno == ENXIO || errno == EINVAL)) 703 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported"); 704 705 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc); 706 707 __TEST_REQUIRE(bitmask & (1ULL << bit), 708 "Required XSAVE feature '%s' not supported", name); 709 710 TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit)); 711 712 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); 713 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); 714 TEST_ASSERT(bitmask & (1ULL << bit), 715 "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx", 716 bitmask); 717 } 718 719 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid) 720 { 721 TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID"); 722 723 /* Allow overriding the default CPUID. */ 724 if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) { 725 free(vcpu->cpuid); 726 vcpu->cpuid = NULL; 727 } 728 729 if (!vcpu->cpuid) 730 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent); 731 732 memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent)); 733 vcpu_set_cpuid(vcpu); 734 } 735 736 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr) 737 { 738 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008); 739 740 entry->eax = (entry->eax & ~0xff) | maxphyaddr; 741 vcpu_set_cpuid(vcpu); 742 } 743 744 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function) 745 { 746 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function); 747 748 entry->eax = 0; 749 entry->ebx = 0; 750 entry->ecx = 0; 751 entry->edx = 0; 752 vcpu_set_cpuid(vcpu); 753 } 754 755 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 756 struct kvm_x86_cpu_feature feature, 757 bool set) 758 { 759 struct kvm_cpuid_entry2 *entry; 760 u32 *reg; 761 762 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); 763 reg = (&entry->eax) + feature.reg; 764 765 if (set) 766 *reg |= BIT(feature.bit); 767 else 768 *reg &= ~BIT(feature.bit); 769 770 vcpu_set_cpuid(vcpu); 771 } 772 773 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index) 774 { 775 struct { 776 struct kvm_msrs header; 777 struct kvm_msr_entry entry; 778 } buffer = {}; 779 780 buffer.header.nmsrs = 1; 781 buffer.entry.index = msr_index; 782 783 vcpu_msrs_get(vcpu, &buffer.header); 784 785 return buffer.entry.data; 786 } 787 788 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value) 789 { 790 struct { 791 struct kvm_msrs header; 792 struct kvm_msr_entry entry; 793 } buffer = {}; 794 795 memset(&buffer, 0, sizeof(buffer)); 796 buffer.header.nmsrs = 1; 797 buffer.entry.index = msr_index; 798 buffer.entry.data = msr_value; 799 800 return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header); 801 } 802 803 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) 804 { 805 va_list ap; 806 struct kvm_regs regs; 807 808 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" 809 " num: %u\n", 810 num); 811 812 va_start(ap, num); 813 vcpu_regs_get(vcpu, ®s); 814 815 if (num >= 1) 816 regs.rdi = va_arg(ap, uint64_t); 817 818 if (num >= 2) 819 regs.rsi = va_arg(ap, uint64_t); 820 821 if (num >= 3) 822 regs.rdx = va_arg(ap, uint64_t); 823 824 if (num >= 4) 825 regs.rcx = va_arg(ap, uint64_t); 826 827 if (num >= 5) 828 regs.r8 = va_arg(ap, uint64_t); 829 830 if (num >= 6) 831 regs.r9 = va_arg(ap, uint64_t); 832 833 vcpu_regs_set(vcpu, ®s); 834 va_end(ap); 835 } 836 837 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) 838 { 839 struct kvm_regs regs; 840 struct kvm_sregs sregs; 841 842 fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id); 843 844 fprintf(stream, "%*sregs:\n", indent + 2, ""); 845 vcpu_regs_get(vcpu, ®s); 846 regs_dump(stream, ®s, indent + 4); 847 848 fprintf(stream, "%*ssregs:\n", indent + 2, ""); 849 vcpu_sregs_get(vcpu, &sregs); 850 sregs_dump(stream, &sregs, indent + 4); 851 } 852 853 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs) 854 { 855 struct kvm_msr_list *list; 856 struct kvm_msr_list nmsrs; 857 int kvm_fd, r; 858 859 kvm_fd = open_kvm_dev_path_or_exit(); 860 861 nmsrs.nmsrs = 0; 862 if (!feature_msrs) 863 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); 864 else 865 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs); 866 867 TEST_ASSERT(r == -1 && errno == E2BIG, 868 "Expected -E2BIG, got rc: %i errno: %i (%s)", 869 r, errno, strerror(errno)); 870 871 list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0])); 872 TEST_ASSERT(list, "-ENOMEM when allocating MSR index list"); 873 list->nmsrs = nmsrs.nmsrs; 874 875 if (!feature_msrs) 876 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 877 else 878 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list); 879 close(kvm_fd); 880 881 TEST_ASSERT(list->nmsrs == nmsrs.nmsrs, 882 "Number of MSRs in list changed, was %d, now %d", 883 nmsrs.nmsrs, list->nmsrs); 884 return list; 885 } 886 887 const struct kvm_msr_list *kvm_get_msr_index_list(void) 888 { 889 static const struct kvm_msr_list *list; 890 891 if (!list) 892 list = __kvm_get_msr_index_list(false); 893 return list; 894 } 895 896 897 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void) 898 { 899 static const struct kvm_msr_list *list; 900 901 if (!list) 902 list = __kvm_get_msr_index_list(true); 903 return list; 904 } 905 906 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index) 907 { 908 const struct kvm_msr_list *list = kvm_get_msr_index_list(); 909 int i; 910 911 for (i = 0; i < list->nmsrs; ++i) { 912 if (list->indices[i] == msr_index) 913 return true; 914 } 915 916 return false; 917 } 918 919 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu, 920 struct kvm_x86_state *state) 921 { 922 int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2); 923 924 if (size) { 925 state->xsave = malloc(size); 926 vcpu_xsave2_get(vcpu, state->xsave); 927 } else { 928 state->xsave = malloc(sizeof(struct kvm_xsave)); 929 vcpu_xsave_get(vcpu, state->xsave); 930 } 931 } 932 933 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu) 934 { 935 const struct kvm_msr_list *msr_list = kvm_get_msr_index_list(); 936 struct kvm_x86_state *state; 937 int i; 938 939 static int nested_size = -1; 940 941 if (nested_size == -1) { 942 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); 943 TEST_ASSERT(nested_size <= sizeof(state->nested_), 944 "Nested state size too big, %i > %zi", 945 nested_size, sizeof(state->nested_)); 946 } 947 948 /* 949 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees 950 * guest state is consistent only after userspace re-enters the 951 * kernel with KVM_RUN. Complete IO prior to migrating state 952 * to a new VM. 953 */ 954 vcpu_run_complete_io(vcpu); 955 956 state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0])); 957 958 vcpu_events_get(vcpu, &state->events); 959 vcpu_mp_state_get(vcpu, &state->mp_state); 960 vcpu_regs_get(vcpu, &state->regs); 961 vcpu_save_xsave_state(vcpu, state); 962 963 if (kvm_has_cap(KVM_CAP_XCRS)) 964 vcpu_xcrs_get(vcpu, &state->xcrs); 965 966 vcpu_sregs_get(vcpu, &state->sregs); 967 968 if (nested_size) { 969 state->nested.size = sizeof(state->nested_); 970 971 vcpu_nested_state_get(vcpu, &state->nested); 972 TEST_ASSERT(state->nested.size <= nested_size, 973 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", 974 state->nested.size, nested_size); 975 } else { 976 state->nested.size = 0; 977 } 978 979 state->msrs.nmsrs = msr_list->nmsrs; 980 for (i = 0; i < msr_list->nmsrs; i++) 981 state->msrs.entries[i].index = msr_list->indices[i]; 982 vcpu_msrs_get(vcpu, &state->msrs); 983 984 vcpu_debugregs_get(vcpu, &state->debugregs); 985 986 return state; 987 } 988 989 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state) 990 { 991 vcpu_sregs_set(vcpu, &state->sregs); 992 vcpu_msrs_set(vcpu, &state->msrs); 993 994 if (kvm_has_cap(KVM_CAP_XCRS)) 995 vcpu_xcrs_set(vcpu, &state->xcrs); 996 997 vcpu_xsave_set(vcpu, state->xsave); 998 vcpu_events_set(vcpu, &state->events); 999 vcpu_mp_state_set(vcpu, &state->mp_state); 1000 vcpu_debugregs_set(vcpu, &state->debugregs); 1001 vcpu_regs_set(vcpu, &state->regs); 1002 1003 if (state->nested.size) 1004 vcpu_nested_state_set(vcpu, &state->nested); 1005 } 1006 1007 void kvm_x86_state_cleanup(struct kvm_x86_state *state) 1008 { 1009 free(state->xsave); 1010 free(state); 1011 } 1012 1013 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) 1014 { 1015 if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) { 1016 *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32; 1017 *va_bits = 32; 1018 } else { 1019 *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1020 *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR); 1021 } 1022 } 1023 1024 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, 1025 int dpl, unsigned short selector) 1026 { 1027 struct idt_entry *base = 1028 (struct idt_entry *)addr_gva2hva(vm, vm->idt); 1029 struct idt_entry *e = &base[vector]; 1030 1031 memset(e, 0, sizeof(*e)); 1032 e->offset0 = addr; 1033 e->selector = selector; 1034 e->ist = 0; 1035 e->type = 14; 1036 e->dpl = dpl; 1037 e->p = 1; 1038 e->offset1 = addr >> 16; 1039 e->offset2 = addr >> 32; 1040 } 1041 1042 1043 static bool kvm_fixup_exception(struct ex_regs *regs) 1044 { 1045 if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10) 1046 return false; 1047 1048 if (regs->vector == DE_VECTOR) 1049 return false; 1050 1051 regs->rip = regs->r11; 1052 regs->r9 = regs->vector; 1053 regs->r10 = regs->error_code; 1054 return true; 1055 } 1056 1057 void kvm_exit_unexpected_vector(uint32_t value) 1058 { 1059 ucall(UCALL_UNHANDLED, 1, value); 1060 } 1061 1062 void route_exception(struct ex_regs *regs) 1063 { 1064 typedef void(*handler)(struct ex_regs *); 1065 handler *handlers = (handler *)exception_handlers; 1066 1067 if (handlers && handlers[regs->vector]) { 1068 handlers[regs->vector](regs); 1069 return; 1070 } 1071 1072 if (kvm_fixup_exception(regs)) 1073 return; 1074 1075 kvm_exit_unexpected_vector(regs->vector); 1076 } 1077 1078 void vm_init_descriptor_tables(struct kvm_vm *vm) 1079 { 1080 extern void *idt_handlers; 1081 int i; 1082 1083 vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 1084 vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 1085 /* Handlers have the same address in both address spaces.*/ 1086 for (i = 0; i < NUM_INTERRUPTS; i++) 1087 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, 1088 DEFAULT_CODE_SELECTOR); 1089 } 1090 1091 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu) 1092 { 1093 struct kvm_vm *vm = vcpu->vm; 1094 struct kvm_sregs sregs; 1095 1096 vcpu_sregs_get(vcpu, &sregs); 1097 sregs.idt.base = vm->idt; 1098 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; 1099 sregs.gdt.base = vm->gdt; 1100 sregs.gdt.limit = getpagesize() - 1; 1101 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); 1102 vcpu_sregs_set(vcpu, &sregs); 1103 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 1104 } 1105 1106 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1107 void (*handler)(struct ex_regs *)) 1108 { 1109 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); 1110 1111 handlers[vector] = (vm_vaddr_t)handler; 1112 } 1113 1114 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) 1115 { 1116 struct ucall uc; 1117 1118 if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) { 1119 uint64_t vector = uc.args[0]; 1120 1121 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)", 1122 vector); 1123 } 1124 } 1125 1126 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 1127 uint32_t function, uint32_t index) 1128 { 1129 int i; 1130 1131 for (i = 0; i < cpuid->nent; i++) { 1132 if (cpuid->entries[i].function == function && 1133 cpuid->entries[i].index == index) 1134 return &cpuid->entries[i]; 1135 } 1136 1137 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); 1138 1139 return NULL; 1140 } 1141 1142 #define X86_HYPERCALL(inputs...) \ 1143 ({ \ 1144 uint64_t r; \ 1145 \ 1146 asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t" \ 1147 "jnz 1f\n\t" \ 1148 "vmcall\n\t" \ 1149 "jmp 2f\n\t" \ 1150 "1: vmmcall\n\t" \ 1151 "2:" \ 1152 : "=a"(r) \ 1153 : [use_vmmcall] "r" (host_cpu_is_amd), inputs); \ 1154 \ 1155 r; \ 1156 }) 1157 1158 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1159 uint64_t a3) 1160 { 1161 return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3)); 1162 } 1163 1164 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1) 1165 { 1166 return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1)); 1167 } 1168 1169 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1) 1170 { 1171 GUEST_ASSERT(!__xen_hypercall(nr, a0, a1)); 1172 } 1173 1174 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) 1175 { 1176 static struct kvm_cpuid2 *cpuid; 1177 int kvm_fd; 1178 1179 if (cpuid) 1180 return cpuid; 1181 1182 cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 1183 kvm_fd = open_kvm_dev_path_or_exit(); 1184 1185 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1186 1187 close(kvm_fd); 1188 return cpuid; 1189 } 1190 1191 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu) 1192 { 1193 static struct kvm_cpuid2 *cpuid_full; 1194 const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; 1195 int i, nent = 0; 1196 1197 if (!cpuid_full) { 1198 cpuid_sys = kvm_get_supported_cpuid(); 1199 cpuid_hv = kvm_get_supported_hv_cpuid(); 1200 1201 cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent); 1202 if (!cpuid_full) { 1203 perror("malloc"); 1204 abort(); 1205 } 1206 1207 /* Need to skip KVM CPUID leaves 0x400000xx */ 1208 for (i = 0; i < cpuid_sys->nent; i++) { 1209 if (cpuid_sys->entries[i].function >= 0x40000000 && 1210 cpuid_sys->entries[i].function < 0x40000100) 1211 continue; 1212 cpuid_full->entries[nent] = cpuid_sys->entries[i]; 1213 nent++; 1214 } 1215 1216 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, 1217 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); 1218 cpuid_full->nent = nent + cpuid_hv->nent; 1219 } 1220 1221 vcpu_init_cpuid(vcpu, cpuid_full); 1222 } 1223 1224 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu) 1225 { 1226 struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 1227 1228 vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1229 1230 return cpuid; 1231 } 1232 1233 unsigned long vm_compute_max_gfn(struct kvm_vm *vm) 1234 { 1235 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ 1236 unsigned long ht_gfn, max_gfn, max_pfn; 1237 uint8_t maxphyaddr; 1238 1239 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1; 1240 1241 /* Avoid reserved HyperTransport region on AMD processors. */ 1242 if (!host_cpu_is_amd) 1243 return max_gfn; 1244 1245 /* On parts with <40 physical address bits, the area is fully hidden */ 1246 if (vm->pa_bits < 40) 1247 return max_gfn; 1248 1249 /* Before family 17h, the HyperTransport area is just below 1T. */ 1250 ht_gfn = (1 << 28) - num_ht_pages; 1251 if (this_cpu_family() < 0x17) 1252 goto done; 1253 1254 /* 1255 * Otherwise it's at the top of the physical address space, possibly 1256 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use 1257 * the old conservative value if MAXPHYADDR is not enumerated. 1258 */ 1259 if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) 1260 goto done; 1261 1262 maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1263 max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1; 1264 1265 if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION)) 1266 max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION); 1267 1268 ht_gfn = max_pfn - num_ht_pages; 1269 done: 1270 return min(max_gfn, ht_gfn - 1); 1271 } 1272 1273 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */ 1274 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 1275 { 1276 /* Ensure that a KVM vendor-specific module is loaded. */ 1277 if (vm == NULL) 1278 close(open_kvm_dev_path_or_exit()); 1279 1280 return get_kvm_intel_param_bool("unrestricted_guest"); 1281 } 1282 1283 void kvm_selftest_arch_init(void) 1284 { 1285 host_cpu_is_intel = this_cpu_is_intel(); 1286 host_cpu_is_amd = this_cpu_is_amd(); 1287 } 1288