1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/processor.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "test_util.h" 9 #include "kvm_util.h" 10 #include "processor.h" 11 12 #ifndef NUM_INTERRUPTS 13 #define NUM_INTERRUPTS 256 14 #endif 15 16 #define DEFAULT_CODE_SELECTOR 0x8 17 #define DEFAULT_DATA_SELECTOR 0x10 18 19 #define MAX_NR_CPUID_ENTRIES 100 20 21 vm_vaddr_t exception_handlers; 22 23 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent) 24 { 25 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " 26 "rcx: 0x%.16llx rdx: 0x%.16llx\n", 27 indent, "", 28 regs->rax, regs->rbx, regs->rcx, regs->rdx); 29 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " 30 "rsp: 0x%.16llx rbp: 0x%.16llx\n", 31 indent, "", 32 regs->rsi, regs->rdi, regs->rsp, regs->rbp); 33 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " 34 "r10: 0x%.16llx r11: 0x%.16llx\n", 35 indent, "", 36 regs->r8, regs->r9, regs->r10, regs->r11); 37 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " 38 "r14: 0x%.16llx r15: 0x%.16llx\n", 39 indent, "", 40 regs->r12, regs->r13, regs->r14, regs->r15); 41 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", 42 indent, "", 43 regs->rip, regs->rflags); 44 } 45 46 static void segment_dump(FILE *stream, struct kvm_segment *segment, 47 uint8_t indent) 48 { 49 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " 50 "selector: 0x%.4x type: 0x%.2x\n", 51 indent, "", segment->base, segment->limit, 52 segment->selector, segment->type); 53 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " 54 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", 55 indent, "", segment->present, segment->dpl, 56 segment->db, segment->s, segment->l); 57 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " 58 "unusable: 0x%.2x padding: 0x%.2x\n", 59 indent, "", segment->g, segment->avl, 60 segment->unusable, segment->padding); 61 } 62 63 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, 64 uint8_t indent) 65 { 66 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " 67 "padding: 0x%.4x 0x%.4x 0x%.4x\n", 68 indent, "", dtable->base, dtable->limit, 69 dtable->padding[0], dtable->padding[1], dtable->padding[2]); 70 } 71 72 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent) 73 { 74 unsigned int i; 75 76 fprintf(stream, "%*scs:\n", indent, ""); 77 segment_dump(stream, &sregs->cs, indent + 2); 78 fprintf(stream, "%*sds:\n", indent, ""); 79 segment_dump(stream, &sregs->ds, indent + 2); 80 fprintf(stream, "%*ses:\n", indent, ""); 81 segment_dump(stream, &sregs->es, indent + 2); 82 fprintf(stream, "%*sfs:\n", indent, ""); 83 segment_dump(stream, &sregs->fs, indent + 2); 84 fprintf(stream, "%*sgs:\n", indent, ""); 85 segment_dump(stream, &sregs->gs, indent + 2); 86 fprintf(stream, "%*sss:\n", indent, ""); 87 segment_dump(stream, &sregs->ss, indent + 2); 88 fprintf(stream, "%*str:\n", indent, ""); 89 segment_dump(stream, &sregs->tr, indent + 2); 90 fprintf(stream, "%*sldt:\n", indent, ""); 91 segment_dump(stream, &sregs->ldt, indent + 2); 92 93 fprintf(stream, "%*sgdt:\n", indent, ""); 94 dtable_dump(stream, &sregs->gdt, indent + 2); 95 fprintf(stream, "%*sidt:\n", indent, ""); 96 dtable_dump(stream, &sregs->idt, indent + 2); 97 98 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " 99 "cr3: 0x%.16llx cr4: 0x%.16llx\n", 100 indent, "", 101 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); 102 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " 103 "apic_base: 0x%.16llx\n", 104 indent, "", 105 sregs->cr8, sregs->efer, sregs->apic_base); 106 107 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); 108 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { 109 fprintf(stream, "%*s%.16llx\n", indent + 2, "", 110 sregs->interrupt_bitmap[i]); 111 } 112 } 113 114 bool kvm_is_tdp_enabled(void) 115 { 116 if (is_intel_cpu()) 117 return get_kvm_intel_param_bool("ept"); 118 else 119 return get_kvm_amd_param_bool("npt"); 120 } 121 122 void virt_arch_pgd_alloc(struct kvm_vm *vm) 123 { 124 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 125 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 126 127 /* If needed, create page map l4 table. */ 128 if (!vm->pgd_created) { 129 vm->pgd = vm_alloc_page_table(vm); 130 vm->pgd_created = true; 131 } 132 } 133 134 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte, 135 uint64_t vaddr, int level) 136 { 137 uint64_t pt_gpa = PTE_GET_PA(*parent_pte); 138 uint64_t *page_table = addr_gpa2hva(vm, pt_gpa); 139 int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu; 140 141 TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd, 142 "Parent PTE (level %d) not PRESENT for gva: 0x%08lx", 143 level + 1, vaddr); 144 145 return &page_table[index]; 146 } 147 148 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm, 149 uint64_t *parent_pte, 150 uint64_t vaddr, 151 uint64_t paddr, 152 int current_level, 153 int target_level) 154 { 155 uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level); 156 157 if (!(*pte & PTE_PRESENT_MASK)) { 158 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK; 159 if (current_level == target_level) 160 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK); 161 else 162 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK; 163 } else { 164 /* 165 * Entry already present. Assert that the caller doesn't want 166 * a hugepage at this level, and that there isn't a hugepage at 167 * this level. 168 */ 169 TEST_ASSERT(current_level != target_level, 170 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n", 171 current_level, vaddr); 172 TEST_ASSERT(!(*pte & PTE_LARGE_MASK), 173 "Cannot create page table at level: %u, vaddr: 0x%lx\n", 174 current_level, vaddr); 175 } 176 return pte; 177 } 178 179 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level) 180 { 181 const uint64_t pg_size = PG_LEVEL_SIZE(level); 182 uint64_t *pml4e, *pdpe, *pde; 183 uint64_t *pte; 184 185 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, 186 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); 187 188 TEST_ASSERT((vaddr % pg_size) == 0, 189 "Virtual address not aligned,\n" 190 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); 191 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), 192 "Invalid virtual address, vaddr: 0x%lx", vaddr); 193 TEST_ASSERT((paddr % pg_size) == 0, 194 "Physical address not aligned,\n" 195 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); 196 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 197 "Physical address beyond maximum supported,\n" 198 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 199 paddr, vm->max_gfn, vm->page_size); 200 201 /* 202 * Allocate upper level page tables, if not already present. Return 203 * early if a hugepage was created. 204 */ 205 pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level); 206 if (*pml4e & PTE_LARGE_MASK) 207 return; 208 209 pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level); 210 if (*pdpe & PTE_LARGE_MASK) 211 return; 212 213 pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level); 214 if (*pde & PTE_LARGE_MASK) 215 return; 216 217 /* Fill in page table entry. */ 218 pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 219 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK), 220 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr); 221 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK); 222 } 223 224 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 225 { 226 __virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K); 227 } 228 229 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 230 uint64_t nr_bytes, int level) 231 { 232 uint64_t pg_size = PG_LEVEL_SIZE(level); 233 uint64_t nr_pages = nr_bytes / pg_size; 234 int i; 235 236 TEST_ASSERT(nr_bytes % pg_size == 0, 237 "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx", 238 nr_bytes, pg_size); 239 240 for (i = 0; i < nr_pages; i++) { 241 __virt_pg_map(vm, vaddr, paddr, level); 242 243 vaddr += pg_size; 244 paddr += pg_size; 245 } 246 } 247 248 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level) 249 { 250 if (*pte & PTE_LARGE_MASK) { 251 TEST_ASSERT(*level == PG_LEVEL_NONE || 252 *level == current_level, 253 "Unexpected hugepage at level %d\n", current_level); 254 *level = current_level; 255 } 256 257 return *level == current_level; 258 } 259 260 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, 261 int *level) 262 { 263 uint64_t *pml4e, *pdpe, *pde; 264 265 TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM, 266 "Invalid PG_LEVEL_* '%d'", *level); 267 268 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 269 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 270 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 271 (vaddr >> vm->page_shift)), 272 "Invalid virtual address, vaddr: 0x%lx", 273 vaddr); 274 /* 275 * Based on the mode check above there are 48 bits in the vaddr, so 276 * shift 16 to sign extend the last bit (bit-47), 277 */ 278 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), 279 "Canonical check failed. The virtual address is invalid."); 280 281 pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G); 282 if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G)) 283 return pml4e; 284 285 pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G); 286 if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G)) 287 return pdpe; 288 289 pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M); 290 if (vm_is_target_pte(pde, level, PG_LEVEL_2M)) 291 return pde; 292 293 return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K); 294 } 295 296 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr) 297 { 298 int level = PG_LEVEL_4K; 299 300 return __vm_get_page_table_entry(vm, vaddr, &level); 301 } 302 303 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 304 { 305 uint64_t *pml4e, *pml4e_start; 306 uint64_t *pdpe, *pdpe_start; 307 uint64_t *pde, *pde_start; 308 uint64_t *pte, *pte_start; 309 310 if (!vm->pgd_created) 311 return; 312 313 fprintf(stream, "%*s " 314 " no\n", indent, ""); 315 fprintf(stream, "%*s index hvaddr gpaddr " 316 "addr w exec dirty\n", 317 indent, ""); 318 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd); 319 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { 320 pml4e = &pml4e_start[n1]; 321 if (!(*pml4e & PTE_PRESENT_MASK)) 322 continue; 323 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u " 324 " %u\n", 325 indent, "", 326 pml4e - pml4e_start, pml4e, 327 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e), 328 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK)); 329 330 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK); 331 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { 332 pdpe = &pdpe_start[n2]; 333 if (!(*pdpe & PTE_PRESENT_MASK)) 334 continue; 335 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx " 336 "%u %u\n", 337 indent, "", 338 pdpe - pdpe_start, pdpe, 339 addr_hva2gpa(vm, pdpe), 340 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK), 341 !!(*pdpe & PTE_NX_MASK)); 342 343 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK); 344 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { 345 pde = &pde_start[n3]; 346 if (!(*pde & PTE_PRESENT_MASK)) 347 continue; 348 fprintf(stream, "%*spde 0x%-3zx %p " 349 "0x%-12lx 0x%-10llx %u %u\n", 350 indent, "", pde - pde_start, pde, 351 addr_hva2gpa(vm, pde), 352 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK), 353 !!(*pde & PTE_NX_MASK)); 354 355 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK); 356 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { 357 pte = &pte_start[n4]; 358 if (!(*pte & PTE_PRESENT_MASK)) 359 continue; 360 fprintf(stream, "%*spte 0x%-3zx %p " 361 "0x%-12lx 0x%-10llx %u %u " 362 " %u 0x%-10lx\n", 363 indent, "", 364 pte - pte_start, pte, 365 addr_hva2gpa(vm, pte), 366 PTE_GET_PFN(*pte), 367 !!(*pte & PTE_WRITABLE_MASK), 368 !!(*pte & PTE_NX_MASK), 369 !!(*pte & PTE_DIRTY_MASK), 370 ((uint64_t) n1 << 27) 371 | ((uint64_t) n2 << 18) 372 | ((uint64_t) n3 << 9) 373 | ((uint64_t) n4)); 374 } 375 } 376 } 377 } 378 } 379 380 /* 381 * Set Unusable Segment 382 * 383 * Input Args: None 384 * 385 * Output Args: 386 * segp - Pointer to segment register 387 * 388 * Return: None 389 * 390 * Sets the segment register pointed to by @segp to an unusable state. 391 */ 392 static void kvm_seg_set_unusable(struct kvm_segment *segp) 393 { 394 memset(segp, 0, sizeof(*segp)); 395 segp->unusable = true; 396 } 397 398 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) 399 { 400 void *gdt = addr_gva2hva(vm, vm->gdt); 401 struct desc64 *desc = gdt + (segp->selector >> 3) * 8; 402 403 desc->limit0 = segp->limit & 0xFFFF; 404 desc->base0 = segp->base & 0xFFFF; 405 desc->base1 = segp->base >> 16; 406 desc->type = segp->type; 407 desc->s = segp->s; 408 desc->dpl = segp->dpl; 409 desc->p = segp->present; 410 desc->limit1 = segp->limit >> 16; 411 desc->avl = segp->avl; 412 desc->l = segp->l; 413 desc->db = segp->db; 414 desc->g = segp->g; 415 desc->base2 = segp->base >> 24; 416 if (!segp->s) 417 desc->base3 = segp->base >> 32; 418 } 419 420 421 /* 422 * Set Long Mode Flat Kernel Code Segment 423 * 424 * Input Args: 425 * vm - VM whose GDT is being filled, or NULL to only write segp 426 * selector - selector value 427 * 428 * Output Args: 429 * segp - Pointer to KVM segment 430 * 431 * Return: None 432 * 433 * Sets up the KVM segment pointed to by @segp, to be a code segment 434 * with the selector value given by @selector. 435 */ 436 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, 437 struct kvm_segment *segp) 438 { 439 memset(segp, 0, sizeof(*segp)); 440 segp->selector = selector; 441 segp->limit = 0xFFFFFFFFu; 442 segp->s = 0x1; /* kTypeCodeData */ 443 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed 444 * | kFlagCodeReadable 445 */ 446 segp->g = true; 447 segp->l = true; 448 segp->present = 1; 449 if (vm) 450 kvm_seg_fill_gdt_64bit(vm, segp); 451 } 452 453 /* 454 * Set Long Mode Flat Kernel Data Segment 455 * 456 * Input Args: 457 * vm - VM whose GDT is being filled, or NULL to only write segp 458 * selector - selector value 459 * 460 * Output Args: 461 * segp - Pointer to KVM segment 462 * 463 * Return: None 464 * 465 * Sets up the KVM segment pointed to by @segp, to be a data segment 466 * with the selector value given by @selector. 467 */ 468 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, 469 struct kvm_segment *segp) 470 { 471 memset(segp, 0, sizeof(*segp)); 472 segp->selector = selector; 473 segp->limit = 0xFFFFFFFFu; 474 segp->s = 0x1; /* kTypeCodeData */ 475 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed 476 * | kFlagDataWritable 477 */ 478 segp->g = true; 479 segp->present = true; 480 if (vm) 481 kvm_seg_fill_gdt_64bit(vm, segp); 482 } 483 484 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 485 { 486 int level = PG_LEVEL_NONE; 487 uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level); 488 489 TEST_ASSERT(*pte & PTE_PRESENT_MASK, 490 "Leaf PTE not PRESENT for gva: 0x%08lx", gva); 491 492 /* 493 * No need for a hugepage mask on the PTE, x86-64 requires the "unused" 494 * address bits to be zero. 495 */ 496 return PTE_GET_PA(*pte) | (gva & ~HUGEPAGE_MASK(level)); 497 } 498 499 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt) 500 { 501 if (!vm->gdt) 502 vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 503 504 dt->base = vm->gdt; 505 dt->limit = getpagesize(); 506 } 507 508 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, 509 int selector) 510 { 511 if (!vm->tss) 512 vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 513 514 memset(segp, 0, sizeof(*segp)); 515 segp->base = vm->tss; 516 segp->limit = 0x67; 517 segp->selector = selector; 518 segp->type = 0xb; 519 segp->present = 1; 520 kvm_seg_fill_gdt_64bit(vm, segp); 521 } 522 523 static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu) 524 { 525 struct kvm_sregs sregs; 526 527 /* Set mode specific system register values. */ 528 vcpu_sregs_get(vcpu, &sregs); 529 530 sregs.idt.limit = 0; 531 532 kvm_setup_gdt(vm, &sregs.gdt); 533 534 switch (vm->mode) { 535 case VM_MODE_PXXV48_4K: 536 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; 537 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; 538 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); 539 540 kvm_seg_set_unusable(&sregs.ldt); 541 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); 542 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); 543 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); 544 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18); 545 break; 546 547 default: 548 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 549 } 550 551 sregs.cr3 = vm->pgd; 552 vcpu_sregs_set(vcpu, &sregs); 553 } 554 555 void kvm_arch_vm_post_create(struct kvm_vm *vm) 556 { 557 vm_create_irqchip(vm); 558 } 559 560 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id, 561 void *guest_code) 562 { 563 struct kvm_mp_state mp_state; 564 struct kvm_regs regs; 565 vm_vaddr_t stack_vaddr; 566 struct kvm_vcpu *vcpu; 567 568 stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), 569 DEFAULT_GUEST_STACK_VADDR_MIN, 570 MEM_REGION_DATA); 571 572 vcpu = __vm_vcpu_add(vm, vcpu_id); 573 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 574 vcpu_setup(vm, vcpu); 575 576 /* Setup guest general purpose registers */ 577 vcpu_regs_get(vcpu, ®s); 578 regs.rflags = regs.rflags | 0x2; 579 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); 580 regs.rip = (unsigned long) guest_code; 581 vcpu_regs_set(vcpu, ®s); 582 583 /* Setup the MP state */ 584 mp_state.mp_state = 0; 585 vcpu_mp_state_set(vcpu, &mp_state); 586 587 return vcpu; 588 } 589 590 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id) 591 { 592 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id); 593 594 vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid()); 595 596 return vcpu; 597 } 598 599 void vcpu_arch_free(struct kvm_vcpu *vcpu) 600 { 601 if (vcpu->cpuid) 602 free(vcpu->cpuid); 603 } 604 605 /* Do not use kvm_supported_cpuid directly except for validity checks. */ 606 static void *kvm_supported_cpuid; 607 608 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void) 609 { 610 int kvm_fd; 611 612 if (kvm_supported_cpuid) 613 return kvm_supported_cpuid; 614 615 kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 616 kvm_fd = open_kvm_dev_path_or_exit(); 617 618 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, 619 (struct kvm_cpuid2 *)kvm_supported_cpuid); 620 621 close(kvm_fd); 622 return kvm_supported_cpuid; 623 } 624 625 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid, 626 uint32_t function, uint32_t index, 627 uint8_t reg, uint8_t lo, uint8_t hi) 628 { 629 const struct kvm_cpuid_entry2 *entry; 630 int i; 631 632 for (i = 0; i < cpuid->nent; i++) { 633 entry = &cpuid->entries[i]; 634 635 /* 636 * The output registers in kvm_cpuid_entry2 are in alphabetical 637 * order, but kvm_x86_cpu_feature matches that mess, so yay 638 * pointer shenanigans! 639 */ 640 if (entry->function == function && entry->index == index) 641 return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo; 642 } 643 644 return 0; 645 } 646 647 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, 648 struct kvm_x86_cpu_feature feature) 649 { 650 return __kvm_cpu_has(cpuid, feature.function, feature.index, 651 feature.reg, feature.bit, feature.bit); 652 } 653 654 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, 655 struct kvm_x86_cpu_property property) 656 { 657 return __kvm_cpu_has(cpuid, property.function, property.index, 658 property.reg, property.lo_bit, property.hi_bit); 659 } 660 661 uint64_t kvm_get_feature_msr(uint64_t msr_index) 662 { 663 struct { 664 struct kvm_msrs header; 665 struct kvm_msr_entry entry; 666 } buffer = {}; 667 int r, kvm_fd; 668 669 buffer.header.nmsrs = 1; 670 buffer.entry.index = msr_index; 671 kvm_fd = open_kvm_dev_path_or_exit(); 672 673 r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); 674 TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r)); 675 676 close(kvm_fd); 677 return buffer.entry.data; 678 } 679 680 void __vm_xsave_require_permission(int bit, const char *name) 681 { 682 int kvm_fd; 683 u64 bitmask; 684 long rc; 685 struct kvm_device_attr attr = { 686 .group = 0, 687 .attr = KVM_X86_XCOMP_GUEST_SUPP, 688 .addr = (unsigned long) &bitmask 689 }; 690 691 TEST_ASSERT(!kvm_supported_cpuid, 692 "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM"); 693 694 kvm_fd = open_kvm_dev_path_or_exit(); 695 rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr); 696 close(kvm_fd); 697 698 if (rc == -1 && (errno == ENXIO || errno == EINVAL)) 699 __TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported"); 700 701 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc); 702 703 __TEST_REQUIRE(bitmask & (1ULL << bit), 704 "Required XSAVE feature '%s' not supported", name); 705 706 TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit)); 707 708 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); 709 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); 710 TEST_ASSERT(bitmask & (1ULL << bit), 711 "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx", 712 bitmask); 713 } 714 715 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid) 716 { 717 TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID"); 718 719 /* Allow overriding the default CPUID. */ 720 if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) { 721 free(vcpu->cpuid); 722 vcpu->cpuid = NULL; 723 } 724 725 if (!vcpu->cpuid) 726 vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent); 727 728 memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent)); 729 vcpu_set_cpuid(vcpu); 730 } 731 732 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr) 733 { 734 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008); 735 736 entry->eax = (entry->eax & ~0xff) | maxphyaddr; 737 vcpu_set_cpuid(vcpu); 738 } 739 740 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function) 741 { 742 struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function); 743 744 entry->eax = 0; 745 entry->ebx = 0; 746 entry->ecx = 0; 747 entry->edx = 0; 748 vcpu_set_cpuid(vcpu); 749 } 750 751 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, 752 struct kvm_x86_cpu_feature feature, 753 bool set) 754 { 755 struct kvm_cpuid_entry2 *entry; 756 u32 *reg; 757 758 entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); 759 reg = (&entry->eax) + feature.reg; 760 761 if (set) 762 *reg |= BIT(feature.bit); 763 else 764 *reg &= ~BIT(feature.bit); 765 766 vcpu_set_cpuid(vcpu); 767 } 768 769 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index) 770 { 771 struct { 772 struct kvm_msrs header; 773 struct kvm_msr_entry entry; 774 } buffer = {}; 775 776 buffer.header.nmsrs = 1; 777 buffer.entry.index = msr_index; 778 779 vcpu_msrs_get(vcpu, &buffer.header); 780 781 return buffer.entry.data; 782 } 783 784 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value) 785 { 786 struct { 787 struct kvm_msrs header; 788 struct kvm_msr_entry entry; 789 } buffer = {}; 790 791 memset(&buffer, 0, sizeof(buffer)); 792 buffer.header.nmsrs = 1; 793 buffer.entry.index = msr_index; 794 buffer.entry.data = msr_value; 795 796 return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header); 797 } 798 799 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...) 800 { 801 va_list ap; 802 struct kvm_regs regs; 803 804 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" 805 " num: %u\n", 806 num); 807 808 va_start(ap, num); 809 vcpu_regs_get(vcpu, ®s); 810 811 if (num >= 1) 812 regs.rdi = va_arg(ap, uint64_t); 813 814 if (num >= 2) 815 regs.rsi = va_arg(ap, uint64_t); 816 817 if (num >= 3) 818 regs.rdx = va_arg(ap, uint64_t); 819 820 if (num >= 4) 821 regs.rcx = va_arg(ap, uint64_t); 822 823 if (num >= 5) 824 regs.r8 = va_arg(ap, uint64_t); 825 826 if (num >= 6) 827 regs.r9 = va_arg(ap, uint64_t); 828 829 vcpu_regs_set(vcpu, ®s); 830 va_end(ap); 831 } 832 833 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent) 834 { 835 struct kvm_regs regs; 836 struct kvm_sregs sregs; 837 838 fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id); 839 840 fprintf(stream, "%*sregs:\n", indent + 2, ""); 841 vcpu_regs_get(vcpu, ®s); 842 regs_dump(stream, ®s, indent + 4); 843 844 fprintf(stream, "%*ssregs:\n", indent + 2, ""); 845 vcpu_sregs_get(vcpu, &sregs); 846 sregs_dump(stream, &sregs, indent + 4); 847 } 848 849 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs) 850 { 851 struct kvm_msr_list *list; 852 struct kvm_msr_list nmsrs; 853 int kvm_fd, r; 854 855 kvm_fd = open_kvm_dev_path_or_exit(); 856 857 nmsrs.nmsrs = 0; 858 if (!feature_msrs) 859 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); 860 else 861 r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs); 862 863 TEST_ASSERT(r == -1 && errno == E2BIG, 864 "Expected -E2BIG, got rc: %i errno: %i (%s)", 865 r, errno, strerror(errno)); 866 867 list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0])); 868 TEST_ASSERT(list, "-ENOMEM when allocating MSR index list"); 869 list->nmsrs = nmsrs.nmsrs; 870 871 if (!feature_msrs) 872 kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 873 else 874 kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list); 875 close(kvm_fd); 876 877 TEST_ASSERT(list->nmsrs == nmsrs.nmsrs, 878 "Number of MSRs in list changed, was %d, now %d", 879 nmsrs.nmsrs, list->nmsrs); 880 return list; 881 } 882 883 const struct kvm_msr_list *kvm_get_msr_index_list(void) 884 { 885 static const struct kvm_msr_list *list; 886 887 if (!list) 888 list = __kvm_get_msr_index_list(false); 889 return list; 890 } 891 892 893 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void) 894 { 895 static const struct kvm_msr_list *list; 896 897 if (!list) 898 list = __kvm_get_msr_index_list(true); 899 return list; 900 } 901 902 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index) 903 { 904 const struct kvm_msr_list *list = kvm_get_msr_index_list(); 905 int i; 906 907 for (i = 0; i < list->nmsrs; ++i) { 908 if (list->indices[i] == msr_index) 909 return true; 910 } 911 912 return false; 913 } 914 915 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu, 916 struct kvm_x86_state *state) 917 { 918 int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2); 919 920 if (size) { 921 state->xsave = malloc(size); 922 vcpu_xsave2_get(vcpu, state->xsave); 923 } else { 924 state->xsave = malloc(sizeof(struct kvm_xsave)); 925 vcpu_xsave_get(vcpu, state->xsave); 926 } 927 } 928 929 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu) 930 { 931 const struct kvm_msr_list *msr_list = kvm_get_msr_index_list(); 932 struct kvm_x86_state *state; 933 int i; 934 935 static int nested_size = -1; 936 937 if (nested_size == -1) { 938 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); 939 TEST_ASSERT(nested_size <= sizeof(state->nested_), 940 "Nested state size too big, %i > %zi", 941 nested_size, sizeof(state->nested_)); 942 } 943 944 /* 945 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees 946 * guest state is consistent only after userspace re-enters the 947 * kernel with KVM_RUN. Complete IO prior to migrating state 948 * to a new VM. 949 */ 950 vcpu_run_complete_io(vcpu); 951 952 state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0])); 953 954 vcpu_events_get(vcpu, &state->events); 955 vcpu_mp_state_get(vcpu, &state->mp_state); 956 vcpu_regs_get(vcpu, &state->regs); 957 vcpu_save_xsave_state(vcpu, state); 958 959 if (kvm_has_cap(KVM_CAP_XCRS)) 960 vcpu_xcrs_get(vcpu, &state->xcrs); 961 962 vcpu_sregs_get(vcpu, &state->sregs); 963 964 if (nested_size) { 965 state->nested.size = sizeof(state->nested_); 966 967 vcpu_nested_state_get(vcpu, &state->nested); 968 TEST_ASSERT(state->nested.size <= nested_size, 969 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", 970 state->nested.size, nested_size); 971 } else { 972 state->nested.size = 0; 973 } 974 975 state->msrs.nmsrs = msr_list->nmsrs; 976 for (i = 0; i < msr_list->nmsrs; i++) 977 state->msrs.entries[i].index = msr_list->indices[i]; 978 vcpu_msrs_get(vcpu, &state->msrs); 979 980 vcpu_debugregs_get(vcpu, &state->debugregs); 981 982 return state; 983 } 984 985 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state) 986 { 987 vcpu_sregs_set(vcpu, &state->sregs); 988 vcpu_msrs_set(vcpu, &state->msrs); 989 990 if (kvm_has_cap(KVM_CAP_XCRS)) 991 vcpu_xcrs_set(vcpu, &state->xcrs); 992 993 vcpu_xsave_set(vcpu, state->xsave); 994 vcpu_events_set(vcpu, &state->events); 995 vcpu_mp_state_set(vcpu, &state->mp_state); 996 vcpu_debugregs_set(vcpu, &state->debugregs); 997 vcpu_regs_set(vcpu, &state->regs); 998 999 if (state->nested.size) 1000 vcpu_nested_state_set(vcpu, &state->nested); 1001 } 1002 1003 void kvm_x86_state_cleanup(struct kvm_x86_state *state) 1004 { 1005 free(state->xsave); 1006 free(state); 1007 } 1008 1009 static bool cpu_vendor_string_is(const char *vendor) 1010 { 1011 const uint32_t *chunk = (const uint32_t *)vendor; 1012 uint32_t eax, ebx, ecx, edx; 1013 1014 cpuid(0, &eax, &ebx, &ecx, &edx); 1015 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 1016 } 1017 1018 bool is_intel_cpu(void) 1019 { 1020 return cpu_vendor_string_is("GenuineIntel"); 1021 } 1022 1023 /* 1024 * Exclude early K5 samples with a vendor string of "AMDisbetter!" 1025 */ 1026 bool is_amd_cpu(void) 1027 { 1028 return cpu_vendor_string_is("AuthenticAMD"); 1029 } 1030 1031 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) 1032 { 1033 if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) { 1034 *pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32; 1035 *va_bits = 32; 1036 } else { 1037 *pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1038 *va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR); 1039 } 1040 } 1041 1042 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, 1043 int dpl, unsigned short selector) 1044 { 1045 struct idt_entry *base = 1046 (struct idt_entry *)addr_gva2hva(vm, vm->idt); 1047 struct idt_entry *e = &base[vector]; 1048 1049 memset(e, 0, sizeof(*e)); 1050 e->offset0 = addr; 1051 e->selector = selector; 1052 e->ist = 0; 1053 e->type = 14; 1054 e->dpl = dpl; 1055 e->p = 1; 1056 e->offset1 = addr >> 16; 1057 e->offset2 = addr >> 32; 1058 } 1059 1060 1061 static bool kvm_fixup_exception(struct ex_regs *regs) 1062 { 1063 if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10) 1064 return false; 1065 1066 if (regs->vector == DE_VECTOR) 1067 return false; 1068 1069 regs->rip = regs->r11; 1070 regs->r9 = regs->vector; 1071 regs->r10 = regs->error_code; 1072 return true; 1073 } 1074 1075 void kvm_exit_unexpected_vector(uint32_t value) 1076 { 1077 ucall(UCALL_UNHANDLED, 1, value); 1078 } 1079 1080 void route_exception(struct ex_regs *regs) 1081 { 1082 typedef void(*handler)(struct ex_regs *); 1083 handler *handlers = (handler *)exception_handlers; 1084 1085 if (handlers && handlers[regs->vector]) { 1086 handlers[regs->vector](regs); 1087 return; 1088 } 1089 1090 if (kvm_fixup_exception(regs)) 1091 return; 1092 1093 kvm_exit_unexpected_vector(regs->vector); 1094 } 1095 1096 void vm_init_descriptor_tables(struct kvm_vm *vm) 1097 { 1098 extern void *idt_handlers; 1099 int i; 1100 1101 vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 1102 vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA); 1103 /* Handlers have the same address in both address spaces.*/ 1104 for (i = 0; i < NUM_INTERRUPTS; i++) 1105 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, 1106 DEFAULT_CODE_SELECTOR); 1107 } 1108 1109 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu) 1110 { 1111 struct kvm_vm *vm = vcpu->vm; 1112 struct kvm_sregs sregs; 1113 1114 vcpu_sregs_get(vcpu, &sregs); 1115 sregs.idt.base = vm->idt; 1116 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; 1117 sregs.gdt.base = vm->gdt; 1118 sregs.gdt.limit = getpagesize() - 1; 1119 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); 1120 vcpu_sregs_set(vcpu, &sregs); 1121 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 1122 } 1123 1124 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1125 void (*handler)(struct ex_regs *)) 1126 { 1127 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); 1128 1129 handlers[vector] = (vm_vaddr_t)handler; 1130 } 1131 1132 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu) 1133 { 1134 struct ucall uc; 1135 1136 if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) { 1137 uint64_t vector = uc.args[0]; 1138 1139 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)", 1140 vector); 1141 } 1142 } 1143 1144 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, 1145 uint32_t function, uint32_t index) 1146 { 1147 int i; 1148 1149 for (i = 0; i < cpuid->nent; i++) { 1150 if (cpuid->entries[i].function == function && 1151 cpuid->entries[i].index == index) 1152 return &cpuid->entries[i]; 1153 } 1154 1155 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); 1156 1157 return NULL; 1158 } 1159 1160 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1161 uint64_t a3) 1162 { 1163 uint64_t r; 1164 1165 asm volatile("vmcall" 1166 : "=a"(r) 1167 : "a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3)); 1168 return r; 1169 } 1170 1171 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) 1172 { 1173 static struct kvm_cpuid2 *cpuid; 1174 int kvm_fd; 1175 1176 if (cpuid) 1177 return cpuid; 1178 1179 cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 1180 kvm_fd = open_kvm_dev_path_or_exit(); 1181 1182 kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1183 1184 close(kvm_fd); 1185 return cpuid; 1186 } 1187 1188 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu) 1189 { 1190 static struct kvm_cpuid2 *cpuid_full; 1191 const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; 1192 int i, nent = 0; 1193 1194 if (!cpuid_full) { 1195 cpuid_sys = kvm_get_supported_cpuid(); 1196 cpuid_hv = kvm_get_supported_hv_cpuid(); 1197 1198 cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent); 1199 if (!cpuid_full) { 1200 perror("malloc"); 1201 abort(); 1202 } 1203 1204 /* Need to skip KVM CPUID leaves 0x400000xx */ 1205 for (i = 0; i < cpuid_sys->nent; i++) { 1206 if (cpuid_sys->entries[i].function >= 0x40000000 && 1207 cpuid_sys->entries[i].function < 0x40000100) 1208 continue; 1209 cpuid_full->entries[nent] = cpuid_sys->entries[i]; 1210 nent++; 1211 } 1212 1213 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, 1214 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); 1215 cpuid_full->nent = nent + cpuid_hv->nent; 1216 } 1217 1218 vcpu_init_cpuid(vcpu, cpuid_full); 1219 } 1220 1221 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu) 1222 { 1223 struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES); 1224 1225 vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1226 1227 return cpuid; 1228 } 1229 1230 unsigned long vm_compute_max_gfn(struct kvm_vm *vm) 1231 { 1232 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ 1233 unsigned long ht_gfn, max_gfn, max_pfn; 1234 uint8_t maxphyaddr; 1235 1236 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1; 1237 1238 /* Avoid reserved HyperTransport region on AMD processors. */ 1239 if (!is_amd_cpu()) 1240 return max_gfn; 1241 1242 /* On parts with <40 physical address bits, the area is fully hidden */ 1243 if (vm->pa_bits < 40) 1244 return max_gfn; 1245 1246 /* Before family 17h, the HyperTransport area is just below 1T. */ 1247 ht_gfn = (1 << 28) - num_ht_pages; 1248 if (this_cpu_family() < 0x17) 1249 goto done; 1250 1251 /* 1252 * Otherwise it's at the top of the physical address space, possibly 1253 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use 1254 * the old conservative value if MAXPHYADDR is not enumerated. 1255 */ 1256 if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) 1257 goto done; 1258 1259 maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR); 1260 max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1; 1261 1262 if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION)) 1263 max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION); 1264 1265 ht_gfn = max_pfn - num_ht_pages; 1266 done: 1267 return min(max_gfn, ht_gfn - 1); 1268 } 1269 1270 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */ 1271 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 1272 { 1273 /* Ensure that a KVM vendor-specific module is loaded. */ 1274 if (vm == NULL) 1275 close(open_kvm_dev_path_or_exit()); 1276 1277 return get_kvm_intel_param_bool("unrestricted_guest"); 1278 } 1279