1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/processor.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "test_util.h" 9 #include "kvm_util.h" 10 #include "../kvm_util_internal.h" 11 #include "processor.h" 12 13 #ifndef NUM_INTERRUPTS 14 #define NUM_INTERRUPTS 256 15 #endif 16 17 #define DEFAULT_CODE_SELECTOR 0x8 18 #define DEFAULT_DATA_SELECTOR 0x10 19 20 vm_vaddr_t exception_handlers; 21 22 void regs_dump(FILE *stream, struct kvm_regs *regs, 23 uint8_t indent) 24 { 25 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " 26 "rcx: 0x%.16llx rdx: 0x%.16llx\n", 27 indent, "", 28 regs->rax, regs->rbx, regs->rcx, regs->rdx); 29 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " 30 "rsp: 0x%.16llx rbp: 0x%.16llx\n", 31 indent, "", 32 regs->rsi, regs->rdi, regs->rsp, regs->rbp); 33 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " 34 "r10: 0x%.16llx r11: 0x%.16llx\n", 35 indent, "", 36 regs->r8, regs->r9, regs->r10, regs->r11); 37 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " 38 "r14: 0x%.16llx r15: 0x%.16llx\n", 39 indent, "", 40 regs->r12, regs->r13, regs->r14, regs->r15); 41 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", 42 indent, "", 43 regs->rip, regs->rflags); 44 } 45 46 /* 47 * Segment Dump 48 * 49 * Input Args: 50 * stream - Output FILE stream 51 * segment - KVM segment 52 * indent - Left margin indent amount 53 * 54 * Output Args: None 55 * 56 * Return: None 57 * 58 * Dumps the state of the KVM segment given by @segment, to the FILE stream 59 * given by @stream. 60 */ 61 static void segment_dump(FILE *stream, struct kvm_segment *segment, 62 uint8_t indent) 63 { 64 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " 65 "selector: 0x%.4x type: 0x%.2x\n", 66 indent, "", segment->base, segment->limit, 67 segment->selector, segment->type); 68 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " 69 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", 70 indent, "", segment->present, segment->dpl, 71 segment->db, segment->s, segment->l); 72 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " 73 "unusable: 0x%.2x padding: 0x%.2x\n", 74 indent, "", segment->g, segment->avl, 75 segment->unusable, segment->padding); 76 } 77 78 /* 79 * dtable Dump 80 * 81 * Input Args: 82 * stream - Output FILE stream 83 * dtable - KVM dtable 84 * indent - Left margin indent amount 85 * 86 * Output Args: None 87 * 88 * Return: None 89 * 90 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream 91 * given by @stream. 92 */ 93 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, 94 uint8_t indent) 95 { 96 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " 97 "padding: 0x%.4x 0x%.4x 0x%.4x\n", 98 indent, "", dtable->base, dtable->limit, 99 dtable->padding[0], dtable->padding[1], dtable->padding[2]); 100 } 101 102 void sregs_dump(FILE *stream, struct kvm_sregs *sregs, 103 uint8_t indent) 104 { 105 unsigned int i; 106 107 fprintf(stream, "%*scs:\n", indent, ""); 108 segment_dump(stream, &sregs->cs, indent + 2); 109 fprintf(stream, "%*sds:\n", indent, ""); 110 segment_dump(stream, &sregs->ds, indent + 2); 111 fprintf(stream, "%*ses:\n", indent, ""); 112 segment_dump(stream, &sregs->es, indent + 2); 113 fprintf(stream, "%*sfs:\n", indent, ""); 114 segment_dump(stream, &sregs->fs, indent + 2); 115 fprintf(stream, "%*sgs:\n", indent, ""); 116 segment_dump(stream, &sregs->gs, indent + 2); 117 fprintf(stream, "%*sss:\n", indent, ""); 118 segment_dump(stream, &sregs->ss, indent + 2); 119 fprintf(stream, "%*str:\n", indent, ""); 120 segment_dump(stream, &sregs->tr, indent + 2); 121 fprintf(stream, "%*sldt:\n", indent, ""); 122 segment_dump(stream, &sregs->ldt, indent + 2); 123 124 fprintf(stream, "%*sgdt:\n", indent, ""); 125 dtable_dump(stream, &sregs->gdt, indent + 2); 126 fprintf(stream, "%*sidt:\n", indent, ""); 127 dtable_dump(stream, &sregs->idt, indent + 2); 128 129 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " 130 "cr3: 0x%.16llx cr4: 0x%.16llx\n", 131 indent, "", 132 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); 133 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " 134 "apic_base: 0x%.16llx\n", 135 indent, "", 136 sregs->cr8, sregs->efer, sregs->apic_base); 137 138 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); 139 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { 140 fprintf(stream, "%*s%.16llx\n", indent + 2, "", 141 sregs->interrupt_bitmap[i]); 142 } 143 } 144 145 void virt_pgd_alloc(struct kvm_vm *vm) 146 { 147 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 148 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 149 150 /* If needed, create page map l4 table. */ 151 if (!vm->pgd_created) { 152 vm->pgd = vm_alloc_page_table(vm); 153 vm->pgd_created = true; 154 } 155 } 156 157 static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr, 158 int level) 159 { 160 uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift); 161 int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu; 162 163 return &page_table[index]; 164 } 165 166 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm, 167 uint64_t pt_pfn, 168 uint64_t vaddr, 169 uint64_t paddr, 170 int level, 171 enum x86_page_size page_size) 172 { 173 uint64_t *pte = virt_get_pte(vm, pt_pfn, vaddr, level); 174 175 if (!(*pte & PTE_PRESENT_MASK)) { 176 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK; 177 if (level == page_size) 178 *pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK); 179 else 180 *pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK; 181 } else { 182 /* 183 * Entry already present. Assert that the caller doesn't want 184 * a hugepage at this level, and that there isn't a hugepage at 185 * this level. 186 */ 187 TEST_ASSERT(level != page_size, 188 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n", 189 page_size, vaddr); 190 TEST_ASSERT(!(*pte & PTE_LARGE_MASK), 191 "Cannot create page table at level: %u, vaddr: 0x%lx\n", 192 level, vaddr); 193 } 194 return pte; 195 } 196 197 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 198 enum x86_page_size page_size) 199 { 200 const uint64_t pg_size = 1ull << ((page_size * 9) + 12); 201 uint64_t *pml4e, *pdpe, *pde; 202 uint64_t *pte; 203 204 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, 205 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); 206 207 TEST_ASSERT((vaddr % pg_size) == 0, 208 "Virtual address not aligned,\n" 209 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); 210 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), 211 "Invalid virtual address, vaddr: 0x%lx", vaddr); 212 TEST_ASSERT((paddr % pg_size) == 0, 213 "Physical address not aligned,\n" 214 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); 215 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 216 "Physical address beyond maximum supported,\n" 217 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 218 paddr, vm->max_gfn, vm->page_size); 219 220 /* 221 * Allocate upper level page tables, if not already present. Return 222 * early if a hugepage was created. 223 */ 224 pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift, 225 vaddr, paddr, 3, page_size); 226 if (*pml4e & PTE_LARGE_MASK) 227 return; 228 229 pdpe = virt_create_upper_pte(vm, PTE_GET_PFN(*pml4e), vaddr, paddr, 2, page_size); 230 if (*pdpe & PTE_LARGE_MASK) 231 return; 232 233 pde = virt_create_upper_pte(vm, PTE_GET_PFN(*pdpe), vaddr, paddr, 1, page_size); 234 if (*pde & PTE_LARGE_MASK) 235 return; 236 237 /* Fill in page table entry. */ 238 pte = virt_get_pte(vm, PTE_GET_PFN(*pde), vaddr, 0); 239 TEST_ASSERT(!(*pte & PTE_PRESENT_MASK), 240 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr); 241 *pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK); 242 } 243 244 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 245 { 246 __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K); 247 } 248 249 static uint64_t *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, 250 uint64_t vaddr) 251 { 252 uint16_t index[4]; 253 uint64_t *pml4e, *pdpe, *pde; 254 uint64_t *pte; 255 struct kvm_cpuid_entry2 *entry; 256 struct kvm_sregs sregs; 257 int max_phy_addr; 258 uint64_t rsvd_mask = 0; 259 260 entry = kvm_get_supported_cpuid_index(0x80000008, 0); 261 max_phy_addr = entry->eax & 0x000000ff; 262 /* Set the high bits in the reserved mask. */ 263 if (max_phy_addr < 52) 264 rsvd_mask = GENMASK_ULL(51, max_phy_addr); 265 266 /* 267 * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries 268 * with 4-Level Paging and 5-Level Paging". 269 * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, 270 * the XD flag (bit 63) is reserved. 271 */ 272 vcpu_sregs_get(vm, vcpuid, &sregs); 273 if ((sregs.efer & EFER_NX) == 0) { 274 rsvd_mask |= PTE_NX_MASK; 275 } 276 277 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 278 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 279 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 280 (vaddr >> vm->page_shift)), 281 "Invalid virtual address, vaddr: 0x%lx", 282 vaddr); 283 /* 284 * Based on the mode check above there are 48 bits in the vaddr, so 285 * shift 16 to sign extend the last bit (bit-47), 286 */ 287 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), 288 "Canonical check failed. The virtual address is invalid."); 289 290 index[0] = (vaddr >> 12) & 0x1ffu; 291 index[1] = (vaddr >> 21) & 0x1ffu; 292 index[2] = (vaddr >> 30) & 0x1ffu; 293 index[3] = (vaddr >> 39) & 0x1ffu; 294 295 pml4e = addr_gpa2hva(vm, vm->pgd); 296 TEST_ASSERT(pml4e[index[3]] & PTE_PRESENT_MASK, 297 "Expected pml4e to be present for gva: 0x%08lx", vaddr); 298 TEST_ASSERT((pml4e[index[3]] & (rsvd_mask | PTE_LARGE_MASK)) == 0, 299 "Unexpected reserved bits set."); 300 301 pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size); 302 TEST_ASSERT(pdpe[index[2]] & PTE_PRESENT_MASK, 303 "Expected pdpe to be present for gva: 0x%08lx", vaddr); 304 TEST_ASSERT(!(pdpe[index[2]] & PTE_LARGE_MASK), 305 "Expected pdpe to map a pde not a 1-GByte page."); 306 TEST_ASSERT((pdpe[index[2]] & rsvd_mask) == 0, 307 "Unexpected reserved bits set."); 308 309 pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size); 310 TEST_ASSERT(pde[index[1]] & PTE_PRESENT_MASK, 311 "Expected pde to be present for gva: 0x%08lx", vaddr); 312 TEST_ASSERT(!(pde[index[1]] & PTE_LARGE_MASK), 313 "Expected pde to map a pte not a 2-MByte page."); 314 TEST_ASSERT((pde[index[1]] & rsvd_mask) == 0, 315 "Unexpected reserved bits set."); 316 317 pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size); 318 TEST_ASSERT(pte[index[0]] & PTE_PRESENT_MASK, 319 "Expected pte to be present for gva: 0x%08lx", vaddr); 320 321 return &pte[index[0]]; 322 } 323 324 uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr) 325 { 326 uint64_t *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr); 327 328 return *(uint64_t *)pte; 329 } 330 331 void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr, 332 uint64_t pte) 333 { 334 uint64_t *new_pte = _vm_get_page_table_entry(vm, vcpuid, vaddr); 335 336 *(uint64_t *)new_pte = pte; 337 } 338 339 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 340 { 341 uint64_t *pml4e, *pml4e_start; 342 uint64_t *pdpe, *pdpe_start; 343 uint64_t *pde, *pde_start; 344 uint64_t *pte, *pte_start; 345 346 if (!vm->pgd_created) 347 return; 348 349 fprintf(stream, "%*s " 350 " no\n", indent, ""); 351 fprintf(stream, "%*s index hvaddr gpaddr " 352 "addr w exec dirty\n", 353 indent, ""); 354 pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd); 355 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { 356 pml4e = &pml4e_start[n1]; 357 if (!(*pml4e & PTE_PRESENT_MASK)) 358 continue; 359 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u " 360 " %u\n", 361 indent, "", 362 pml4e - pml4e_start, pml4e, 363 addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e), 364 !!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK)); 365 366 pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK); 367 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { 368 pdpe = &pdpe_start[n2]; 369 if (!(*pdpe & PTE_PRESENT_MASK)) 370 continue; 371 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10llx " 372 "%u %u\n", 373 indent, "", 374 pdpe - pdpe_start, pdpe, 375 addr_hva2gpa(vm, pdpe), 376 PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK), 377 !!(*pdpe & PTE_NX_MASK)); 378 379 pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK); 380 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { 381 pde = &pde_start[n3]; 382 if (!(*pde & PTE_PRESENT_MASK)) 383 continue; 384 fprintf(stream, "%*spde 0x%-3zx %p " 385 "0x%-12lx 0x%-10llx %u %u\n", 386 indent, "", pde - pde_start, pde, 387 addr_hva2gpa(vm, pde), 388 PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK), 389 !!(*pde & PTE_NX_MASK)); 390 391 pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK); 392 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { 393 pte = &pte_start[n4]; 394 if (!(*pte & PTE_PRESENT_MASK)) 395 continue; 396 fprintf(stream, "%*spte 0x%-3zx %p " 397 "0x%-12lx 0x%-10llx %u %u " 398 " %u 0x%-10lx\n", 399 indent, "", 400 pte - pte_start, pte, 401 addr_hva2gpa(vm, pte), 402 PTE_GET_PFN(*pte), 403 !!(*pte & PTE_WRITABLE_MASK), 404 !!(*pte & PTE_NX_MASK), 405 !!(*pte & PTE_DIRTY_MASK), 406 ((uint64_t) n1 << 27) 407 | ((uint64_t) n2 << 18) 408 | ((uint64_t) n3 << 9) 409 | ((uint64_t) n4)); 410 } 411 } 412 } 413 } 414 } 415 416 /* 417 * Set Unusable Segment 418 * 419 * Input Args: None 420 * 421 * Output Args: 422 * segp - Pointer to segment register 423 * 424 * Return: None 425 * 426 * Sets the segment register pointed to by @segp to an unusable state. 427 */ 428 static void kvm_seg_set_unusable(struct kvm_segment *segp) 429 { 430 memset(segp, 0, sizeof(*segp)); 431 segp->unusable = true; 432 } 433 434 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) 435 { 436 void *gdt = addr_gva2hva(vm, vm->gdt); 437 struct desc64 *desc = gdt + (segp->selector >> 3) * 8; 438 439 desc->limit0 = segp->limit & 0xFFFF; 440 desc->base0 = segp->base & 0xFFFF; 441 desc->base1 = segp->base >> 16; 442 desc->type = segp->type; 443 desc->s = segp->s; 444 desc->dpl = segp->dpl; 445 desc->p = segp->present; 446 desc->limit1 = segp->limit >> 16; 447 desc->avl = segp->avl; 448 desc->l = segp->l; 449 desc->db = segp->db; 450 desc->g = segp->g; 451 desc->base2 = segp->base >> 24; 452 if (!segp->s) 453 desc->base3 = segp->base >> 32; 454 } 455 456 457 /* 458 * Set Long Mode Flat Kernel Code Segment 459 * 460 * Input Args: 461 * vm - VM whose GDT is being filled, or NULL to only write segp 462 * selector - selector value 463 * 464 * Output Args: 465 * segp - Pointer to KVM segment 466 * 467 * Return: None 468 * 469 * Sets up the KVM segment pointed to by @segp, to be a code segment 470 * with the selector value given by @selector. 471 */ 472 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, 473 struct kvm_segment *segp) 474 { 475 memset(segp, 0, sizeof(*segp)); 476 segp->selector = selector; 477 segp->limit = 0xFFFFFFFFu; 478 segp->s = 0x1; /* kTypeCodeData */ 479 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed 480 * | kFlagCodeReadable 481 */ 482 segp->g = true; 483 segp->l = true; 484 segp->present = 1; 485 if (vm) 486 kvm_seg_fill_gdt_64bit(vm, segp); 487 } 488 489 /* 490 * Set Long Mode Flat Kernel Data Segment 491 * 492 * Input Args: 493 * vm - VM whose GDT is being filled, or NULL to only write segp 494 * selector - selector value 495 * 496 * Output Args: 497 * segp - Pointer to KVM segment 498 * 499 * Return: None 500 * 501 * Sets up the KVM segment pointed to by @segp, to be a data segment 502 * with the selector value given by @selector. 503 */ 504 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, 505 struct kvm_segment *segp) 506 { 507 memset(segp, 0, sizeof(*segp)); 508 segp->selector = selector; 509 segp->limit = 0xFFFFFFFFu; 510 segp->s = 0x1; /* kTypeCodeData */ 511 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed 512 * | kFlagDataWritable 513 */ 514 segp->g = true; 515 segp->present = true; 516 if (vm) 517 kvm_seg_fill_gdt_64bit(vm, segp); 518 } 519 520 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 521 { 522 uint16_t index[4]; 523 uint64_t *pml4e, *pdpe, *pde; 524 uint64_t *pte; 525 526 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 527 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 528 529 index[0] = (gva >> 12) & 0x1ffu; 530 index[1] = (gva >> 21) & 0x1ffu; 531 index[2] = (gva >> 30) & 0x1ffu; 532 index[3] = (gva >> 39) & 0x1ffu; 533 534 if (!vm->pgd_created) 535 goto unmapped_gva; 536 pml4e = addr_gpa2hva(vm, vm->pgd); 537 if (!(pml4e[index[3]] & PTE_PRESENT_MASK)) 538 goto unmapped_gva; 539 540 pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size); 541 if (!(pdpe[index[2]] & PTE_PRESENT_MASK)) 542 goto unmapped_gva; 543 544 pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size); 545 if (!(pde[index[1]] & PTE_PRESENT_MASK)) 546 goto unmapped_gva; 547 548 pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size); 549 if (!(pte[index[0]] & PTE_PRESENT_MASK)) 550 goto unmapped_gva; 551 552 return (PTE_GET_PFN(pte[index[0]]) * vm->page_size) + (gva & ~PAGE_MASK); 553 554 unmapped_gva: 555 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva); 556 exit(EXIT_FAILURE); 557 } 558 559 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt) 560 { 561 if (!vm->gdt) 562 vm->gdt = vm_vaddr_alloc_page(vm); 563 564 dt->base = vm->gdt; 565 dt->limit = getpagesize(); 566 } 567 568 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, 569 int selector) 570 { 571 if (!vm->tss) 572 vm->tss = vm_vaddr_alloc_page(vm); 573 574 memset(segp, 0, sizeof(*segp)); 575 segp->base = vm->tss; 576 segp->limit = 0x67; 577 segp->selector = selector; 578 segp->type = 0xb; 579 segp->present = 1; 580 kvm_seg_fill_gdt_64bit(vm, segp); 581 } 582 583 static void vcpu_setup(struct kvm_vm *vm, int vcpuid) 584 { 585 struct kvm_sregs sregs; 586 587 /* Set mode specific system register values. */ 588 vcpu_sregs_get(vm, vcpuid, &sregs); 589 590 sregs.idt.limit = 0; 591 592 kvm_setup_gdt(vm, &sregs.gdt); 593 594 switch (vm->mode) { 595 case VM_MODE_PXXV48_4K: 596 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; 597 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; 598 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); 599 600 kvm_seg_set_unusable(&sregs.ldt); 601 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); 602 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); 603 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); 604 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18); 605 break; 606 607 default: 608 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 609 } 610 611 sregs.cr3 = vm->pgd; 612 vcpu_sregs_set(vm, vcpuid, &sregs); 613 } 614 615 #define CPUID_XFD_BIT (1 << 4) 616 static bool is_xfd_supported(void) 617 { 618 int eax, ebx, ecx, edx; 619 const int leaf = 0xd, subleaf = 0x1; 620 621 __asm__ __volatile__( 622 "cpuid" 623 : /* output */ "=a"(eax), "=b"(ebx), 624 "=c"(ecx), "=d"(edx) 625 : /* input */ "0"(leaf), "2"(subleaf)); 626 627 return !!(eax & CPUID_XFD_BIT); 628 } 629 630 void vm_xsave_req_perm(int bit) 631 { 632 int kvm_fd; 633 u64 bitmask; 634 long rc; 635 struct kvm_device_attr attr = { 636 .group = 0, 637 .attr = KVM_X86_XCOMP_GUEST_SUPP, 638 .addr = (unsigned long) &bitmask 639 }; 640 641 kvm_fd = open_kvm_dev_path_or_exit(); 642 rc = ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr); 643 close(kvm_fd); 644 if (rc == -1 && (errno == ENXIO || errno == EINVAL)) 645 exit(KSFT_SKIP); 646 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc); 647 if (!(bitmask & (1ULL << bit))) 648 exit(KSFT_SKIP); 649 650 if (!is_xfd_supported()) 651 exit(KSFT_SKIP); 652 653 rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 654 655 /* 656 * The older kernel version(<5.15) can't support 657 * ARCH_REQ_XCOMP_GUEST_PERM and directly return. 658 */ 659 if (rc) 660 return; 661 662 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); 663 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); 664 TEST_ASSERT(bitmask & (1ULL << bit), 665 "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx", 666 bitmask); 667 } 668 669 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code) 670 { 671 struct kvm_mp_state mp_state; 672 struct kvm_regs regs; 673 vm_vaddr_t stack_vaddr; 674 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), 675 DEFAULT_GUEST_STACK_VADDR_MIN); 676 677 /* Create VCPU */ 678 vm_vcpu_add(vm, vcpuid); 679 vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid()); 680 vcpu_setup(vm, vcpuid); 681 682 /* Setup guest general purpose registers */ 683 vcpu_regs_get(vm, vcpuid, ®s); 684 regs.rflags = regs.rflags | 0x2; 685 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); 686 regs.rip = (unsigned long) guest_code; 687 vcpu_regs_set(vm, vcpuid, ®s); 688 689 /* Setup the MP state */ 690 mp_state.mp_state = 0; 691 vcpu_set_mp_state(vm, vcpuid, &mp_state); 692 } 693 694 /* 695 * Allocate an instance of struct kvm_cpuid2 696 * 697 * Input Args: None 698 * 699 * Output Args: None 700 * 701 * Return: A pointer to the allocated struct. The caller is responsible 702 * for freeing this struct. 703 * 704 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the 705 * array to be decided at allocation time, allocation is slightly 706 * complicated. This function uses a reasonable default length for 707 * the array and performs the appropriate allocation. 708 */ 709 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void) 710 { 711 struct kvm_cpuid2 *cpuid; 712 int nent = 100; 713 size_t size; 714 715 size = sizeof(*cpuid); 716 size += nent * sizeof(struct kvm_cpuid_entry2); 717 cpuid = malloc(size); 718 if (!cpuid) { 719 perror("malloc"); 720 abort(); 721 } 722 723 cpuid->nent = nent; 724 725 return cpuid; 726 } 727 728 /* 729 * KVM Supported CPUID Get 730 * 731 * Input Args: None 732 * 733 * Output Args: 734 * 735 * Return: The supported KVM CPUID 736 * 737 * Get the guest CPUID supported by KVM. 738 */ 739 struct kvm_cpuid2 *kvm_get_supported_cpuid(void) 740 { 741 static struct kvm_cpuid2 *cpuid; 742 int ret; 743 int kvm_fd; 744 745 if (cpuid) 746 return cpuid; 747 748 cpuid = allocate_kvm_cpuid2(); 749 kvm_fd = open_kvm_dev_path_or_exit(); 750 751 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid); 752 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n", 753 ret, errno); 754 755 close(kvm_fd); 756 return cpuid; 757 } 758 759 /* 760 * KVM Get MSR 761 * 762 * Input Args: 763 * msr_index - Index of MSR 764 * 765 * Output Args: None 766 * 767 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. 768 * 769 * Get value of MSR for VCPU. 770 */ 771 uint64_t kvm_get_feature_msr(uint64_t msr_index) 772 { 773 struct { 774 struct kvm_msrs header; 775 struct kvm_msr_entry entry; 776 } buffer = {}; 777 int r, kvm_fd; 778 779 buffer.header.nmsrs = 1; 780 buffer.entry.index = msr_index; 781 kvm_fd = open_kvm_dev_path_or_exit(); 782 783 r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); 784 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" 785 " rc: %i errno: %i", r, errno); 786 787 close(kvm_fd); 788 return buffer.entry.data; 789 } 790 791 /* 792 * VM VCPU CPUID Set 793 * 794 * Input Args: 795 * vm - Virtual Machine 796 * vcpuid - VCPU id 797 * 798 * Output Args: None 799 * 800 * Return: KVM CPUID (KVM_GET_CPUID2) 801 * 802 * Set the VCPU's CPUID. 803 */ 804 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 805 { 806 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 807 struct kvm_cpuid2 *cpuid; 808 int max_ent; 809 int rc = -1; 810 811 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 812 813 cpuid = allocate_kvm_cpuid2(); 814 max_ent = cpuid->nent; 815 816 for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) { 817 rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid); 818 if (!rc) 819 break; 820 821 TEST_ASSERT(rc == -1 && errno == E2BIG, 822 "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d", 823 rc, errno); 824 } 825 826 TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i", 827 rc, errno); 828 829 return cpuid; 830 } 831 832 833 834 /* 835 * Locate a cpuid entry. 836 * 837 * Input Args: 838 * function: The function of the cpuid entry to find. 839 * index: The index of the cpuid entry. 840 * 841 * Output Args: None 842 * 843 * Return: A pointer to the cpuid entry. Never returns NULL. 844 */ 845 struct kvm_cpuid_entry2 * 846 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index) 847 { 848 struct kvm_cpuid2 *cpuid; 849 struct kvm_cpuid_entry2 *entry = NULL; 850 int i; 851 852 cpuid = kvm_get_supported_cpuid(); 853 for (i = 0; i < cpuid->nent; i++) { 854 if (cpuid->entries[i].function == function && 855 cpuid->entries[i].index == index) { 856 entry = &cpuid->entries[i]; 857 break; 858 } 859 } 860 861 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).", 862 function, index); 863 return entry; 864 } 865 866 867 int __vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid, 868 struct kvm_cpuid2 *cpuid) 869 { 870 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 871 872 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 873 874 return ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid); 875 } 876 877 /* 878 * VM VCPU CPUID Set 879 * 880 * Input Args: 881 * vm - Virtual Machine 882 * vcpuid - VCPU id 883 * cpuid - The CPUID values to set. 884 * 885 * Output Args: None 886 * 887 * Return: void 888 * 889 * Set the VCPU's CPUID. 890 */ 891 void vcpu_set_cpuid(struct kvm_vm *vm, 892 uint32_t vcpuid, struct kvm_cpuid2 *cpuid) 893 { 894 int rc; 895 896 rc = __vcpu_set_cpuid(vm, vcpuid, cpuid); 897 TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i", 898 rc, errno); 899 900 } 901 902 /* 903 * VCPU Get MSR 904 * 905 * Input Args: 906 * vm - Virtual Machine 907 * vcpuid - VCPU ID 908 * msr_index - Index of MSR 909 * 910 * Output Args: None 911 * 912 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. 913 * 914 * Get value of MSR for VCPU. 915 */ 916 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index) 917 { 918 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 919 struct { 920 struct kvm_msrs header; 921 struct kvm_msr_entry entry; 922 } buffer = {}; 923 int r; 924 925 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 926 buffer.header.nmsrs = 1; 927 buffer.entry.index = msr_index; 928 r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header); 929 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" 930 " rc: %i errno: %i", r, errno); 931 932 return buffer.entry.data; 933 } 934 935 /* 936 * _VCPU Set MSR 937 * 938 * Input Args: 939 * vm - Virtual Machine 940 * vcpuid - VCPU ID 941 * msr_index - Index of MSR 942 * msr_value - New value of MSR 943 * 944 * Output Args: None 945 * 946 * Return: The result of KVM_SET_MSRS. 947 * 948 * Sets the value of an MSR for the given VCPU. 949 */ 950 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, 951 uint64_t msr_value) 952 { 953 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 954 struct { 955 struct kvm_msrs header; 956 struct kvm_msr_entry entry; 957 } buffer = {}; 958 int r; 959 960 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 961 memset(&buffer, 0, sizeof(buffer)); 962 buffer.header.nmsrs = 1; 963 buffer.entry.index = msr_index; 964 buffer.entry.data = msr_value; 965 r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header); 966 return r; 967 } 968 969 /* 970 * VCPU Set MSR 971 * 972 * Input Args: 973 * vm - Virtual Machine 974 * vcpuid - VCPU ID 975 * msr_index - Index of MSR 976 * msr_value - New value of MSR 977 * 978 * Output Args: None 979 * 980 * Return: On success, nothing. On failure a TEST_ASSERT is produced. 981 * 982 * Set value of MSR for VCPU. 983 */ 984 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, 985 uint64_t msr_value) 986 { 987 int r; 988 989 r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value); 990 TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n" 991 " rc: %i errno: %i", r, errno); 992 } 993 994 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...) 995 { 996 va_list ap; 997 struct kvm_regs regs; 998 999 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" 1000 " num: %u\n", 1001 num); 1002 1003 va_start(ap, num); 1004 vcpu_regs_get(vm, vcpuid, ®s); 1005 1006 if (num >= 1) 1007 regs.rdi = va_arg(ap, uint64_t); 1008 1009 if (num >= 2) 1010 regs.rsi = va_arg(ap, uint64_t); 1011 1012 if (num >= 3) 1013 regs.rdx = va_arg(ap, uint64_t); 1014 1015 if (num >= 4) 1016 regs.rcx = va_arg(ap, uint64_t); 1017 1018 if (num >= 5) 1019 regs.r8 = va_arg(ap, uint64_t); 1020 1021 if (num >= 6) 1022 regs.r9 = va_arg(ap, uint64_t); 1023 1024 vcpu_regs_set(vm, vcpuid, ®s); 1025 va_end(ap); 1026 } 1027 1028 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent) 1029 { 1030 struct kvm_regs regs; 1031 struct kvm_sregs sregs; 1032 1033 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid); 1034 1035 fprintf(stream, "%*sregs:\n", indent + 2, ""); 1036 vcpu_regs_get(vm, vcpuid, ®s); 1037 regs_dump(stream, ®s, indent + 4); 1038 1039 fprintf(stream, "%*ssregs:\n", indent + 2, ""); 1040 vcpu_sregs_get(vm, vcpuid, &sregs); 1041 sregs_dump(stream, &sregs, indent + 4); 1042 } 1043 1044 static int kvm_get_num_msrs_fd(int kvm_fd) 1045 { 1046 struct kvm_msr_list nmsrs; 1047 int r; 1048 1049 nmsrs.nmsrs = 0; 1050 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); 1051 TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i", 1052 r); 1053 1054 return nmsrs.nmsrs; 1055 } 1056 1057 static int kvm_get_num_msrs(struct kvm_vm *vm) 1058 { 1059 return kvm_get_num_msrs_fd(vm->kvm_fd); 1060 } 1061 1062 struct kvm_msr_list *kvm_get_msr_index_list(void) 1063 { 1064 struct kvm_msr_list *list; 1065 int nmsrs, r, kvm_fd; 1066 1067 kvm_fd = open_kvm_dev_path_or_exit(); 1068 1069 nmsrs = kvm_get_num_msrs_fd(kvm_fd); 1070 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); 1071 list->nmsrs = nmsrs; 1072 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 1073 close(kvm_fd); 1074 1075 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", 1076 r); 1077 1078 return list; 1079 } 1080 1081 static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu, 1082 struct kvm_x86_state *state) 1083 { 1084 int size; 1085 1086 size = vm_check_cap(vm, KVM_CAP_XSAVE2); 1087 if (!size) 1088 size = sizeof(struct kvm_xsave); 1089 1090 state->xsave = malloc(size); 1091 if (size == sizeof(struct kvm_xsave)) 1092 return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave); 1093 else 1094 return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave); 1095 } 1096 1097 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid) 1098 { 1099 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1100 struct kvm_msr_list *list; 1101 struct kvm_x86_state *state; 1102 int nmsrs, r, i; 1103 static int nested_size = -1; 1104 1105 if (nested_size == -1) { 1106 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); 1107 TEST_ASSERT(nested_size <= sizeof(state->nested_), 1108 "Nested state size too big, %i > %zi", 1109 nested_size, sizeof(state->nested_)); 1110 } 1111 1112 /* 1113 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees 1114 * guest state is consistent only after userspace re-enters the 1115 * kernel with KVM_RUN. Complete IO prior to migrating state 1116 * to a new VM. 1117 */ 1118 vcpu_run_complete_io(vm, vcpuid); 1119 1120 nmsrs = kvm_get_num_msrs(vm); 1121 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); 1122 list->nmsrs = nmsrs; 1123 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 1124 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", 1125 r); 1126 1127 state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0])); 1128 r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events); 1129 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i", 1130 r); 1131 1132 r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state); 1133 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i", 1134 r); 1135 1136 r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs); 1137 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i", 1138 r); 1139 1140 r = vcpu_save_xsave_state(vm, vcpu, state); 1141 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i", 1142 r); 1143 1144 if (kvm_check_cap(KVM_CAP_XCRS)) { 1145 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs); 1146 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i", 1147 r); 1148 } 1149 1150 r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs); 1151 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i", 1152 r); 1153 1154 if (nested_size) { 1155 state->nested.size = sizeof(state->nested_); 1156 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested); 1157 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i", 1158 r); 1159 TEST_ASSERT(state->nested.size <= nested_size, 1160 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", 1161 state->nested.size, nested_size); 1162 } else 1163 state->nested.size = 0; 1164 1165 state->msrs.nmsrs = nmsrs; 1166 for (i = 0; i < nmsrs; i++) 1167 state->msrs.entries[i].index = list->indices[i]; 1168 r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs); 1169 TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)", 1170 r, r == nmsrs ? -1 : list->indices[r]); 1171 1172 r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs); 1173 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i", 1174 r); 1175 1176 free(list); 1177 return state; 1178 } 1179 1180 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state) 1181 { 1182 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1183 int r; 1184 1185 r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs); 1186 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i", 1187 r); 1188 1189 r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs); 1190 TEST_ASSERT(r == state->msrs.nmsrs, 1191 "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)", 1192 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index); 1193 1194 if (kvm_check_cap(KVM_CAP_XCRS)) { 1195 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs); 1196 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i", 1197 r); 1198 } 1199 1200 r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave); 1201 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i", 1202 r); 1203 1204 r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events); 1205 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i", 1206 r); 1207 1208 r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state); 1209 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i", 1210 r); 1211 1212 r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs); 1213 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i", 1214 r); 1215 1216 r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs); 1217 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i", 1218 r); 1219 1220 if (state->nested.size) { 1221 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested); 1222 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i", 1223 r); 1224 } 1225 } 1226 1227 void kvm_x86_state_cleanup(struct kvm_x86_state *state) 1228 { 1229 free(state->xsave); 1230 free(state); 1231 } 1232 1233 static bool cpu_vendor_string_is(const char *vendor) 1234 { 1235 const uint32_t *chunk = (const uint32_t *)vendor; 1236 int eax, ebx, ecx, edx; 1237 const int leaf = 0; 1238 1239 __asm__ __volatile__( 1240 "cpuid" 1241 : /* output */ "=a"(eax), "=b"(ebx), 1242 "=c"(ecx), "=d"(edx) 1243 : /* input */ "0"(leaf), "2"(0)); 1244 1245 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 1246 } 1247 1248 bool is_intel_cpu(void) 1249 { 1250 return cpu_vendor_string_is("GenuineIntel"); 1251 } 1252 1253 /* 1254 * Exclude early K5 samples with a vendor string of "AMDisbetter!" 1255 */ 1256 bool is_amd_cpu(void) 1257 { 1258 return cpu_vendor_string_is("AuthenticAMD"); 1259 } 1260 1261 uint32_t kvm_get_cpuid_max_basic(void) 1262 { 1263 return kvm_get_supported_cpuid_entry(0)->eax; 1264 } 1265 1266 uint32_t kvm_get_cpuid_max_extended(void) 1267 { 1268 return kvm_get_supported_cpuid_entry(0x80000000)->eax; 1269 } 1270 1271 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) 1272 { 1273 struct kvm_cpuid_entry2 *entry; 1274 bool pae; 1275 1276 /* SDM 4.1.4 */ 1277 if (kvm_get_cpuid_max_extended() < 0x80000008) { 1278 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6); 1279 *pa_bits = pae ? 36 : 32; 1280 *va_bits = 32; 1281 } else { 1282 entry = kvm_get_supported_cpuid_entry(0x80000008); 1283 *pa_bits = entry->eax & 0xff; 1284 *va_bits = (entry->eax >> 8) & 0xff; 1285 } 1286 } 1287 1288 struct idt_entry { 1289 uint16_t offset0; 1290 uint16_t selector; 1291 uint16_t ist : 3; 1292 uint16_t : 5; 1293 uint16_t type : 4; 1294 uint16_t : 1; 1295 uint16_t dpl : 2; 1296 uint16_t p : 1; 1297 uint16_t offset1; 1298 uint32_t offset2; uint32_t reserved; 1299 }; 1300 1301 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, 1302 int dpl, unsigned short selector) 1303 { 1304 struct idt_entry *base = 1305 (struct idt_entry *)addr_gva2hva(vm, vm->idt); 1306 struct idt_entry *e = &base[vector]; 1307 1308 memset(e, 0, sizeof(*e)); 1309 e->offset0 = addr; 1310 e->selector = selector; 1311 e->ist = 0; 1312 e->type = 14; 1313 e->dpl = dpl; 1314 e->p = 1; 1315 e->offset1 = addr >> 16; 1316 e->offset2 = addr >> 32; 1317 } 1318 1319 void kvm_exit_unexpected_vector(uint32_t value) 1320 { 1321 ucall(UCALL_UNHANDLED, 1, value); 1322 } 1323 1324 void route_exception(struct ex_regs *regs) 1325 { 1326 typedef void(*handler)(struct ex_regs *); 1327 handler *handlers = (handler *)exception_handlers; 1328 1329 if (handlers && handlers[regs->vector]) { 1330 handlers[regs->vector](regs); 1331 return; 1332 } 1333 1334 kvm_exit_unexpected_vector(regs->vector); 1335 } 1336 1337 void vm_init_descriptor_tables(struct kvm_vm *vm) 1338 { 1339 extern void *idt_handlers; 1340 int i; 1341 1342 vm->idt = vm_vaddr_alloc_page(vm); 1343 vm->handlers = vm_vaddr_alloc_page(vm); 1344 /* Handlers have the same address in both address spaces.*/ 1345 for (i = 0; i < NUM_INTERRUPTS; i++) 1346 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, 1347 DEFAULT_CODE_SELECTOR); 1348 } 1349 1350 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid) 1351 { 1352 struct kvm_sregs sregs; 1353 1354 vcpu_sregs_get(vm, vcpuid, &sregs); 1355 sregs.idt.base = vm->idt; 1356 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; 1357 sregs.gdt.base = vm->gdt; 1358 sregs.gdt.limit = getpagesize() - 1; 1359 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); 1360 vcpu_sregs_set(vm, vcpuid, &sregs); 1361 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 1362 } 1363 1364 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1365 void (*handler)(struct ex_regs *)) 1366 { 1367 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); 1368 1369 handlers[vector] = (vm_vaddr_t)handler; 1370 } 1371 1372 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid) 1373 { 1374 struct ucall uc; 1375 1376 if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) { 1377 uint64_t vector = uc.args[0]; 1378 1379 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)", 1380 vector); 1381 } 1382 } 1383 1384 struct kvm_cpuid_entry2 *get_cpuid(struct kvm_cpuid2 *cpuid, uint32_t function, 1385 uint32_t index) 1386 { 1387 int i; 1388 1389 for (i = 0; i < cpuid->nent; i++) { 1390 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i]; 1391 1392 if (cur->function == function && cur->index == index) 1393 return cur; 1394 } 1395 1396 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); 1397 1398 return NULL; 1399 } 1400 1401 bool set_cpuid(struct kvm_cpuid2 *cpuid, 1402 struct kvm_cpuid_entry2 *ent) 1403 { 1404 int i; 1405 1406 for (i = 0; i < cpuid->nent; i++) { 1407 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i]; 1408 1409 if (cur->function != ent->function || cur->index != ent->index) 1410 continue; 1411 1412 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2)); 1413 return true; 1414 } 1415 1416 return false; 1417 } 1418 1419 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1420 uint64_t a3) 1421 { 1422 uint64_t r; 1423 1424 asm volatile("vmcall" 1425 : "=a"(r) 1426 : "b"(a0), "c"(a1), "d"(a2), "S"(a3)); 1427 return r; 1428 } 1429 1430 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) 1431 { 1432 static struct kvm_cpuid2 *cpuid; 1433 int ret; 1434 int kvm_fd; 1435 1436 if (cpuid) 1437 return cpuid; 1438 1439 cpuid = allocate_kvm_cpuid2(); 1440 kvm_fd = open_kvm_dev_path_or_exit(); 1441 1442 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1443 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n", 1444 ret, errno); 1445 1446 close(kvm_fd); 1447 return cpuid; 1448 } 1449 1450 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 1451 { 1452 static struct kvm_cpuid2 *cpuid_full; 1453 struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; 1454 int i, nent = 0; 1455 1456 if (!cpuid_full) { 1457 cpuid_sys = kvm_get_supported_cpuid(); 1458 cpuid_hv = kvm_get_supported_hv_cpuid(); 1459 1460 cpuid_full = malloc(sizeof(*cpuid_full) + 1461 (cpuid_sys->nent + cpuid_hv->nent) * 1462 sizeof(struct kvm_cpuid_entry2)); 1463 if (!cpuid_full) { 1464 perror("malloc"); 1465 abort(); 1466 } 1467 1468 /* Need to skip KVM CPUID leaves 0x400000xx */ 1469 for (i = 0; i < cpuid_sys->nent; i++) { 1470 if (cpuid_sys->entries[i].function >= 0x40000000 && 1471 cpuid_sys->entries[i].function < 0x40000100) 1472 continue; 1473 cpuid_full->entries[nent] = cpuid_sys->entries[i]; 1474 nent++; 1475 } 1476 1477 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, 1478 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); 1479 cpuid_full->nent = nent + cpuid_hv->nent; 1480 } 1481 1482 vcpu_set_cpuid(vm, vcpuid, cpuid_full); 1483 } 1484 1485 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 1486 { 1487 static struct kvm_cpuid2 *cpuid; 1488 1489 cpuid = allocate_kvm_cpuid2(); 1490 1491 vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1492 1493 return cpuid; 1494 } 1495 1496 unsigned long vm_compute_max_gfn(struct kvm_vm *vm) 1497 { 1498 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ 1499 unsigned long ht_gfn, max_gfn, max_pfn; 1500 uint32_t eax, ebx, ecx, edx, max_ext_leaf; 1501 1502 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1; 1503 1504 /* Avoid reserved HyperTransport region on AMD processors. */ 1505 if (!is_amd_cpu()) 1506 return max_gfn; 1507 1508 /* On parts with <40 physical address bits, the area is fully hidden */ 1509 if (vm->pa_bits < 40) 1510 return max_gfn; 1511 1512 /* Before family 17h, the HyperTransport area is just below 1T. */ 1513 ht_gfn = (1 << 28) - num_ht_pages; 1514 eax = 1; 1515 ecx = 0; 1516 cpuid(&eax, &ebx, &ecx, &edx); 1517 if (x86_family(eax) < 0x17) 1518 goto done; 1519 1520 /* 1521 * Otherwise it's at the top of the physical address space, possibly 1522 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use 1523 * the old conservative value if MAXPHYADDR is not enumerated. 1524 */ 1525 eax = 0x80000000; 1526 cpuid(&eax, &ebx, &ecx, &edx); 1527 max_ext_leaf = eax; 1528 if (max_ext_leaf < 0x80000008) 1529 goto done; 1530 1531 eax = 0x80000008; 1532 cpuid(&eax, &ebx, &ecx, &edx); 1533 max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1; 1534 if (max_ext_leaf >= 0x8000001f) { 1535 eax = 0x8000001f; 1536 cpuid(&eax, &ebx, &ecx, &edx); 1537 max_pfn >>= (ebx >> 6) & 0x3f; 1538 } 1539 1540 ht_gfn = max_pfn - num_ht_pages; 1541 done: 1542 return min(max_gfn, ht_gfn - 1); 1543 } 1544