1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/processor.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "test_util.h" 9 #include "kvm_util.h" 10 #include "../kvm_util_internal.h" 11 #include "processor.h" 12 13 #ifndef NUM_INTERRUPTS 14 #define NUM_INTERRUPTS 256 15 #endif 16 17 #define DEFAULT_CODE_SELECTOR 0x8 18 #define DEFAULT_DATA_SELECTOR 0x10 19 20 /* Minimum physical address used for virtual translation tables. */ 21 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 22 23 vm_vaddr_t exception_handlers; 24 25 /* Virtual translation table structure declarations */ 26 struct pageMapL4Entry { 27 uint64_t present:1; 28 uint64_t writable:1; 29 uint64_t user:1; 30 uint64_t write_through:1; 31 uint64_t cache_disable:1; 32 uint64_t accessed:1; 33 uint64_t ignored_06:1; 34 uint64_t page_size:1; 35 uint64_t ignored_11_08:4; 36 uint64_t address:40; 37 uint64_t ignored_62_52:11; 38 uint64_t execute_disable:1; 39 }; 40 41 struct pageDirectoryPointerEntry { 42 uint64_t present:1; 43 uint64_t writable:1; 44 uint64_t user:1; 45 uint64_t write_through:1; 46 uint64_t cache_disable:1; 47 uint64_t accessed:1; 48 uint64_t ignored_06:1; 49 uint64_t page_size:1; 50 uint64_t ignored_11_08:4; 51 uint64_t address:40; 52 uint64_t ignored_62_52:11; 53 uint64_t execute_disable:1; 54 }; 55 56 struct pageDirectoryEntry { 57 uint64_t present:1; 58 uint64_t writable:1; 59 uint64_t user:1; 60 uint64_t write_through:1; 61 uint64_t cache_disable:1; 62 uint64_t accessed:1; 63 uint64_t ignored_06:1; 64 uint64_t page_size:1; 65 uint64_t ignored_11_08:4; 66 uint64_t address:40; 67 uint64_t ignored_62_52:11; 68 uint64_t execute_disable:1; 69 }; 70 71 struct pageTableEntry { 72 uint64_t present:1; 73 uint64_t writable:1; 74 uint64_t user:1; 75 uint64_t write_through:1; 76 uint64_t cache_disable:1; 77 uint64_t accessed:1; 78 uint64_t dirty:1; 79 uint64_t reserved_07:1; 80 uint64_t global:1; 81 uint64_t ignored_11_09:3; 82 uint64_t address:40; 83 uint64_t ignored_62_52:11; 84 uint64_t execute_disable:1; 85 }; 86 87 void regs_dump(FILE *stream, struct kvm_regs *regs, 88 uint8_t indent) 89 { 90 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " 91 "rcx: 0x%.16llx rdx: 0x%.16llx\n", 92 indent, "", 93 regs->rax, regs->rbx, regs->rcx, regs->rdx); 94 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " 95 "rsp: 0x%.16llx rbp: 0x%.16llx\n", 96 indent, "", 97 regs->rsi, regs->rdi, regs->rsp, regs->rbp); 98 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " 99 "r10: 0x%.16llx r11: 0x%.16llx\n", 100 indent, "", 101 regs->r8, regs->r9, regs->r10, regs->r11); 102 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " 103 "r14: 0x%.16llx r15: 0x%.16llx\n", 104 indent, "", 105 regs->r12, regs->r13, regs->r14, regs->r15); 106 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", 107 indent, "", 108 regs->rip, regs->rflags); 109 } 110 111 /* 112 * Segment Dump 113 * 114 * Input Args: 115 * stream - Output FILE stream 116 * segment - KVM segment 117 * indent - Left margin indent amount 118 * 119 * Output Args: None 120 * 121 * Return: None 122 * 123 * Dumps the state of the KVM segment given by @segment, to the FILE stream 124 * given by @stream. 125 */ 126 static void segment_dump(FILE *stream, struct kvm_segment *segment, 127 uint8_t indent) 128 { 129 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " 130 "selector: 0x%.4x type: 0x%.2x\n", 131 indent, "", segment->base, segment->limit, 132 segment->selector, segment->type); 133 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " 134 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", 135 indent, "", segment->present, segment->dpl, 136 segment->db, segment->s, segment->l); 137 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " 138 "unusable: 0x%.2x padding: 0x%.2x\n", 139 indent, "", segment->g, segment->avl, 140 segment->unusable, segment->padding); 141 } 142 143 /* 144 * dtable Dump 145 * 146 * Input Args: 147 * stream - Output FILE stream 148 * dtable - KVM dtable 149 * indent - Left margin indent amount 150 * 151 * Output Args: None 152 * 153 * Return: None 154 * 155 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream 156 * given by @stream. 157 */ 158 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, 159 uint8_t indent) 160 { 161 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " 162 "padding: 0x%.4x 0x%.4x 0x%.4x\n", 163 indent, "", dtable->base, dtable->limit, 164 dtable->padding[0], dtable->padding[1], dtable->padding[2]); 165 } 166 167 void sregs_dump(FILE *stream, struct kvm_sregs *sregs, 168 uint8_t indent) 169 { 170 unsigned int i; 171 172 fprintf(stream, "%*scs:\n", indent, ""); 173 segment_dump(stream, &sregs->cs, indent + 2); 174 fprintf(stream, "%*sds:\n", indent, ""); 175 segment_dump(stream, &sregs->ds, indent + 2); 176 fprintf(stream, "%*ses:\n", indent, ""); 177 segment_dump(stream, &sregs->es, indent + 2); 178 fprintf(stream, "%*sfs:\n", indent, ""); 179 segment_dump(stream, &sregs->fs, indent + 2); 180 fprintf(stream, "%*sgs:\n", indent, ""); 181 segment_dump(stream, &sregs->gs, indent + 2); 182 fprintf(stream, "%*sss:\n", indent, ""); 183 segment_dump(stream, &sregs->ss, indent + 2); 184 fprintf(stream, "%*str:\n", indent, ""); 185 segment_dump(stream, &sregs->tr, indent + 2); 186 fprintf(stream, "%*sldt:\n", indent, ""); 187 segment_dump(stream, &sregs->ldt, indent + 2); 188 189 fprintf(stream, "%*sgdt:\n", indent, ""); 190 dtable_dump(stream, &sregs->gdt, indent + 2); 191 fprintf(stream, "%*sidt:\n", indent, ""); 192 dtable_dump(stream, &sregs->idt, indent + 2); 193 194 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " 195 "cr3: 0x%.16llx cr4: 0x%.16llx\n", 196 indent, "", 197 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); 198 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " 199 "apic_base: 0x%.16llx\n", 200 indent, "", 201 sregs->cr8, sregs->efer, sregs->apic_base); 202 203 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); 204 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { 205 fprintf(stream, "%*s%.16llx\n", indent + 2, "", 206 sregs->interrupt_bitmap[i]); 207 } 208 } 209 210 void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot) 211 { 212 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 213 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 214 215 /* If needed, create page map l4 table. */ 216 if (!vm->pgd_created) { 217 vm_paddr_t paddr = vm_phy_page_alloc(vm, 218 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot); 219 vm->pgd = paddr; 220 vm->pgd_created = true; 221 } 222 } 223 224 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 225 uint32_t pgd_memslot) 226 { 227 uint16_t index[4]; 228 struct pageMapL4Entry *pml4e; 229 230 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 231 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 232 233 TEST_ASSERT((vaddr % vm->page_size) == 0, 234 "Virtual address not on page boundary,\n" 235 " vaddr: 0x%lx vm->page_size: 0x%x", 236 vaddr, vm->page_size); 237 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 238 (vaddr >> vm->page_shift)), 239 "Invalid virtual address, vaddr: 0x%lx", 240 vaddr); 241 TEST_ASSERT((paddr % vm->page_size) == 0, 242 "Physical address not on page boundary,\n" 243 " paddr: 0x%lx vm->page_size: 0x%x", 244 paddr, vm->page_size); 245 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 246 "Physical address beyond beyond maximum supported,\n" 247 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 248 paddr, vm->max_gfn, vm->page_size); 249 250 index[0] = (vaddr >> 12) & 0x1ffu; 251 index[1] = (vaddr >> 21) & 0x1ffu; 252 index[2] = (vaddr >> 30) & 0x1ffu; 253 index[3] = (vaddr >> 39) & 0x1ffu; 254 255 /* Allocate page directory pointer table if not present. */ 256 pml4e = addr_gpa2hva(vm, vm->pgd); 257 if (!pml4e[index[3]].present) { 258 pml4e[index[3]].address = vm_phy_page_alloc(vm, 259 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) 260 >> vm->page_shift; 261 pml4e[index[3]].writable = true; 262 pml4e[index[3]].present = true; 263 } 264 265 /* Allocate page directory table if not present. */ 266 struct pageDirectoryPointerEntry *pdpe; 267 pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); 268 if (!pdpe[index[2]].present) { 269 pdpe[index[2]].address = vm_phy_page_alloc(vm, 270 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) 271 >> vm->page_shift; 272 pdpe[index[2]].writable = true; 273 pdpe[index[2]].present = true; 274 } 275 276 /* Allocate page table if not present. */ 277 struct pageDirectoryEntry *pde; 278 pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); 279 if (!pde[index[1]].present) { 280 pde[index[1]].address = vm_phy_page_alloc(vm, 281 KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot) 282 >> vm->page_shift; 283 pde[index[1]].writable = true; 284 pde[index[1]].present = true; 285 } 286 287 /* Fill in page table entry. */ 288 struct pageTableEntry *pte; 289 pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); 290 pte[index[0]].address = paddr >> vm->page_shift; 291 pte[index[0]].writable = true; 292 pte[index[0]].present = 1; 293 } 294 295 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 296 { 297 struct pageMapL4Entry *pml4e, *pml4e_start; 298 struct pageDirectoryPointerEntry *pdpe, *pdpe_start; 299 struct pageDirectoryEntry *pde, *pde_start; 300 struct pageTableEntry *pte, *pte_start; 301 302 if (!vm->pgd_created) 303 return; 304 305 fprintf(stream, "%*s " 306 " no\n", indent, ""); 307 fprintf(stream, "%*s index hvaddr gpaddr " 308 "addr w exec dirty\n", 309 indent, ""); 310 pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm, 311 vm->pgd); 312 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { 313 pml4e = &pml4e_start[n1]; 314 if (!pml4e->present) 315 continue; 316 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u " 317 " %u\n", 318 indent, "", 319 pml4e - pml4e_start, pml4e, 320 addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address, 321 pml4e->writable, pml4e->execute_disable); 322 323 pdpe_start = addr_gpa2hva(vm, pml4e->address 324 * vm->page_size); 325 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { 326 pdpe = &pdpe_start[n2]; 327 if (!pdpe->present) 328 continue; 329 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx " 330 "%u %u\n", 331 indent, "", 332 pdpe - pdpe_start, pdpe, 333 addr_hva2gpa(vm, pdpe), 334 (uint64_t) pdpe->address, pdpe->writable, 335 pdpe->execute_disable); 336 337 pde_start = addr_gpa2hva(vm, 338 pdpe->address * vm->page_size); 339 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { 340 pde = &pde_start[n3]; 341 if (!pde->present) 342 continue; 343 fprintf(stream, "%*spde 0x%-3zx %p " 344 "0x%-12lx 0x%-10lx %u %u\n", 345 indent, "", pde - pde_start, pde, 346 addr_hva2gpa(vm, pde), 347 (uint64_t) pde->address, pde->writable, 348 pde->execute_disable); 349 350 pte_start = addr_gpa2hva(vm, 351 pde->address * vm->page_size); 352 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { 353 pte = &pte_start[n4]; 354 if (!pte->present) 355 continue; 356 fprintf(stream, "%*spte 0x%-3zx %p " 357 "0x%-12lx 0x%-10lx %u %u " 358 " %u 0x%-10lx\n", 359 indent, "", 360 pte - pte_start, pte, 361 addr_hva2gpa(vm, pte), 362 (uint64_t) pte->address, 363 pte->writable, 364 pte->execute_disable, 365 pte->dirty, 366 ((uint64_t) n1 << 27) 367 | ((uint64_t) n2 << 18) 368 | ((uint64_t) n3 << 9) 369 | ((uint64_t) n4)); 370 } 371 } 372 } 373 } 374 } 375 376 /* 377 * Set Unusable Segment 378 * 379 * Input Args: None 380 * 381 * Output Args: 382 * segp - Pointer to segment register 383 * 384 * Return: None 385 * 386 * Sets the segment register pointed to by @segp to an unusable state. 387 */ 388 static void kvm_seg_set_unusable(struct kvm_segment *segp) 389 { 390 memset(segp, 0, sizeof(*segp)); 391 segp->unusable = true; 392 } 393 394 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) 395 { 396 void *gdt = addr_gva2hva(vm, vm->gdt); 397 struct desc64 *desc = gdt + (segp->selector >> 3) * 8; 398 399 desc->limit0 = segp->limit & 0xFFFF; 400 desc->base0 = segp->base & 0xFFFF; 401 desc->base1 = segp->base >> 16; 402 desc->type = segp->type; 403 desc->s = segp->s; 404 desc->dpl = segp->dpl; 405 desc->p = segp->present; 406 desc->limit1 = segp->limit >> 16; 407 desc->avl = segp->avl; 408 desc->l = segp->l; 409 desc->db = segp->db; 410 desc->g = segp->g; 411 desc->base2 = segp->base >> 24; 412 if (!segp->s) 413 desc->base3 = segp->base >> 32; 414 } 415 416 417 /* 418 * Set Long Mode Flat Kernel Code Segment 419 * 420 * Input Args: 421 * vm - VM whose GDT is being filled, or NULL to only write segp 422 * selector - selector value 423 * 424 * Output Args: 425 * segp - Pointer to KVM segment 426 * 427 * Return: None 428 * 429 * Sets up the KVM segment pointed to by @segp, to be a code segment 430 * with the selector value given by @selector. 431 */ 432 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, 433 struct kvm_segment *segp) 434 { 435 memset(segp, 0, sizeof(*segp)); 436 segp->selector = selector; 437 segp->limit = 0xFFFFFFFFu; 438 segp->s = 0x1; /* kTypeCodeData */ 439 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed 440 * | kFlagCodeReadable 441 */ 442 segp->g = true; 443 segp->l = true; 444 segp->present = 1; 445 if (vm) 446 kvm_seg_fill_gdt_64bit(vm, segp); 447 } 448 449 /* 450 * Set Long Mode Flat Kernel Data Segment 451 * 452 * Input Args: 453 * vm - VM whose GDT is being filled, or NULL to only write segp 454 * selector - selector value 455 * 456 * Output Args: 457 * segp - Pointer to KVM segment 458 * 459 * Return: None 460 * 461 * Sets up the KVM segment pointed to by @segp, to be a data segment 462 * with the selector value given by @selector. 463 */ 464 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, 465 struct kvm_segment *segp) 466 { 467 memset(segp, 0, sizeof(*segp)); 468 segp->selector = selector; 469 segp->limit = 0xFFFFFFFFu; 470 segp->s = 0x1; /* kTypeCodeData */ 471 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed 472 * | kFlagDataWritable 473 */ 474 segp->g = true; 475 segp->present = true; 476 if (vm) 477 kvm_seg_fill_gdt_64bit(vm, segp); 478 } 479 480 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 481 { 482 uint16_t index[4]; 483 struct pageMapL4Entry *pml4e; 484 struct pageDirectoryPointerEntry *pdpe; 485 struct pageDirectoryEntry *pde; 486 struct pageTableEntry *pte; 487 488 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 489 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 490 491 index[0] = (gva >> 12) & 0x1ffu; 492 index[1] = (gva >> 21) & 0x1ffu; 493 index[2] = (gva >> 30) & 0x1ffu; 494 index[3] = (gva >> 39) & 0x1ffu; 495 496 if (!vm->pgd_created) 497 goto unmapped_gva; 498 pml4e = addr_gpa2hva(vm, vm->pgd); 499 if (!pml4e[index[3]].present) 500 goto unmapped_gva; 501 502 pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size); 503 if (!pdpe[index[2]].present) 504 goto unmapped_gva; 505 506 pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size); 507 if (!pde[index[1]].present) 508 goto unmapped_gva; 509 510 pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size); 511 if (!pte[index[0]].present) 512 goto unmapped_gva; 513 514 return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu); 515 516 unmapped_gva: 517 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva); 518 exit(EXIT_FAILURE); 519 } 520 521 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot, 522 int pgd_memslot) 523 { 524 if (!vm->gdt) 525 vm->gdt = vm_vaddr_alloc(vm, getpagesize(), 526 KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot); 527 528 dt->base = vm->gdt; 529 dt->limit = getpagesize(); 530 } 531 532 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, 533 int selector, int gdt_memslot, 534 int pgd_memslot) 535 { 536 if (!vm->tss) 537 vm->tss = vm_vaddr_alloc(vm, getpagesize(), 538 KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot); 539 540 memset(segp, 0, sizeof(*segp)); 541 segp->base = vm->tss; 542 segp->limit = 0x67; 543 segp->selector = selector; 544 segp->type = 0xb; 545 segp->present = 1; 546 kvm_seg_fill_gdt_64bit(vm, segp); 547 } 548 549 static void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot) 550 { 551 struct kvm_sregs sregs; 552 553 /* Set mode specific system register values. */ 554 vcpu_sregs_get(vm, vcpuid, &sregs); 555 556 sregs.idt.limit = 0; 557 558 kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot); 559 560 switch (vm->mode) { 561 case VM_MODE_PXXV48_4K: 562 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; 563 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; 564 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); 565 566 kvm_seg_set_unusable(&sregs.ldt); 567 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); 568 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); 569 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); 570 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot); 571 break; 572 573 default: 574 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 575 } 576 577 sregs.cr3 = vm->pgd; 578 vcpu_sregs_set(vm, vcpuid, &sregs); 579 } 580 581 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code) 582 { 583 struct kvm_mp_state mp_state; 584 struct kvm_regs regs; 585 vm_vaddr_t stack_vaddr; 586 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), 587 DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0); 588 589 /* Create VCPU */ 590 vm_vcpu_add(vm, vcpuid); 591 vcpu_setup(vm, vcpuid, 0, 0); 592 593 /* Setup guest general purpose registers */ 594 vcpu_regs_get(vm, vcpuid, ®s); 595 regs.rflags = regs.rflags | 0x2; 596 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); 597 regs.rip = (unsigned long) guest_code; 598 vcpu_regs_set(vm, vcpuid, ®s); 599 600 /* Setup the MP state */ 601 mp_state.mp_state = 0; 602 vcpu_set_mp_state(vm, vcpuid, &mp_state); 603 } 604 605 /* 606 * Allocate an instance of struct kvm_cpuid2 607 * 608 * Input Args: None 609 * 610 * Output Args: None 611 * 612 * Return: A pointer to the allocated struct. The caller is responsible 613 * for freeing this struct. 614 * 615 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the 616 * array to be decided at allocation time, allocation is slightly 617 * complicated. This function uses a reasonable default length for 618 * the array and performs the appropriate allocation. 619 */ 620 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void) 621 { 622 struct kvm_cpuid2 *cpuid; 623 int nent = 100; 624 size_t size; 625 626 size = sizeof(*cpuid); 627 size += nent * sizeof(struct kvm_cpuid_entry2); 628 cpuid = malloc(size); 629 if (!cpuid) { 630 perror("malloc"); 631 abort(); 632 } 633 634 cpuid->nent = nent; 635 636 return cpuid; 637 } 638 639 /* 640 * KVM Supported CPUID Get 641 * 642 * Input Args: None 643 * 644 * Output Args: 645 * 646 * Return: The supported KVM CPUID 647 * 648 * Get the guest CPUID supported by KVM. 649 */ 650 struct kvm_cpuid2 *kvm_get_supported_cpuid(void) 651 { 652 static struct kvm_cpuid2 *cpuid; 653 int ret; 654 int kvm_fd; 655 656 if (cpuid) 657 return cpuid; 658 659 cpuid = allocate_kvm_cpuid2(); 660 kvm_fd = open(KVM_DEV_PATH, O_RDONLY); 661 if (kvm_fd < 0) 662 exit(KSFT_SKIP); 663 664 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid); 665 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n", 666 ret, errno); 667 668 close(kvm_fd); 669 return cpuid; 670 } 671 672 /* 673 * KVM Get MSR 674 * 675 * Input Args: 676 * msr_index - Index of MSR 677 * 678 * Output Args: None 679 * 680 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. 681 * 682 * Get value of MSR for VCPU. 683 */ 684 uint64_t kvm_get_feature_msr(uint64_t msr_index) 685 { 686 struct { 687 struct kvm_msrs header; 688 struct kvm_msr_entry entry; 689 } buffer = {}; 690 int r, kvm_fd; 691 692 buffer.header.nmsrs = 1; 693 buffer.entry.index = msr_index; 694 kvm_fd = open(KVM_DEV_PATH, O_RDONLY); 695 if (kvm_fd < 0) 696 exit(KSFT_SKIP); 697 698 r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); 699 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" 700 " rc: %i errno: %i", r, errno); 701 702 close(kvm_fd); 703 return buffer.entry.data; 704 } 705 706 /* 707 * VM VCPU CPUID Set 708 * 709 * Input Args: 710 * vm - Virtual Machine 711 * vcpuid - VCPU id 712 * 713 * Output Args: None 714 * 715 * Return: KVM CPUID (KVM_GET_CPUID2) 716 * 717 * Set the VCPU's CPUID. 718 */ 719 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 720 { 721 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 722 struct kvm_cpuid2 *cpuid; 723 int rc, max_ent; 724 725 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 726 727 cpuid = allocate_kvm_cpuid2(); 728 max_ent = cpuid->nent; 729 730 for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) { 731 rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid); 732 if (!rc) 733 break; 734 735 TEST_ASSERT(rc == -1 && errno == E2BIG, 736 "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d", 737 rc, errno); 738 } 739 740 TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i", 741 rc, errno); 742 743 return cpuid; 744 } 745 746 747 748 /* 749 * Locate a cpuid entry. 750 * 751 * Input Args: 752 * function: The function of the cpuid entry to find. 753 * index: The index of the cpuid entry. 754 * 755 * Output Args: None 756 * 757 * Return: A pointer to the cpuid entry. Never returns NULL. 758 */ 759 struct kvm_cpuid_entry2 * 760 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index) 761 { 762 struct kvm_cpuid2 *cpuid; 763 struct kvm_cpuid_entry2 *entry = NULL; 764 int i; 765 766 cpuid = kvm_get_supported_cpuid(); 767 for (i = 0; i < cpuid->nent; i++) { 768 if (cpuid->entries[i].function == function && 769 cpuid->entries[i].index == index) { 770 entry = &cpuid->entries[i]; 771 break; 772 } 773 } 774 775 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).", 776 function, index); 777 return entry; 778 } 779 780 /* 781 * VM VCPU CPUID Set 782 * 783 * Input Args: 784 * vm - Virtual Machine 785 * vcpuid - VCPU id 786 * cpuid - The CPUID values to set. 787 * 788 * Output Args: None 789 * 790 * Return: void 791 * 792 * Set the VCPU's CPUID. 793 */ 794 void vcpu_set_cpuid(struct kvm_vm *vm, 795 uint32_t vcpuid, struct kvm_cpuid2 *cpuid) 796 { 797 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 798 int rc; 799 800 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 801 802 rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid); 803 TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i", 804 rc, errno); 805 806 } 807 808 /* 809 * VCPU Get MSR 810 * 811 * Input Args: 812 * vm - Virtual Machine 813 * vcpuid - VCPU ID 814 * msr_index - Index of MSR 815 * 816 * Output Args: None 817 * 818 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. 819 * 820 * Get value of MSR for VCPU. 821 */ 822 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index) 823 { 824 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 825 struct { 826 struct kvm_msrs header; 827 struct kvm_msr_entry entry; 828 } buffer = {}; 829 int r; 830 831 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 832 buffer.header.nmsrs = 1; 833 buffer.entry.index = msr_index; 834 r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header); 835 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" 836 " rc: %i errno: %i", r, errno); 837 838 return buffer.entry.data; 839 } 840 841 /* 842 * _VCPU Set MSR 843 * 844 * Input Args: 845 * vm - Virtual Machine 846 * vcpuid - VCPU ID 847 * msr_index - Index of MSR 848 * msr_value - New value of MSR 849 * 850 * Output Args: None 851 * 852 * Return: The result of KVM_SET_MSRS. 853 * 854 * Sets the value of an MSR for the given VCPU. 855 */ 856 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, 857 uint64_t msr_value) 858 { 859 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 860 struct { 861 struct kvm_msrs header; 862 struct kvm_msr_entry entry; 863 } buffer = {}; 864 int r; 865 866 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 867 memset(&buffer, 0, sizeof(buffer)); 868 buffer.header.nmsrs = 1; 869 buffer.entry.index = msr_index; 870 buffer.entry.data = msr_value; 871 r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header); 872 return r; 873 } 874 875 /* 876 * VCPU Set MSR 877 * 878 * Input Args: 879 * vm - Virtual Machine 880 * vcpuid - VCPU ID 881 * msr_index - Index of MSR 882 * msr_value - New value of MSR 883 * 884 * Output Args: None 885 * 886 * Return: On success, nothing. On failure a TEST_ASSERT is produced. 887 * 888 * Set value of MSR for VCPU. 889 */ 890 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, 891 uint64_t msr_value) 892 { 893 int r; 894 895 r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value); 896 TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n" 897 " rc: %i errno: %i", r, errno); 898 } 899 900 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...) 901 { 902 va_list ap; 903 struct kvm_regs regs; 904 905 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" 906 " num: %u\n", 907 num); 908 909 va_start(ap, num); 910 vcpu_regs_get(vm, vcpuid, ®s); 911 912 if (num >= 1) 913 regs.rdi = va_arg(ap, uint64_t); 914 915 if (num >= 2) 916 regs.rsi = va_arg(ap, uint64_t); 917 918 if (num >= 3) 919 regs.rdx = va_arg(ap, uint64_t); 920 921 if (num >= 4) 922 regs.rcx = va_arg(ap, uint64_t); 923 924 if (num >= 5) 925 regs.r8 = va_arg(ap, uint64_t); 926 927 if (num >= 6) 928 regs.r9 = va_arg(ap, uint64_t); 929 930 vcpu_regs_set(vm, vcpuid, ®s); 931 va_end(ap); 932 } 933 934 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent) 935 { 936 struct kvm_regs regs; 937 struct kvm_sregs sregs; 938 939 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid); 940 941 fprintf(stream, "%*sregs:\n", indent + 2, ""); 942 vcpu_regs_get(vm, vcpuid, ®s); 943 regs_dump(stream, ®s, indent + 4); 944 945 fprintf(stream, "%*ssregs:\n", indent + 2, ""); 946 vcpu_sregs_get(vm, vcpuid, &sregs); 947 sregs_dump(stream, &sregs, indent + 4); 948 } 949 950 struct kvm_x86_state { 951 struct kvm_vcpu_events events; 952 struct kvm_mp_state mp_state; 953 struct kvm_regs regs; 954 struct kvm_xsave xsave; 955 struct kvm_xcrs xcrs; 956 struct kvm_sregs sregs; 957 struct kvm_debugregs debugregs; 958 union { 959 struct kvm_nested_state nested; 960 char nested_[16384]; 961 }; 962 struct kvm_msrs msrs; 963 }; 964 965 static int kvm_get_num_msrs_fd(int kvm_fd) 966 { 967 struct kvm_msr_list nmsrs; 968 int r; 969 970 nmsrs.nmsrs = 0; 971 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); 972 TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i", 973 r); 974 975 return nmsrs.nmsrs; 976 } 977 978 static int kvm_get_num_msrs(struct kvm_vm *vm) 979 { 980 return kvm_get_num_msrs_fd(vm->kvm_fd); 981 } 982 983 struct kvm_msr_list *kvm_get_msr_index_list(void) 984 { 985 struct kvm_msr_list *list; 986 int nmsrs, r, kvm_fd; 987 988 kvm_fd = open(KVM_DEV_PATH, O_RDONLY); 989 if (kvm_fd < 0) 990 exit(KSFT_SKIP); 991 992 nmsrs = kvm_get_num_msrs_fd(kvm_fd); 993 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); 994 list->nmsrs = nmsrs; 995 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 996 close(kvm_fd); 997 998 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", 999 r); 1000 1001 return list; 1002 } 1003 1004 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid) 1005 { 1006 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1007 struct kvm_msr_list *list; 1008 struct kvm_x86_state *state; 1009 int nmsrs, r, i; 1010 static int nested_size = -1; 1011 1012 if (nested_size == -1) { 1013 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); 1014 TEST_ASSERT(nested_size <= sizeof(state->nested_), 1015 "Nested state size too big, %i > %zi", 1016 nested_size, sizeof(state->nested_)); 1017 } 1018 1019 /* 1020 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees 1021 * guest state is consistent only after userspace re-enters the 1022 * kernel with KVM_RUN. Complete IO prior to migrating state 1023 * to a new VM. 1024 */ 1025 vcpu_run_complete_io(vm, vcpuid); 1026 1027 nmsrs = kvm_get_num_msrs(vm); 1028 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); 1029 list->nmsrs = nmsrs; 1030 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 1031 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", 1032 r); 1033 1034 state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0])); 1035 r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events); 1036 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i", 1037 r); 1038 1039 r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state); 1040 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i", 1041 r); 1042 1043 r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs); 1044 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i", 1045 r); 1046 1047 r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave); 1048 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i", 1049 r); 1050 1051 if (kvm_check_cap(KVM_CAP_XCRS)) { 1052 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs); 1053 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i", 1054 r); 1055 } 1056 1057 r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs); 1058 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i", 1059 r); 1060 1061 if (nested_size) { 1062 state->nested.size = sizeof(state->nested_); 1063 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested); 1064 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i", 1065 r); 1066 TEST_ASSERT(state->nested.size <= nested_size, 1067 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", 1068 state->nested.size, nested_size); 1069 } else 1070 state->nested.size = 0; 1071 1072 state->msrs.nmsrs = nmsrs; 1073 for (i = 0; i < nmsrs; i++) 1074 state->msrs.entries[i].index = list->indices[i]; 1075 r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs); 1076 TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)", 1077 r, r == nmsrs ? -1 : list->indices[r]); 1078 1079 r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs); 1080 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i", 1081 r); 1082 1083 free(list); 1084 return state; 1085 } 1086 1087 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state) 1088 { 1089 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1090 int r; 1091 1092 r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave); 1093 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i", 1094 r); 1095 1096 if (kvm_check_cap(KVM_CAP_XCRS)) { 1097 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs); 1098 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i", 1099 r); 1100 } 1101 1102 r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs); 1103 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i", 1104 r); 1105 1106 r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs); 1107 TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)", 1108 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index); 1109 1110 r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events); 1111 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i", 1112 r); 1113 1114 r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state); 1115 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i", 1116 r); 1117 1118 r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs); 1119 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i", 1120 r); 1121 1122 r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs); 1123 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i", 1124 r); 1125 1126 if (state->nested.size) { 1127 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested); 1128 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i", 1129 r); 1130 } 1131 } 1132 1133 bool is_intel_cpu(void) 1134 { 1135 int eax, ebx, ecx, edx; 1136 const uint32_t *chunk; 1137 const int leaf = 0; 1138 1139 __asm__ __volatile__( 1140 "cpuid" 1141 : /* output */ "=a"(eax), "=b"(ebx), 1142 "=c"(ecx), "=d"(edx) 1143 : /* input */ "0"(leaf), "2"(0)); 1144 1145 chunk = (const uint32_t *)("GenuineIntel"); 1146 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 1147 } 1148 1149 uint32_t kvm_get_cpuid_max_basic(void) 1150 { 1151 return kvm_get_supported_cpuid_entry(0)->eax; 1152 } 1153 1154 uint32_t kvm_get_cpuid_max_extended(void) 1155 { 1156 return kvm_get_supported_cpuid_entry(0x80000000)->eax; 1157 } 1158 1159 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) 1160 { 1161 struct kvm_cpuid_entry2 *entry; 1162 bool pae; 1163 1164 /* SDM 4.1.4 */ 1165 if (kvm_get_cpuid_max_extended() < 0x80000008) { 1166 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6); 1167 *pa_bits = pae ? 36 : 32; 1168 *va_bits = 32; 1169 } else { 1170 entry = kvm_get_supported_cpuid_entry(0x80000008); 1171 *pa_bits = entry->eax & 0xff; 1172 *va_bits = (entry->eax >> 8) & 0xff; 1173 } 1174 } 1175 1176 struct idt_entry { 1177 uint16_t offset0; 1178 uint16_t selector; 1179 uint16_t ist : 3; 1180 uint16_t : 5; 1181 uint16_t type : 4; 1182 uint16_t : 1; 1183 uint16_t dpl : 2; 1184 uint16_t p : 1; 1185 uint16_t offset1; 1186 uint32_t offset2; uint32_t reserved; 1187 }; 1188 1189 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, 1190 int dpl, unsigned short selector) 1191 { 1192 struct idt_entry *base = 1193 (struct idt_entry *)addr_gva2hva(vm, vm->idt); 1194 struct idt_entry *e = &base[vector]; 1195 1196 memset(e, 0, sizeof(*e)); 1197 e->offset0 = addr; 1198 e->selector = selector; 1199 e->ist = 0; 1200 e->type = 14; 1201 e->dpl = dpl; 1202 e->p = 1; 1203 e->offset1 = addr >> 16; 1204 e->offset2 = addr >> 32; 1205 } 1206 1207 void kvm_exit_unexpected_vector(uint32_t value) 1208 { 1209 outl(UNEXPECTED_VECTOR_PORT, value); 1210 } 1211 1212 void route_exception(struct ex_regs *regs) 1213 { 1214 typedef void(*handler)(struct ex_regs *); 1215 handler *handlers = (handler *)exception_handlers; 1216 1217 if (handlers && handlers[regs->vector]) { 1218 handlers[regs->vector](regs); 1219 return; 1220 } 1221 1222 kvm_exit_unexpected_vector(regs->vector); 1223 } 1224 1225 void vm_init_descriptor_tables(struct kvm_vm *vm) 1226 { 1227 extern void *idt_handlers; 1228 int i; 1229 1230 vm->idt = vm_vaddr_alloc(vm, getpagesize(), 0x2000, 0, 0); 1231 vm->handlers = vm_vaddr_alloc(vm, 256 * sizeof(void *), 0x2000, 0, 0); 1232 /* Handlers have the same address in both address spaces.*/ 1233 for (i = 0; i < NUM_INTERRUPTS; i++) 1234 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, 1235 DEFAULT_CODE_SELECTOR); 1236 } 1237 1238 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid) 1239 { 1240 struct kvm_sregs sregs; 1241 1242 vcpu_sregs_get(vm, vcpuid, &sregs); 1243 sregs.idt.base = vm->idt; 1244 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; 1245 sregs.gdt.base = vm->gdt; 1246 sregs.gdt.limit = getpagesize() - 1; 1247 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); 1248 vcpu_sregs_set(vm, vcpuid, &sregs); 1249 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 1250 } 1251 1252 void vm_handle_exception(struct kvm_vm *vm, int vector, 1253 void (*handler)(struct ex_regs *)) 1254 { 1255 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); 1256 1257 handlers[vector] = (vm_vaddr_t)handler; 1258 } 1259 1260 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid) 1261 { 1262 if (vcpu_state(vm, vcpuid)->exit_reason == KVM_EXIT_IO 1263 && vcpu_state(vm, vcpuid)->io.port == UNEXPECTED_VECTOR_PORT 1264 && vcpu_state(vm, vcpuid)->io.size == 4) { 1265 /* Grab pointer to io data */ 1266 uint32_t *data = (void *)vcpu_state(vm, vcpuid) 1267 + vcpu_state(vm, vcpuid)->io.data_offset; 1268 1269 TEST_ASSERT(false, 1270 "Unexpected vectored event in guest (vector:0x%x)", 1271 *data); 1272 } 1273 } 1274 1275 bool set_cpuid(struct kvm_cpuid2 *cpuid, 1276 struct kvm_cpuid_entry2 *ent) 1277 { 1278 int i; 1279 1280 for (i = 0; i < cpuid->nent; i++) { 1281 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i]; 1282 1283 if (cur->function != ent->function || cur->index != ent->index) 1284 continue; 1285 1286 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2)); 1287 return true; 1288 } 1289 1290 return false; 1291 } 1292 1293 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1294 uint64_t a3) 1295 { 1296 uint64_t r; 1297 1298 asm volatile("vmcall" 1299 : "=a"(r) 1300 : "b"(a0), "c"(a1), "d"(a2), "S"(a3)); 1301 return r; 1302 } 1303 1304 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) 1305 { 1306 static struct kvm_cpuid2 *cpuid; 1307 int ret; 1308 int kvm_fd; 1309 1310 if (cpuid) 1311 return cpuid; 1312 1313 cpuid = allocate_kvm_cpuid2(); 1314 kvm_fd = open(KVM_DEV_PATH, O_RDONLY); 1315 if (kvm_fd < 0) 1316 exit(KSFT_SKIP); 1317 1318 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1319 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n", 1320 ret, errno); 1321 1322 close(kvm_fd); 1323 return cpuid; 1324 } 1325 1326 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 1327 { 1328 static struct kvm_cpuid2 *cpuid_full; 1329 struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; 1330 int i, nent = 0; 1331 1332 if (!cpuid_full) { 1333 cpuid_sys = kvm_get_supported_cpuid(); 1334 cpuid_hv = kvm_get_supported_hv_cpuid(); 1335 1336 cpuid_full = malloc(sizeof(*cpuid_full) + 1337 (cpuid_sys->nent + cpuid_hv->nent) * 1338 sizeof(struct kvm_cpuid_entry2)); 1339 if (!cpuid_full) { 1340 perror("malloc"); 1341 abort(); 1342 } 1343 1344 /* Need to skip KVM CPUID leaves 0x400000xx */ 1345 for (i = 0; i < cpuid_sys->nent; i++) { 1346 if (cpuid_sys->entries[i].function >= 0x40000000 && 1347 cpuid_sys->entries[i].function < 0x40000100) 1348 continue; 1349 cpuid_full->entries[nent] = cpuid_sys->entries[i]; 1350 nent++; 1351 } 1352 1353 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, 1354 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); 1355 cpuid_full->nent = nent + cpuid_hv->nent; 1356 } 1357 1358 vcpu_set_cpuid(vm, vcpuid, cpuid_full); 1359 } 1360 1361 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 1362 { 1363 static struct kvm_cpuid2 *cpuid; 1364 1365 cpuid = allocate_kvm_cpuid2(); 1366 1367 vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1368 1369 return cpuid; 1370 } 1371