1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/processor.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12 
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16 
17 #define DEFAULT_CODE_SELECTOR 0x8
18 #define DEFAULT_DATA_SELECTOR 0x10
19 
20 /* Minimum physical address used for virtual translation tables. */
21 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
22 
23 vm_vaddr_t exception_handlers;
24 
25 /* Virtual translation table structure declarations */
26 struct pageMapL4Entry {
27 	uint64_t present:1;
28 	uint64_t writable:1;
29 	uint64_t user:1;
30 	uint64_t write_through:1;
31 	uint64_t cache_disable:1;
32 	uint64_t accessed:1;
33 	uint64_t ignored_06:1;
34 	uint64_t page_size:1;
35 	uint64_t ignored_11_08:4;
36 	uint64_t address:40;
37 	uint64_t ignored_62_52:11;
38 	uint64_t execute_disable:1;
39 };
40 
41 struct pageDirectoryPointerEntry {
42 	uint64_t present:1;
43 	uint64_t writable:1;
44 	uint64_t user:1;
45 	uint64_t write_through:1;
46 	uint64_t cache_disable:1;
47 	uint64_t accessed:1;
48 	uint64_t ignored_06:1;
49 	uint64_t page_size:1;
50 	uint64_t ignored_11_08:4;
51 	uint64_t address:40;
52 	uint64_t ignored_62_52:11;
53 	uint64_t execute_disable:1;
54 };
55 
56 struct pageDirectoryEntry {
57 	uint64_t present:1;
58 	uint64_t writable:1;
59 	uint64_t user:1;
60 	uint64_t write_through:1;
61 	uint64_t cache_disable:1;
62 	uint64_t accessed:1;
63 	uint64_t ignored_06:1;
64 	uint64_t page_size:1;
65 	uint64_t ignored_11_08:4;
66 	uint64_t address:40;
67 	uint64_t ignored_62_52:11;
68 	uint64_t execute_disable:1;
69 };
70 
71 struct pageTableEntry {
72 	uint64_t present:1;
73 	uint64_t writable:1;
74 	uint64_t user:1;
75 	uint64_t write_through:1;
76 	uint64_t cache_disable:1;
77 	uint64_t accessed:1;
78 	uint64_t dirty:1;
79 	uint64_t reserved_07:1;
80 	uint64_t global:1;
81 	uint64_t ignored_11_09:3;
82 	uint64_t address:40;
83 	uint64_t ignored_62_52:11;
84 	uint64_t execute_disable:1;
85 };
86 
87 void regs_dump(FILE *stream, struct kvm_regs *regs,
88 	       uint8_t indent)
89 {
90 	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
91 		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
92 		indent, "",
93 		regs->rax, regs->rbx, regs->rcx, regs->rdx);
94 	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
95 		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
96 		indent, "",
97 		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
98 	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
99 		"r10: 0x%.16llx r11: 0x%.16llx\n",
100 		indent, "",
101 		regs->r8, regs->r9, regs->r10, regs->r11);
102 	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
103 		"r14: 0x%.16llx r15: 0x%.16llx\n",
104 		indent, "",
105 		regs->r12, regs->r13, regs->r14, regs->r15);
106 	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
107 		indent, "",
108 		regs->rip, regs->rflags);
109 }
110 
111 /*
112  * Segment Dump
113  *
114  * Input Args:
115  *   stream  - Output FILE stream
116  *   segment - KVM segment
117  *   indent  - Left margin indent amount
118  *
119  * Output Args: None
120  *
121  * Return: None
122  *
123  * Dumps the state of the KVM segment given by @segment, to the FILE stream
124  * given by @stream.
125  */
126 static void segment_dump(FILE *stream, struct kvm_segment *segment,
127 			 uint8_t indent)
128 {
129 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
130 		"selector: 0x%.4x type: 0x%.2x\n",
131 		indent, "", segment->base, segment->limit,
132 		segment->selector, segment->type);
133 	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
134 		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
135 		indent, "", segment->present, segment->dpl,
136 		segment->db, segment->s, segment->l);
137 	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
138 		"unusable: 0x%.2x padding: 0x%.2x\n",
139 		indent, "", segment->g, segment->avl,
140 		segment->unusable, segment->padding);
141 }
142 
143 /*
144  * dtable Dump
145  *
146  * Input Args:
147  *   stream - Output FILE stream
148  *   dtable - KVM dtable
149  *   indent - Left margin indent amount
150  *
151  * Output Args: None
152  *
153  * Return: None
154  *
155  * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
156  * given by @stream.
157  */
158 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
159 			uint8_t indent)
160 {
161 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
162 		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
163 		indent, "", dtable->base, dtable->limit,
164 		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
165 }
166 
167 void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
168 		uint8_t indent)
169 {
170 	unsigned int i;
171 
172 	fprintf(stream, "%*scs:\n", indent, "");
173 	segment_dump(stream, &sregs->cs, indent + 2);
174 	fprintf(stream, "%*sds:\n", indent, "");
175 	segment_dump(stream, &sregs->ds, indent + 2);
176 	fprintf(stream, "%*ses:\n", indent, "");
177 	segment_dump(stream, &sregs->es, indent + 2);
178 	fprintf(stream, "%*sfs:\n", indent, "");
179 	segment_dump(stream, &sregs->fs, indent + 2);
180 	fprintf(stream, "%*sgs:\n", indent, "");
181 	segment_dump(stream, &sregs->gs, indent + 2);
182 	fprintf(stream, "%*sss:\n", indent, "");
183 	segment_dump(stream, &sregs->ss, indent + 2);
184 	fprintf(stream, "%*str:\n", indent, "");
185 	segment_dump(stream, &sregs->tr, indent + 2);
186 	fprintf(stream, "%*sldt:\n", indent, "");
187 	segment_dump(stream, &sregs->ldt, indent + 2);
188 
189 	fprintf(stream, "%*sgdt:\n", indent, "");
190 	dtable_dump(stream, &sregs->gdt, indent + 2);
191 	fprintf(stream, "%*sidt:\n", indent, "");
192 	dtable_dump(stream, &sregs->idt, indent + 2);
193 
194 	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
195 		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
196 		indent, "",
197 		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
198 	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
199 		"apic_base: 0x%.16llx\n",
200 		indent, "",
201 		sregs->cr8, sregs->efer, sregs->apic_base);
202 
203 	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
204 	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
205 		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
206 			sregs->interrupt_bitmap[i]);
207 	}
208 }
209 
210 void virt_pgd_alloc(struct kvm_vm *vm, uint32_t pgd_memslot)
211 {
212 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
213 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
214 
215 	/* If needed, create page map l4 table. */
216 	if (!vm->pgd_created) {
217 		vm_paddr_t paddr = vm_phy_page_alloc(vm,
218 			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot);
219 		vm->pgd = paddr;
220 		vm->pgd_created = true;
221 	}
222 }
223 
224 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
225 	uint32_t pgd_memslot)
226 {
227 	uint16_t index[4];
228 	struct pageMapL4Entry *pml4e;
229 
230 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
231 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
232 
233 	TEST_ASSERT((vaddr % vm->page_size) == 0,
234 		"Virtual address not on page boundary,\n"
235 		"  vaddr: 0x%lx vm->page_size: 0x%x",
236 		vaddr, vm->page_size);
237 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
238 		(vaddr >> vm->page_shift)),
239 		"Invalid virtual address, vaddr: 0x%lx",
240 		vaddr);
241 	TEST_ASSERT((paddr % vm->page_size) == 0,
242 		"Physical address not on page boundary,\n"
243 		"  paddr: 0x%lx vm->page_size: 0x%x",
244 		paddr, vm->page_size);
245 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
246 		"Physical address beyond beyond maximum supported,\n"
247 		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
248 		paddr, vm->max_gfn, vm->page_size);
249 
250 	index[0] = (vaddr >> 12) & 0x1ffu;
251 	index[1] = (vaddr >> 21) & 0x1ffu;
252 	index[2] = (vaddr >> 30) & 0x1ffu;
253 	index[3] = (vaddr >> 39) & 0x1ffu;
254 
255 	/* Allocate page directory pointer table if not present. */
256 	pml4e = addr_gpa2hva(vm, vm->pgd);
257 	if (!pml4e[index[3]].present) {
258 		pml4e[index[3]].address = vm_phy_page_alloc(vm,
259 			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
260 			>> vm->page_shift;
261 		pml4e[index[3]].writable = true;
262 		pml4e[index[3]].present = true;
263 	}
264 
265 	/* Allocate page directory table if not present. */
266 	struct pageDirectoryPointerEntry *pdpe;
267 	pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
268 	if (!pdpe[index[2]].present) {
269 		pdpe[index[2]].address = vm_phy_page_alloc(vm,
270 			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
271 			>> vm->page_shift;
272 		pdpe[index[2]].writable = true;
273 		pdpe[index[2]].present = true;
274 	}
275 
276 	/* Allocate page table if not present. */
277 	struct pageDirectoryEntry *pde;
278 	pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
279 	if (!pde[index[1]].present) {
280 		pde[index[1]].address = vm_phy_page_alloc(vm,
281 			KVM_GUEST_PAGE_TABLE_MIN_PADDR, pgd_memslot)
282 			>> vm->page_shift;
283 		pde[index[1]].writable = true;
284 		pde[index[1]].present = true;
285 	}
286 
287 	/* Fill in page table entry. */
288 	struct pageTableEntry *pte;
289 	pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
290 	pte[index[0]].address = paddr >> vm->page_shift;
291 	pte[index[0]].writable = true;
292 	pte[index[0]].present = 1;
293 }
294 
295 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
296 {
297 	struct pageMapL4Entry *pml4e, *pml4e_start;
298 	struct pageDirectoryPointerEntry *pdpe, *pdpe_start;
299 	struct pageDirectoryEntry *pde, *pde_start;
300 	struct pageTableEntry *pte, *pte_start;
301 
302 	if (!vm->pgd_created)
303 		return;
304 
305 	fprintf(stream, "%*s                                          "
306 		"                no\n", indent, "");
307 	fprintf(stream, "%*s      index hvaddr         gpaddr         "
308 		"addr         w exec dirty\n",
309 		indent, "");
310 	pml4e_start = (struct pageMapL4Entry *) addr_gpa2hva(vm,
311 		vm->pgd);
312 	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
313 		pml4e = &pml4e_start[n1];
314 		if (!pml4e->present)
315 			continue;
316 		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u "
317 			" %u\n",
318 			indent, "",
319 			pml4e - pml4e_start, pml4e,
320 			addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->address,
321 			pml4e->writable, pml4e->execute_disable);
322 
323 		pdpe_start = addr_gpa2hva(vm, pml4e->address
324 			* vm->page_size);
325 		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
326 			pdpe = &pdpe_start[n2];
327 			if (!pdpe->present)
328 				continue;
329 			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10lx "
330 				"%u  %u\n",
331 				indent, "",
332 				pdpe - pdpe_start, pdpe,
333 				addr_hva2gpa(vm, pdpe),
334 				(uint64_t) pdpe->address, pdpe->writable,
335 				pdpe->execute_disable);
336 
337 			pde_start = addr_gpa2hva(vm,
338 				pdpe->address * vm->page_size);
339 			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
340 				pde = &pde_start[n3];
341 				if (!pde->present)
342 					continue;
343 				fprintf(stream, "%*spde   0x%-3zx %p "
344 					"0x%-12lx 0x%-10lx %u  %u\n",
345 					indent, "", pde - pde_start, pde,
346 					addr_hva2gpa(vm, pde),
347 					(uint64_t) pde->address, pde->writable,
348 					pde->execute_disable);
349 
350 				pte_start = addr_gpa2hva(vm,
351 					pde->address * vm->page_size);
352 				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
353 					pte = &pte_start[n4];
354 					if (!pte->present)
355 						continue;
356 					fprintf(stream, "%*spte   0x%-3zx %p "
357 						"0x%-12lx 0x%-10lx %u  %u "
358 						"    %u    0x%-10lx\n",
359 						indent, "",
360 						pte - pte_start, pte,
361 						addr_hva2gpa(vm, pte),
362 						(uint64_t) pte->address,
363 						pte->writable,
364 						pte->execute_disable,
365 						pte->dirty,
366 						((uint64_t) n1 << 27)
367 							| ((uint64_t) n2 << 18)
368 							| ((uint64_t) n3 << 9)
369 							| ((uint64_t) n4));
370 				}
371 			}
372 		}
373 	}
374 }
375 
376 /*
377  * Set Unusable Segment
378  *
379  * Input Args: None
380  *
381  * Output Args:
382  *   segp - Pointer to segment register
383  *
384  * Return: None
385  *
386  * Sets the segment register pointed to by @segp to an unusable state.
387  */
388 static void kvm_seg_set_unusable(struct kvm_segment *segp)
389 {
390 	memset(segp, 0, sizeof(*segp));
391 	segp->unusable = true;
392 }
393 
394 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
395 {
396 	void *gdt = addr_gva2hva(vm, vm->gdt);
397 	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
398 
399 	desc->limit0 = segp->limit & 0xFFFF;
400 	desc->base0 = segp->base & 0xFFFF;
401 	desc->base1 = segp->base >> 16;
402 	desc->type = segp->type;
403 	desc->s = segp->s;
404 	desc->dpl = segp->dpl;
405 	desc->p = segp->present;
406 	desc->limit1 = segp->limit >> 16;
407 	desc->avl = segp->avl;
408 	desc->l = segp->l;
409 	desc->db = segp->db;
410 	desc->g = segp->g;
411 	desc->base2 = segp->base >> 24;
412 	if (!segp->s)
413 		desc->base3 = segp->base >> 32;
414 }
415 
416 
417 /*
418  * Set Long Mode Flat Kernel Code Segment
419  *
420  * Input Args:
421  *   vm - VM whose GDT is being filled, or NULL to only write segp
422  *   selector - selector value
423  *
424  * Output Args:
425  *   segp - Pointer to KVM segment
426  *
427  * Return: None
428  *
429  * Sets up the KVM segment pointed to by @segp, to be a code segment
430  * with the selector value given by @selector.
431  */
432 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
433 	struct kvm_segment *segp)
434 {
435 	memset(segp, 0, sizeof(*segp));
436 	segp->selector = selector;
437 	segp->limit = 0xFFFFFFFFu;
438 	segp->s = 0x1; /* kTypeCodeData */
439 	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
440 					  * | kFlagCodeReadable
441 					  */
442 	segp->g = true;
443 	segp->l = true;
444 	segp->present = 1;
445 	if (vm)
446 		kvm_seg_fill_gdt_64bit(vm, segp);
447 }
448 
449 /*
450  * Set Long Mode Flat Kernel Data Segment
451  *
452  * Input Args:
453  *   vm - VM whose GDT is being filled, or NULL to only write segp
454  *   selector - selector value
455  *
456  * Output Args:
457  *   segp - Pointer to KVM segment
458  *
459  * Return: None
460  *
461  * Sets up the KVM segment pointed to by @segp, to be a data segment
462  * with the selector value given by @selector.
463  */
464 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
465 	struct kvm_segment *segp)
466 {
467 	memset(segp, 0, sizeof(*segp));
468 	segp->selector = selector;
469 	segp->limit = 0xFFFFFFFFu;
470 	segp->s = 0x1; /* kTypeCodeData */
471 	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
472 					  * | kFlagDataWritable
473 					  */
474 	segp->g = true;
475 	segp->present = true;
476 	if (vm)
477 		kvm_seg_fill_gdt_64bit(vm, segp);
478 }
479 
480 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
481 {
482 	uint16_t index[4];
483 	struct pageMapL4Entry *pml4e;
484 	struct pageDirectoryPointerEntry *pdpe;
485 	struct pageDirectoryEntry *pde;
486 	struct pageTableEntry *pte;
487 
488 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
489 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
490 
491 	index[0] = (gva >> 12) & 0x1ffu;
492 	index[1] = (gva >> 21) & 0x1ffu;
493 	index[2] = (gva >> 30) & 0x1ffu;
494 	index[3] = (gva >> 39) & 0x1ffu;
495 
496 	if (!vm->pgd_created)
497 		goto unmapped_gva;
498 	pml4e = addr_gpa2hva(vm, vm->pgd);
499 	if (!pml4e[index[3]].present)
500 		goto unmapped_gva;
501 
502 	pdpe = addr_gpa2hva(vm, pml4e[index[3]].address * vm->page_size);
503 	if (!pdpe[index[2]].present)
504 		goto unmapped_gva;
505 
506 	pde = addr_gpa2hva(vm, pdpe[index[2]].address * vm->page_size);
507 	if (!pde[index[1]].present)
508 		goto unmapped_gva;
509 
510 	pte = addr_gpa2hva(vm, pde[index[1]].address * vm->page_size);
511 	if (!pte[index[0]].present)
512 		goto unmapped_gva;
513 
514 	return (pte[index[0]].address * vm->page_size) + (gva & 0xfffu);
515 
516 unmapped_gva:
517 	TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
518 	exit(EXIT_FAILURE);
519 }
520 
521 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt, int gdt_memslot,
522 			  int pgd_memslot)
523 {
524 	if (!vm->gdt)
525 		vm->gdt = vm_vaddr_alloc(vm, getpagesize(),
526 			KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
527 
528 	dt->base = vm->gdt;
529 	dt->limit = getpagesize();
530 }
531 
532 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
533 				int selector, int gdt_memslot,
534 				int pgd_memslot)
535 {
536 	if (!vm->tss)
537 		vm->tss = vm_vaddr_alloc(vm, getpagesize(),
538 			KVM_UTIL_MIN_VADDR, gdt_memslot, pgd_memslot);
539 
540 	memset(segp, 0, sizeof(*segp));
541 	segp->base = vm->tss;
542 	segp->limit = 0x67;
543 	segp->selector = selector;
544 	segp->type = 0xb;
545 	segp->present = 1;
546 	kvm_seg_fill_gdt_64bit(vm, segp);
547 }
548 
549 static void vcpu_setup(struct kvm_vm *vm, int vcpuid, int pgd_memslot, int gdt_memslot)
550 {
551 	struct kvm_sregs sregs;
552 
553 	/* Set mode specific system register values. */
554 	vcpu_sregs_get(vm, vcpuid, &sregs);
555 
556 	sregs.idt.limit = 0;
557 
558 	kvm_setup_gdt(vm, &sregs.gdt, gdt_memslot, pgd_memslot);
559 
560 	switch (vm->mode) {
561 	case VM_MODE_PXXV48_4K:
562 		sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
563 		sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
564 		sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
565 
566 		kvm_seg_set_unusable(&sregs.ldt);
567 		kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
568 		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
569 		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
570 		kvm_setup_tss_64bit(vm, &sregs.tr, 0x18, gdt_memslot, pgd_memslot);
571 		break;
572 
573 	default:
574 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
575 	}
576 
577 	sregs.cr3 = vm->pgd;
578 	vcpu_sregs_set(vm, vcpuid, &sregs);
579 }
580 
581 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
582 {
583 	struct kvm_mp_state mp_state;
584 	struct kvm_regs regs;
585 	vm_vaddr_t stack_vaddr;
586 	stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
587 				     DEFAULT_GUEST_STACK_VADDR_MIN, 0, 0);
588 
589 	/* Create VCPU */
590 	vm_vcpu_add(vm, vcpuid);
591 	vcpu_setup(vm, vcpuid, 0, 0);
592 
593 	/* Setup guest general purpose registers */
594 	vcpu_regs_get(vm, vcpuid, &regs);
595 	regs.rflags = regs.rflags | 0x2;
596 	regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
597 	regs.rip = (unsigned long) guest_code;
598 	vcpu_regs_set(vm, vcpuid, &regs);
599 
600 	/* Setup the MP state */
601 	mp_state.mp_state = 0;
602 	vcpu_set_mp_state(vm, vcpuid, &mp_state);
603 }
604 
605 /*
606  * Allocate an instance of struct kvm_cpuid2
607  *
608  * Input Args: None
609  *
610  * Output Args: None
611  *
612  * Return: A pointer to the allocated struct. The caller is responsible
613  * for freeing this struct.
614  *
615  * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
616  * array to be decided at allocation time, allocation is slightly
617  * complicated. This function uses a reasonable default length for
618  * the array and performs the appropriate allocation.
619  */
620 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
621 {
622 	struct kvm_cpuid2 *cpuid;
623 	int nent = 100;
624 	size_t size;
625 
626 	size = sizeof(*cpuid);
627 	size += nent * sizeof(struct kvm_cpuid_entry2);
628 	cpuid = malloc(size);
629 	if (!cpuid) {
630 		perror("malloc");
631 		abort();
632 	}
633 
634 	cpuid->nent = nent;
635 
636 	return cpuid;
637 }
638 
639 /*
640  * KVM Supported CPUID Get
641  *
642  * Input Args: None
643  *
644  * Output Args:
645  *
646  * Return: The supported KVM CPUID
647  *
648  * Get the guest CPUID supported by KVM.
649  */
650 struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
651 {
652 	static struct kvm_cpuid2 *cpuid;
653 	int ret;
654 	int kvm_fd;
655 
656 	if (cpuid)
657 		return cpuid;
658 
659 	cpuid = allocate_kvm_cpuid2();
660 	kvm_fd = open_kvm_dev_path_or_exit();
661 
662 	ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
663 	TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
664 		    ret, errno);
665 
666 	close(kvm_fd);
667 	return cpuid;
668 }
669 
670 /*
671  * KVM Get MSR
672  *
673  * Input Args:
674  *   msr_index - Index of MSR
675  *
676  * Output Args: None
677  *
678  * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
679  *
680  * Get value of MSR for VCPU.
681  */
682 uint64_t kvm_get_feature_msr(uint64_t msr_index)
683 {
684 	struct {
685 		struct kvm_msrs header;
686 		struct kvm_msr_entry entry;
687 	} buffer = {};
688 	int r, kvm_fd;
689 
690 	buffer.header.nmsrs = 1;
691 	buffer.entry.index = msr_index;
692 	kvm_fd = open_kvm_dev_path_or_exit();
693 
694 	r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
695 	TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
696 		"  rc: %i errno: %i", r, errno);
697 
698 	close(kvm_fd);
699 	return buffer.entry.data;
700 }
701 
702 /*
703  * VM VCPU CPUID Set
704  *
705  * Input Args:
706  *   vm - Virtual Machine
707  *   vcpuid - VCPU id
708  *
709  * Output Args: None
710  *
711  * Return: KVM CPUID (KVM_GET_CPUID2)
712  *
713  * Set the VCPU's CPUID.
714  */
715 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
716 {
717 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
718 	struct kvm_cpuid2 *cpuid;
719 	int max_ent;
720 	int rc = -1;
721 
722 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
723 
724 	cpuid = allocate_kvm_cpuid2();
725 	max_ent = cpuid->nent;
726 
727 	for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
728 		rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
729 		if (!rc)
730 			break;
731 
732 		TEST_ASSERT(rc == -1 && errno == E2BIG,
733 			    "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
734 			    rc, errno);
735 	}
736 
737 	TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
738 		    rc, errno);
739 
740 	return cpuid;
741 }
742 
743 
744 
745 /*
746  * Locate a cpuid entry.
747  *
748  * Input Args:
749  *   function: The function of the cpuid entry to find.
750  *   index: The index of the cpuid entry.
751  *
752  * Output Args: None
753  *
754  * Return: A pointer to the cpuid entry. Never returns NULL.
755  */
756 struct kvm_cpuid_entry2 *
757 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
758 {
759 	struct kvm_cpuid2 *cpuid;
760 	struct kvm_cpuid_entry2 *entry = NULL;
761 	int i;
762 
763 	cpuid = kvm_get_supported_cpuid();
764 	for (i = 0; i < cpuid->nent; i++) {
765 		if (cpuid->entries[i].function == function &&
766 		    cpuid->entries[i].index == index) {
767 			entry = &cpuid->entries[i];
768 			break;
769 		}
770 	}
771 
772 	TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
773 		    function, index);
774 	return entry;
775 }
776 
777 /*
778  * VM VCPU CPUID Set
779  *
780  * Input Args:
781  *   vm - Virtual Machine
782  *   vcpuid - VCPU id
783  *   cpuid - The CPUID values to set.
784  *
785  * Output Args: None
786  *
787  * Return: void
788  *
789  * Set the VCPU's CPUID.
790  */
791 void vcpu_set_cpuid(struct kvm_vm *vm,
792 		uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
793 {
794 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
795 	int rc;
796 
797 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
798 
799 	rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
800 	TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
801 		    rc, errno);
802 
803 }
804 
805 /*
806  * VCPU Get MSR
807  *
808  * Input Args:
809  *   vm - Virtual Machine
810  *   vcpuid - VCPU ID
811  *   msr_index - Index of MSR
812  *
813  * Output Args: None
814  *
815  * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
816  *
817  * Get value of MSR for VCPU.
818  */
819 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
820 {
821 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
822 	struct {
823 		struct kvm_msrs header;
824 		struct kvm_msr_entry entry;
825 	} buffer = {};
826 	int r;
827 
828 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
829 	buffer.header.nmsrs = 1;
830 	buffer.entry.index = msr_index;
831 	r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
832 	TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
833 		"  rc: %i errno: %i", r, errno);
834 
835 	return buffer.entry.data;
836 }
837 
838 /*
839  * _VCPU Set MSR
840  *
841  * Input Args:
842  *   vm - Virtual Machine
843  *   vcpuid - VCPU ID
844  *   msr_index - Index of MSR
845  *   msr_value - New value of MSR
846  *
847  * Output Args: None
848  *
849  * Return: The result of KVM_SET_MSRS.
850  *
851  * Sets the value of an MSR for the given VCPU.
852  */
853 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
854 		  uint64_t msr_value)
855 {
856 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
857 	struct {
858 		struct kvm_msrs header;
859 		struct kvm_msr_entry entry;
860 	} buffer = {};
861 	int r;
862 
863 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
864 	memset(&buffer, 0, sizeof(buffer));
865 	buffer.header.nmsrs = 1;
866 	buffer.entry.index = msr_index;
867 	buffer.entry.data = msr_value;
868 	r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
869 	return r;
870 }
871 
872 /*
873  * VCPU Set MSR
874  *
875  * Input Args:
876  *   vm - Virtual Machine
877  *   vcpuid - VCPU ID
878  *   msr_index - Index of MSR
879  *   msr_value - New value of MSR
880  *
881  * Output Args: None
882  *
883  * Return: On success, nothing. On failure a TEST_ASSERT is produced.
884  *
885  * Set value of MSR for VCPU.
886  */
887 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
888 	uint64_t msr_value)
889 {
890 	int r;
891 
892 	r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
893 	TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
894 		"  rc: %i errno: %i", r, errno);
895 }
896 
897 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
898 {
899 	va_list ap;
900 	struct kvm_regs regs;
901 
902 	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
903 		    "  num: %u\n",
904 		    num);
905 
906 	va_start(ap, num);
907 	vcpu_regs_get(vm, vcpuid, &regs);
908 
909 	if (num >= 1)
910 		regs.rdi = va_arg(ap, uint64_t);
911 
912 	if (num >= 2)
913 		regs.rsi = va_arg(ap, uint64_t);
914 
915 	if (num >= 3)
916 		regs.rdx = va_arg(ap, uint64_t);
917 
918 	if (num >= 4)
919 		regs.rcx = va_arg(ap, uint64_t);
920 
921 	if (num >= 5)
922 		regs.r8 = va_arg(ap, uint64_t);
923 
924 	if (num >= 6)
925 		regs.r9 = va_arg(ap, uint64_t);
926 
927 	vcpu_regs_set(vm, vcpuid, &regs);
928 	va_end(ap);
929 }
930 
931 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
932 {
933 	struct kvm_regs regs;
934 	struct kvm_sregs sregs;
935 
936 	fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
937 
938 	fprintf(stream, "%*sregs:\n", indent + 2, "");
939 	vcpu_regs_get(vm, vcpuid, &regs);
940 	regs_dump(stream, &regs, indent + 4);
941 
942 	fprintf(stream, "%*ssregs:\n", indent + 2, "");
943 	vcpu_sregs_get(vm, vcpuid, &sregs);
944 	sregs_dump(stream, &sregs, indent + 4);
945 }
946 
947 struct kvm_x86_state {
948 	struct kvm_vcpu_events events;
949 	struct kvm_mp_state mp_state;
950 	struct kvm_regs regs;
951 	struct kvm_xsave xsave;
952 	struct kvm_xcrs xcrs;
953 	struct kvm_sregs sregs;
954 	struct kvm_debugregs debugregs;
955 	union {
956 		struct kvm_nested_state nested;
957 		char nested_[16384];
958 	};
959 	struct kvm_msrs msrs;
960 };
961 
962 static int kvm_get_num_msrs_fd(int kvm_fd)
963 {
964 	struct kvm_msr_list nmsrs;
965 	int r;
966 
967 	nmsrs.nmsrs = 0;
968 	r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
969 	TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
970 		r);
971 
972 	return nmsrs.nmsrs;
973 }
974 
975 static int kvm_get_num_msrs(struct kvm_vm *vm)
976 {
977 	return kvm_get_num_msrs_fd(vm->kvm_fd);
978 }
979 
980 struct kvm_msr_list *kvm_get_msr_index_list(void)
981 {
982 	struct kvm_msr_list *list;
983 	int nmsrs, r, kvm_fd;
984 
985 	kvm_fd = open_kvm_dev_path_or_exit();
986 
987 	nmsrs = kvm_get_num_msrs_fd(kvm_fd);
988 	list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
989 	list->nmsrs = nmsrs;
990 	r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
991 	close(kvm_fd);
992 
993 	TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
994 		r);
995 
996 	return list;
997 }
998 
999 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1000 {
1001 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1002 	struct kvm_msr_list *list;
1003 	struct kvm_x86_state *state;
1004 	int nmsrs, r, i;
1005 	static int nested_size = -1;
1006 
1007 	if (nested_size == -1) {
1008 		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1009 		TEST_ASSERT(nested_size <= sizeof(state->nested_),
1010 			    "Nested state size too big, %i > %zi",
1011 			    nested_size, sizeof(state->nested_));
1012 	}
1013 
1014 	/*
1015 	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1016 	 * guest state is consistent only after userspace re-enters the
1017 	 * kernel with KVM_RUN.  Complete IO prior to migrating state
1018 	 * to a new VM.
1019 	 */
1020 	vcpu_run_complete_io(vm, vcpuid);
1021 
1022 	nmsrs = kvm_get_num_msrs(vm);
1023 	list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1024 	list->nmsrs = nmsrs;
1025 	r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1026         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1027                 r);
1028 
1029 	state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1030 	r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1031         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1032                 r);
1033 
1034 	r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1035         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1036                 r);
1037 
1038 	r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1039         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1040                 r);
1041 
1042 	r = ioctl(vcpu->fd, KVM_GET_XSAVE, &state->xsave);
1043         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1044                 r);
1045 
1046 	if (kvm_check_cap(KVM_CAP_XCRS)) {
1047 		r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1048 		TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1049 			    r);
1050 	}
1051 
1052 	r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1053         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1054                 r);
1055 
1056 	if (nested_size) {
1057 		state->nested.size = sizeof(state->nested_);
1058 		r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1059 		TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1060 			r);
1061 		TEST_ASSERT(state->nested.size <= nested_size,
1062 			"Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1063 			state->nested.size, nested_size);
1064 	} else
1065 		state->nested.size = 0;
1066 
1067 	state->msrs.nmsrs = nmsrs;
1068 	for (i = 0; i < nmsrs; i++)
1069 		state->msrs.entries[i].index = list->indices[i];
1070 	r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1071         TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1072                 r, r == nmsrs ? -1 : list->indices[r]);
1073 
1074 	r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1075         TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1076                 r);
1077 
1078 	free(list);
1079 	return state;
1080 }
1081 
1082 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1083 {
1084 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1085 	int r;
1086 
1087 	r = ioctl(vcpu->fd, KVM_SET_XSAVE, &state->xsave);
1088         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1089                 r);
1090 
1091 	if (kvm_check_cap(KVM_CAP_XCRS)) {
1092 		r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1093 		TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1094 			    r);
1095 	}
1096 
1097 	r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1098         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1099                 r);
1100 
1101 	r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1102         TEST_ASSERT(r == state->msrs.nmsrs, "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1103                 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1104 
1105 	r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1106         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1107                 r);
1108 
1109 	r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1110         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1111                 r);
1112 
1113 	r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1114         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1115                 r);
1116 
1117 	r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1118         TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1119                 r);
1120 
1121 	if (state->nested.size) {
1122 		r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1123 		TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1124 			r);
1125 	}
1126 }
1127 
1128 bool is_intel_cpu(void)
1129 {
1130 	int eax, ebx, ecx, edx;
1131 	const uint32_t *chunk;
1132 	const int leaf = 0;
1133 
1134 	__asm__ __volatile__(
1135 		"cpuid"
1136 		: /* output */ "=a"(eax), "=b"(ebx),
1137 		  "=c"(ecx), "=d"(edx)
1138 		: /* input */ "0"(leaf), "2"(0));
1139 
1140 	chunk = (const uint32_t *)("GenuineIntel");
1141 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1142 }
1143 
1144 uint32_t kvm_get_cpuid_max_basic(void)
1145 {
1146 	return kvm_get_supported_cpuid_entry(0)->eax;
1147 }
1148 
1149 uint32_t kvm_get_cpuid_max_extended(void)
1150 {
1151 	return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1152 }
1153 
1154 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1155 {
1156 	struct kvm_cpuid_entry2 *entry;
1157 	bool pae;
1158 
1159 	/* SDM 4.1.4 */
1160 	if (kvm_get_cpuid_max_extended() < 0x80000008) {
1161 		pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1162 		*pa_bits = pae ? 36 : 32;
1163 		*va_bits = 32;
1164 	} else {
1165 		entry = kvm_get_supported_cpuid_entry(0x80000008);
1166 		*pa_bits = entry->eax & 0xff;
1167 		*va_bits = (entry->eax >> 8) & 0xff;
1168 	}
1169 }
1170 
1171 struct idt_entry {
1172 	uint16_t offset0;
1173 	uint16_t selector;
1174 	uint16_t ist : 3;
1175 	uint16_t : 5;
1176 	uint16_t type : 4;
1177 	uint16_t : 1;
1178 	uint16_t dpl : 2;
1179 	uint16_t p : 1;
1180 	uint16_t offset1;
1181 	uint32_t offset2; uint32_t reserved;
1182 };
1183 
1184 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1185 			  int dpl, unsigned short selector)
1186 {
1187 	struct idt_entry *base =
1188 		(struct idt_entry *)addr_gva2hva(vm, vm->idt);
1189 	struct idt_entry *e = &base[vector];
1190 
1191 	memset(e, 0, sizeof(*e));
1192 	e->offset0 = addr;
1193 	e->selector = selector;
1194 	e->ist = 0;
1195 	e->type = 14;
1196 	e->dpl = dpl;
1197 	e->p = 1;
1198 	e->offset1 = addr >> 16;
1199 	e->offset2 = addr >> 32;
1200 }
1201 
1202 void kvm_exit_unexpected_vector(uint32_t value)
1203 {
1204 	outl(UNEXPECTED_VECTOR_PORT, value);
1205 }
1206 
1207 void route_exception(struct ex_regs *regs)
1208 {
1209 	typedef void(*handler)(struct ex_regs *);
1210 	handler *handlers = (handler *)exception_handlers;
1211 
1212 	if (handlers && handlers[regs->vector]) {
1213 		handlers[regs->vector](regs);
1214 		return;
1215 	}
1216 
1217 	kvm_exit_unexpected_vector(regs->vector);
1218 }
1219 
1220 void vm_init_descriptor_tables(struct kvm_vm *vm)
1221 {
1222 	extern void *idt_handlers;
1223 	int i;
1224 
1225 	vm->idt = vm_vaddr_alloc(vm, getpagesize(), 0x2000, 0, 0);
1226 	vm->handlers = vm_vaddr_alloc(vm, 256 * sizeof(void *), 0x2000, 0, 0);
1227 	/* Handlers have the same address in both address spaces.*/
1228 	for (i = 0; i < NUM_INTERRUPTS; i++)
1229 		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1230 			DEFAULT_CODE_SELECTOR);
1231 }
1232 
1233 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1234 {
1235 	struct kvm_sregs sregs;
1236 
1237 	vcpu_sregs_get(vm, vcpuid, &sregs);
1238 	sregs.idt.base = vm->idt;
1239 	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1240 	sregs.gdt.base = vm->gdt;
1241 	sregs.gdt.limit = getpagesize() - 1;
1242 	kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1243 	vcpu_sregs_set(vm, vcpuid, &sregs);
1244 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1245 }
1246 
1247 void vm_handle_exception(struct kvm_vm *vm, int vector,
1248 			 void (*handler)(struct ex_regs *))
1249 {
1250 	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1251 
1252 	handlers[vector] = (vm_vaddr_t)handler;
1253 }
1254 
1255 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1256 {
1257 	if (vcpu_state(vm, vcpuid)->exit_reason == KVM_EXIT_IO
1258 		&& vcpu_state(vm, vcpuid)->io.port == UNEXPECTED_VECTOR_PORT
1259 		&& vcpu_state(vm, vcpuid)->io.size == 4) {
1260 		/* Grab pointer to io data */
1261 		uint32_t *data = (void *)vcpu_state(vm, vcpuid)
1262 			+ vcpu_state(vm, vcpuid)->io.data_offset;
1263 
1264 		TEST_ASSERT(false,
1265 			    "Unexpected vectored event in guest (vector:0x%x)",
1266 			    *data);
1267 	}
1268 }
1269 
1270 bool set_cpuid(struct kvm_cpuid2 *cpuid,
1271 	       struct kvm_cpuid_entry2 *ent)
1272 {
1273 	int i;
1274 
1275 	for (i = 0; i < cpuid->nent; i++) {
1276 		struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1277 
1278 		if (cur->function != ent->function || cur->index != ent->index)
1279 			continue;
1280 
1281 		memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1282 		return true;
1283 	}
1284 
1285 	return false;
1286 }
1287 
1288 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1289 		       uint64_t a3)
1290 {
1291 	uint64_t r;
1292 
1293 	asm volatile("vmcall"
1294 		     : "=a"(r)
1295 		     : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1296 	return r;
1297 }
1298 
1299 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1300 {
1301 	static struct kvm_cpuid2 *cpuid;
1302 	int ret;
1303 	int kvm_fd;
1304 
1305 	if (cpuid)
1306 		return cpuid;
1307 
1308 	cpuid = allocate_kvm_cpuid2();
1309 	kvm_fd = open_kvm_dev_path_or_exit();
1310 
1311 	ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1312 	TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1313 		    ret, errno);
1314 
1315 	close(kvm_fd);
1316 	return cpuid;
1317 }
1318 
1319 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1320 {
1321 	static struct kvm_cpuid2 *cpuid_full;
1322 	struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1323 	int i, nent = 0;
1324 
1325 	if (!cpuid_full) {
1326 		cpuid_sys = kvm_get_supported_cpuid();
1327 		cpuid_hv = kvm_get_supported_hv_cpuid();
1328 
1329 		cpuid_full = malloc(sizeof(*cpuid_full) +
1330 				    (cpuid_sys->nent + cpuid_hv->nent) *
1331 				    sizeof(struct kvm_cpuid_entry2));
1332 		if (!cpuid_full) {
1333 			perror("malloc");
1334 			abort();
1335 		}
1336 
1337 		/* Need to skip KVM CPUID leaves 0x400000xx */
1338 		for (i = 0; i < cpuid_sys->nent; i++) {
1339 			if (cpuid_sys->entries[i].function >= 0x40000000 &&
1340 			    cpuid_sys->entries[i].function < 0x40000100)
1341 				continue;
1342 			cpuid_full->entries[nent] = cpuid_sys->entries[i];
1343 			nent++;
1344 		}
1345 
1346 		memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1347 		       cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1348 		cpuid_full->nent = nent + cpuid_hv->nent;
1349 	}
1350 
1351 	vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1352 }
1353 
1354 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1355 {
1356 	static struct kvm_cpuid2 *cpuid;
1357 
1358 	cpuid = allocate_kvm_cpuid2();
1359 
1360 	vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1361 
1362 	return cpuid;
1363 }
1364