xref: /openbmc/linux/tools/testing/selftests/kvm/lib/x86_64/processor.c (revision 724ba6751532055db75992fc6ae21c3e322e94a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/processor.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include "linux/bitmap.h"
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16 
17 #define DEFAULT_CODE_SELECTOR 0x8
18 #define DEFAULT_DATA_SELECTOR 0x10
19 
20 #define MAX_NR_CPUID_ENTRIES 100
21 
22 vm_vaddr_t exception_handlers;
23 bool host_cpu_is_amd;
24 bool host_cpu_is_intel;
25 
26 static void regs_dump(FILE *stream, struct kvm_regs *regs, uint8_t indent)
27 {
28 	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
29 		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
30 		indent, "",
31 		regs->rax, regs->rbx, regs->rcx, regs->rdx);
32 	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
33 		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
34 		indent, "",
35 		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
36 	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
37 		"r10: 0x%.16llx r11: 0x%.16llx\n",
38 		indent, "",
39 		regs->r8, regs->r9, regs->r10, regs->r11);
40 	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
41 		"r14: 0x%.16llx r15: 0x%.16llx\n",
42 		indent, "",
43 		regs->r12, regs->r13, regs->r14, regs->r15);
44 	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
45 		indent, "",
46 		regs->rip, regs->rflags);
47 }
48 
49 static void segment_dump(FILE *stream, struct kvm_segment *segment,
50 			 uint8_t indent)
51 {
52 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
53 		"selector: 0x%.4x type: 0x%.2x\n",
54 		indent, "", segment->base, segment->limit,
55 		segment->selector, segment->type);
56 	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
57 		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
58 		indent, "", segment->present, segment->dpl,
59 		segment->db, segment->s, segment->l);
60 	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
61 		"unusable: 0x%.2x padding: 0x%.2x\n",
62 		indent, "", segment->g, segment->avl,
63 		segment->unusable, segment->padding);
64 }
65 
66 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
67 			uint8_t indent)
68 {
69 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
70 		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
71 		indent, "", dtable->base, dtable->limit,
72 		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
73 }
74 
75 static void sregs_dump(FILE *stream, struct kvm_sregs *sregs, uint8_t indent)
76 {
77 	unsigned int i;
78 
79 	fprintf(stream, "%*scs:\n", indent, "");
80 	segment_dump(stream, &sregs->cs, indent + 2);
81 	fprintf(stream, "%*sds:\n", indent, "");
82 	segment_dump(stream, &sregs->ds, indent + 2);
83 	fprintf(stream, "%*ses:\n", indent, "");
84 	segment_dump(stream, &sregs->es, indent + 2);
85 	fprintf(stream, "%*sfs:\n", indent, "");
86 	segment_dump(stream, &sregs->fs, indent + 2);
87 	fprintf(stream, "%*sgs:\n", indent, "");
88 	segment_dump(stream, &sregs->gs, indent + 2);
89 	fprintf(stream, "%*sss:\n", indent, "");
90 	segment_dump(stream, &sregs->ss, indent + 2);
91 	fprintf(stream, "%*str:\n", indent, "");
92 	segment_dump(stream, &sregs->tr, indent + 2);
93 	fprintf(stream, "%*sldt:\n", indent, "");
94 	segment_dump(stream, &sregs->ldt, indent + 2);
95 
96 	fprintf(stream, "%*sgdt:\n", indent, "");
97 	dtable_dump(stream, &sregs->gdt, indent + 2);
98 	fprintf(stream, "%*sidt:\n", indent, "");
99 	dtable_dump(stream, &sregs->idt, indent + 2);
100 
101 	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
102 		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
103 		indent, "",
104 		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
105 	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
106 		"apic_base: 0x%.16llx\n",
107 		indent, "",
108 		sregs->cr8, sregs->efer, sregs->apic_base);
109 
110 	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
111 	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
112 		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
113 			sregs->interrupt_bitmap[i]);
114 	}
115 }
116 
117 bool kvm_is_tdp_enabled(void)
118 {
119 	if (host_cpu_is_intel)
120 		return get_kvm_intel_param_bool("ept");
121 	else
122 		return get_kvm_amd_param_bool("npt");
123 }
124 
125 void virt_arch_pgd_alloc(struct kvm_vm *vm)
126 {
127 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
128 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
129 
130 	/* If needed, create page map l4 table. */
131 	if (!vm->pgd_created) {
132 		vm->pgd = vm_alloc_page_table(vm);
133 		vm->pgd_created = true;
134 	}
135 }
136 
137 static void *virt_get_pte(struct kvm_vm *vm, uint64_t *parent_pte,
138 			  uint64_t vaddr, int level)
139 {
140 	uint64_t pt_gpa = PTE_GET_PA(*parent_pte);
141 	uint64_t *page_table = addr_gpa2hva(vm, pt_gpa);
142 	int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
143 
144 	TEST_ASSERT((*parent_pte & PTE_PRESENT_MASK) || parent_pte == &vm->pgd,
145 		    "Parent PTE (level %d) not PRESENT for gva: 0x%08lx",
146 		    level + 1, vaddr);
147 
148 	return &page_table[index];
149 }
150 
151 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
152 				       uint64_t *parent_pte,
153 				       uint64_t vaddr,
154 				       uint64_t paddr,
155 				       int current_level,
156 				       int target_level)
157 {
158 	uint64_t *pte = virt_get_pte(vm, parent_pte, vaddr, current_level);
159 
160 	if (!(*pte & PTE_PRESENT_MASK)) {
161 		*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
162 		if (current_level == target_level)
163 			*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
164 		else
165 			*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
166 	} else {
167 		/*
168 		 * Entry already present.  Assert that the caller doesn't want
169 		 * a hugepage at this level, and that there isn't a hugepage at
170 		 * this level.
171 		 */
172 		TEST_ASSERT(current_level != target_level,
173 			    "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
174 			    current_level, vaddr);
175 		TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
176 			    "Cannot create page table at level: %u, vaddr: 0x%lx\n",
177 			    current_level, vaddr);
178 	}
179 	return pte;
180 }
181 
182 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
183 {
184 	const uint64_t pg_size = PG_LEVEL_SIZE(level);
185 	uint64_t *pml4e, *pdpe, *pde;
186 	uint64_t *pte;
187 
188 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
189 		    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
190 
191 	TEST_ASSERT((vaddr % pg_size) == 0,
192 		    "Virtual address not aligned,\n"
193 		    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
194 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
195 		    "Invalid virtual address, vaddr: 0x%lx", vaddr);
196 	TEST_ASSERT((paddr % pg_size) == 0,
197 		    "Physical address not aligned,\n"
198 		    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
199 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
200 		    "Physical address beyond maximum supported,\n"
201 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
202 		    paddr, vm->max_gfn, vm->page_size);
203 
204 	/*
205 	 * Allocate upper level page tables, if not already present.  Return
206 	 * early if a hugepage was created.
207 	 */
208 	pml4e = virt_create_upper_pte(vm, &vm->pgd, vaddr, paddr, PG_LEVEL_512G, level);
209 	if (*pml4e & PTE_LARGE_MASK)
210 		return;
211 
212 	pdpe = virt_create_upper_pte(vm, pml4e, vaddr, paddr, PG_LEVEL_1G, level);
213 	if (*pdpe & PTE_LARGE_MASK)
214 		return;
215 
216 	pde = virt_create_upper_pte(vm, pdpe, vaddr, paddr, PG_LEVEL_2M, level);
217 	if (*pde & PTE_LARGE_MASK)
218 		return;
219 
220 	/* Fill in page table entry. */
221 	pte = virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
222 	TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
223 		    "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
224 	*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
225 }
226 
227 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
228 {
229 	__virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
230 }
231 
232 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
233 		    uint64_t nr_bytes, int level)
234 {
235 	uint64_t pg_size = PG_LEVEL_SIZE(level);
236 	uint64_t nr_pages = nr_bytes / pg_size;
237 	int i;
238 
239 	TEST_ASSERT(nr_bytes % pg_size == 0,
240 		    "Region size not aligned: nr_bytes: 0x%lx, page size: 0x%lx",
241 		    nr_bytes, pg_size);
242 
243 	for (i = 0; i < nr_pages; i++) {
244 		__virt_pg_map(vm, vaddr, paddr, level);
245 
246 		vaddr += pg_size;
247 		paddr += pg_size;
248 	}
249 }
250 
251 static bool vm_is_target_pte(uint64_t *pte, int *level, int current_level)
252 {
253 	if (*pte & PTE_LARGE_MASK) {
254 		TEST_ASSERT(*level == PG_LEVEL_NONE ||
255 			    *level == current_level,
256 			    "Unexpected hugepage at level %d\n", current_level);
257 		*level = current_level;
258 	}
259 
260 	return *level == current_level;
261 }
262 
263 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
264 				    int *level)
265 {
266 	uint64_t *pml4e, *pdpe, *pde;
267 
268 	TEST_ASSERT(*level >= PG_LEVEL_NONE && *level < PG_LEVEL_NUM,
269 		    "Invalid PG_LEVEL_* '%d'", *level);
270 
271 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
272 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
273 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
274 		(vaddr >> vm->page_shift)),
275 		"Invalid virtual address, vaddr: 0x%lx",
276 		vaddr);
277 	/*
278 	 * Based on the mode check above there are 48 bits in the vaddr, so
279 	 * shift 16 to sign extend the last bit (bit-47),
280 	 */
281 	TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
282 		"Canonical check failed.  The virtual address is invalid.");
283 
284 	pml4e = virt_get_pte(vm, &vm->pgd, vaddr, PG_LEVEL_512G);
285 	if (vm_is_target_pte(pml4e, level, PG_LEVEL_512G))
286 		return pml4e;
287 
288 	pdpe = virt_get_pte(vm, pml4e, vaddr, PG_LEVEL_1G);
289 	if (vm_is_target_pte(pdpe, level, PG_LEVEL_1G))
290 		return pdpe;
291 
292 	pde = virt_get_pte(vm, pdpe, vaddr, PG_LEVEL_2M);
293 	if (vm_is_target_pte(pde, level, PG_LEVEL_2M))
294 		return pde;
295 
296 	return virt_get_pte(vm, pde, vaddr, PG_LEVEL_4K);
297 }
298 
299 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr)
300 {
301 	int level = PG_LEVEL_4K;
302 
303 	return __vm_get_page_table_entry(vm, vaddr, &level);
304 }
305 
306 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
307 {
308 	uint64_t *pml4e, *pml4e_start;
309 	uint64_t *pdpe, *pdpe_start;
310 	uint64_t *pde, *pde_start;
311 	uint64_t *pte, *pte_start;
312 
313 	if (!vm->pgd_created)
314 		return;
315 
316 	fprintf(stream, "%*s                                          "
317 		"                no\n", indent, "");
318 	fprintf(stream, "%*s      index hvaddr         gpaddr         "
319 		"addr         w exec dirty\n",
320 		indent, "");
321 	pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
322 	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
323 		pml4e = &pml4e_start[n1];
324 		if (!(*pml4e & PTE_PRESENT_MASK))
325 			continue;
326 		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
327 			" %u\n",
328 			indent, "",
329 			pml4e - pml4e_start, pml4e,
330 			addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
331 			!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
332 
333 		pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
334 		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
335 			pdpe = &pdpe_start[n2];
336 			if (!(*pdpe & PTE_PRESENT_MASK))
337 				continue;
338 			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
339 				"%u  %u\n",
340 				indent, "",
341 				pdpe - pdpe_start, pdpe,
342 				addr_hva2gpa(vm, pdpe),
343 				PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
344 				!!(*pdpe & PTE_NX_MASK));
345 
346 			pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
347 			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
348 				pde = &pde_start[n3];
349 				if (!(*pde & PTE_PRESENT_MASK))
350 					continue;
351 				fprintf(stream, "%*spde   0x%-3zx %p "
352 					"0x%-12lx 0x%-10llx %u  %u\n",
353 					indent, "", pde - pde_start, pde,
354 					addr_hva2gpa(vm, pde),
355 					PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
356 					!!(*pde & PTE_NX_MASK));
357 
358 				pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
359 				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
360 					pte = &pte_start[n4];
361 					if (!(*pte & PTE_PRESENT_MASK))
362 						continue;
363 					fprintf(stream, "%*spte   0x%-3zx %p "
364 						"0x%-12lx 0x%-10llx %u  %u "
365 						"    %u    0x%-10lx\n",
366 						indent, "",
367 						pte - pte_start, pte,
368 						addr_hva2gpa(vm, pte),
369 						PTE_GET_PFN(*pte),
370 						!!(*pte & PTE_WRITABLE_MASK),
371 						!!(*pte & PTE_NX_MASK),
372 						!!(*pte & PTE_DIRTY_MASK),
373 						((uint64_t) n1 << 27)
374 							| ((uint64_t) n2 << 18)
375 							| ((uint64_t) n3 << 9)
376 							| ((uint64_t) n4));
377 				}
378 			}
379 		}
380 	}
381 }
382 
383 /*
384  * Set Unusable Segment
385  *
386  * Input Args: None
387  *
388  * Output Args:
389  *   segp - Pointer to segment register
390  *
391  * Return: None
392  *
393  * Sets the segment register pointed to by @segp to an unusable state.
394  */
395 static void kvm_seg_set_unusable(struct kvm_segment *segp)
396 {
397 	memset(segp, 0, sizeof(*segp));
398 	segp->unusable = true;
399 }
400 
401 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
402 {
403 	void *gdt = addr_gva2hva(vm, vm->gdt);
404 	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
405 
406 	desc->limit0 = segp->limit & 0xFFFF;
407 	desc->base0 = segp->base & 0xFFFF;
408 	desc->base1 = segp->base >> 16;
409 	desc->type = segp->type;
410 	desc->s = segp->s;
411 	desc->dpl = segp->dpl;
412 	desc->p = segp->present;
413 	desc->limit1 = segp->limit >> 16;
414 	desc->avl = segp->avl;
415 	desc->l = segp->l;
416 	desc->db = segp->db;
417 	desc->g = segp->g;
418 	desc->base2 = segp->base >> 24;
419 	if (!segp->s)
420 		desc->base3 = segp->base >> 32;
421 }
422 
423 
424 /*
425  * Set Long Mode Flat Kernel Code Segment
426  *
427  * Input Args:
428  *   vm - VM whose GDT is being filled, or NULL to only write segp
429  *   selector - selector value
430  *
431  * Output Args:
432  *   segp - Pointer to KVM segment
433  *
434  * Return: None
435  *
436  * Sets up the KVM segment pointed to by @segp, to be a code segment
437  * with the selector value given by @selector.
438  */
439 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
440 	struct kvm_segment *segp)
441 {
442 	memset(segp, 0, sizeof(*segp));
443 	segp->selector = selector;
444 	segp->limit = 0xFFFFFFFFu;
445 	segp->s = 0x1; /* kTypeCodeData */
446 	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
447 					  * | kFlagCodeReadable
448 					  */
449 	segp->g = true;
450 	segp->l = true;
451 	segp->present = 1;
452 	if (vm)
453 		kvm_seg_fill_gdt_64bit(vm, segp);
454 }
455 
456 /*
457  * Set Long Mode Flat Kernel Data Segment
458  *
459  * Input Args:
460  *   vm - VM whose GDT is being filled, or NULL to only write segp
461  *   selector - selector value
462  *
463  * Output Args:
464  *   segp - Pointer to KVM segment
465  *
466  * Return: None
467  *
468  * Sets up the KVM segment pointed to by @segp, to be a data segment
469  * with the selector value given by @selector.
470  */
471 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
472 	struct kvm_segment *segp)
473 {
474 	memset(segp, 0, sizeof(*segp));
475 	segp->selector = selector;
476 	segp->limit = 0xFFFFFFFFu;
477 	segp->s = 0x1; /* kTypeCodeData */
478 	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
479 					  * | kFlagDataWritable
480 					  */
481 	segp->g = true;
482 	segp->present = true;
483 	if (vm)
484 		kvm_seg_fill_gdt_64bit(vm, segp);
485 }
486 
487 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
488 {
489 	int level = PG_LEVEL_NONE;
490 	uint64_t *pte = __vm_get_page_table_entry(vm, gva, &level);
491 
492 	TEST_ASSERT(*pte & PTE_PRESENT_MASK,
493 		    "Leaf PTE not PRESENT for gva: 0x%08lx", gva);
494 
495 	/*
496 	 * No need for a hugepage mask on the PTE, x86-64 requires the "unused"
497 	 * address bits to be zero.
498 	 */
499 	return PTE_GET_PA(*pte) | (gva & ~HUGEPAGE_MASK(level));
500 }
501 
502 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
503 {
504 	if (!vm->gdt)
505 		vm->gdt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
506 
507 	dt->base = vm->gdt;
508 	dt->limit = getpagesize();
509 }
510 
511 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
512 				int selector)
513 {
514 	if (!vm->tss)
515 		vm->tss = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
516 
517 	memset(segp, 0, sizeof(*segp));
518 	segp->base = vm->tss;
519 	segp->limit = 0x67;
520 	segp->selector = selector;
521 	segp->type = 0xb;
522 	segp->present = 1;
523 	kvm_seg_fill_gdt_64bit(vm, segp);
524 }
525 
526 static void vcpu_setup(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
527 {
528 	struct kvm_sregs sregs;
529 
530 	/* Set mode specific system register values. */
531 	vcpu_sregs_get(vcpu, &sregs);
532 
533 	sregs.idt.limit = 0;
534 
535 	kvm_setup_gdt(vm, &sregs.gdt);
536 
537 	switch (vm->mode) {
538 	case VM_MODE_PXXV48_4K:
539 		sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
540 		sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
541 		sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
542 
543 		kvm_seg_set_unusable(&sregs.ldt);
544 		kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
545 		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
546 		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
547 		kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
548 		break;
549 
550 	default:
551 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
552 	}
553 
554 	sregs.cr3 = vm->pgd;
555 	vcpu_sregs_set(vcpu, &sregs);
556 }
557 
558 void kvm_arch_vm_post_create(struct kvm_vm *vm)
559 {
560 	vm_create_irqchip(vm);
561 	sync_global_to_guest(vm, host_cpu_is_intel);
562 	sync_global_to_guest(vm, host_cpu_is_amd);
563 }
564 
565 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
566 				  void *guest_code)
567 {
568 	struct kvm_mp_state mp_state;
569 	struct kvm_regs regs;
570 	vm_vaddr_t stack_vaddr;
571 	struct kvm_vcpu *vcpu;
572 
573 	stack_vaddr = __vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
574 				       DEFAULT_GUEST_STACK_VADDR_MIN,
575 				       MEM_REGION_DATA);
576 
577 	stack_vaddr += DEFAULT_STACK_PGS * getpagesize();
578 
579 	/*
580 	 * Align stack to match calling sequence requirements in section "The
581 	 * Stack Frame" of the System V ABI AMD64 Architecture Processor
582 	 * Supplement, which requires the value (%rsp + 8) to be a multiple of
583 	 * 16 when control is transferred to the function entry point.
584 	 *
585 	 * If this code is ever used to launch a vCPU with 32-bit entry point it
586 	 * may need to subtract 4 bytes instead of 8 bytes.
587 	 */
588 	TEST_ASSERT(IS_ALIGNED(stack_vaddr, PAGE_SIZE),
589 		    "__vm_vaddr_alloc() did not provide a page-aligned address");
590 	stack_vaddr -= 8;
591 
592 	vcpu = __vm_vcpu_add(vm, vcpu_id);
593 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
594 	vcpu_setup(vm, vcpu);
595 
596 	/* Setup guest general purpose registers */
597 	vcpu_regs_get(vcpu, &regs);
598 	regs.rflags = regs.rflags | 0x2;
599 	regs.rsp = stack_vaddr;
600 	regs.rip = (unsigned long) guest_code;
601 	vcpu_regs_set(vcpu, &regs);
602 
603 	/* Setup the MP state */
604 	mp_state.mp_state = 0;
605 	vcpu_mp_state_set(vcpu, &mp_state);
606 
607 	return vcpu;
608 }
609 
610 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id)
611 {
612 	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
613 
614 	vcpu_init_cpuid(vcpu, kvm_get_supported_cpuid());
615 
616 	return vcpu;
617 }
618 
619 void vcpu_arch_free(struct kvm_vcpu *vcpu)
620 {
621 	if (vcpu->cpuid)
622 		free(vcpu->cpuid);
623 }
624 
625 /* Do not use kvm_supported_cpuid directly except for validity checks. */
626 static void *kvm_supported_cpuid;
627 
628 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
629 {
630 	int kvm_fd;
631 
632 	if (kvm_supported_cpuid)
633 		return kvm_supported_cpuid;
634 
635 	kvm_supported_cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
636 	kvm_fd = open_kvm_dev_path_or_exit();
637 
638 	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID,
639 		  (struct kvm_cpuid2 *)kvm_supported_cpuid);
640 
641 	close(kvm_fd);
642 	return kvm_supported_cpuid;
643 }
644 
645 static uint32_t __kvm_cpu_has(const struct kvm_cpuid2 *cpuid,
646 			      uint32_t function, uint32_t index,
647 			      uint8_t reg, uint8_t lo, uint8_t hi)
648 {
649 	const struct kvm_cpuid_entry2 *entry;
650 	int i;
651 
652 	for (i = 0; i < cpuid->nent; i++) {
653 		entry = &cpuid->entries[i];
654 
655 		/*
656 		 * The output registers in kvm_cpuid_entry2 are in alphabetical
657 		 * order, but kvm_x86_cpu_feature matches that mess, so yay
658 		 * pointer shenanigans!
659 		 */
660 		if (entry->function == function && entry->index == index)
661 			return ((&entry->eax)[reg] & GENMASK(hi, lo)) >> lo;
662 	}
663 
664 	return 0;
665 }
666 
667 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
668 		   struct kvm_x86_cpu_feature feature)
669 {
670 	return __kvm_cpu_has(cpuid, feature.function, feature.index,
671 			     feature.reg, feature.bit, feature.bit);
672 }
673 
674 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
675 			    struct kvm_x86_cpu_property property)
676 {
677 	return __kvm_cpu_has(cpuid, property.function, property.index,
678 			     property.reg, property.lo_bit, property.hi_bit);
679 }
680 
681 uint64_t kvm_get_feature_msr(uint64_t msr_index)
682 {
683 	struct {
684 		struct kvm_msrs header;
685 		struct kvm_msr_entry entry;
686 	} buffer = {};
687 	int r, kvm_fd;
688 
689 	buffer.header.nmsrs = 1;
690 	buffer.entry.index = msr_index;
691 	kvm_fd = open_kvm_dev_path_or_exit();
692 
693 	r = __kvm_ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
694 	TEST_ASSERT(r == 1, KVM_IOCTL_ERROR(KVM_GET_MSRS, r));
695 
696 	close(kvm_fd);
697 	return buffer.entry.data;
698 }
699 
700 void __vm_xsave_require_permission(uint64_t xfeature, const char *name)
701 {
702 	int kvm_fd;
703 	u64 bitmask;
704 	long rc;
705 	struct kvm_device_attr attr = {
706 		.group = 0,
707 		.attr = KVM_X86_XCOMP_GUEST_SUPP,
708 		.addr = (unsigned long) &bitmask,
709 	};
710 
711 	TEST_ASSERT(!kvm_supported_cpuid,
712 		    "kvm_get_supported_cpuid() cannot be used before ARCH_REQ_XCOMP_GUEST_PERM");
713 
714 	TEST_ASSERT(is_power_of_2(xfeature),
715 		    "Dynamic XFeatures must be enabled one at a time");
716 
717 	kvm_fd = open_kvm_dev_path_or_exit();
718 	rc = __kvm_ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
719 	close(kvm_fd);
720 
721 	if (rc == -1 && (errno == ENXIO || errno == EINVAL))
722 		__TEST_REQUIRE(0, "KVM_X86_XCOMP_GUEST_SUPP not supported");
723 
724 	TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
725 
726 	__TEST_REQUIRE(bitmask & xfeature,
727 		       "Required XSAVE feature '%s' not supported", name);
728 
729 	TEST_REQUIRE(!syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, ilog2(xfeature)));
730 
731 	rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
732 	TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
733 	TEST_ASSERT(bitmask & xfeature,
734 		    "'%s' (0x%lx) not permitted after prctl(ARCH_REQ_XCOMP_GUEST_PERM) permitted=0x%lx",
735 		    name, xfeature, bitmask);
736 }
737 
738 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid)
739 {
740 	TEST_ASSERT(cpuid != vcpu->cpuid, "@cpuid can't be the vCPU's CPUID");
741 
742 	/* Allow overriding the default CPUID. */
743 	if (vcpu->cpuid && vcpu->cpuid->nent < cpuid->nent) {
744 		free(vcpu->cpuid);
745 		vcpu->cpuid = NULL;
746 	}
747 
748 	if (!vcpu->cpuid)
749 		vcpu->cpuid = allocate_kvm_cpuid2(cpuid->nent);
750 
751 	memcpy(vcpu->cpuid, cpuid, kvm_cpuid2_size(cpuid->nent));
752 	vcpu_set_cpuid(vcpu);
753 }
754 
755 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr)
756 {
757 	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, 0x80000008);
758 
759 	entry->eax = (entry->eax & ~0xff) | maxphyaddr;
760 	vcpu_set_cpuid(vcpu);
761 }
762 
763 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function)
764 {
765 	struct kvm_cpuid_entry2 *entry = vcpu_get_cpuid_entry(vcpu, function);
766 
767 	entry->eax = 0;
768 	entry->ebx = 0;
769 	entry->ecx = 0;
770 	entry->edx = 0;
771 	vcpu_set_cpuid(vcpu);
772 }
773 
774 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
775 				     struct kvm_x86_cpu_feature feature,
776 				     bool set)
777 {
778 	struct kvm_cpuid_entry2 *entry;
779 	u32 *reg;
780 
781 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
782 	reg = (&entry->eax) + feature.reg;
783 
784 	if (set)
785 		*reg |= BIT(feature.bit);
786 	else
787 		*reg &= ~BIT(feature.bit);
788 
789 	vcpu_set_cpuid(vcpu);
790 }
791 
792 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index)
793 {
794 	struct {
795 		struct kvm_msrs header;
796 		struct kvm_msr_entry entry;
797 	} buffer = {};
798 
799 	buffer.header.nmsrs = 1;
800 	buffer.entry.index = msr_index;
801 
802 	vcpu_msrs_get(vcpu, &buffer.header);
803 
804 	return buffer.entry.data;
805 }
806 
807 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value)
808 {
809 	struct {
810 		struct kvm_msrs header;
811 		struct kvm_msr_entry entry;
812 	} buffer = {};
813 
814 	memset(&buffer, 0, sizeof(buffer));
815 	buffer.header.nmsrs = 1;
816 	buffer.entry.index = msr_index;
817 	buffer.entry.data = msr_value;
818 
819 	return __vcpu_ioctl(vcpu, KVM_SET_MSRS, &buffer.header);
820 }
821 
822 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
823 {
824 	va_list ap;
825 	struct kvm_regs regs;
826 
827 	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
828 		    "  num: %u\n",
829 		    num);
830 
831 	va_start(ap, num);
832 	vcpu_regs_get(vcpu, &regs);
833 
834 	if (num >= 1)
835 		regs.rdi = va_arg(ap, uint64_t);
836 
837 	if (num >= 2)
838 		regs.rsi = va_arg(ap, uint64_t);
839 
840 	if (num >= 3)
841 		regs.rdx = va_arg(ap, uint64_t);
842 
843 	if (num >= 4)
844 		regs.rcx = va_arg(ap, uint64_t);
845 
846 	if (num >= 5)
847 		regs.r8 = va_arg(ap, uint64_t);
848 
849 	if (num >= 6)
850 		regs.r9 = va_arg(ap, uint64_t);
851 
852 	vcpu_regs_set(vcpu, &regs);
853 	va_end(ap);
854 }
855 
856 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
857 {
858 	struct kvm_regs regs;
859 	struct kvm_sregs sregs;
860 
861 	fprintf(stream, "%*svCPU ID: %u\n", indent, "", vcpu->id);
862 
863 	fprintf(stream, "%*sregs:\n", indent + 2, "");
864 	vcpu_regs_get(vcpu, &regs);
865 	regs_dump(stream, &regs, indent + 4);
866 
867 	fprintf(stream, "%*ssregs:\n", indent + 2, "");
868 	vcpu_sregs_get(vcpu, &sregs);
869 	sregs_dump(stream, &sregs, indent + 4);
870 }
871 
872 static struct kvm_msr_list *__kvm_get_msr_index_list(bool feature_msrs)
873 {
874 	struct kvm_msr_list *list;
875 	struct kvm_msr_list nmsrs;
876 	int kvm_fd, r;
877 
878 	kvm_fd = open_kvm_dev_path_or_exit();
879 
880 	nmsrs.nmsrs = 0;
881 	if (!feature_msrs)
882 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
883 	else
884 		r = __kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, &nmsrs);
885 
886 	TEST_ASSERT(r == -1 && errno == E2BIG,
887 		    "Expected -E2BIG, got rc: %i errno: %i (%s)",
888 		    r, errno, strerror(errno));
889 
890 	list = malloc(sizeof(*list) + nmsrs.nmsrs * sizeof(list->indices[0]));
891 	TEST_ASSERT(list, "-ENOMEM when allocating MSR index list");
892 	list->nmsrs = nmsrs.nmsrs;
893 
894 	if (!feature_msrs)
895 		kvm_ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
896 	else
897 		kvm_ioctl(kvm_fd, KVM_GET_MSR_FEATURE_INDEX_LIST, list);
898 	close(kvm_fd);
899 
900 	TEST_ASSERT(list->nmsrs == nmsrs.nmsrs,
901 		    "Number of MSRs in list changed, was %d, now %d",
902 		    nmsrs.nmsrs, list->nmsrs);
903 	return list;
904 }
905 
906 const struct kvm_msr_list *kvm_get_msr_index_list(void)
907 {
908 	static const struct kvm_msr_list *list;
909 
910 	if (!list)
911 		list = __kvm_get_msr_index_list(false);
912 	return list;
913 }
914 
915 
916 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void)
917 {
918 	static const struct kvm_msr_list *list;
919 
920 	if (!list)
921 		list = __kvm_get_msr_index_list(true);
922 	return list;
923 }
924 
925 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index)
926 {
927 	const struct kvm_msr_list *list = kvm_get_msr_index_list();
928 	int i;
929 
930 	for (i = 0; i < list->nmsrs; ++i) {
931 		if (list->indices[i] == msr_index)
932 			return true;
933 	}
934 
935 	return false;
936 }
937 
938 static void vcpu_save_xsave_state(struct kvm_vcpu *vcpu,
939 				  struct kvm_x86_state *state)
940 {
941 	int size = vm_check_cap(vcpu->vm, KVM_CAP_XSAVE2);
942 
943 	if (size) {
944 		state->xsave = malloc(size);
945 		vcpu_xsave2_get(vcpu, state->xsave);
946 	} else {
947 		state->xsave = malloc(sizeof(struct kvm_xsave));
948 		vcpu_xsave_get(vcpu, state->xsave);
949 	}
950 }
951 
952 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu)
953 {
954 	const struct kvm_msr_list *msr_list = kvm_get_msr_index_list();
955 	struct kvm_x86_state *state;
956 	int i;
957 
958 	static int nested_size = -1;
959 
960 	if (nested_size == -1) {
961 		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
962 		TEST_ASSERT(nested_size <= sizeof(state->nested_),
963 			    "Nested state size too big, %i > %zi",
964 			    nested_size, sizeof(state->nested_));
965 	}
966 
967 	/*
968 	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
969 	 * guest state is consistent only after userspace re-enters the
970 	 * kernel with KVM_RUN.  Complete IO prior to migrating state
971 	 * to a new VM.
972 	 */
973 	vcpu_run_complete_io(vcpu);
974 
975 	state = malloc(sizeof(*state) + msr_list->nmsrs * sizeof(state->msrs.entries[0]));
976 	TEST_ASSERT(state, "-ENOMEM when allocating kvm state");
977 
978 	vcpu_events_get(vcpu, &state->events);
979 	vcpu_mp_state_get(vcpu, &state->mp_state);
980 	vcpu_regs_get(vcpu, &state->regs);
981 	vcpu_save_xsave_state(vcpu, state);
982 
983 	if (kvm_has_cap(KVM_CAP_XCRS))
984 		vcpu_xcrs_get(vcpu, &state->xcrs);
985 
986 	vcpu_sregs_get(vcpu, &state->sregs);
987 
988 	if (nested_size) {
989 		state->nested.size = sizeof(state->nested_);
990 
991 		vcpu_nested_state_get(vcpu, &state->nested);
992 		TEST_ASSERT(state->nested.size <= nested_size,
993 			    "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
994 			    state->nested.size, nested_size);
995 	} else {
996 		state->nested.size = 0;
997 	}
998 
999 	state->msrs.nmsrs = msr_list->nmsrs;
1000 	for (i = 0; i < msr_list->nmsrs; i++)
1001 		state->msrs.entries[i].index = msr_list->indices[i];
1002 	vcpu_msrs_get(vcpu, &state->msrs);
1003 
1004 	vcpu_debugregs_get(vcpu, &state->debugregs);
1005 
1006 	return state;
1007 }
1008 
1009 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state)
1010 {
1011 	vcpu_sregs_set(vcpu, &state->sregs);
1012 	vcpu_msrs_set(vcpu, &state->msrs);
1013 
1014 	if (kvm_has_cap(KVM_CAP_XCRS))
1015 		vcpu_xcrs_set(vcpu, &state->xcrs);
1016 
1017 	vcpu_xsave_set(vcpu,  state->xsave);
1018 	vcpu_events_set(vcpu, &state->events);
1019 	vcpu_mp_state_set(vcpu, &state->mp_state);
1020 	vcpu_debugregs_set(vcpu, &state->debugregs);
1021 	vcpu_regs_set(vcpu, &state->regs);
1022 
1023 	if (state->nested.size)
1024 		vcpu_nested_state_set(vcpu, &state->nested);
1025 }
1026 
1027 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1028 {
1029 	free(state->xsave);
1030 	free(state);
1031 }
1032 
1033 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1034 {
1035 	if (!kvm_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR)) {
1036 		*pa_bits = kvm_cpu_has(X86_FEATURE_PAE) ? 36 : 32;
1037 		*va_bits = 32;
1038 	} else {
1039 		*pa_bits = kvm_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1040 		*va_bits = kvm_cpu_property(X86_PROPERTY_MAX_VIRT_ADDR);
1041 	}
1042 }
1043 
1044 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1045 			  int dpl, unsigned short selector)
1046 {
1047 	struct idt_entry *base =
1048 		(struct idt_entry *)addr_gva2hva(vm, vm->idt);
1049 	struct idt_entry *e = &base[vector];
1050 
1051 	memset(e, 0, sizeof(*e));
1052 	e->offset0 = addr;
1053 	e->selector = selector;
1054 	e->ist = 0;
1055 	e->type = 14;
1056 	e->dpl = dpl;
1057 	e->p = 1;
1058 	e->offset1 = addr >> 16;
1059 	e->offset2 = addr >> 32;
1060 }
1061 
1062 
1063 static bool kvm_fixup_exception(struct ex_regs *regs)
1064 {
1065 	if (regs->r9 != KVM_EXCEPTION_MAGIC || regs->rip != regs->r10)
1066 		return false;
1067 
1068 	if (regs->vector == DE_VECTOR)
1069 		return false;
1070 
1071 	regs->rip = regs->r11;
1072 	regs->r9 = regs->vector;
1073 	regs->r10 = regs->error_code;
1074 	return true;
1075 }
1076 
1077 void kvm_exit_unexpected_vector(uint32_t value)
1078 {
1079 	ucall(UCALL_UNHANDLED, 1, value);
1080 }
1081 
1082 void route_exception(struct ex_regs *regs)
1083 {
1084 	typedef void(*handler)(struct ex_regs *);
1085 	handler *handlers = (handler *)exception_handlers;
1086 
1087 	if (handlers && handlers[regs->vector]) {
1088 		handlers[regs->vector](regs);
1089 		return;
1090 	}
1091 
1092 	if (kvm_fixup_exception(regs))
1093 		return;
1094 
1095 	kvm_exit_unexpected_vector(regs->vector);
1096 }
1097 
1098 void vm_init_descriptor_tables(struct kvm_vm *vm)
1099 {
1100 	extern void *idt_handlers;
1101 	int i;
1102 
1103 	vm->idt = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1104 	vm->handlers = __vm_vaddr_alloc_page(vm, MEM_REGION_DATA);
1105 	/* Handlers have the same address in both address spaces.*/
1106 	for (i = 0; i < NUM_INTERRUPTS; i++)
1107 		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1108 			DEFAULT_CODE_SELECTOR);
1109 }
1110 
1111 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
1112 {
1113 	struct kvm_vm *vm = vcpu->vm;
1114 	struct kvm_sregs sregs;
1115 
1116 	vcpu_sregs_get(vcpu, &sregs);
1117 	sregs.idt.base = vm->idt;
1118 	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1119 	sregs.gdt.base = vm->gdt;
1120 	sregs.gdt.limit = getpagesize() - 1;
1121 	kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1122 	vcpu_sregs_set(vcpu, &sregs);
1123 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1124 }
1125 
1126 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1127 			       void (*handler)(struct ex_regs *))
1128 {
1129 	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1130 
1131 	handlers[vector] = (vm_vaddr_t)handler;
1132 }
1133 
1134 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
1135 {
1136 	struct ucall uc;
1137 
1138 	if (get_ucall(vcpu, &uc) == UCALL_UNHANDLED) {
1139 		uint64_t vector = uc.args[0];
1140 
1141 		TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1142 			  vector);
1143 	}
1144 }
1145 
1146 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
1147 					       uint32_t function, uint32_t index)
1148 {
1149 	int i;
1150 
1151 	for (i = 0; i < cpuid->nent; i++) {
1152 		if (cpuid->entries[i].function == function &&
1153 		    cpuid->entries[i].index == index)
1154 			return &cpuid->entries[i];
1155 	}
1156 
1157 	TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1158 
1159 	return NULL;
1160 }
1161 
1162 #define X86_HYPERCALL(inputs...)					\
1163 ({									\
1164 	uint64_t r;							\
1165 									\
1166 	asm volatile("test %[use_vmmcall], %[use_vmmcall]\n\t"		\
1167 		     "jnz 1f\n\t"					\
1168 		     "vmcall\n\t"					\
1169 		     "jmp 2f\n\t"					\
1170 		     "1: vmmcall\n\t"					\
1171 		     "2:"						\
1172 		     : "=a"(r)						\
1173 		     : [use_vmmcall] "r" (host_cpu_is_amd), inputs);	\
1174 									\
1175 	r;								\
1176 })
1177 
1178 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1179 		       uint64_t a3)
1180 {
1181 	return X86_HYPERCALL("a"(nr), "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1182 }
1183 
1184 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1185 {
1186 	return X86_HYPERCALL("a"(nr), "D"(a0), "S"(a1));
1187 }
1188 
1189 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1)
1190 {
1191 	GUEST_ASSERT(!__xen_hypercall(nr, a0, a1));
1192 }
1193 
1194 const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1195 {
1196 	static struct kvm_cpuid2 *cpuid;
1197 	int kvm_fd;
1198 
1199 	if (cpuid)
1200 		return cpuid;
1201 
1202 	cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1203 	kvm_fd = open_kvm_dev_path_or_exit();
1204 
1205 	kvm_ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1206 
1207 	close(kvm_fd);
1208 	return cpuid;
1209 }
1210 
1211 void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu)
1212 {
1213 	static struct kvm_cpuid2 *cpuid_full;
1214 	const struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1215 	int i, nent = 0;
1216 
1217 	if (!cpuid_full) {
1218 		cpuid_sys = kvm_get_supported_cpuid();
1219 		cpuid_hv = kvm_get_supported_hv_cpuid();
1220 
1221 		cpuid_full = allocate_kvm_cpuid2(cpuid_sys->nent + cpuid_hv->nent);
1222 		if (!cpuid_full) {
1223 			perror("malloc");
1224 			abort();
1225 		}
1226 
1227 		/* Need to skip KVM CPUID leaves 0x400000xx */
1228 		for (i = 0; i < cpuid_sys->nent; i++) {
1229 			if (cpuid_sys->entries[i].function >= 0x40000000 &&
1230 			    cpuid_sys->entries[i].function < 0x40000100)
1231 				continue;
1232 			cpuid_full->entries[nent] = cpuid_sys->entries[i];
1233 			nent++;
1234 		}
1235 
1236 		memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1237 		       cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1238 		cpuid_full->nent = nent + cpuid_hv->nent;
1239 	}
1240 
1241 	vcpu_init_cpuid(vcpu, cpuid_full);
1242 }
1243 
1244 const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu)
1245 {
1246 	struct kvm_cpuid2 *cpuid = allocate_kvm_cpuid2(MAX_NR_CPUID_ENTRIES);
1247 
1248 	vcpu_ioctl(vcpu, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1249 
1250 	return cpuid;
1251 }
1252 
1253 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1254 {
1255 	const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1256 	unsigned long ht_gfn, max_gfn, max_pfn;
1257 	uint8_t maxphyaddr;
1258 
1259 	max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1260 
1261 	/* Avoid reserved HyperTransport region on AMD processors.  */
1262 	if (!host_cpu_is_amd)
1263 		return max_gfn;
1264 
1265 	/* On parts with <40 physical address bits, the area is fully hidden */
1266 	if (vm->pa_bits < 40)
1267 		return max_gfn;
1268 
1269 	/* Before family 17h, the HyperTransport area is just below 1T.  */
1270 	ht_gfn = (1 << 28) - num_ht_pages;
1271 	if (this_cpu_family() < 0x17)
1272 		goto done;
1273 
1274 	/*
1275 	 * Otherwise it's at the top of the physical address space, possibly
1276 	 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1277 	 * the old conservative value if MAXPHYADDR is not enumerated.
1278 	 */
1279 	if (!this_cpu_has_p(X86_PROPERTY_MAX_PHY_ADDR))
1280 		goto done;
1281 
1282 	maxphyaddr = this_cpu_property(X86_PROPERTY_MAX_PHY_ADDR);
1283 	max_pfn = (1ULL << (maxphyaddr - vm->page_shift)) - 1;
1284 
1285 	if (this_cpu_has_p(X86_PROPERTY_PHYS_ADDR_REDUCTION))
1286 		max_pfn >>= this_cpu_property(X86_PROPERTY_PHYS_ADDR_REDUCTION);
1287 
1288 	ht_gfn = max_pfn - num_ht_pages;
1289 done:
1290 	return min(max_gfn, ht_gfn - 1);
1291 }
1292 
1293 /* Returns true if kvm_intel was loaded with unrestricted_guest=1. */
1294 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1295 {
1296 	/* Ensure that a KVM vendor-specific module is loaded. */
1297 	if (vm == NULL)
1298 		close(open_kvm_dev_path_or_exit());
1299 
1300 	return get_kvm_intel_param_bool("unrestricted_guest");
1301 }
1302 
1303 void kvm_selftest_arch_init(void)
1304 {
1305 	host_cpu_is_intel = this_cpu_is_intel();
1306 	host_cpu_is_amd = this_cpu_is_amd();
1307 }
1308