xref: /openbmc/linux/tools/testing/selftests/kvm/lib/x86_64/processor.c (revision 6a1c3767d82ed8233de1263aa7da81595e176087)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/x86_64/processor.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "../kvm_util_internal.h"
11 #include "processor.h"
12 
13 #ifndef NUM_INTERRUPTS
14 #define NUM_INTERRUPTS 256
15 #endif
16 
17 #define DEFAULT_CODE_SELECTOR 0x8
18 #define DEFAULT_DATA_SELECTOR 0x10
19 
20 vm_vaddr_t exception_handlers;
21 
22 void regs_dump(FILE *stream, struct kvm_regs *regs,
23 	       uint8_t indent)
24 {
25 	fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx "
26 		"rcx: 0x%.16llx rdx: 0x%.16llx\n",
27 		indent, "",
28 		regs->rax, regs->rbx, regs->rcx, regs->rdx);
29 	fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx "
30 		"rsp: 0x%.16llx rbp: 0x%.16llx\n",
31 		indent, "",
32 		regs->rsi, regs->rdi, regs->rsp, regs->rbp);
33 	fprintf(stream, "%*sr8:  0x%.16llx r9:  0x%.16llx "
34 		"r10: 0x%.16llx r11: 0x%.16llx\n",
35 		indent, "",
36 		regs->r8, regs->r9, regs->r10, regs->r11);
37 	fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx "
38 		"r14: 0x%.16llx r15: 0x%.16llx\n",
39 		indent, "",
40 		regs->r12, regs->r13, regs->r14, regs->r15);
41 	fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n",
42 		indent, "",
43 		regs->rip, regs->rflags);
44 }
45 
46 /*
47  * Segment Dump
48  *
49  * Input Args:
50  *   stream  - Output FILE stream
51  *   segment - KVM segment
52  *   indent  - Left margin indent amount
53  *
54  * Output Args: None
55  *
56  * Return: None
57  *
58  * Dumps the state of the KVM segment given by @segment, to the FILE stream
59  * given by @stream.
60  */
61 static void segment_dump(FILE *stream, struct kvm_segment *segment,
62 			 uint8_t indent)
63 {
64 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x "
65 		"selector: 0x%.4x type: 0x%.2x\n",
66 		indent, "", segment->base, segment->limit,
67 		segment->selector, segment->type);
68 	fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x "
69 		"db: 0x%.2x s: 0x%.2x l: 0x%.2x\n",
70 		indent, "", segment->present, segment->dpl,
71 		segment->db, segment->s, segment->l);
72 	fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x "
73 		"unusable: 0x%.2x padding: 0x%.2x\n",
74 		indent, "", segment->g, segment->avl,
75 		segment->unusable, segment->padding);
76 }
77 
78 /*
79  * dtable Dump
80  *
81  * Input Args:
82  *   stream - Output FILE stream
83  *   dtable - KVM dtable
84  *   indent - Left margin indent amount
85  *
86  * Output Args: None
87  *
88  * Return: None
89  *
90  * Dumps the state of the KVM dtable given by @dtable, to the FILE stream
91  * given by @stream.
92  */
93 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable,
94 			uint8_t indent)
95 {
96 	fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x "
97 		"padding: 0x%.4x 0x%.4x 0x%.4x\n",
98 		indent, "", dtable->base, dtable->limit,
99 		dtable->padding[0], dtable->padding[1], dtable->padding[2]);
100 }
101 
102 void sregs_dump(FILE *stream, struct kvm_sregs *sregs,
103 		uint8_t indent)
104 {
105 	unsigned int i;
106 
107 	fprintf(stream, "%*scs:\n", indent, "");
108 	segment_dump(stream, &sregs->cs, indent + 2);
109 	fprintf(stream, "%*sds:\n", indent, "");
110 	segment_dump(stream, &sregs->ds, indent + 2);
111 	fprintf(stream, "%*ses:\n", indent, "");
112 	segment_dump(stream, &sregs->es, indent + 2);
113 	fprintf(stream, "%*sfs:\n", indent, "");
114 	segment_dump(stream, &sregs->fs, indent + 2);
115 	fprintf(stream, "%*sgs:\n", indent, "");
116 	segment_dump(stream, &sregs->gs, indent + 2);
117 	fprintf(stream, "%*sss:\n", indent, "");
118 	segment_dump(stream, &sregs->ss, indent + 2);
119 	fprintf(stream, "%*str:\n", indent, "");
120 	segment_dump(stream, &sregs->tr, indent + 2);
121 	fprintf(stream, "%*sldt:\n", indent, "");
122 	segment_dump(stream, &sregs->ldt, indent + 2);
123 
124 	fprintf(stream, "%*sgdt:\n", indent, "");
125 	dtable_dump(stream, &sregs->gdt, indent + 2);
126 	fprintf(stream, "%*sidt:\n", indent, "");
127 	dtable_dump(stream, &sregs->idt, indent + 2);
128 
129 	fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx "
130 		"cr3: 0x%.16llx cr4: 0x%.16llx\n",
131 		indent, "",
132 		sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4);
133 	fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx "
134 		"apic_base: 0x%.16llx\n",
135 		indent, "",
136 		sregs->cr8, sregs->efer, sregs->apic_base);
137 
138 	fprintf(stream, "%*sinterrupt_bitmap:\n", indent, "");
139 	for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) {
140 		fprintf(stream, "%*s%.16llx\n", indent + 2, "",
141 			sregs->interrupt_bitmap[i]);
142 	}
143 }
144 
145 void virt_pgd_alloc(struct kvm_vm *vm)
146 {
147 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
148 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
149 
150 	/* If needed, create page map l4 table. */
151 	if (!vm->pgd_created) {
152 		vm->pgd = vm_alloc_page_table(vm);
153 		vm->pgd_created = true;
154 	}
155 }
156 
157 static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr,
158 			  int level)
159 {
160 	uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift);
161 	int index = (vaddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
162 
163 	return &page_table[index];
164 }
165 
166 static uint64_t *virt_create_upper_pte(struct kvm_vm *vm,
167 				       uint64_t pt_pfn,
168 				       uint64_t vaddr,
169 				       uint64_t paddr,
170 				       int current_level,
171 				       int target_level)
172 {
173 	uint64_t *pte = virt_get_pte(vm, pt_pfn, vaddr, current_level);
174 
175 	if (!(*pte & PTE_PRESENT_MASK)) {
176 		*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK;
177 		if (current_level == target_level)
178 			*pte |= PTE_LARGE_MASK | (paddr & PHYSICAL_PAGE_MASK);
179 		else
180 			*pte |= vm_alloc_page_table(vm) & PHYSICAL_PAGE_MASK;
181 	} else {
182 		/*
183 		 * Entry already present.  Assert that the caller doesn't want
184 		 * a hugepage at this level, and that there isn't a hugepage at
185 		 * this level.
186 		 */
187 		TEST_ASSERT(current_level != target_level,
188 			    "Cannot create hugepage at level: %u, vaddr: 0x%lx\n",
189 			    current_level, vaddr);
190 		TEST_ASSERT(!(*pte & PTE_LARGE_MASK),
191 			    "Cannot create page table at level: %u, vaddr: 0x%lx\n",
192 			    current_level, vaddr);
193 	}
194 	return pte;
195 }
196 
197 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level)
198 {
199 	const uint64_t pg_size = PG_LEVEL_SIZE(level);
200 	uint64_t *pml4e, *pdpe, *pde;
201 	uint64_t *pte;
202 
203 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K,
204 		    "Unknown or unsupported guest mode, mode: 0x%x", vm->mode);
205 
206 	TEST_ASSERT((vaddr % pg_size) == 0,
207 		    "Virtual address not aligned,\n"
208 		    "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size);
209 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)),
210 		    "Invalid virtual address, vaddr: 0x%lx", vaddr);
211 	TEST_ASSERT((paddr % pg_size) == 0,
212 		    "Physical address not aligned,\n"
213 		    "  paddr: 0x%lx page size: 0x%lx", paddr, pg_size);
214 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
215 		    "Physical address beyond maximum supported,\n"
216 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
217 		    paddr, vm->max_gfn, vm->page_size);
218 
219 	/*
220 	 * Allocate upper level page tables, if not already present.  Return
221 	 * early if a hugepage was created.
222 	 */
223 	pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift,
224 				      vaddr, paddr, PG_LEVEL_512G, level);
225 	if (*pml4e & PTE_LARGE_MASK)
226 		return;
227 
228 	pdpe = virt_create_upper_pte(vm, PTE_GET_PFN(*pml4e), vaddr, paddr, PG_LEVEL_1G, level);
229 	if (*pdpe & PTE_LARGE_MASK)
230 		return;
231 
232 	pde = virt_create_upper_pte(vm, PTE_GET_PFN(*pdpe), vaddr, paddr, PG_LEVEL_2M, level);
233 	if (*pde & PTE_LARGE_MASK)
234 		return;
235 
236 	/* Fill in page table entry. */
237 	pte = virt_get_pte(vm, PTE_GET_PFN(*pde), vaddr, PG_LEVEL_4K);
238 	TEST_ASSERT(!(*pte & PTE_PRESENT_MASK),
239 		    "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr);
240 	*pte = PTE_PRESENT_MASK | PTE_WRITABLE_MASK | (paddr & PHYSICAL_PAGE_MASK);
241 }
242 
243 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
244 {
245 	__virt_pg_map(vm, vaddr, paddr, PG_LEVEL_4K);
246 }
247 
248 static uint64_t *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid,
249 						       uint64_t vaddr)
250 {
251 	uint16_t index[4];
252 	uint64_t *pml4e, *pdpe, *pde;
253 	uint64_t *pte;
254 	struct kvm_cpuid_entry2 *entry;
255 	struct kvm_sregs sregs;
256 	int max_phy_addr;
257 	uint64_t rsvd_mask = 0;
258 
259 	entry = kvm_get_supported_cpuid_index(0x80000008, 0);
260 	max_phy_addr = entry->eax & 0x000000ff;
261 	/* Set the high bits in the reserved mask. */
262 	if (max_phy_addr < 52)
263 		rsvd_mask = GENMASK_ULL(51, max_phy_addr);
264 
265 	/*
266 	 * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries
267 	 * with 4-Level Paging and 5-Level Paging".
268 	 * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1,
269 	 * the XD flag (bit 63) is reserved.
270 	 */
271 	vcpu_sregs_get(vm, vcpuid, &sregs);
272 	if ((sregs.efer & EFER_NX) == 0) {
273 		rsvd_mask |= PTE_NX_MASK;
274 	}
275 
276 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
277 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
278 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
279 		(vaddr >> vm->page_shift)),
280 		"Invalid virtual address, vaddr: 0x%lx",
281 		vaddr);
282 	/*
283 	 * Based on the mode check above there are 48 bits in the vaddr, so
284 	 * shift 16 to sign extend the last bit (bit-47),
285 	 */
286 	TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16),
287 		"Canonical check failed.  The virtual address is invalid.");
288 
289 	index[0] = (vaddr >> 12) & 0x1ffu;
290 	index[1] = (vaddr >> 21) & 0x1ffu;
291 	index[2] = (vaddr >> 30) & 0x1ffu;
292 	index[3] = (vaddr >> 39) & 0x1ffu;
293 
294 	pml4e = addr_gpa2hva(vm, vm->pgd);
295 	TEST_ASSERT(pml4e[index[3]] & PTE_PRESENT_MASK,
296 		"Expected pml4e to be present for gva: 0x%08lx", vaddr);
297 	TEST_ASSERT((pml4e[index[3]] & (rsvd_mask | PTE_LARGE_MASK)) == 0,
298 		"Unexpected reserved bits set.");
299 
300 	pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
301 	TEST_ASSERT(pdpe[index[2]] & PTE_PRESENT_MASK,
302 		"Expected pdpe to be present for gva: 0x%08lx", vaddr);
303 	TEST_ASSERT(!(pdpe[index[2]] & PTE_LARGE_MASK),
304 		"Expected pdpe to map a pde not a 1-GByte page.");
305 	TEST_ASSERT((pdpe[index[2]] & rsvd_mask) == 0,
306 		"Unexpected reserved bits set.");
307 
308 	pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
309 	TEST_ASSERT(pde[index[1]] & PTE_PRESENT_MASK,
310 		"Expected pde to be present for gva: 0x%08lx", vaddr);
311 	TEST_ASSERT(!(pde[index[1]] & PTE_LARGE_MASK),
312 		"Expected pde to map a pte not a 2-MByte page.");
313 	TEST_ASSERT((pde[index[1]] & rsvd_mask) == 0,
314 		"Unexpected reserved bits set.");
315 
316 	pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
317 	TEST_ASSERT(pte[index[0]] & PTE_PRESENT_MASK,
318 		"Expected pte to be present for gva: 0x%08lx", vaddr);
319 
320 	return &pte[index[0]];
321 }
322 
323 uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr)
324 {
325 	uint64_t *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
326 
327 	return *(uint64_t *)pte;
328 }
329 
330 void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr,
331 			     uint64_t pte)
332 {
333 	uint64_t *new_pte = _vm_get_page_table_entry(vm, vcpuid, vaddr);
334 
335 	*(uint64_t *)new_pte = pte;
336 }
337 
338 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
339 {
340 	uint64_t *pml4e, *pml4e_start;
341 	uint64_t *pdpe, *pdpe_start;
342 	uint64_t *pde, *pde_start;
343 	uint64_t *pte, *pte_start;
344 
345 	if (!vm->pgd_created)
346 		return;
347 
348 	fprintf(stream, "%*s                                          "
349 		"                no\n", indent, "");
350 	fprintf(stream, "%*s      index hvaddr         gpaddr         "
351 		"addr         w exec dirty\n",
352 		indent, "");
353 	pml4e_start = (uint64_t *) addr_gpa2hva(vm, vm->pgd);
354 	for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) {
355 		pml4e = &pml4e_start[n1];
356 		if (!(*pml4e & PTE_PRESENT_MASK))
357 			continue;
358 		fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10llx %u "
359 			" %u\n",
360 			indent, "",
361 			pml4e - pml4e_start, pml4e,
362 			addr_hva2gpa(vm, pml4e), PTE_GET_PFN(*pml4e),
363 			!!(*pml4e & PTE_WRITABLE_MASK), !!(*pml4e & PTE_NX_MASK));
364 
365 		pdpe_start = addr_gpa2hva(vm, *pml4e & PHYSICAL_PAGE_MASK);
366 		for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) {
367 			pdpe = &pdpe_start[n2];
368 			if (!(*pdpe & PTE_PRESENT_MASK))
369 				continue;
370 			fprintf(stream, "%*spdpe  0x%-3zx %p 0x%-12lx 0x%-10llx "
371 				"%u  %u\n",
372 				indent, "",
373 				pdpe - pdpe_start, pdpe,
374 				addr_hva2gpa(vm, pdpe),
375 				PTE_GET_PFN(*pdpe), !!(*pdpe & PTE_WRITABLE_MASK),
376 				!!(*pdpe & PTE_NX_MASK));
377 
378 			pde_start = addr_gpa2hva(vm, *pdpe & PHYSICAL_PAGE_MASK);
379 			for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) {
380 				pde = &pde_start[n3];
381 				if (!(*pde & PTE_PRESENT_MASK))
382 					continue;
383 				fprintf(stream, "%*spde   0x%-3zx %p "
384 					"0x%-12lx 0x%-10llx %u  %u\n",
385 					indent, "", pde - pde_start, pde,
386 					addr_hva2gpa(vm, pde),
387 					PTE_GET_PFN(*pde), !!(*pde & PTE_WRITABLE_MASK),
388 					!!(*pde & PTE_NX_MASK));
389 
390 				pte_start = addr_gpa2hva(vm, *pde & PHYSICAL_PAGE_MASK);
391 				for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) {
392 					pte = &pte_start[n4];
393 					if (!(*pte & PTE_PRESENT_MASK))
394 						continue;
395 					fprintf(stream, "%*spte   0x%-3zx %p "
396 						"0x%-12lx 0x%-10llx %u  %u "
397 						"    %u    0x%-10lx\n",
398 						indent, "",
399 						pte - pte_start, pte,
400 						addr_hva2gpa(vm, pte),
401 						PTE_GET_PFN(*pte),
402 						!!(*pte & PTE_WRITABLE_MASK),
403 						!!(*pte & PTE_NX_MASK),
404 						!!(*pte & PTE_DIRTY_MASK),
405 						((uint64_t) n1 << 27)
406 							| ((uint64_t) n2 << 18)
407 							| ((uint64_t) n3 << 9)
408 							| ((uint64_t) n4));
409 				}
410 			}
411 		}
412 	}
413 }
414 
415 /*
416  * Set Unusable Segment
417  *
418  * Input Args: None
419  *
420  * Output Args:
421  *   segp - Pointer to segment register
422  *
423  * Return: None
424  *
425  * Sets the segment register pointed to by @segp to an unusable state.
426  */
427 static void kvm_seg_set_unusable(struct kvm_segment *segp)
428 {
429 	memset(segp, 0, sizeof(*segp));
430 	segp->unusable = true;
431 }
432 
433 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp)
434 {
435 	void *gdt = addr_gva2hva(vm, vm->gdt);
436 	struct desc64 *desc = gdt + (segp->selector >> 3) * 8;
437 
438 	desc->limit0 = segp->limit & 0xFFFF;
439 	desc->base0 = segp->base & 0xFFFF;
440 	desc->base1 = segp->base >> 16;
441 	desc->type = segp->type;
442 	desc->s = segp->s;
443 	desc->dpl = segp->dpl;
444 	desc->p = segp->present;
445 	desc->limit1 = segp->limit >> 16;
446 	desc->avl = segp->avl;
447 	desc->l = segp->l;
448 	desc->db = segp->db;
449 	desc->g = segp->g;
450 	desc->base2 = segp->base >> 24;
451 	if (!segp->s)
452 		desc->base3 = segp->base >> 32;
453 }
454 
455 
456 /*
457  * Set Long Mode Flat Kernel Code Segment
458  *
459  * Input Args:
460  *   vm - VM whose GDT is being filled, or NULL to only write segp
461  *   selector - selector value
462  *
463  * Output Args:
464  *   segp - Pointer to KVM segment
465  *
466  * Return: None
467  *
468  * Sets up the KVM segment pointed to by @segp, to be a code segment
469  * with the selector value given by @selector.
470  */
471 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector,
472 	struct kvm_segment *segp)
473 {
474 	memset(segp, 0, sizeof(*segp));
475 	segp->selector = selector;
476 	segp->limit = 0xFFFFFFFFu;
477 	segp->s = 0x1; /* kTypeCodeData */
478 	segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed
479 					  * | kFlagCodeReadable
480 					  */
481 	segp->g = true;
482 	segp->l = true;
483 	segp->present = 1;
484 	if (vm)
485 		kvm_seg_fill_gdt_64bit(vm, segp);
486 }
487 
488 /*
489  * Set Long Mode Flat Kernel Data Segment
490  *
491  * Input Args:
492  *   vm - VM whose GDT is being filled, or NULL to only write segp
493  *   selector - selector value
494  *
495  * Output Args:
496  *   segp - Pointer to KVM segment
497  *
498  * Return: None
499  *
500  * Sets up the KVM segment pointed to by @segp, to be a data segment
501  * with the selector value given by @selector.
502  */
503 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector,
504 	struct kvm_segment *segp)
505 {
506 	memset(segp, 0, sizeof(*segp));
507 	segp->selector = selector;
508 	segp->limit = 0xFFFFFFFFu;
509 	segp->s = 0x1; /* kTypeCodeData */
510 	segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed
511 					  * | kFlagDataWritable
512 					  */
513 	segp->g = true;
514 	segp->present = true;
515 	if (vm)
516 		kvm_seg_fill_gdt_64bit(vm, segp);
517 }
518 
519 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
520 {
521 	uint16_t index[4];
522 	uint64_t *pml4e, *pdpe, *pde;
523 	uint64_t *pte;
524 
525 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
526 		"unknown or unsupported guest mode, mode: 0x%x", vm->mode);
527 
528 	index[0] = (gva >> 12) & 0x1ffu;
529 	index[1] = (gva >> 21) & 0x1ffu;
530 	index[2] = (gva >> 30) & 0x1ffu;
531 	index[3] = (gva >> 39) & 0x1ffu;
532 
533 	if (!vm->pgd_created)
534 		goto unmapped_gva;
535 	pml4e = addr_gpa2hva(vm, vm->pgd);
536 	if (!(pml4e[index[3]] & PTE_PRESENT_MASK))
537 		goto unmapped_gva;
538 
539 	pdpe = addr_gpa2hva(vm, PTE_GET_PFN(pml4e[index[3]]) * vm->page_size);
540 	if (!(pdpe[index[2]] & PTE_PRESENT_MASK))
541 		goto unmapped_gva;
542 
543 	pde = addr_gpa2hva(vm, PTE_GET_PFN(pdpe[index[2]]) * vm->page_size);
544 	if (!(pde[index[1]] & PTE_PRESENT_MASK))
545 		goto unmapped_gva;
546 
547 	pte = addr_gpa2hva(vm, PTE_GET_PFN(pde[index[1]]) * vm->page_size);
548 	if (!(pte[index[0]] & PTE_PRESENT_MASK))
549 		goto unmapped_gva;
550 
551 	return (PTE_GET_PFN(pte[index[0]]) * vm->page_size) + (gva & ~PAGE_MASK);
552 
553 unmapped_gva:
554 	TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
555 	exit(EXIT_FAILURE);
556 }
557 
558 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt)
559 {
560 	if (!vm->gdt)
561 		vm->gdt = vm_vaddr_alloc_page(vm);
562 
563 	dt->base = vm->gdt;
564 	dt->limit = getpagesize();
565 }
566 
567 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp,
568 				int selector)
569 {
570 	if (!vm->tss)
571 		vm->tss = vm_vaddr_alloc_page(vm);
572 
573 	memset(segp, 0, sizeof(*segp));
574 	segp->base = vm->tss;
575 	segp->limit = 0x67;
576 	segp->selector = selector;
577 	segp->type = 0xb;
578 	segp->present = 1;
579 	kvm_seg_fill_gdt_64bit(vm, segp);
580 }
581 
582 static void vcpu_setup(struct kvm_vm *vm, int vcpuid)
583 {
584 	struct kvm_sregs sregs;
585 
586 	/* Set mode specific system register values. */
587 	vcpu_sregs_get(vm, vcpuid, &sregs);
588 
589 	sregs.idt.limit = 0;
590 
591 	kvm_setup_gdt(vm, &sregs.gdt);
592 
593 	switch (vm->mode) {
594 	case VM_MODE_PXXV48_4K:
595 		sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG;
596 		sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR;
597 		sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX);
598 
599 		kvm_seg_set_unusable(&sregs.ldt);
600 		kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs);
601 		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds);
602 		kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es);
603 		kvm_setup_tss_64bit(vm, &sregs.tr, 0x18);
604 		break;
605 
606 	default:
607 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
608 	}
609 
610 	sregs.cr3 = vm->pgd;
611 	vcpu_sregs_set(vm, vcpuid, &sregs);
612 }
613 
614 #define CPUID_XFD_BIT (1 << 4)
615 static bool is_xfd_supported(void)
616 {
617 	int eax, ebx, ecx, edx;
618 	const int leaf = 0xd, subleaf = 0x1;
619 
620 	__asm__ __volatile__(
621 		"cpuid"
622 		: /* output */ "=a"(eax), "=b"(ebx),
623 		  "=c"(ecx), "=d"(edx)
624 		: /* input */ "0"(leaf), "2"(subleaf));
625 
626 	return !!(eax & CPUID_XFD_BIT);
627 }
628 
629 void vm_xsave_req_perm(int bit)
630 {
631 	int kvm_fd;
632 	u64 bitmask;
633 	long rc;
634 	struct kvm_device_attr attr = {
635 		.group = 0,
636 		.attr = KVM_X86_XCOMP_GUEST_SUPP,
637 		.addr = (unsigned long) &bitmask
638 	};
639 
640 	kvm_fd = open_kvm_dev_path_or_exit();
641 	rc = ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr);
642 	close(kvm_fd);
643 	if (rc == -1 && (errno == ENXIO || errno == EINVAL))
644 		exit(KSFT_SKIP);
645 	TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc);
646 	if (!(bitmask & (1ULL << bit)))
647 		exit(KSFT_SKIP);
648 
649 	if (!is_xfd_supported())
650 		exit(KSFT_SKIP);
651 
652 	rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
653 
654 	/*
655 	 * The older kernel version(<5.15) can't support
656 	 * ARCH_REQ_XCOMP_GUEST_PERM and directly return.
657 	 */
658 	if (rc)
659 		return;
660 
661 	rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask);
662 	TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc);
663 	TEST_ASSERT(bitmask & (1ULL << bit),
664 		    "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx",
665 		    bitmask);
666 }
667 
668 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code)
669 {
670 	struct kvm_mp_state mp_state;
671 	struct kvm_regs regs;
672 	vm_vaddr_t stack_vaddr;
673 	stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(),
674 				     DEFAULT_GUEST_STACK_VADDR_MIN);
675 
676 	/* Create VCPU */
677 	vm_vcpu_add(vm, vcpuid);
678 	vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
679 	vcpu_setup(vm, vcpuid);
680 
681 	/* Setup guest general purpose registers */
682 	vcpu_regs_get(vm, vcpuid, &regs);
683 	regs.rflags = regs.rflags | 0x2;
684 	regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize());
685 	regs.rip = (unsigned long) guest_code;
686 	vcpu_regs_set(vm, vcpuid, &regs);
687 
688 	/* Setup the MP state */
689 	mp_state.mp_state = 0;
690 	vcpu_set_mp_state(vm, vcpuid, &mp_state);
691 }
692 
693 /*
694  * Allocate an instance of struct kvm_cpuid2
695  *
696  * Input Args: None
697  *
698  * Output Args: None
699  *
700  * Return: A pointer to the allocated struct. The caller is responsible
701  * for freeing this struct.
702  *
703  * Since kvm_cpuid2 uses a 0-length array to allow a the size of the
704  * array to be decided at allocation time, allocation is slightly
705  * complicated. This function uses a reasonable default length for
706  * the array and performs the appropriate allocation.
707  */
708 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void)
709 {
710 	struct kvm_cpuid2 *cpuid;
711 	int nent = 100;
712 	size_t size;
713 
714 	size = sizeof(*cpuid);
715 	size += nent * sizeof(struct kvm_cpuid_entry2);
716 	cpuid = malloc(size);
717 	if (!cpuid) {
718 		perror("malloc");
719 		abort();
720 	}
721 
722 	cpuid->nent = nent;
723 
724 	return cpuid;
725 }
726 
727 /*
728  * KVM Supported CPUID Get
729  *
730  * Input Args: None
731  *
732  * Output Args:
733  *
734  * Return: The supported KVM CPUID
735  *
736  * Get the guest CPUID supported by KVM.
737  */
738 struct kvm_cpuid2 *kvm_get_supported_cpuid(void)
739 {
740 	static struct kvm_cpuid2 *cpuid;
741 	int ret;
742 	int kvm_fd;
743 
744 	if (cpuid)
745 		return cpuid;
746 
747 	cpuid = allocate_kvm_cpuid2();
748 	kvm_fd = open_kvm_dev_path_or_exit();
749 
750 	ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid);
751 	TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n",
752 		    ret, errno);
753 
754 	close(kvm_fd);
755 	return cpuid;
756 }
757 
758 /*
759  * KVM Get MSR
760  *
761  * Input Args:
762  *   msr_index - Index of MSR
763  *
764  * Output Args: None
765  *
766  * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
767  *
768  * Get value of MSR for VCPU.
769  */
770 uint64_t kvm_get_feature_msr(uint64_t msr_index)
771 {
772 	struct {
773 		struct kvm_msrs header;
774 		struct kvm_msr_entry entry;
775 	} buffer = {};
776 	int r, kvm_fd;
777 
778 	buffer.header.nmsrs = 1;
779 	buffer.entry.index = msr_index;
780 	kvm_fd = open_kvm_dev_path_or_exit();
781 
782 	r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header);
783 	TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
784 		"  rc: %i errno: %i", r, errno);
785 
786 	close(kvm_fd);
787 	return buffer.entry.data;
788 }
789 
790 /*
791  * VM VCPU CPUID Set
792  *
793  * Input Args:
794  *   vm - Virtual Machine
795  *   vcpuid - VCPU id
796  *
797  * Output Args: None
798  *
799  * Return: KVM CPUID (KVM_GET_CPUID2)
800  *
801  * Set the VCPU's CPUID.
802  */
803 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
804 {
805 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
806 	struct kvm_cpuid2 *cpuid;
807 	int max_ent;
808 	int rc = -1;
809 
810 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
811 
812 	cpuid = allocate_kvm_cpuid2();
813 	max_ent = cpuid->nent;
814 
815 	for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) {
816 		rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid);
817 		if (!rc)
818 			break;
819 
820 		TEST_ASSERT(rc == -1 && errno == E2BIG,
821 			    "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d",
822 			    rc, errno);
823 	}
824 
825 	TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i",
826 		    rc, errno);
827 
828 	return cpuid;
829 }
830 
831 
832 
833 /*
834  * Locate a cpuid entry.
835  *
836  * Input Args:
837  *   function: The function of the cpuid entry to find.
838  *   index: The index of the cpuid entry.
839  *
840  * Output Args: None
841  *
842  * Return: A pointer to the cpuid entry. Never returns NULL.
843  */
844 struct kvm_cpuid_entry2 *
845 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index)
846 {
847 	struct kvm_cpuid2 *cpuid;
848 	struct kvm_cpuid_entry2 *entry = NULL;
849 	int i;
850 
851 	cpuid = kvm_get_supported_cpuid();
852 	for (i = 0; i < cpuid->nent; i++) {
853 		if (cpuid->entries[i].function == function &&
854 		    cpuid->entries[i].index == index) {
855 			entry = &cpuid->entries[i];
856 			break;
857 		}
858 	}
859 
860 	TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).",
861 		    function, index);
862 	return entry;
863 }
864 
865 
866 int __vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid,
867 		     struct kvm_cpuid2 *cpuid)
868 {
869 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
870 
871 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
872 
873 	return ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid);
874 }
875 
876 /*
877  * VM VCPU CPUID Set
878  *
879  * Input Args:
880  *   vm - Virtual Machine
881  *   vcpuid - VCPU id
882  *   cpuid - The CPUID values to set.
883  *
884  * Output Args: None
885  *
886  * Return: void
887  *
888  * Set the VCPU's CPUID.
889  */
890 void vcpu_set_cpuid(struct kvm_vm *vm,
891 		uint32_t vcpuid, struct kvm_cpuid2 *cpuid)
892 {
893 	int rc;
894 
895 	rc = __vcpu_set_cpuid(vm, vcpuid, cpuid);
896 	TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i",
897 		    rc, errno);
898 
899 }
900 
901 /*
902  * VCPU Get MSR
903  *
904  * Input Args:
905  *   vm - Virtual Machine
906  *   vcpuid - VCPU ID
907  *   msr_index - Index of MSR
908  *
909  * Output Args: None
910  *
911  * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced.
912  *
913  * Get value of MSR for VCPU.
914  */
915 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index)
916 {
917 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
918 	struct {
919 		struct kvm_msrs header;
920 		struct kvm_msr_entry entry;
921 	} buffer = {};
922 	int r;
923 
924 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
925 	buffer.header.nmsrs = 1;
926 	buffer.entry.index = msr_index;
927 	r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header);
928 	TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n"
929 		"  rc: %i errno: %i", r, errno);
930 
931 	return buffer.entry.data;
932 }
933 
934 /*
935  * _VCPU Set MSR
936  *
937  * Input Args:
938  *   vm - Virtual Machine
939  *   vcpuid - VCPU ID
940  *   msr_index - Index of MSR
941  *   msr_value - New value of MSR
942  *
943  * Output Args: None
944  *
945  * Return: The result of KVM_SET_MSRS.
946  *
947  * Sets the value of an MSR for the given VCPU.
948  */
949 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
950 		  uint64_t msr_value)
951 {
952 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
953 	struct {
954 		struct kvm_msrs header;
955 		struct kvm_msr_entry entry;
956 	} buffer = {};
957 	int r;
958 
959 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
960 	memset(&buffer, 0, sizeof(buffer));
961 	buffer.header.nmsrs = 1;
962 	buffer.entry.index = msr_index;
963 	buffer.entry.data = msr_value;
964 	r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header);
965 	return r;
966 }
967 
968 /*
969  * VCPU Set MSR
970  *
971  * Input Args:
972  *   vm - Virtual Machine
973  *   vcpuid - VCPU ID
974  *   msr_index - Index of MSR
975  *   msr_value - New value of MSR
976  *
977  * Output Args: None
978  *
979  * Return: On success, nothing. On failure a TEST_ASSERT is produced.
980  *
981  * Set value of MSR for VCPU.
982  */
983 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index,
984 	uint64_t msr_value)
985 {
986 	int r;
987 
988 	r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value);
989 	TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n"
990 		"  rc: %i errno: %i", r, errno);
991 }
992 
993 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...)
994 {
995 	va_list ap;
996 	struct kvm_regs regs;
997 
998 	TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n"
999 		    "  num: %u\n",
1000 		    num);
1001 
1002 	va_start(ap, num);
1003 	vcpu_regs_get(vm, vcpuid, &regs);
1004 
1005 	if (num >= 1)
1006 		regs.rdi = va_arg(ap, uint64_t);
1007 
1008 	if (num >= 2)
1009 		regs.rsi = va_arg(ap, uint64_t);
1010 
1011 	if (num >= 3)
1012 		regs.rdx = va_arg(ap, uint64_t);
1013 
1014 	if (num >= 4)
1015 		regs.rcx = va_arg(ap, uint64_t);
1016 
1017 	if (num >= 5)
1018 		regs.r8 = va_arg(ap, uint64_t);
1019 
1020 	if (num >= 6)
1021 		regs.r9 = va_arg(ap, uint64_t);
1022 
1023 	vcpu_regs_set(vm, vcpuid, &regs);
1024 	va_end(ap);
1025 }
1026 
1027 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent)
1028 {
1029 	struct kvm_regs regs;
1030 	struct kvm_sregs sregs;
1031 
1032 	fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid);
1033 
1034 	fprintf(stream, "%*sregs:\n", indent + 2, "");
1035 	vcpu_regs_get(vm, vcpuid, &regs);
1036 	regs_dump(stream, &regs, indent + 4);
1037 
1038 	fprintf(stream, "%*ssregs:\n", indent + 2, "");
1039 	vcpu_sregs_get(vm, vcpuid, &sregs);
1040 	sregs_dump(stream, &sregs, indent + 4);
1041 }
1042 
1043 static int kvm_get_num_msrs_fd(int kvm_fd)
1044 {
1045 	struct kvm_msr_list nmsrs;
1046 	int r;
1047 
1048 	nmsrs.nmsrs = 0;
1049 	r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs);
1050 	TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i",
1051 		r);
1052 
1053 	return nmsrs.nmsrs;
1054 }
1055 
1056 static int kvm_get_num_msrs(struct kvm_vm *vm)
1057 {
1058 	return kvm_get_num_msrs_fd(vm->kvm_fd);
1059 }
1060 
1061 struct kvm_msr_list *kvm_get_msr_index_list(void)
1062 {
1063 	struct kvm_msr_list *list;
1064 	int nmsrs, r, kvm_fd;
1065 
1066 	kvm_fd = open_kvm_dev_path_or_exit();
1067 
1068 	nmsrs = kvm_get_num_msrs_fd(kvm_fd);
1069 	list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1070 	list->nmsrs = nmsrs;
1071 	r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1072 	close(kvm_fd);
1073 
1074 	TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1075 		r);
1076 
1077 	return list;
1078 }
1079 
1080 static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu,
1081 				 struct kvm_x86_state *state)
1082 {
1083 	int size;
1084 
1085 	size = vm_check_cap(vm, KVM_CAP_XSAVE2);
1086 	if (!size)
1087 		size = sizeof(struct kvm_xsave);
1088 
1089 	state->xsave = malloc(size);
1090 	if (size == sizeof(struct kvm_xsave))
1091 		return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave);
1092 	else
1093 		return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave);
1094 }
1095 
1096 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid)
1097 {
1098 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1099 	struct kvm_msr_list *list;
1100 	struct kvm_x86_state *state;
1101 	int nmsrs, r, i;
1102 	static int nested_size = -1;
1103 
1104 	if (nested_size == -1) {
1105 		nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE);
1106 		TEST_ASSERT(nested_size <= sizeof(state->nested_),
1107 			    "Nested state size too big, %i > %zi",
1108 			    nested_size, sizeof(state->nested_));
1109 	}
1110 
1111 	/*
1112 	 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees
1113 	 * guest state is consistent only after userspace re-enters the
1114 	 * kernel with KVM_RUN.  Complete IO prior to migrating state
1115 	 * to a new VM.
1116 	 */
1117 	vcpu_run_complete_io(vm, vcpuid);
1118 
1119 	nmsrs = kvm_get_num_msrs(vm);
1120 	list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0]));
1121 	list->nmsrs = nmsrs;
1122 	r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list);
1123 	TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i",
1124 		    r);
1125 
1126 	state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0]));
1127 	r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events);
1128 	TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i",
1129 		    r);
1130 
1131 	r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state);
1132 	TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i",
1133 		    r);
1134 
1135 	r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs);
1136 	TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i",
1137 		    r);
1138 
1139 	r = vcpu_save_xsave_state(vm, vcpu, state);
1140 	TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i",
1141 		    r);
1142 
1143 	if (kvm_check_cap(KVM_CAP_XCRS)) {
1144 		r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs);
1145 		TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i",
1146 			    r);
1147 	}
1148 
1149 	r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs);
1150 	TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i",
1151 		    r);
1152 
1153 	if (nested_size) {
1154 		state->nested.size = sizeof(state->nested_);
1155 		r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested);
1156 		TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i",
1157 			    r);
1158 		TEST_ASSERT(state->nested.size <= nested_size,
1159 			    "Nested state size too big, %i (KVM_CHECK_CAP gave %i)",
1160 			    state->nested.size, nested_size);
1161 	} else
1162 		state->nested.size = 0;
1163 
1164 	state->msrs.nmsrs = nmsrs;
1165 	for (i = 0; i < nmsrs; i++)
1166 		state->msrs.entries[i].index = list->indices[i];
1167 	r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs);
1168 	TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)",
1169 		    r, r == nmsrs ? -1 : list->indices[r]);
1170 
1171 	r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs);
1172 	TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i",
1173 		    r);
1174 
1175 	free(list);
1176 	return state;
1177 }
1178 
1179 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state)
1180 {
1181 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1182 	int r;
1183 
1184 	r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs);
1185 	TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i",
1186 		    r);
1187 
1188 	r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs);
1189 	TEST_ASSERT(r == state->msrs.nmsrs,
1190 		"Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)",
1191 		r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index);
1192 
1193 	if (kvm_check_cap(KVM_CAP_XCRS)) {
1194 		r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs);
1195 		TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i",
1196 			    r);
1197 	}
1198 
1199 	r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave);
1200 	TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i",
1201 		    r);
1202 
1203 	r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events);
1204 	TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i",
1205 		    r);
1206 
1207 	r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state);
1208 	TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i",
1209 		    r);
1210 
1211 	r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs);
1212 	TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i",
1213 		    r);
1214 
1215 	r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs);
1216 	TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i",
1217 		    r);
1218 
1219 	if (state->nested.size) {
1220 		r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested);
1221 		TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i",
1222 			    r);
1223 	}
1224 }
1225 
1226 void kvm_x86_state_cleanup(struct kvm_x86_state *state)
1227 {
1228 	free(state->xsave);
1229 	free(state);
1230 }
1231 
1232 static bool cpu_vendor_string_is(const char *vendor)
1233 {
1234 	const uint32_t *chunk = (const uint32_t *)vendor;
1235 	int eax, ebx, ecx, edx;
1236 	const int leaf = 0;
1237 
1238 	__asm__ __volatile__(
1239 		"cpuid"
1240 		: /* output */ "=a"(eax), "=b"(ebx),
1241 		  "=c"(ecx), "=d"(edx)
1242 		: /* input */ "0"(leaf), "2"(0));
1243 
1244 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
1245 }
1246 
1247 bool is_intel_cpu(void)
1248 {
1249 	return cpu_vendor_string_is("GenuineIntel");
1250 }
1251 
1252 /*
1253  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
1254  */
1255 bool is_amd_cpu(void)
1256 {
1257 	return cpu_vendor_string_is("AuthenticAMD");
1258 }
1259 
1260 uint32_t kvm_get_cpuid_max_basic(void)
1261 {
1262 	return kvm_get_supported_cpuid_entry(0)->eax;
1263 }
1264 
1265 uint32_t kvm_get_cpuid_max_extended(void)
1266 {
1267 	return kvm_get_supported_cpuid_entry(0x80000000)->eax;
1268 }
1269 
1270 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits)
1271 {
1272 	struct kvm_cpuid_entry2 *entry;
1273 	bool pae;
1274 
1275 	/* SDM 4.1.4 */
1276 	if (kvm_get_cpuid_max_extended() < 0x80000008) {
1277 		pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6);
1278 		*pa_bits = pae ? 36 : 32;
1279 		*va_bits = 32;
1280 	} else {
1281 		entry = kvm_get_supported_cpuid_entry(0x80000008);
1282 		*pa_bits = entry->eax & 0xff;
1283 		*va_bits = (entry->eax >> 8) & 0xff;
1284 	}
1285 }
1286 
1287 struct idt_entry {
1288 	uint16_t offset0;
1289 	uint16_t selector;
1290 	uint16_t ist : 3;
1291 	uint16_t : 5;
1292 	uint16_t type : 4;
1293 	uint16_t : 1;
1294 	uint16_t dpl : 2;
1295 	uint16_t p : 1;
1296 	uint16_t offset1;
1297 	uint32_t offset2; uint32_t reserved;
1298 };
1299 
1300 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr,
1301 			  int dpl, unsigned short selector)
1302 {
1303 	struct idt_entry *base =
1304 		(struct idt_entry *)addr_gva2hva(vm, vm->idt);
1305 	struct idt_entry *e = &base[vector];
1306 
1307 	memset(e, 0, sizeof(*e));
1308 	e->offset0 = addr;
1309 	e->selector = selector;
1310 	e->ist = 0;
1311 	e->type = 14;
1312 	e->dpl = dpl;
1313 	e->p = 1;
1314 	e->offset1 = addr >> 16;
1315 	e->offset2 = addr >> 32;
1316 }
1317 
1318 void kvm_exit_unexpected_vector(uint32_t value)
1319 {
1320 	ucall(UCALL_UNHANDLED, 1, value);
1321 }
1322 
1323 void route_exception(struct ex_regs *regs)
1324 {
1325 	typedef void(*handler)(struct ex_regs *);
1326 	handler *handlers = (handler *)exception_handlers;
1327 
1328 	if (handlers && handlers[regs->vector]) {
1329 		handlers[regs->vector](regs);
1330 		return;
1331 	}
1332 
1333 	kvm_exit_unexpected_vector(regs->vector);
1334 }
1335 
1336 void vm_init_descriptor_tables(struct kvm_vm *vm)
1337 {
1338 	extern void *idt_handlers;
1339 	int i;
1340 
1341 	vm->idt = vm_vaddr_alloc_page(vm);
1342 	vm->handlers = vm_vaddr_alloc_page(vm);
1343 	/* Handlers have the same address in both address spaces.*/
1344 	for (i = 0; i < NUM_INTERRUPTS; i++)
1345 		set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0,
1346 			DEFAULT_CODE_SELECTOR);
1347 }
1348 
1349 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid)
1350 {
1351 	struct kvm_sregs sregs;
1352 
1353 	vcpu_sregs_get(vm, vcpuid, &sregs);
1354 	sregs.idt.base = vm->idt;
1355 	sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1;
1356 	sregs.gdt.base = vm->gdt;
1357 	sregs.gdt.limit = getpagesize() - 1;
1358 	kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs);
1359 	vcpu_sregs_set(vm, vcpuid, &sregs);
1360 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
1361 }
1362 
1363 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1364 			       void (*handler)(struct ex_regs *))
1365 {
1366 	vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers);
1367 
1368 	handlers[vector] = (vm_vaddr_t)handler;
1369 }
1370 
1371 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid)
1372 {
1373 	struct ucall uc;
1374 
1375 	if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) {
1376 		uint64_t vector = uc.args[0];
1377 
1378 		TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)",
1379 			  vector);
1380 	}
1381 }
1382 
1383 struct kvm_cpuid_entry2 *get_cpuid(struct kvm_cpuid2 *cpuid, uint32_t function,
1384 				   uint32_t index)
1385 {
1386 	int i;
1387 
1388 	for (i = 0; i < cpuid->nent; i++) {
1389 		struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1390 
1391 		if (cur->function == function && cur->index == index)
1392 			return cur;
1393 	}
1394 
1395 	TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index);
1396 
1397 	return NULL;
1398 }
1399 
1400 bool set_cpuid(struct kvm_cpuid2 *cpuid,
1401 	       struct kvm_cpuid_entry2 *ent)
1402 {
1403 	int i;
1404 
1405 	for (i = 0; i < cpuid->nent; i++) {
1406 		struct kvm_cpuid_entry2 *cur = &cpuid->entries[i];
1407 
1408 		if (cur->function != ent->function || cur->index != ent->index)
1409 			continue;
1410 
1411 		memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2));
1412 		return true;
1413 	}
1414 
1415 	return false;
1416 }
1417 
1418 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1419 		       uint64_t a3)
1420 {
1421 	uint64_t r;
1422 
1423 	asm volatile("vmcall"
1424 		     : "=a"(r)
1425 		     : "b"(a0), "c"(a1), "d"(a2), "S"(a3));
1426 	return r;
1427 }
1428 
1429 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void)
1430 {
1431 	static struct kvm_cpuid2 *cpuid;
1432 	int ret;
1433 	int kvm_fd;
1434 
1435 	if (cpuid)
1436 		return cpuid;
1437 
1438 	cpuid = allocate_kvm_cpuid2();
1439 	kvm_fd = open_kvm_dev_path_or_exit();
1440 
1441 	ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1442 	TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n",
1443 		    ret, errno);
1444 
1445 	close(kvm_fd);
1446 	return cpuid;
1447 }
1448 
1449 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1450 {
1451 	static struct kvm_cpuid2 *cpuid_full;
1452 	struct kvm_cpuid2 *cpuid_sys, *cpuid_hv;
1453 	int i, nent = 0;
1454 
1455 	if (!cpuid_full) {
1456 		cpuid_sys = kvm_get_supported_cpuid();
1457 		cpuid_hv = kvm_get_supported_hv_cpuid();
1458 
1459 		cpuid_full = malloc(sizeof(*cpuid_full) +
1460 				    (cpuid_sys->nent + cpuid_hv->nent) *
1461 				    sizeof(struct kvm_cpuid_entry2));
1462 		if (!cpuid_full) {
1463 			perror("malloc");
1464 			abort();
1465 		}
1466 
1467 		/* Need to skip KVM CPUID leaves 0x400000xx */
1468 		for (i = 0; i < cpuid_sys->nent; i++) {
1469 			if (cpuid_sys->entries[i].function >= 0x40000000 &&
1470 			    cpuid_sys->entries[i].function < 0x40000100)
1471 				continue;
1472 			cpuid_full->entries[nent] = cpuid_sys->entries[i];
1473 			nent++;
1474 		}
1475 
1476 		memcpy(&cpuid_full->entries[nent], cpuid_hv->entries,
1477 		       cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2));
1478 		cpuid_full->nent = nent + cpuid_hv->nent;
1479 	}
1480 
1481 	vcpu_set_cpuid(vm, vcpuid, cpuid_full);
1482 }
1483 
1484 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid)
1485 {
1486 	static struct kvm_cpuid2 *cpuid;
1487 
1488 	cpuid = allocate_kvm_cpuid2();
1489 
1490 	vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1491 
1492 	return cpuid;
1493 }
1494 
1495 unsigned long vm_compute_max_gfn(struct kvm_vm *vm)
1496 {
1497 	const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */
1498 	unsigned long ht_gfn, max_gfn, max_pfn;
1499 	uint32_t eax, ebx, ecx, edx, max_ext_leaf;
1500 
1501 	max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1;
1502 
1503 	/* Avoid reserved HyperTransport region on AMD processors.  */
1504 	if (!is_amd_cpu())
1505 		return max_gfn;
1506 
1507 	/* On parts with <40 physical address bits, the area is fully hidden */
1508 	if (vm->pa_bits < 40)
1509 		return max_gfn;
1510 
1511 	/* Before family 17h, the HyperTransport area is just below 1T.  */
1512 	ht_gfn = (1 << 28) - num_ht_pages;
1513 	eax = 1;
1514 	ecx = 0;
1515 	cpuid(&eax, &ebx, &ecx, &edx);
1516 	if (x86_family(eax) < 0x17)
1517 		goto done;
1518 
1519 	/*
1520 	 * Otherwise it's at the top of the physical address space, possibly
1521 	 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX.  Use
1522 	 * the old conservative value if MAXPHYADDR is not enumerated.
1523 	 */
1524 	eax = 0x80000000;
1525 	cpuid(&eax, &ebx, &ecx, &edx);
1526 	max_ext_leaf = eax;
1527 	if (max_ext_leaf < 0x80000008)
1528 		goto done;
1529 
1530 	eax = 0x80000008;
1531 	cpuid(&eax, &ebx, &ecx, &edx);
1532 	max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1;
1533 	if (max_ext_leaf >= 0x8000001f) {
1534 		eax = 0x8000001f;
1535 		cpuid(&eax, &ebx, &ecx, &edx);
1536 		max_pfn >>= (ebx >> 6) & 0x3f;
1537 	}
1538 
1539 	ht_gfn = max_pfn - num_ht_pages;
1540 done:
1541 	return min(max_gfn, ht_gfn - 1);
1542 }
1543