1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/processor.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "test_util.h" 9 #include "kvm_util.h" 10 #include "../kvm_util_internal.h" 11 #include "processor.h" 12 13 #ifndef NUM_INTERRUPTS 14 #define NUM_INTERRUPTS 256 15 #endif 16 17 #define DEFAULT_CODE_SELECTOR 0x8 18 #define DEFAULT_DATA_SELECTOR 0x10 19 20 vm_vaddr_t exception_handlers; 21 22 /* Virtual translation table structure declarations */ 23 struct pageUpperEntry { 24 uint64_t present:1; 25 uint64_t writable:1; 26 uint64_t user:1; 27 uint64_t write_through:1; 28 uint64_t cache_disable:1; 29 uint64_t accessed:1; 30 uint64_t ignored_06:1; 31 uint64_t page_size:1; 32 uint64_t ignored_11_08:4; 33 uint64_t pfn:40; 34 uint64_t ignored_62_52:11; 35 uint64_t execute_disable:1; 36 }; 37 38 struct pageTableEntry { 39 uint64_t present:1; 40 uint64_t writable:1; 41 uint64_t user:1; 42 uint64_t write_through:1; 43 uint64_t cache_disable:1; 44 uint64_t accessed:1; 45 uint64_t dirty:1; 46 uint64_t reserved_07:1; 47 uint64_t global:1; 48 uint64_t ignored_11_09:3; 49 uint64_t pfn:40; 50 uint64_t ignored_62_52:11; 51 uint64_t execute_disable:1; 52 }; 53 54 void regs_dump(FILE *stream, struct kvm_regs *regs, 55 uint8_t indent) 56 { 57 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " 58 "rcx: 0x%.16llx rdx: 0x%.16llx\n", 59 indent, "", 60 regs->rax, regs->rbx, regs->rcx, regs->rdx); 61 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " 62 "rsp: 0x%.16llx rbp: 0x%.16llx\n", 63 indent, "", 64 regs->rsi, regs->rdi, regs->rsp, regs->rbp); 65 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " 66 "r10: 0x%.16llx r11: 0x%.16llx\n", 67 indent, "", 68 regs->r8, regs->r9, regs->r10, regs->r11); 69 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " 70 "r14: 0x%.16llx r15: 0x%.16llx\n", 71 indent, "", 72 regs->r12, regs->r13, regs->r14, regs->r15); 73 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", 74 indent, "", 75 regs->rip, regs->rflags); 76 } 77 78 /* 79 * Segment Dump 80 * 81 * Input Args: 82 * stream - Output FILE stream 83 * segment - KVM segment 84 * indent - Left margin indent amount 85 * 86 * Output Args: None 87 * 88 * Return: None 89 * 90 * Dumps the state of the KVM segment given by @segment, to the FILE stream 91 * given by @stream. 92 */ 93 static void segment_dump(FILE *stream, struct kvm_segment *segment, 94 uint8_t indent) 95 { 96 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " 97 "selector: 0x%.4x type: 0x%.2x\n", 98 indent, "", segment->base, segment->limit, 99 segment->selector, segment->type); 100 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " 101 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", 102 indent, "", segment->present, segment->dpl, 103 segment->db, segment->s, segment->l); 104 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " 105 "unusable: 0x%.2x padding: 0x%.2x\n", 106 indent, "", segment->g, segment->avl, 107 segment->unusable, segment->padding); 108 } 109 110 /* 111 * dtable Dump 112 * 113 * Input Args: 114 * stream - Output FILE stream 115 * dtable - KVM dtable 116 * indent - Left margin indent amount 117 * 118 * Output Args: None 119 * 120 * Return: None 121 * 122 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream 123 * given by @stream. 124 */ 125 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, 126 uint8_t indent) 127 { 128 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " 129 "padding: 0x%.4x 0x%.4x 0x%.4x\n", 130 indent, "", dtable->base, dtable->limit, 131 dtable->padding[0], dtable->padding[1], dtable->padding[2]); 132 } 133 134 void sregs_dump(FILE *stream, struct kvm_sregs *sregs, 135 uint8_t indent) 136 { 137 unsigned int i; 138 139 fprintf(stream, "%*scs:\n", indent, ""); 140 segment_dump(stream, &sregs->cs, indent + 2); 141 fprintf(stream, "%*sds:\n", indent, ""); 142 segment_dump(stream, &sregs->ds, indent + 2); 143 fprintf(stream, "%*ses:\n", indent, ""); 144 segment_dump(stream, &sregs->es, indent + 2); 145 fprintf(stream, "%*sfs:\n", indent, ""); 146 segment_dump(stream, &sregs->fs, indent + 2); 147 fprintf(stream, "%*sgs:\n", indent, ""); 148 segment_dump(stream, &sregs->gs, indent + 2); 149 fprintf(stream, "%*sss:\n", indent, ""); 150 segment_dump(stream, &sregs->ss, indent + 2); 151 fprintf(stream, "%*str:\n", indent, ""); 152 segment_dump(stream, &sregs->tr, indent + 2); 153 fprintf(stream, "%*sldt:\n", indent, ""); 154 segment_dump(stream, &sregs->ldt, indent + 2); 155 156 fprintf(stream, "%*sgdt:\n", indent, ""); 157 dtable_dump(stream, &sregs->gdt, indent + 2); 158 fprintf(stream, "%*sidt:\n", indent, ""); 159 dtable_dump(stream, &sregs->idt, indent + 2); 160 161 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " 162 "cr3: 0x%.16llx cr4: 0x%.16llx\n", 163 indent, "", 164 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); 165 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " 166 "apic_base: 0x%.16llx\n", 167 indent, "", 168 sregs->cr8, sregs->efer, sregs->apic_base); 169 170 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); 171 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { 172 fprintf(stream, "%*s%.16llx\n", indent + 2, "", 173 sregs->interrupt_bitmap[i]); 174 } 175 } 176 177 void virt_pgd_alloc(struct kvm_vm *vm) 178 { 179 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 180 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 181 182 /* If needed, create page map l4 table. */ 183 if (!vm->pgd_created) { 184 vm->pgd = vm_alloc_page_table(vm); 185 vm->pgd_created = true; 186 } 187 } 188 189 static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr, 190 int level) 191 { 192 uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift); 193 int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu; 194 195 return &page_table[index]; 196 } 197 198 static struct pageUpperEntry *virt_create_upper_pte(struct kvm_vm *vm, 199 uint64_t pt_pfn, 200 uint64_t vaddr, 201 uint64_t paddr, 202 int level, 203 enum x86_page_size page_size) 204 { 205 struct pageUpperEntry *pte = virt_get_pte(vm, pt_pfn, vaddr, level); 206 207 if (!pte->present) { 208 pte->writable = true; 209 pte->present = true; 210 pte->page_size = (level == page_size); 211 if (pte->page_size) 212 pte->pfn = paddr >> vm->page_shift; 213 else 214 pte->pfn = vm_alloc_page_table(vm) >> vm->page_shift; 215 } else { 216 /* 217 * Entry already present. Assert that the caller doesn't want 218 * a hugepage at this level, and that there isn't a hugepage at 219 * this level. 220 */ 221 TEST_ASSERT(level != page_size, 222 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n", 223 page_size, vaddr); 224 TEST_ASSERT(!pte->page_size, 225 "Cannot create page table at level: %u, vaddr: 0x%lx\n", 226 level, vaddr); 227 } 228 return pte; 229 } 230 231 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 232 enum x86_page_size page_size) 233 { 234 const uint64_t pg_size = 1ull << ((page_size * 9) + 12); 235 struct pageUpperEntry *pml4e, *pdpe, *pde; 236 struct pageTableEntry *pte; 237 238 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, 239 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); 240 241 TEST_ASSERT((vaddr % pg_size) == 0, 242 "Virtual address not aligned,\n" 243 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); 244 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), 245 "Invalid virtual address, vaddr: 0x%lx", vaddr); 246 TEST_ASSERT((paddr % pg_size) == 0, 247 "Physical address not aligned,\n" 248 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); 249 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 250 "Physical address beyond maximum supported,\n" 251 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 252 paddr, vm->max_gfn, vm->page_size); 253 254 /* 255 * Allocate upper level page tables, if not already present. Return 256 * early if a hugepage was created. 257 */ 258 pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift, 259 vaddr, paddr, 3, page_size); 260 if (pml4e->page_size) 261 return; 262 263 pdpe = virt_create_upper_pte(vm, pml4e->pfn, vaddr, paddr, 2, page_size); 264 if (pdpe->page_size) 265 return; 266 267 pde = virt_create_upper_pte(vm, pdpe->pfn, vaddr, paddr, 1, page_size); 268 if (pde->page_size) 269 return; 270 271 /* Fill in page table entry. */ 272 pte = virt_get_pte(vm, pde->pfn, vaddr, 0); 273 TEST_ASSERT(!pte->present, 274 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr); 275 pte->pfn = paddr >> vm->page_shift; 276 pte->writable = true; 277 pte->present = 1; 278 } 279 280 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 281 { 282 __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K); 283 } 284 285 static struct pageTableEntry *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, 286 uint64_t vaddr) 287 { 288 uint16_t index[4]; 289 struct pageUpperEntry *pml4e, *pdpe, *pde; 290 struct pageTableEntry *pte; 291 struct kvm_cpuid_entry2 *entry; 292 struct kvm_sregs sregs; 293 int max_phy_addr; 294 /* Set the bottom 52 bits. */ 295 uint64_t rsvd_mask = 0x000fffffffffffff; 296 297 entry = kvm_get_supported_cpuid_index(0x80000008, 0); 298 max_phy_addr = entry->eax & 0x000000ff; 299 /* Clear the bottom bits of the reserved mask. */ 300 rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr; 301 302 /* 303 * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries 304 * with 4-Level Paging and 5-Level Paging". 305 * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, 306 * the XD flag (bit 63) is reserved. 307 */ 308 vcpu_sregs_get(vm, vcpuid, &sregs); 309 if ((sregs.efer & EFER_NX) == 0) { 310 rsvd_mask |= (1ull << 63); 311 } 312 313 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 314 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 315 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 316 (vaddr >> vm->page_shift)), 317 "Invalid virtual address, vaddr: 0x%lx", 318 vaddr); 319 /* 320 * Based on the mode check above there are 48 bits in the vaddr, so 321 * shift 16 to sign extend the last bit (bit-47), 322 */ 323 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), 324 "Canonical check failed. The virtual address is invalid."); 325 326 index[0] = (vaddr >> 12) & 0x1ffu; 327 index[1] = (vaddr >> 21) & 0x1ffu; 328 index[2] = (vaddr >> 30) & 0x1ffu; 329 index[3] = (vaddr >> 39) & 0x1ffu; 330 331 pml4e = addr_gpa2hva(vm, vm->pgd); 332 TEST_ASSERT(pml4e[index[3]].present, 333 "Expected pml4e to be present for gva: 0x%08lx", vaddr); 334 TEST_ASSERT((*(uint64_t*)(&pml4e[index[3]]) & 335 (rsvd_mask | (1ull << 7))) == 0, 336 "Unexpected reserved bits set."); 337 338 pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size); 339 TEST_ASSERT(pdpe[index[2]].present, 340 "Expected pdpe to be present for gva: 0x%08lx", vaddr); 341 TEST_ASSERT(pdpe[index[2]].page_size == 0, 342 "Expected pdpe to map a pde not a 1-GByte page."); 343 TEST_ASSERT((*(uint64_t*)(&pdpe[index[2]]) & rsvd_mask) == 0, 344 "Unexpected reserved bits set."); 345 346 pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size); 347 TEST_ASSERT(pde[index[1]].present, 348 "Expected pde to be present for gva: 0x%08lx", vaddr); 349 TEST_ASSERT(pde[index[1]].page_size == 0, 350 "Expected pde to map a pte not a 2-MByte page."); 351 TEST_ASSERT((*(uint64_t*)(&pde[index[1]]) & rsvd_mask) == 0, 352 "Unexpected reserved bits set."); 353 354 pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size); 355 TEST_ASSERT(pte[index[0]].present, 356 "Expected pte to be present for gva: 0x%08lx", vaddr); 357 358 return &pte[index[0]]; 359 } 360 361 uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr) 362 { 363 struct pageTableEntry *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr); 364 365 return *(uint64_t *)pte; 366 } 367 368 void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr, 369 uint64_t pte) 370 { 371 struct pageTableEntry *new_pte = _vm_get_page_table_entry(vm, vcpuid, 372 vaddr); 373 374 *(uint64_t *)new_pte = pte; 375 } 376 377 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 378 { 379 struct pageUpperEntry *pml4e, *pml4e_start; 380 struct pageUpperEntry *pdpe, *pdpe_start; 381 struct pageUpperEntry *pde, *pde_start; 382 struct pageTableEntry *pte, *pte_start; 383 384 if (!vm->pgd_created) 385 return; 386 387 fprintf(stream, "%*s " 388 " no\n", indent, ""); 389 fprintf(stream, "%*s index hvaddr gpaddr " 390 "addr w exec dirty\n", 391 indent, ""); 392 pml4e_start = (struct pageUpperEntry *) addr_gpa2hva(vm, vm->pgd); 393 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { 394 pml4e = &pml4e_start[n1]; 395 if (!pml4e->present) 396 continue; 397 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u " 398 " %u\n", 399 indent, "", 400 pml4e - pml4e_start, pml4e, 401 addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn, 402 pml4e->writable, pml4e->execute_disable); 403 404 pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size); 405 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { 406 pdpe = &pdpe_start[n2]; 407 if (!pdpe->present) 408 continue; 409 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx " 410 "%u %u\n", 411 indent, "", 412 pdpe - pdpe_start, pdpe, 413 addr_hva2gpa(vm, pdpe), 414 (uint64_t) pdpe->pfn, pdpe->writable, 415 pdpe->execute_disable); 416 417 pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size); 418 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { 419 pde = &pde_start[n3]; 420 if (!pde->present) 421 continue; 422 fprintf(stream, "%*spde 0x%-3zx %p " 423 "0x%-12lx 0x%-10lx %u %u\n", 424 indent, "", pde - pde_start, pde, 425 addr_hva2gpa(vm, pde), 426 (uint64_t) pde->pfn, pde->writable, 427 pde->execute_disable); 428 429 pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size); 430 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { 431 pte = &pte_start[n4]; 432 if (!pte->present) 433 continue; 434 fprintf(stream, "%*spte 0x%-3zx %p " 435 "0x%-12lx 0x%-10lx %u %u " 436 " %u 0x%-10lx\n", 437 indent, "", 438 pte - pte_start, pte, 439 addr_hva2gpa(vm, pte), 440 (uint64_t) pte->pfn, 441 pte->writable, 442 pte->execute_disable, 443 pte->dirty, 444 ((uint64_t) n1 << 27) 445 | ((uint64_t) n2 << 18) 446 | ((uint64_t) n3 << 9) 447 | ((uint64_t) n4)); 448 } 449 } 450 } 451 } 452 } 453 454 /* 455 * Set Unusable Segment 456 * 457 * Input Args: None 458 * 459 * Output Args: 460 * segp - Pointer to segment register 461 * 462 * Return: None 463 * 464 * Sets the segment register pointed to by @segp to an unusable state. 465 */ 466 static void kvm_seg_set_unusable(struct kvm_segment *segp) 467 { 468 memset(segp, 0, sizeof(*segp)); 469 segp->unusable = true; 470 } 471 472 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) 473 { 474 void *gdt = addr_gva2hva(vm, vm->gdt); 475 struct desc64 *desc = gdt + (segp->selector >> 3) * 8; 476 477 desc->limit0 = segp->limit & 0xFFFF; 478 desc->base0 = segp->base & 0xFFFF; 479 desc->base1 = segp->base >> 16; 480 desc->type = segp->type; 481 desc->s = segp->s; 482 desc->dpl = segp->dpl; 483 desc->p = segp->present; 484 desc->limit1 = segp->limit >> 16; 485 desc->avl = segp->avl; 486 desc->l = segp->l; 487 desc->db = segp->db; 488 desc->g = segp->g; 489 desc->base2 = segp->base >> 24; 490 if (!segp->s) 491 desc->base3 = segp->base >> 32; 492 } 493 494 495 /* 496 * Set Long Mode Flat Kernel Code Segment 497 * 498 * Input Args: 499 * vm - VM whose GDT is being filled, or NULL to only write segp 500 * selector - selector value 501 * 502 * Output Args: 503 * segp - Pointer to KVM segment 504 * 505 * Return: None 506 * 507 * Sets up the KVM segment pointed to by @segp, to be a code segment 508 * with the selector value given by @selector. 509 */ 510 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, 511 struct kvm_segment *segp) 512 { 513 memset(segp, 0, sizeof(*segp)); 514 segp->selector = selector; 515 segp->limit = 0xFFFFFFFFu; 516 segp->s = 0x1; /* kTypeCodeData */ 517 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed 518 * | kFlagCodeReadable 519 */ 520 segp->g = true; 521 segp->l = true; 522 segp->present = 1; 523 if (vm) 524 kvm_seg_fill_gdt_64bit(vm, segp); 525 } 526 527 /* 528 * Set Long Mode Flat Kernel Data Segment 529 * 530 * Input Args: 531 * vm - VM whose GDT is being filled, or NULL to only write segp 532 * selector - selector value 533 * 534 * Output Args: 535 * segp - Pointer to KVM segment 536 * 537 * Return: None 538 * 539 * Sets up the KVM segment pointed to by @segp, to be a data segment 540 * with the selector value given by @selector. 541 */ 542 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, 543 struct kvm_segment *segp) 544 { 545 memset(segp, 0, sizeof(*segp)); 546 segp->selector = selector; 547 segp->limit = 0xFFFFFFFFu; 548 segp->s = 0x1; /* kTypeCodeData */ 549 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed 550 * | kFlagDataWritable 551 */ 552 segp->g = true; 553 segp->present = true; 554 if (vm) 555 kvm_seg_fill_gdt_64bit(vm, segp); 556 } 557 558 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 559 { 560 uint16_t index[4]; 561 struct pageUpperEntry *pml4e, *pdpe, *pde; 562 struct pageTableEntry *pte; 563 564 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 565 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 566 567 index[0] = (gva >> 12) & 0x1ffu; 568 index[1] = (gva >> 21) & 0x1ffu; 569 index[2] = (gva >> 30) & 0x1ffu; 570 index[3] = (gva >> 39) & 0x1ffu; 571 572 if (!vm->pgd_created) 573 goto unmapped_gva; 574 pml4e = addr_gpa2hva(vm, vm->pgd); 575 if (!pml4e[index[3]].present) 576 goto unmapped_gva; 577 578 pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size); 579 if (!pdpe[index[2]].present) 580 goto unmapped_gva; 581 582 pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size); 583 if (!pde[index[1]].present) 584 goto unmapped_gva; 585 586 pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size); 587 if (!pte[index[0]].present) 588 goto unmapped_gva; 589 590 return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu); 591 592 unmapped_gva: 593 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva); 594 exit(EXIT_FAILURE); 595 } 596 597 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt) 598 { 599 if (!vm->gdt) 600 vm->gdt = vm_vaddr_alloc_page(vm); 601 602 dt->base = vm->gdt; 603 dt->limit = getpagesize(); 604 } 605 606 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, 607 int selector) 608 { 609 if (!vm->tss) 610 vm->tss = vm_vaddr_alloc_page(vm); 611 612 memset(segp, 0, sizeof(*segp)); 613 segp->base = vm->tss; 614 segp->limit = 0x67; 615 segp->selector = selector; 616 segp->type = 0xb; 617 segp->present = 1; 618 kvm_seg_fill_gdt_64bit(vm, segp); 619 } 620 621 static void vcpu_setup(struct kvm_vm *vm, int vcpuid) 622 { 623 struct kvm_sregs sregs; 624 625 /* Set mode specific system register values. */ 626 vcpu_sregs_get(vm, vcpuid, &sregs); 627 628 sregs.idt.limit = 0; 629 630 kvm_setup_gdt(vm, &sregs.gdt); 631 632 switch (vm->mode) { 633 case VM_MODE_PXXV48_4K: 634 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; 635 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; 636 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); 637 638 kvm_seg_set_unusable(&sregs.ldt); 639 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); 640 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); 641 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); 642 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18); 643 break; 644 645 default: 646 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 647 } 648 649 sregs.cr3 = vm->pgd; 650 vcpu_sregs_set(vm, vcpuid, &sregs); 651 } 652 653 #define CPUID_XFD_BIT (1 << 4) 654 static bool is_xfd_supported(void) 655 { 656 int eax, ebx, ecx, edx; 657 const int leaf = 0xd, subleaf = 0x1; 658 659 __asm__ __volatile__( 660 "cpuid" 661 : /* output */ "=a"(eax), "=b"(ebx), 662 "=c"(ecx), "=d"(edx) 663 : /* input */ "0"(leaf), "2"(subleaf)); 664 665 return !!(eax & CPUID_XFD_BIT); 666 } 667 668 void vm_xsave_req_perm(int bit) 669 { 670 int kvm_fd; 671 u64 bitmask; 672 long rc; 673 struct kvm_device_attr attr = { 674 .group = 0, 675 .attr = KVM_X86_XCOMP_GUEST_SUPP, 676 .addr = (unsigned long) &bitmask 677 }; 678 679 kvm_fd = open_kvm_dev_path_or_exit(); 680 rc = ioctl(kvm_fd, KVM_GET_DEVICE_ATTR, &attr); 681 close(kvm_fd); 682 if (rc == -1 && (errno == ENXIO || errno == EINVAL)) 683 exit(KSFT_SKIP); 684 TEST_ASSERT(rc == 0, "KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) error: %ld", rc); 685 if (!(bitmask & (1ULL << bit))) 686 exit(KSFT_SKIP); 687 688 if (!is_xfd_supported()) 689 exit(KSFT_SKIP); 690 691 rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 692 693 /* 694 * The older kernel version(<5.15) can't support 695 * ARCH_REQ_XCOMP_GUEST_PERM and directly return. 696 */ 697 if (rc) 698 return; 699 700 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); 701 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); 702 TEST_ASSERT(bitmask & (1ULL << bit), 703 "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx", 704 bitmask); 705 } 706 707 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code) 708 { 709 struct kvm_mp_state mp_state; 710 struct kvm_regs regs; 711 vm_vaddr_t stack_vaddr; 712 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), 713 DEFAULT_GUEST_STACK_VADDR_MIN); 714 715 /* Create VCPU */ 716 vm_vcpu_add(vm, vcpuid); 717 vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid()); 718 vcpu_setup(vm, vcpuid); 719 720 /* Setup guest general purpose registers */ 721 vcpu_regs_get(vm, vcpuid, ®s); 722 regs.rflags = regs.rflags | 0x2; 723 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); 724 regs.rip = (unsigned long) guest_code; 725 vcpu_regs_set(vm, vcpuid, ®s); 726 727 /* Setup the MP state */ 728 mp_state.mp_state = 0; 729 vcpu_set_mp_state(vm, vcpuid, &mp_state); 730 } 731 732 /* 733 * Allocate an instance of struct kvm_cpuid2 734 * 735 * Input Args: None 736 * 737 * Output Args: None 738 * 739 * Return: A pointer to the allocated struct. The caller is responsible 740 * for freeing this struct. 741 * 742 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the 743 * array to be decided at allocation time, allocation is slightly 744 * complicated. This function uses a reasonable default length for 745 * the array and performs the appropriate allocation. 746 */ 747 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void) 748 { 749 struct kvm_cpuid2 *cpuid; 750 int nent = 100; 751 size_t size; 752 753 size = sizeof(*cpuid); 754 size += nent * sizeof(struct kvm_cpuid_entry2); 755 cpuid = malloc(size); 756 if (!cpuid) { 757 perror("malloc"); 758 abort(); 759 } 760 761 cpuid->nent = nent; 762 763 return cpuid; 764 } 765 766 /* 767 * KVM Supported CPUID Get 768 * 769 * Input Args: None 770 * 771 * Output Args: 772 * 773 * Return: The supported KVM CPUID 774 * 775 * Get the guest CPUID supported by KVM. 776 */ 777 struct kvm_cpuid2 *kvm_get_supported_cpuid(void) 778 { 779 static struct kvm_cpuid2 *cpuid; 780 int ret; 781 int kvm_fd; 782 783 if (cpuid) 784 return cpuid; 785 786 cpuid = allocate_kvm_cpuid2(); 787 kvm_fd = open_kvm_dev_path_or_exit(); 788 789 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid); 790 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n", 791 ret, errno); 792 793 close(kvm_fd); 794 return cpuid; 795 } 796 797 /* 798 * KVM Get MSR 799 * 800 * Input Args: 801 * msr_index - Index of MSR 802 * 803 * Output Args: None 804 * 805 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. 806 * 807 * Get value of MSR for VCPU. 808 */ 809 uint64_t kvm_get_feature_msr(uint64_t msr_index) 810 { 811 struct { 812 struct kvm_msrs header; 813 struct kvm_msr_entry entry; 814 } buffer = {}; 815 int r, kvm_fd; 816 817 buffer.header.nmsrs = 1; 818 buffer.entry.index = msr_index; 819 kvm_fd = open_kvm_dev_path_or_exit(); 820 821 r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); 822 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" 823 " rc: %i errno: %i", r, errno); 824 825 close(kvm_fd); 826 return buffer.entry.data; 827 } 828 829 /* 830 * VM VCPU CPUID Set 831 * 832 * Input Args: 833 * vm - Virtual Machine 834 * vcpuid - VCPU id 835 * 836 * Output Args: None 837 * 838 * Return: KVM CPUID (KVM_GET_CPUID2) 839 * 840 * Set the VCPU's CPUID. 841 */ 842 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 843 { 844 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 845 struct kvm_cpuid2 *cpuid; 846 int max_ent; 847 int rc = -1; 848 849 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 850 851 cpuid = allocate_kvm_cpuid2(); 852 max_ent = cpuid->nent; 853 854 for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) { 855 rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid); 856 if (!rc) 857 break; 858 859 TEST_ASSERT(rc == -1 && errno == E2BIG, 860 "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d", 861 rc, errno); 862 } 863 864 TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i", 865 rc, errno); 866 867 return cpuid; 868 } 869 870 871 872 /* 873 * Locate a cpuid entry. 874 * 875 * Input Args: 876 * function: The function of the cpuid entry to find. 877 * index: The index of the cpuid entry. 878 * 879 * Output Args: None 880 * 881 * Return: A pointer to the cpuid entry. Never returns NULL. 882 */ 883 struct kvm_cpuid_entry2 * 884 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index) 885 { 886 struct kvm_cpuid2 *cpuid; 887 struct kvm_cpuid_entry2 *entry = NULL; 888 int i; 889 890 cpuid = kvm_get_supported_cpuid(); 891 for (i = 0; i < cpuid->nent; i++) { 892 if (cpuid->entries[i].function == function && 893 cpuid->entries[i].index == index) { 894 entry = &cpuid->entries[i]; 895 break; 896 } 897 } 898 899 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).", 900 function, index); 901 return entry; 902 } 903 904 905 int __vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid, 906 struct kvm_cpuid2 *cpuid) 907 { 908 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 909 910 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 911 912 return ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid); 913 } 914 915 /* 916 * VM VCPU CPUID Set 917 * 918 * Input Args: 919 * vm - Virtual Machine 920 * vcpuid - VCPU id 921 * cpuid - The CPUID values to set. 922 * 923 * Output Args: None 924 * 925 * Return: void 926 * 927 * Set the VCPU's CPUID. 928 */ 929 void vcpu_set_cpuid(struct kvm_vm *vm, 930 uint32_t vcpuid, struct kvm_cpuid2 *cpuid) 931 { 932 int rc; 933 934 rc = __vcpu_set_cpuid(vm, vcpuid, cpuid); 935 TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i", 936 rc, errno); 937 938 } 939 940 /* 941 * VCPU Get MSR 942 * 943 * Input Args: 944 * vm - Virtual Machine 945 * vcpuid - VCPU ID 946 * msr_index - Index of MSR 947 * 948 * Output Args: None 949 * 950 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. 951 * 952 * Get value of MSR for VCPU. 953 */ 954 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index) 955 { 956 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 957 struct { 958 struct kvm_msrs header; 959 struct kvm_msr_entry entry; 960 } buffer = {}; 961 int r; 962 963 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 964 buffer.header.nmsrs = 1; 965 buffer.entry.index = msr_index; 966 r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header); 967 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" 968 " rc: %i errno: %i", r, errno); 969 970 return buffer.entry.data; 971 } 972 973 /* 974 * _VCPU Set MSR 975 * 976 * Input Args: 977 * vm - Virtual Machine 978 * vcpuid - VCPU ID 979 * msr_index - Index of MSR 980 * msr_value - New value of MSR 981 * 982 * Output Args: None 983 * 984 * Return: The result of KVM_SET_MSRS. 985 * 986 * Sets the value of an MSR for the given VCPU. 987 */ 988 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, 989 uint64_t msr_value) 990 { 991 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 992 struct { 993 struct kvm_msrs header; 994 struct kvm_msr_entry entry; 995 } buffer = {}; 996 int r; 997 998 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 999 memset(&buffer, 0, sizeof(buffer)); 1000 buffer.header.nmsrs = 1; 1001 buffer.entry.index = msr_index; 1002 buffer.entry.data = msr_value; 1003 r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header); 1004 return r; 1005 } 1006 1007 /* 1008 * VCPU Set MSR 1009 * 1010 * Input Args: 1011 * vm - Virtual Machine 1012 * vcpuid - VCPU ID 1013 * msr_index - Index of MSR 1014 * msr_value - New value of MSR 1015 * 1016 * Output Args: None 1017 * 1018 * Return: On success, nothing. On failure a TEST_ASSERT is produced. 1019 * 1020 * Set value of MSR for VCPU. 1021 */ 1022 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, 1023 uint64_t msr_value) 1024 { 1025 int r; 1026 1027 r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value); 1028 TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n" 1029 " rc: %i errno: %i", r, errno); 1030 } 1031 1032 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...) 1033 { 1034 va_list ap; 1035 struct kvm_regs regs; 1036 1037 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" 1038 " num: %u\n", 1039 num); 1040 1041 va_start(ap, num); 1042 vcpu_regs_get(vm, vcpuid, ®s); 1043 1044 if (num >= 1) 1045 regs.rdi = va_arg(ap, uint64_t); 1046 1047 if (num >= 2) 1048 regs.rsi = va_arg(ap, uint64_t); 1049 1050 if (num >= 3) 1051 regs.rdx = va_arg(ap, uint64_t); 1052 1053 if (num >= 4) 1054 regs.rcx = va_arg(ap, uint64_t); 1055 1056 if (num >= 5) 1057 regs.r8 = va_arg(ap, uint64_t); 1058 1059 if (num >= 6) 1060 regs.r9 = va_arg(ap, uint64_t); 1061 1062 vcpu_regs_set(vm, vcpuid, ®s); 1063 va_end(ap); 1064 } 1065 1066 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent) 1067 { 1068 struct kvm_regs regs; 1069 struct kvm_sregs sregs; 1070 1071 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid); 1072 1073 fprintf(stream, "%*sregs:\n", indent + 2, ""); 1074 vcpu_regs_get(vm, vcpuid, ®s); 1075 regs_dump(stream, ®s, indent + 4); 1076 1077 fprintf(stream, "%*ssregs:\n", indent + 2, ""); 1078 vcpu_sregs_get(vm, vcpuid, &sregs); 1079 sregs_dump(stream, &sregs, indent + 4); 1080 } 1081 1082 static int kvm_get_num_msrs_fd(int kvm_fd) 1083 { 1084 struct kvm_msr_list nmsrs; 1085 int r; 1086 1087 nmsrs.nmsrs = 0; 1088 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); 1089 TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i", 1090 r); 1091 1092 return nmsrs.nmsrs; 1093 } 1094 1095 static int kvm_get_num_msrs(struct kvm_vm *vm) 1096 { 1097 return kvm_get_num_msrs_fd(vm->kvm_fd); 1098 } 1099 1100 struct kvm_msr_list *kvm_get_msr_index_list(void) 1101 { 1102 struct kvm_msr_list *list; 1103 int nmsrs, r, kvm_fd; 1104 1105 kvm_fd = open_kvm_dev_path_or_exit(); 1106 1107 nmsrs = kvm_get_num_msrs_fd(kvm_fd); 1108 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); 1109 list->nmsrs = nmsrs; 1110 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 1111 close(kvm_fd); 1112 1113 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", 1114 r); 1115 1116 return list; 1117 } 1118 1119 static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu, 1120 struct kvm_x86_state *state) 1121 { 1122 int size; 1123 1124 size = vm_check_cap(vm, KVM_CAP_XSAVE2); 1125 if (!size) 1126 size = sizeof(struct kvm_xsave); 1127 1128 state->xsave = malloc(size); 1129 if (size == sizeof(struct kvm_xsave)) 1130 return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave); 1131 else 1132 return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave); 1133 } 1134 1135 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid) 1136 { 1137 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1138 struct kvm_msr_list *list; 1139 struct kvm_x86_state *state; 1140 int nmsrs, r, i; 1141 static int nested_size = -1; 1142 1143 if (nested_size == -1) { 1144 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); 1145 TEST_ASSERT(nested_size <= sizeof(state->nested_), 1146 "Nested state size too big, %i > %zi", 1147 nested_size, sizeof(state->nested_)); 1148 } 1149 1150 /* 1151 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees 1152 * guest state is consistent only after userspace re-enters the 1153 * kernel with KVM_RUN. Complete IO prior to migrating state 1154 * to a new VM. 1155 */ 1156 vcpu_run_complete_io(vm, vcpuid); 1157 1158 nmsrs = kvm_get_num_msrs(vm); 1159 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); 1160 list->nmsrs = nmsrs; 1161 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 1162 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", 1163 r); 1164 1165 state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0])); 1166 r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events); 1167 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i", 1168 r); 1169 1170 r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state); 1171 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i", 1172 r); 1173 1174 r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs); 1175 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i", 1176 r); 1177 1178 r = vcpu_save_xsave_state(vm, vcpu, state); 1179 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i", 1180 r); 1181 1182 if (kvm_check_cap(KVM_CAP_XCRS)) { 1183 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs); 1184 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i", 1185 r); 1186 } 1187 1188 r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs); 1189 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i", 1190 r); 1191 1192 if (nested_size) { 1193 state->nested.size = sizeof(state->nested_); 1194 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested); 1195 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i", 1196 r); 1197 TEST_ASSERT(state->nested.size <= nested_size, 1198 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", 1199 state->nested.size, nested_size); 1200 } else 1201 state->nested.size = 0; 1202 1203 state->msrs.nmsrs = nmsrs; 1204 for (i = 0; i < nmsrs; i++) 1205 state->msrs.entries[i].index = list->indices[i]; 1206 r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs); 1207 TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)", 1208 r, r == nmsrs ? -1 : list->indices[r]); 1209 1210 r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs); 1211 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i", 1212 r); 1213 1214 free(list); 1215 return state; 1216 } 1217 1218 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state) 1219 { 1220 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1221 int r; 1222 1223 r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs); 1224 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i", 1225 r); 1226 1227 r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs); 1228 TEST_ASSERT(r == state->msrs.nmsrs, 1229 "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)", 1230 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index); 1231 1232 if (kvm_check_cap(KVM_CAP_XCRS)) { 1233 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs); 1234 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i", 1235 r); 1236 } 1237 1238 r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave); 1239 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i", 1240 r); 1241 1242 r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events); 1243 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i", 1244 r); 1245 1246 r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state); 1247 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i", 1248 r); 1249 1250 r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs); 1251 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i", 1252 r); 1253 1254 r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs); 1255 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i", 1256 r); 1257 1258 if (state->nested.size) { 1259 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested); 1260 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i", 1261 r); 1262 } 1263 } 1264 1265 void kvm_x86_state_cleanup(struct kvm_x86_state *state) 1266 { 1267 free(state->xsave); 1268 free(state); 1269 } 1270 1271 static bool cpu_vendor_string_is(const char *vendor) 1272 { 1273 const uint32_t *chunk = (const uint32_t *)vendor; 1274 int eax, ebx, ecx, edx; 1275 const int leaf = 0; 1276 1277 __asm__ __volatile__( 1278 "cpuid" 1279 : /* output */ "=a"(eax), "=b"(ebx), 1280 "=c"(ecx), "=d"(edx) 1281 : /* input */ "0"(leaf), "2"(0)); 1282 1283 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 1284 } 1285 1286 bool is_intel_cpu(void) 1287 { 1288 return cpu_vendor_string_is("GenuineIntel"); 1289 } 1290 1291 /* 1292 * Exclude early K5 samples with a vendor string of "AMDisbetter!" 1293 */ 1294 bool is_amd_cpu(void) 1295 { 1296 return cpu_vendor_string_is("AuthenticAMD"); 1297 } 1298 1299 uint32_t kvm_get_cpuid_max_basic(void) 1300 { 1301 return kvm_get_supported_cpuid_entry(0)->eax; 1302 } 1303 1304 uint32_t kvm_get_cpuid_max_extended(void) 1305 { 1306 return kvm_get_supported_cpuid_entry(0x80000000)->eax; 1307 } 1308 1309 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) 1310 { 1311 struct kvm_cpuid_entry2 *entry; 1312 bool pae; 1313 1314 /* SDM 4.1.4 */ 1315 if (kvm_get_cpuid_max_extended() < 0x80000008) { 1316 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6); 1317 *pa_bits = pae ? 36 : 32; 1318 *va_bits = 32; 1319 } else { 1320 entry = kvm_get_supported_cpuid_entry(0x80000008); 1321 *pa_bits = entry->eax & 0xff; 1322 *va_bits = (entry->eax >> 8) & 0xff; 1323 } 1324 } 1325 1326 struct idt_entry { 1327 uint16_t offset0; 1328 uint16_t selector; 1329 uint16_t ist : 3; 1330 uint16_t : 5; 1331 uint16_t type : 4; 1332 uint16_t : 1; 1333 uint16_t dpl : 2; 1334 uint16_t p : 1; 1335 uint16_t offset1; 1336 uint32_t offset2; uint32_t reserved; 1337 }; 1338 1339 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, 1340 int dpl, unsigned short selector) 1341 { 1342 struct idt_entry *base = 1343 (struct idt_entry *)addr_gva2hva(vm, vm->idt); 1344 struct idt_entry *e = &base[vector]; 1345 1346 memset(e, 0, sizeof(*e)); 1347 e->offset0 = addr; 1348 e->selector = selector; 1349 e->ist = 0; 1350 e->type = 14; 1351 e->dpl = dpl; 1352 e->p = 1; 1353 e->offset1 = addr >> 16; 1354 e->offset2 = addr >> 32; 1355 } 1356 1357 void kvm_exit_unexpected_vector(uint32_t value) 1358 { 1359 ucall(UCALL_UNHANDLED, 1, value); 1360 } 1361 1362 void route_exception(struct ex_regs *regs) 1363 { 1364 typedef void(*handler)(struct ex_regs *); 1365 handler *handlers = (handler *)exception_handlers; 1366 1367 if (handlers && handlers[regs->vector]) { 1368 handlers[regs->vector](regs); 1369 return; 1370 } 1371 1372 kvm_exit_unexpected_vector(regs->vector); 1373 } 1374 1375 void vm_init_descriptor_tables(struct kvm_vm *vm) 1376 { 1377 extern void *idt_handlers; 1378 int i; 1379 1380 vm->idt = vm_vaddr_alloc_page(vm); 1381 vm->handlers = vm_vaddr_alloc_page(vm); 1382 /* Handlers have the same address in both address spaces.*/ 1383 for (i = 0; i < NUM_INTERRUPTS; i++) 1384 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, 1385 DEFAULT_CODE_SELECTOR); 1386 } 1387 1388 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid) 1389 { 1390 struct kvm_sregs sregs; 1391 1392 vcpu_sregs_get(vm, vcpuid, &sregs); 1393 sregs.idt.base = vm->idt; 1394 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; 1395 sregs.gdt.base = vm->gdt; 1396 sregs.gdt.limit = getpagesize() - 1; 1397 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); 1398 vcpu_sregs_set(vm, vcpuid, &sregs); 1399 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 1400 } 1401 1402 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1403 void (*handler)(struct ex_regs *)) 1404 { 1405 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); 1406 1407 handlers[vector] = (vm_vaddr_t)handler; 1408 } 1409 1410 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid) 1411 { 1412 struct ucall uc; 1413 1414 if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) { 1415 uint64_t vector = uc.args[0]; 1416 1417 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)", 1418 vector); 1419 } 1420 } 1421 1422 struct kvm_cpuid_entry2 *get_cpuid(struct kvm_cpuid2 *cpuid, uint32_t function, 1423 uint32_t index) 1424 { 1425 int i; 1426 1427 for (i = 0; i < cpuid->nent; i++) { 1428 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i]; 1429 1430 if (cur->function == function && cur->index == index) 1431 return cur; 1432 } 1433 1434 TEST_FAIL("CPUID function 0x%x index 0x%x not found ", function, index); 1435 1436 return NULL; 1437 } 1438 1439 bool set_cpuid(struct kvm_cpuid2 *cpuid, 1440 struct kvm_cpuid_entry2 *ent) 1441 { 1442 int i; 1443 1444 for (i = 0; i < cpuid->nent; i++) { 1445 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i]; 1446 1447 if (cur->function != ent->function || cur->index != ent->index) 1448 continue; 1449 1450 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2)); 1451 return true; 1452 } 1453 1454 return false; 1455 } 1456 1457 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1458 uint64_t a3) 1459 { 1460 uint64_t r; 1461 1462 asm volatile("vmcall" 1463 : "=a"(r) 1464 : "b"(a0), "c"(a1), "d"(a2), "S"(a3)); 1465 return r; 1466 } 1467 1468 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) 1469 { 1470 static struct kvm_cpuid2 *cpuid; 1471 int ret; 1472 int kvm_fd; 1473 1474 if (cpuid) 1475 return cpuid; 1476 1477 cpuid = allocate_kvm_cpuid2(); 1478 kvm_fd = open_kvm_dev_path_or_exit(); 1479 1480 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1481 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n", 1482 ret, errno); 1483 1484 close(kvm_fd); 1485 return cpuid; 1486 } 1487 1488 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 1489 { 1490 static struct kvm_cpuid2 *cpuid_full; 1491 struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; 1492 int i, nent = 0; 1493 1494 if (!cpuid_full) { 1495 cpuid_sys = kvm_get_supported_cpuid(); 1496 cpuid_hv = kvm_get_supported_hv_cpuid(); 1497 1498 cpuid_full = malloc(sizeof(*cpuid_full) + 1499 (cpuid_sys->nent + cpuid_hv->nent) * 1500 sizeof(struct kvm_cpuid_entry2)); 1501 if (!cpuid_full) { 1502 perror("malloc"); 1503 abort(); 1504 } 1505 1506 /* Need to skip KVM CPUID leaves 0x400000xx */ 1507 for (i = 0; i < cpuid_sys->nent; i++) { 1508 if (cpuid_sys->entries[i].function >= 0x40000000 && 1509 cpuid_sys->entries[i].function < 0x40000100) 1510 continue; 1511 cpuid_full->entries[nent] = cpuid_sys->entries[i]; 1512 nent++; 1513 } 1514 1515 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, 1516 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); 1517 cpuid_full->nent = nent + cpuid_hv->nent; 1518 } 1519 1520 vcpu_set_cpuid(vm, vcpuid, cpuid_full); 1521 } 1522 1523 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 1524 { 1525 static struct kvm_cpuid2 *cpuid; 1526 1527 cpuid = allocate_kvm_cpuid2(); 1528 1529 vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1530 1531 return cpuid; 1532 } 1533 1534 unsigned long vm_compute_max_gfn(struct kvm_vm *vm) 1535 { 1536 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ 1537 unsigned long ht_gfn, max_gfn, max_pfn; 1538 uint32_t eax, ebx, ecx, edx, max_ext_leaf; 1539 1540 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1; 1541 1542 /* Avoid reserved HyperTransport region on AMD processors. */ 1543 if (!is_amd_cpu()) 1544 return max_gfn; 1545 1546 /* On parts with <40 physical address bits, the area is fully hidden */ 1547 if (vm->pa_bits < 40) 1548 return max_gfn; 1549 1550 /* Before family 17h, the HyperTransport area is just below 1T. */ 1551 ht_gfn = (1 << 28) - num_ht_pages; 1552 eax = 1; 1553 ecx = 0; 1554 cpuid(&eax, &ebx, &ecx, &edx); 1555 if (x86_family(eax) < 0x17) 1556 goto done; 1557 1558 /* 1559 * Otherwise it's at the top of the physical address space, possibly 1560 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use 1561 * the old conservative value if MAXPHYADDR is not enumerated. 1562 */ 1563 eax = 0x80000000; 1564 cpuid(&eax, &ebx, &ecx, &edx); 1565 max_ext_leaf = eax; 1566 if (max_ext_leaf < 0x80000008) 1567 goto done; 1568 1569 eax = 0x80000008; 1570 cpuid(&eax, &ebx, &ecx, &edx); 1571 max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1; 1572 if (max_ext_leaf >= 0x8000001f) { 1573 eax = 0x8000001f; 1574 cpuid(&eax, &ebx, &ecx, &edx); 1575 max_pfn >>= (ebx >> 6) & 0x3f; 1576 } 1577 1578 ht_gfn = max_pfn - num_ht_pages; 1579 done: 1580 return min(max_gfn, ht_gfn - 1); 1581 } 1582