1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/x86_64/processor.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #include "test_util.h" 9 #include "kvm_util.h" 10 #include "../kvm_util_internal.h" 11 #include "processor.h" 12 13 #ifndef NUM_INTERRUPTS 14 #define NUM_INTERRUPTS 256 15 #endif 16 17 #define DEFAULT_CODE_SELECTOR 0x8 18 #define DEFAULT_DATA_SELECTOR 0x10 19 20 vm_vaddr_t exception_handlers; 21 22 /* Virtual translation table structure declarations */ 23 struct pageUpperEntry { 24 uint64_t present:1; 25 uint64_t writable:1; 26 uint64_t user:1; 27 uint64_t write_through:1; 28 uint64_t cache_disable:1; 29 uint64_t accessed:1; 30 uint64_t ignored_06:1; 31 uint64_t page_size:1; 32 uint64_t ignored_11_08:4; 33 uint64_t pfn:40; 34 uint64_t ignored_62_52:11; 35 uint64_t execute_disable:1; 36 }; 37 38 struct pageTableEntry { 39 uint64_t present:1; 40 uint64_t writable:1; 41 uint64_t user:1; 42 uint64_t write_through:1; 43 uint64_t cache_disable:1; 44 uint64_t accessed:1; 45 uint64_t dirty:1; 46 uint64_t reserved_07:1; 47 uint64_t global:1; 48 uint64_t ignored_11_09:3; 49 uint64_t pfn:40; 50 uint64_t ignored_62_52:11; 51 uint64_t execute_disable:1; 52 }; 53 54 void regs_dump(FILE *stream, struct kvm_regs *regs, 55 uint8_t indent) 56 { 57 fprintf(stream, "%*srax: 0x%.16llx rbx: 0x%.16llx " 58 "rcx: 0x%.16llx rdx: 0x%.16llx\n", 59 indent, "", 60 regs->rax, regs->rbx, regs->rcx, regs->rdx); 61 fprintf(stream, "%*srsi: 0x%.16llx rdi: 0x%.16llx " 62 "rsp: 0x%.16llx rbp: 0x%.16llx\n", 63 indent, "", 64 regs->rsi, regs->rdi, regs->rsp, regs->rbp); 65 fprintf(stream, "%*sr8: 0x%.16llx r9: 0x%.16llx " 66 "r10: 0x%.16llx r11: 0x%.16llx\n", 67 indent, "", 68 regs->r8, regs->r9, regs->r10, regs->r11); 69 fprintf(stream, "%*sr12: 0x%.16llx r13: 0x%.16llx " 70 "r14: 0x%.16llx r15: 0x%.16llx\n", 71 indent, "", 72 regs->r12, regs->r13, regs->r14, regs->r15); 73 fprintf(stream, "%*srip: 0x%.16llx rfl: 0x%.16llx\n", 74 indent, "", 75 regs->rip, regs->rflags); 76 } 77 78 /* 79 * Segment Dump 80 * 81 * Input Args: 82 * stream - Output FILE stream 83 * segment - KVM segment 84 * indent - Left margin indent amount 85 * 86 * Output Args: None 87 * 88 * Return: None 89 * 90 * Dumps the state of the KVM segment given by @segment, to the FILE stream 91 * given by @stream. 92 */ 93 static void segment_dump(FILE *stream, struct kvm_segment *segment, 94 uint8_t indent) 95 { 96 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.8x " 97 "selector: 0x%.4x type: 0x%.2x\n", 98 indent, "", segment->base, segment->limit, 99 segment->selector, segment->type); 100 fprintf(stream, "%*spresent: 0x%.2x dpl: 0x%.2x " 101 "db: 0x%.2x s: 0x%.2x l: 0x%.2x\n", 102 indent, "", segment->present, segment->dpl, 103 segment->db, segment->s, segment->l); 104 fprintf(stream, "%*sg: 0x%.2x avl: 0x%.2x " 105 "unusable: 0x%.2x padding: 0x%.2x\n", 106 indent, "", segment->g, segment->avl, 107 segment->unusable, segment->padding); 108 } 109 110 /* 111 * dtable Dump 112 * 113 * Input Args: 114 * stream - Output FILE stream 115 * dtable - KVM dtable 116 * indent - Left margin indent amount 117 * 118 * Output Args: None 119 * 120 * Return: None 121 * 122 * Dumps the state of the KVM dtable given by @dtable, to the FILE stream 123 * given by @stream. 124 */ 125 static void dtable_dump(FILE *stream, struct kvm_dtable *dtable, 126 uint8_t indent) 127 { 128 fprintf(stream, "%*sbase: 0x%.16llx limit: 0x%.4x " 129 "padding: 0x%.4x 0x%.4x 0x%.4x\n", 130 indent, "", dtable->base, dtable->limit, 131 dtable->padding[0], dtable->padding[1], dtable->padding[2]); 132 } 133 134 void sregs_dump(FILE *stream, struct kvm_sregs *sregs, 135 uint8_t indent) 136 { 137 unsigned int i; 138 139 fprintf(stream, "%*scs:\n", indent, ""); 140 segment_dump(stream, &sregs->cs, indent + 2); 141 fprintf(stream, "%*sds:\n", indent, ""); 142 segment_dump(stream, &sregs->ds, indent + 2); 143 fprintf(stream, "%*ses:\n", indent, ""); 144 segment_dump(stream, &sregs->es, indent + 2); 145 fprintf(stream, "%*sfs:\n", indent, ""); 146 segment_dump(stream, &sregs->fs, indent + 2); 147 fprintf(stream, "%*sgs:\n", indent, ""); 148 segment_dump(stream, &sregs->gs, indent + 2); 149 fprintf(stream, "%*sss:\n", indent, ""); 150 segment_dump(stream, &sregs->ss, indent + 2); 151 fprintf(stream, "%*str:\n", indent, ""); 152 segment_dump(stream, &sregs->tr, indent + 2); 153 fprintf(stream, "%*sldt:\n", indent, ""); 154 segment_dump(stream, &sregs->ldt, indent + 2); 155 156 fprintf(stream, "%*sgdt:\n", indent, ""); 157 dtable_dump(stream, &sregs->gdt, indent + 2); 158 fprintf(stream, "%*sidt:\n", indent, ""); 159 dtable_dump(stream, &sregs->idt, indent + 2); 160 161 fprintf(stream, "%*scr0: 0x%.16llx cr2: 0x%.16llx " 162 "cr3: 0x%.16llx cr4: 0x%.16llx\n", 163 indent, "", 164 sregs->cr0, sregs->cr2, sregs->cr3, sregs->cr4); 165 fprintf(stream, "%*scr8: 0x%.16llx efer: 0x%.16llx " 166 "apic_base: 0x%.16llx\n", 167 indent, "", 168 sregs->cr8, sregs->efer, sregs->apic_base); 169 170 fprintf(stream, "%*sinterrupt_bitmap:\n", indent, ""); 171 for (i = 0; i < (KVM_NR_INTERRUPTS + 63) / 64; i++) { 172 fprintf(stream, "%*s%.16llx\n", indent + 2, "", 173 sregs->interrupt_bitmap[i]); 174 } 175 } 176 177 void virt_pgd_alloc(struct kvm_vm *vm) 178 { 179 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 180 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 181 182 /* If needed, create page map l4 table. */ 183 if (!vm->pgd_created) { 184 vm->pgd = vm_alloc_page_table(vm); 185 vm->pgd_created = true; 186 } 187 } 188 189 static void *virt_get_pte(struct kvm_vm *vm, uint64_t pt_pfn, uint64_t vaddr, 190 int level) 191 { 192 uint64_t *page_table = addr_gpa2hva(vm, pt_pfn << vm->page_shift); 193 int index = vaddr >> (vm->page_shift + level * 9) & 0x1ffu; 194 195 return &page_table[index]; 196 } 197 198 static struct pageUpperEntry *virt_create_upper_pte(struct kvm_vm *vm, 199 uint64_t pt_pfn, 200 uint64_t vaddr, 201 uint64_t paddr, 202 int level, 203 enum x86_page_size page_size) 204 { 205 struct pageUpperEntry *pte = virt_get_pte(vm, pt_pfn, vaddr, level); 206 207 if (!pte->present) { 208 pte->writable = true; 209 pte->present = true; 210 pte->page_size = (level == page_size); 211 if (pte->page_size) 212 pte->pfn = paddr >> vm->page_shift; 213 else 214 pte->pfn = vm_alloc_page_table(vm) >> vm->page_shift; 215 } else { 216 /* 217 * Entry already present. Assert that the caller doesn't want 218 * a hugepage at this level, and that there isn't a hugepage at 219 * this level. 220 */ 221 TEST_ASSERT(level != page_size, 222 "Cannot create hugepage at level: %u, vaddr: 0x%lx\n", 223 page_size, vaddr); 224 TEST_ASSERT(!pte->page_size, 225 "Cannot create page table at level: %u, vaddr: 0x%lx\n", 226 level, vaddr); 227 } 228 return pte; 229 } 230 231 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 232 enum x86_page_size page_size) 233 { 234 const uint64_t pg_size = 1ull << ((page_size * 9) + 12); 235 struct pageUpperEntry *pml4e, *pdpe, *pde; 236 struct pageTableEntry *pte; 237 238 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, 239 "Unknown or unsupported guest mode, mode: 0x%x", vm->mode); 240 241 TEST_ASSERT((vaddr % pg_size) == 0, 242 "Virtual address not aligned,\n" 243 "vaddr: 0x%lx page size: 0x%lx", vaddr, pg_size); 244 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, (vaddr >> vm->page_shift)), 245 "Invalid virtual address, vaddr: 0x%lx", vaddr); 246 TEST_ASSERT((paddr % pg_size) == 0, 247 "Physical address not aligned,\n" 248 " paddr: 0x%lx page size: 0x%lx", paddr, pg_size); 249 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn, 250 "Physical address beyond maximum supported,\n" 251 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x", 252 paddr, vm->max_gfn, vm->page_size); 253 254 /* 255 * Allocate upper level page tables, if not already present. Return 256 * early if a hugepage was created. 257 */ 258 pml4e = virt_create_upper_pte(vm, vm->pgd >> vm->page_shift, 259 vaddr, paddr, 3, page_size); 260 if (pml4e->page_size) 261 return; 262 263 pdpe = virt_create_upper_pte(vm, pml4e->pfn, vaddr, paddr, 2, page_size); 264 if (pdpe->page_size) 265 return; 266 267 pde = virt_create_upper_pte(vm, pdpe->pfn, vaddr, paddr, 1, page_size); 268 if (pde->page_size) 269 return; 270 271 /* Fill in page table entry. */ 272 pte = virt_get_pte(vm, pde->pfn, vaddr, 0); 273 TEST_ASSERT(!pte->present, 274 "PTE already present for 4k page at vaddr: 0x%lx\n", vaddr); 275 pte->pfn = paddr >> vm->page_shift; 276 pte->writable = true; 277 pte->present = 1; 278 } 279 280 void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr) 281 { 282 __virt_pg_map(vm, vaddr, paddr, X86_PAGE_SIZE_4K); 283 } 284 285 static struct pageTableEntry *_vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, 286 uint64_t vaddr) 287 { 288 uint16_t index[4]; 289 struct pageUpperEntry *pml4e, *pdpe, *pde; 290 struct pageTableEntry *pte; 291 struct kvm_cpuid_entry2 *entry; 292 struct kvm_sregs sregs; 293 int max_phy_addr; 294 /* Set the bottom 52 bits. */ 295 uint64_t rsvd_mask = 0x000fffffffffffff; 296 297 entry = kvm_get_supported_cpuid_index(0x80000008, 0); 298 max_phy_addr = entry->eax & 0x000000ff; 299 /* Clear the bottom bits of the reserved mask. */ 300 rsvd_mask = (rsvd_mask >> max_phy_addr) << max_phy_addr; 301 302 /* 303 * SDM vol 3, fig 4-11 "Formats of CR3 and Paging-Structure Entries 304 * with 4-Level Paging and 5-Level Paging". 305 * If IA32_EFER.NXE = 0 and the P flag of a paging-structure entry is 1, 306 * the XD flag (bit 63) is reserved. 307 */ 308 vcpu_sregs_get(vm, vcpuid, &sregs); 309 if ((sregs.efer & EFER_NX) == 0) { 310 rsvd_mask |= (1ull << 63); 311 } 312 313 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 314 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 315 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid, 316 (vaddr >> vm->page_shift)), 317 "Invalid virtual address, vaddr: 0x%lx", 318 vaddr); 319 /* 320 * Based on the mode check above there are 48 bits in the vaddr, so 321 * shift 16 to sign extend the last bit (bit-47), 322 */ 323 TEST_ASSERT(vaddr == (((int64_t)vaddr << 16) >> 16), 324 "Canonical check failed. The virtual address is invalid."); 325 326 index[0] = (vaddr >> 12) & 0x1ffu; 327 index[1] = (vaddr >> 21) & 0x1ffu; 328 index[2] = (vaddr >> 30) & 0x1ffu; 329 index[3] = (vaddr >> 39) & 0x1ffu; 330 331 pml4e = addr_gpa2hva(vm, vm->pgd); 332 TEST_ASSERT(pml4e[index[3]].present, 333 "Expected pml4e to be present for gva: 0x%08lx", vaddr); 334 TEST_ASSERT((*(uint64_t*)(&pml4e[index[3]]) & 335 (rsvd_mask | (1ull << 7))) == 0, 336 "Unexpected reserved bits set."); 337 338 pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size); 339 TEST_ASSERT(pdpe[index[2]].present, 340 "Expected pdpe to be present for gva: 0x%08lx", vaddr); 341 TEST_ASSERT(pdpe[index[2]].page_size == 0, 342 "Expected pdpe to map a pde not a 1-GByte page."); 343 TEST_ASSERT((*(uint64_t*)(&pdpe[index[2]]) & rsvd_mask) == 0, 344 "Unexpected reserved bits set."); 345 346 pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size); 347 TEST_ASSERT(pde[index[1]].present, 348 "Expected pde to be present for gva: 0x%08lx", vaddr); 349 TEST_ASSERT(pde[index[1]].page_size == 0, 350 "Expected pde to map a pte not a 2-MByte page."); 351 TEST_ASSERT((*(uint64_t*)(&pde[index[1]]) & rsvd_mask) == 0, 352 "Unexpected reserved bits set."); 353 354 pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size); 355 TEST_ASSERT(pte[index[0]].present, 356 "Expected pte to be present for gva: 0x%08lx", vaddr); 357 358 return &pte[index[0]]; 359 } 360 361 uint64_t vm_get_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr) 362 { 363 struct pageTableEntry *pte = _vm_get_page_table_entry(vm, vcpuid, vaddr); 364 365 return *(uint64_t *)pte; 366 } 367 368 void vm_set_page_table_entry(struct kvm_vm *vm, int vcpuid, uint64_t vaddr, 369 uint64_t pte) 370 { 371 struct pageTableEntry *new_pte = _vm_get_page_table_entry(vm, vcpuid, 372 vaddr); 373 374 *(uint64_t *)new_pte = pte; 375 } 376 377 void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 378 { 379 struct pageUpperEntry *pml4e, *pml4e_start; 380 struct pageUpperEntry *pdpe, *pdpe_start; 381 struct pageUpperEntry *pde, *pde_start; 382 struct pageTableEntry *pte, *pte_start; 383 384 if (!vm->pgd_created) 385 return; 386 387 fprintf(stream, "%*s " 388 " no\n", indent, ""); 389 fprintf(stream, "%*s index hvaddr gpaddr " 390 "addr w exec dirty\n", 391 indent, ""); 392 pml4e_start = (struct pageUpperEntry *) addr_gpa2hva(vm, vm->pgd); 393 for (uint16_t n1 = 0; n1 <= 0x1ffu; n1++) { 394 pml4e = &pml4e_start[n1]; 395 if (!pml4e->present) 396 continue; 397 fprintf(stream, "%*spml4e 0x%-3zx %p 0x%-12lx 0x%-10lx %u " 398 " %u\n", 399 indent, "", 400 pml4e - pml4e_start, pml4e, 401 addr_hva2gpa(vm, pml4e), (uint64_t) pml4e->pfn, 402 pml4e->writable, pml4e->execute_disable); 403 404 pdpe_start = addr_gpa2hva(vm, pml4e->pfn * vm->page_size); 405 for (uint16_t n2 = 0; n2 <= 0x1ffu; n2++) { 406 pdpe = &pdpe_start[n2]; 407 if (!pdpe->present) 408 continue; 409 fprintf(stream, "%*spdpe 0x%-3zx %p 0x%-12lx 0x%-10lx " 410 "%u %u\n", 411 indent, "", 412 pdpe - pdpe_start, pdpe, 413 addr_hva2gpa(vm, pdpe), 414 (uint64_t) pdpe->pfn, pdpe->writable, 415 pdpe->execute_disable); 416 417 pde_start = addr_gpa2hva(vm, pdpe->pfn * vm->page_size); 418 for (uint16_t n3 = 0; n3 <= 0x1ffu; n3++) { 419 pde = &pde_start[n3]; 420 if (!pde->present) 421 continue; 422 fprintf(stream, "%*spde 0x%-3zx %p " 423 "0x%-12lx 0x%-10lx %u %u\n", 424 indent, "", pde - pde_start, pde, 425 addr_hva2gpa(vm, pde), 426 (uint64_t) pde->pfn, pde->writable, 427 pde->execute_disable); 428 429 pte_start = addr_gpa2hva(vm, pde->pfn * vm->page_size); 430 for (uint16_t n4 = 0; n4 <= 0x1ffu; n4++) { 431 pte = &pte_start[n4]; 432 if (!pte->present) 433 continue; 434 fprintf(stream, "%*spte 0x%-3zx %p " 435 "0x%-12lx 0x%-10lx %u %u " 436 " %u 0x%-10lx\n", 437 indent, "", 438 pte - pte_start, pte, 439 addr_hva2gpa(vm, pte), 440 (uint64_t) pte->pfn, 441 pte->writable, 442 pte->execute_disable, 443 pte->dirty, 444 ((uint64_t) n1 << 27) 445 | ((uint64_t) n2 << 18) 446 | ((uint64_t) n3 << 9) 447 | ((uint64_t) n4)); 448 } 449 } 450 } 451 } 452 } 453 454 /* 455 * Set Unusable Segment 456 * 457 * Input Args: None 458 * 459 * Output Args: 460 * segp - Pointer to segment register 461 * 462 * Return: None 463 * 464 * Sets the segment register pointed to by @segp to an unusable state. 465 */ 466 static void kvm_seg_set_unusable(struct kvm_segment *segp) 467 { 468 memset(segp, 0, sizeof(*segp)); 469 segp->unusable = true; 470 } 471 472 static void kvm_seg_fill_gdt_64bit(struct kvm_vm *vm, struct kvm_segment *segp) 473 { 474 void *gdt = addr_gva2hva(vm, vm->gdt); 475 struct desc64 *desc = gdt + (segp->selector >> 3) * 8; 476 477 desc->limit0 = segp->limit & 0xFFFF; 478 desc->base0 = segp->base & 0xFFFF; 479 desc->base1 = segp->base >> 16; 480 desc->type = segp->type; 481 desc->s = segp->s; 482 desc->dpl = segp->dpl; 483 desc->p = segp->present; 484 desc->limit1 = segp->limit >> 16; 485 desc->avl = segp->avl; 486 desc->l = segp->l; 487 desc->db = segp->db; 488 desc->g = segp->g; 489 desc->base2 = segp->base >> 24; 490 if (!segp->s) 491 desc->base3 = segp->base >> 32; 492 } 493 494 495 /* 496 * Set Long Mode Flat Kernel Code Segment 497 * 498 * Input Args: 499 * vm - VM whose GDT is being filled, or NULL to only write segp 500 * selector - selector value 501 * 502 * Output Args: 503 * segp - Pointer to KVM segment 504 * 505 * Return: None 506 * 507 * Sets up the KVM segment pointed to by @segp, to be a code segment 508 * with the selector value given by @selector. 509 */ 510 static void kvm_seg_set_kernel_code_64bit(struct kvm_vm *vm, uint16_t selector, 511 struct kvm_segment *segp) 512 { 513 memset(segp, 0, sizeof(*segp)); 514 segp->selector = selector; 515 segp->limit = 0xFFFFFFFFu; 516 segp->s = 0x1; /* kTypeCodeData */ 517 segp->type = 0x08 | 0x01 | 0x02; /* kFlagCode | kFlagCodeAccessed 518 * | kFlagCodeReadable 519 */ 520 segp->g = true; 521 segp->l = true; 522 segp->present = 1; 523 if (vm) 524 kvm_seg_fill_gdt_64bit(vm, segp); 525 } 526 527 /* 528 * Set Long Mode Flat Kernel Data Segment 529 * 530 * Input Args: 531 * vm - VM whose GDT is being filled, or NULL to only write segp 532 * selector - selector value 533 * 534 * Output Args: 535 * segp - Pointer to KVM segment 536 * 537 * Return: None 538 * 539 * Sets up the KVM segment pointed to by @segp, to be a data segment 540 * with the selector value given by @selector. 541 */ 542 static void kvm_seg_set_kernel_data_64bit(struct kvm_vm *vm, uint16_t selector, 543 struct kvm_segment *segp) 544 { 545 memset(segp, 0, sizeof(*segp)); 546 segp->selector = selector; 547 segp->limit = 0xFFFFFFFFu; 548 segp->s = 0x1; /* kTypeCodeData */ 549 segp->type = 0x00 | 0x01 | 0x02; /* kFlagData | kFlagDataAccessed 550 * | kFlagDataWritable 551 */ 552 segp->g = true; 553 segp->present = true; 554 if (vm) 555 kvm_seg_fill_gdt_64bit(vm, segp); 556 } 557 558 vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva) 559 { 560 uint16_t index[4]; 561 struct pageUpperEntry *pml4e, *pdpe, *pde; 562 struct pageTableEntry *pte; 563 564 TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use " 565 "unknown or unsupported guest mode, mode: 0x%x", vm->mode); 566 567 index[0] = (gva >> 12) & 0x1ffu; 568 index[1] = (gva >> 21) & 0x1ffu; 569 index[2] = (gva >> 30) & 0x1ffu; 570 index[3] = (gva >> 39) & 0x1ffu; 571 572 if (!vm->pgd_created) 573 goto unmapped_gva; 574 pml4e = addr_gpa2hva(vm, vm->pgd); 575 if (!pml4e[index[3]].present) 576 goto unmapped_gva; 577 578 pdpe = addr_gpa2hva(vm, pml4e[index[3]].pfn * vm->page_size); 579 if (!pdpe[index[2]].present) 580 goto unmapped_gva; 581 582 pde = addr_gpa2hva(vm, pdpe[index[2]].pfn * vm->page_size); 583 if (!pde[index[1]].present) 584 goto unmapped_gva; 585 586 pte = addr_gpa2hva(vm, pde[index[1]].pfn * vm->page_size); 587 if (!pte[index[0]].present) 588 goto unmapped_gva; 589 590 return (pte[index[0]].pfn * vm->page_size) + (gva & 0xfffu); 591 592 unmapped_gva: 593 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva); 594 exit(EXIT_FAILURE); 595 } 596 597 static void kvm_setup_gdt(struct kvm_vm *vm, struct kvm_dtable *dt) 598 { 599 if (!vm->gdt) 600 vm->gdt = vm_vaddr_alloc_page(vm); 601 602 dt->base = vm->gdt; 603 dt->limit = getpagesize(); 604 } 605 606 static void kvm_setup_tss_64bit(struct kvm_vm *vm, struct kvm_segment *segp, 607 int selector) 608 { 609 if (!vm->tss) 610 vm->tss = vm_vaddr_alloc_page(vm); 611 612 memset(segp, 0, sizeof(*segp)); 613 segp->base = vm->tss; 614 segp->limit = 0x67; 615 segp->selector = selector; 616 segp->type = 0xb; 617 segp->present = 1; 618 kvm_seg_fill_gdt_64bit(vm, segp); 619 } 620 621 static void vcpu_setup(struct kvm_vm *vm, int vcpuid) 622 { 623 struct kvm_sregs sregs; 624 625 /* Set mode specific system register values. */ 626 vcpu_sregs_get(vm, vcpuid, &sregs); 627 628 sregs.idt.limit = 0; 629 630 kvm_setup_gdt(vm, &sregs.gdt); 631 632 switch (vm->mode) { 633 case VM_MODE_PXXV48_4K: 634 sregs.cr0 = X86_CR0_PE | X86_CR0_NE | X86_CR0_PG; 635 sregs.cr4 |= X86_CR4_PAE | X86_CR4_OSFXSR; 636 sregs.efer |= (EFER_LME | EFER_LMA | EFER_NX); 637 638 kvm_seg_set_unusable(&sregs.ldt); 639 kvm_seg_set_kernel_code_64bit(vm, DEFAULT_CODE_SELECTOR, &sregs.cs); 640 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.ds); 641 kvm_seg_set_kernel_data_64bit(vm, DEFAULT_DATA_SELECTOR, &sregs.es); 642 kvm_setup_tss_64bit(vm, &sregs.tr, 0x18); 643 break; 644 645 default: 646 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode); 647 } 648 649 sregs.cr3 = vm->pgd; 650 vcpu_sregs_set(vm, vcpuid, &sregs); 651 } 652 653 #define CPUID_XFD_BIT (1 << 4) 654 static bool is_xfd_supported(void) 655 { 656 int eax, ebx, ecx, edx; 657 const int leaf = 0xd, subleaf = 0x1; 658 659 __asm__ __volatile__( 660 "cpuid" 661 : /* output */ "=a"(eax), "=b"(ebx), 662 "=c"(ecx), "=d"(edx) 663 : /* input */ "0"(leaf), "2"(subleaf)); 664 665 return !!(eax & CPUID_XFD_BIT); 666 } 667 668 void vm_xsave_req_perm(void) 669 { 670 unsigned long bitmask; 671 long rc; 672 673 if (!is_xfd_supported()) 674 return; 675 676 rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, 677 XSTATE_XTILE_DATA_BIT); 678 /* 679 * The older kernel version(<5.15) can't support 680 * ARCH_REQ_XCOMP_GUEST_PERM and directly return. 681 */ 682 if (rc) 683 return; 684 685 rc = syscall(SYS_arch_prctl, ARCH_GET_XCOMP_GUEST_PERM, &bitmask); 686 TEST_ASSERT(rc == 0, "prctl(ARCH_GET_XCOMP_GUEST_PERM) error: %ld", rc); 687 TEST_ASSERT(bitmask & XFEATURE_XTILE_MASK, 688 "prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure bitmask=0x%lx", 689 bitmask); 690 } 691 692 void vm_vcpu_add_default(struct kvm_vm *vm, uint32_t vcpuid, void *guest_code) 693 { 694 struct kvm_mp_state mp_state; 695 struct kvm_regs regs; 696 vm_vaddr_t stack_vaddr; 697 stack_vaddr = vm_vaddr_alloc(vm, DEFAULT_STACK_PGS * getpagesize(), 698 DEFAULT_GUEST_STACK_VADDR_MIN); 699 700 /* Create VCPU */ 701 vm_vcpu_add(vm, vcpuid); 702 vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid()); 703 vcpu_setup(vm, vcpuid); 704 705 /* Setup guest general purpose registers */ 706 vcpu_regs_get(vm, vcpuid, ®s); 707 regs.rflags = regs.rflags | 0x2; 708 regs.rsp = stack_vaddr + (DEFAULT_STACK_PGS * getpagesize()); 709 regs.rip = (unsigned long) guest_code; 710 vcpu_regs_set(vm, vcpuid, ®s); 711 712 /* Setup the MP state */ 713 mp_state.mp_state = 0; 714 vcpu_set_mp_state(vm, vcpuid, &mp_state); 715 } 716 717 /* 718 * Allocate an instance of struct kvm_cpuid2 719 * 720 * Input Args: None 721 * 722 * Output Args: None 723 * 724 * Return: A pointer to the allocated struct. The caller is responsible 725 * for freeing this struct. 726 * 727 * Since kvm_cpuid2 uses a 0-length array to allow a the size of the 728 * array to be decided at allocation time, allocation is slightly 729 * complicated. This function uses a reasonable default length for 730 * the array and performs the appropriate allocation. 731 */ 732 static struct kvm_cpuid2 *allocate_kvm_cpuid2(void) 733 { 734 struct kvm_cpuid2 *cpuid; 735 int nent = 100; 736 size_t size; 737 738 size = sizeof(*cpuid); 739 size += nent * sizeof(struct kvm_cpuid_entry2); 740 cpuid = malloc(size); 741 if (!cpuid) { 742 perror("malloc"); 743 abort(); 744 } 745 746 cpuid->nent = nent; 747 748 return cpuid; 749 } 750 751 /* 752 * KVM Supported CPUID Get 753 * 754 * Input Args: None 755 * 756 * Output Args: 757 * 758 * Return: The supported KVM CPUID 759 * 760 * Get the guest CPUID supported by KVM. 761 */ 762 struct kvm_cpuid2 *kvm_get_supported_cpuid(void) 763 { 764 static struct kvm_cpuid2 *cpuid; 765 int ret; 766 int kvm_fd; 767 768 if (cpuid) 769 return cpuid; 770 771 cpuid = allocate_kvm_cpuid2(); 772 kvm_fd = open_kvm_dev_path_or_exit(); 773 774 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_CPUID, cpuid); 775 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_CPUID failed %d %d\n", 776 ret, errno); 777 778 close(kvm_fd); 779 return cpuid; 780 } 781 782 /* 783 * KVM Get MSR 784 * 785 * Input Args: 786 * msr_index - Index of MSR 787 * 788 * Output Args: None 789 * 790 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. 791 * 792 * Get value of MSR for VCPU. 793 */ 794 uint64_t kvm_get_feature_msr(uint64_t msr_index) 795 { 796 struct { 797 struct kvm_msrs header; 798 struct kvm_msr_entry entry; 799 } buffer = {}; 800 int r, kvm_fd; 801 802 buffer.header.nmsrs = 1; 803 buffer.entry.index = msr_index; 804 kvm_fd = open_kvm_dev_path_or_exit(); 805 806 r = ioctl(kvm_fd, KVM_GET_MSRS, &buffer.header); 807 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" 808 " rc: %i errno: %i", r, errno); 809 810 close(kvm_fd); 811 return buffer.entry.data; 812 } 813 814 /* 815 * VM VCPU CPUID Set 816 * 817 * Input Args: 818 * vm - Virtual Machine 819 * vcpuid - VCPU id 820 * 821 * Output Args: None 822 * 823 * Return: KVM CPUID (KVM_GET_CPUID2) 824 * 825 * Set the VCPU's CPUID. 826 */ 827 struct kvm_cpuid2 *vcpu_get_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 828 { 829 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 830 struct kvm_cpuid2 *cpuid; 831 int max_ent; 832 int rc = -1; 833 834 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 835 836 cpuid = allocate_kvm_cpuid2(); 837 max_ent = cpuid->nent; 838 839 for (cpuid->nent = 1; cpuid->nent <= max_ent; cpuid->nent++) { 840 rc = ioctl(vcpu->fd, KVM_GET_CPUID2, cpuid); 841 if (!rc) 842 break; 843 844 TEST_ASSERT(rc == -1 && errno == E2BIG, 845 "KVM_GET_CPUID2 should either succeed or give E2BIG: %d %d", 846 rc, errno); 847 } 848 849 TEST_ASSERT(rc == 0, "KVM_GET_CPUID2 failed, rc: %i errno: %i", 850 rc, errno); 851 852 return cpuid; 853 } 854 855 856 857 /* 858 * Locate a cpuid entry. 859 * 860 * Input Args: 861 * function: The function of the cpuid entry to find. 862 * index: The index of the cpuid entry. 863 * 864 * Output Args: None 865 * 866 * Return: A pointer to the cpuid entry. Never returns NULL. 867 */ 868 struct kvm_cpuid_entry2 * 869 kvm_get_supported_cpuid_index(uint32_t function, uint32_t index) 870 { 871 struct kvm_cpuid2 *cpuid; 872 struct kvm_cpuid_entry2 *entry = NULL; 873 int i; 874 875 cpuid = kvm_get_supported_cpuid(); 876 for (i = 0; i < cpuid->nent; i++) { 877 if (cpuid->entries[i].function == function && 878 cpuid->entries[i].index == index) { 879 entry = &cpuid->entries[i]; 880 break; 881 } 882 } 883 884 TEST_ASSERT(entry, "Guest CPUID entry not found: (EAX=%x, ECX=%x).", 885 function, index); 886 return entry; 887 } 888 889 /* 890 * VM VCPU CPUID Set 891 * 892 * Input Args: 893 * vm - Virtual Machine 894 * vcpuid - VCPU id 895 * cpuid - The CPUID values to set. 896 * 897 * Output Args: None 898 * 899 * Return: void 900 * 901 * Set the VCPU's CPUID. 902 */ 903 void vcpu_set_cpuid(struct kvm_vm *vm, 904 uint32_t vcpuid, struct kvm_cpuid2 *cpuid) 905 { 906 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 907 int rc; 908 909 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 910 911 rc = ioctl(vcpu->fd, KVM_SET_CPUID2, cpuid); 912 TEST_ASSERT(rc == 0, "KVM_SET_CPUID2 failed, rc: %i errno: %i", 913 rc, errno); 914 915 } 916 917 /* 918 * VCPU Get MSR 919 * 920 * Input Args: 921 * vm - Virtual Machine 922 * vcpuid - VCPU ID 923 * msr_index - Index of MSR 924 * 925 * Output Args: None 926 * 927 * Return: On success, value of the MSR. On failure a TEST_ASSERT is produced. 928 * 929 * Get value of MSR for VCPU. 930 */ 931 uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index) 932 { 933 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 934 struct { 935 struct kvm_msrs header; 936 struct kvm_msr_entry entry; 937 } buffer = {}; 938 int r; 939 940 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 941 buffer.header.nmsrs = 1; 942 buffer.entry.index = msr_index; 943 r = ioctl(vcpu->fd, KVM_GET_MSRS, &buffer.header); 944 TEST_ASSERT(r == 1, "KVM_GET_MSRS IOCTL failed,\n" 945 " rc: %i errno: %i", r, errno); 946 947 return buffer.entry.data; 948 } 949 950 /* 951 * _VCPU Set MSR 952 * 953 * Input Args: 954 * vm - Virtual Machine 955 * vcpuid - VCPU ID 956 * msr_index - Index of MSR 957 * msr_value - New value of MSR 958 * 959 * Output Args: None 960 * 961 * Return: The result of KVM_SET_MSRS. 962 * 963 * Sets the value of an MSR for the given VCPU. 964 */ 965 int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, 966 uint64_t msr_value) 967 { 968 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 969 struct { 970 struct kvm_msrs header; 971 struct kvm_msr_entry entry; 972 } buffer = {}; 973 int r; 974 975 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 976 memset(&buffer, 0, sizeof(buffer)); 977 buffer.header.nmsrs = 1; 978 buffer.entry.index = msr_index; 979 buffer.entry.data = msr_value; 980 r = ioctl(vcpu->fd, KVM_SET_MSRS, &buffer.header); 981 return r; 982 } 983 984 /* 985 * VCPU Set MSR 986 * 987 * Input Args: 988 * vm - Virtual Machine 989 * vcpuid - VCPU ID 990 * msr_index - Index of MSR 991 * msr_value - New value of MSR 992 * 993 * Output Args: None 994 * 995 * Return: On success, nothing. On failure a TEST_ASSERT is produced. 996 * 997 * Set value of MSR for VCPU. 998 */ 999 void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, 1000 uint64_t msr_value) 1001 { 1002 int r; 1003 1004 r = _vcpu_set_msr(vm, vcpuid, msr_index, msr_value); 1005 TEST_ASSERT(r == 1, "KVM_SET_MSRS IOCTL failed,\n" 1006 " rc: %i errno: %i", r, errno); 1007 } 1008 1009 void vcpu_args_set(struct kvm_vm *vm, uint32_t vcpuid, unsigned int num, ...) 1010 { 1011 va_list ap; 1012 struct kvm_regs regs; 1013 1014 TEST_ASSERT(num >= 1 && num <= 6, "Unsupported number of args,\n" 1015 " num: %u\n", 1016 num); 1017 1018 va_start(ap, num); 1019 vcpu_regs_get(vm, vcpuid, ®s); 1020 1021 if (num >= 1) 1022 regs.rdi = va_arg(ap, uint64_t); 1023 1024 if (num >= 2) 1025 regs.rsi = va_arg(ap, uint64_t); 1026 1027 if (num >= 3) 1028 regs.rdx = va_arg(ap, uint64_t); 1029 1030 if (num >= 4) 1031 regs.rcx = va_arg(ap, uint64_t); 1032 1033 if (num >= 5) 1034 regs.r8 = va_arg(ap, uint64_t); 1035 1036 if (num >= 6) 1037 regs.r9 = va_arg(ap, uint64_t); 1038 1039 vcpu_regs_set(vm, vcpuid, ®s); 1040 va_end(ap); 1041 } 1042 1043 void vcpu_dump(FILE *stream, struct kvm_vm *vm, uint32_t vcpuid, uint8_t indent) 1044 { 1045 struct kvm_regs regs; 1046 struct kvm_sregs sregs; 1047 1048 fprintf(stream, "%*scpuid: %u\n", indent, "", vcpuid); 1049 1050 fprintf(stream, "%*sregs:\n", indent + 2, ""); 1051 vcpu_regs_get(vm, vcpuid, ®s); 1052 regs_dump(stream, ®s, indent + 4); 1053 1054 fprintf(stream, "%*ssregs:\n", indent + 2, ""); 1055 vcpu_sregs_get(vm, vcpuid, &sregs); 1056 sregs_dump(stream, &sregs, indent + 4); 1057 } 1058 1059 static int kvm_get_num_msrs_fd(int kvm_fd) 1060 { 1061 struct kvm_msr_list nmsrs; 1062 int r; 1063 1064 nmsrs.nmsrs = 0; 1065 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, &nmsrs); 1066 TEST_ASSERT(r == -1 && errno == E2BIG, "Unexpected result from KVM_GET_MSR_INDEX_LIST probe, r: %i", 1067 r); 1068 1069 return nmsrs.nmsrs; 1070 } 1071 1072 static int kvm_get_num_msrs(struct kvm_vm *vm) 1073 { 1074 return kvm_get_num_msrs_fd(vm->kvm_fd); 1075 } 1076 1077 struct kvm_msr_list *kvm_get_msr_index_list(void) 1078 { 1079 struct kvm_msr_list *list; 1080 int nmsrs, r, kvm_fd; 1081 1082 kvm_fd = open_kvm_dev_path_or_exit(); 1083 1084 nmsrs = kvm_get_num_msrs_fd(kvm_fd); 1085 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); 1086 list->nmsrs = nmsrs; 1087 r = ioctl(kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 1088 close(kvm_fd); 1089 1090 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", 1091 r); 1092 1093 return list; 1094 } 1095 1096 static int vcpu_save_xsave_state(struct kvm_vm *vm, struct vcpu *vcpu, 1097 struct kvm_x86_state *state) 1098 { 1099 int size; 1100 1101 size = vm_check_cap(vm, KVM_CAP_XSAVE2); 1102 if (!size) 1103 size = sizeof(struct kvm_xsave); 1104 1105 state->xsave = malloc(size); 1106 if (size == sizeof(struct kvm_xsave)) 1107 return ioctl(vcpu->fd, KVM_GET_XSAVE, state->xsave); 1108 else 1109 return ioctl(vcpu->fd, KVM_GET_XSAVE2, state->xsave); 1110 } 1111 1112 struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid) 1113 { 1114 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1115 struct kvm_msr_list *list; 1116 struct kvm_x86_state *state; 1117 int nmsrs, r, i; 1118 static int nested_size = -1; 1119 1120 if (nested_size == -1) { 1121 nested_size = kvm_check_cap(KVM_CAP_NESTED_STATE); 1122 TEST_ASSERT(nested_size <= sizeof(state->nested_), 1123 "Nested state size too big, %i > %zi", 1124 nested_size, sizeof(state->nested_)); 1125 } 1126 1127 /* 1128 * When KVM exits to userspace with KVM_EXIT_IO, KVM guarantees 1129 * guest state is consistent only after userspace re-enters the 1130 * kernel with KVM_RUN. Complete IO prior to migrating state 1131 * to a new VM. 1132 */ 1133 vcpu_run_complete_io(vm, vcpuid); 1134 1135 nmsrs = kvm_get_num_msrs(vm); 1136 list = malloc(sizeof(*list) + nmsrs * sizeof(list->indices[0])); 1137 list->nmsrs = nmsrs; 1138 r = ioctl(vm->kvm_fd, KVM_GET_MSR_INDEX_LIST, list); 1139 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MSR_INDEX_LIST, r: %i", 1140 r); 1141 1142 state = malloc(sizeof(*state) + nmsrs * sizeof(state->msrs.entries[0])); 1143 r = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, &state->events); 1144 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_VCPU_EVENTS, r: %i", 1145 r); 1146 1147 r = ioctl(vcpu->fd, KVM_GET_MP_STATE, &state->mp_state); 1148 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_MP_STATE, r: %i", 1149 r); 1150 1151 r = ioctl(vcpu->fd, KVM_GET_REGS, &state->regs); 1152 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_REGS, r: %i", 1153 r); 1154 1155 r = vcpu_save_xsave_state(vm, vcpu, state); 1156 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XSAVE, r: %i", 1157 r); 1158 1159 if (kvm_check_cap(KVM_CAP_XCRS)) { 1160 r = ioctl(vcpu->fd, KVM_GET_XCRS, &state->xcrs); 1161 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_XCRS, r: %i", 1162 r); 1163 } 1164 1165 r = ioctl(vcpu->fd, KVM_GET_SREGS, &state->sregs); 1166 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_SREGS, r: %i", 1167 r); 1168 1169 if (nested_size) { 1170 state->nested.size = sizeof(state->nested_); 1171 r = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, &state->nested); 1172 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_NESTED_STATE, r: %i", 1173 r); 1174 TEST_ASSERT(state->nested.size <= nested_size, 1175 "Nested state size too big, %i (KVM_CHECK_CAP gave %i)", 1176 state->nested.size, nested_size); 1177 } else 1178 state->nested.size = 0; 1179 1180 state->msrs.nmsrs = nmsrs; 1181 for (i = 0; i < nmsrs; i++) 1182 state->msrs.entries[i].index = list->indices[i]; 1183 r = ioctl(vcpu->fd, KVM_GET_MSRS, &state->msrs); 1184 TEST_ASSERT(r == nmsrs, "Unexpected result from KVM_GET_MSRS, r: %i (failed MSR was 0x%x)", 1185 r, r == nmsrs ? -1 : list->indices[r]); 1186 1187 r = ioctl(vcpu->fd, KVM_GET_DEBUGREGS, &state->debugregs); 1188 TEST_ASSERT(r == 0, "Unexpected result from KVM_GET_DEBUGREGS, r: %i", 1189 r); 1190 1191 free(list); 1192 return state; 1193 } 1194 1195 void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state) 1196 { 1197 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1198 int r; 1199 1200 r = ioctl(vcpu->fd, KVM_SET_SREGS, &state->sregs); 1201 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_SREGS, r: %i", 1202 r); 1203 1204 r = ioctl(vcpu->fd, KVM_SET_MSRS, &state->msrs); 1205 TEST_ASSERT(r == state->msrs.nmsrs, 1206 "Unexpected result from KVM_SET_MSRS, r: %i (failed at %x)", 1207 r, r == state->msrs.nmsrs ? -1 : state->msrs.entries[r].index); 1208 1209 if (kvm_check_cap(KVM_CAP_XCRS)) { 1210 r = ioctl(vcpu->fd, KVM_SET_XCRS, &state->xcrs); 1211 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XCRS, r: %i", 1212 r); 1213 } 1214 1215 r = ioctl(vcpu->fd, KVM_SET_XSAVE, state->xsave); 1216 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_XSAVE, r: %i", 1217 r); 1218 1219 r = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, &state->events); 1220 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_VCPU_EVENTS, r: %i", 1221 r); 1222 1223 r = ioctl(vcpu->fd, KVM_SET_MP_STATE, &state->mp_state); 1224 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_MP_STATE, r: %i", 1225 r); 1226 1227 r = ioctl(vcpu->fd, KVM_SET_DEBUGREGS, &state->debugregs); 1228 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_DEBUGREGS, r: %i", 1229 r); 1230 1231 r = ioctl(vcpu->fd, KVM_SET_REGS, &state->regs); 1232 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_REGS, r: %i", 1233 r); 1234 1235 if (state->nested.size) { 1236 r = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, &state->nested); 1237 TEST_ASSERT(r == 0, "Unexpected result from KVM_SET_NESTED_STATE, r: %i", 1238 r); 1239 } 1240 } 1241 1242 void kvm_x86_state_cleanup(struct kvm_x86_state *state) 1243 { 1244 free(state->xsave); 1245 free(state); 1246 } 1247 1248 bool is_intel_cpu(void) 1249 { 1250 int eax, ebx, ecx, edx; 1251 const uint32_t *chunk; 1252 const int leaf = 0; 1253 1254 __asm__ __volatile__( 1255 "cpuid" 1256 : /* output */ "=a"(eax), "=b"(ebx), 1257 "=c"(ecx), "=d"(edx) 1258 : /* input */ "0"(leaf), "2"(0)); 1259 1260 chunk = (const uint32_t *)("GenuineIntel"); 1261 return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); 1262 } 1263 1264 uint32_t kvm_get_cpuid_max_basic(void) 1265 { 1266 return kvm_get_supported_cpuid_entry(0)->eax; 1267 } 1268 1269 uint32_t kvm_get_cpuid_max_extended(void) 1270 { 1271 return kvm_get_supported_cpuid_entry(0x80000000)->eax; 1272 } 1273 1274 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits) 1275 { 1276 struct kvm_cpuid_entry2 *entry; 1277 bool pae; 1278 1279 /* SDM 4.1.4 */ 1280 if (kvm_get_cpuid_max_extended() < 0x80000008) { 1281 pae = kvm_get_supported_cpuid_entry(1)->edx & (1 << 6); 1282 *pa_bits = pae ? 36 : 32; 1283 *va_bits = 32; 1284 } else { 1285 entry = kvm_get_supported_cpuid_entry(0x80000008); 1286 *pa_bits = entry->eax & 0xff; 1287 *va_bits = (entry->eax >> 8) & 0xff; 1288 } 1289 } 1290 1291 struct idt_entry { 1292 uint16_t offset0; 1293 uint16_t selector; 1294 uint16_t ist : 3; 1295 uint16_t : 5; 1296 uint16_t type : 4; 1297 uint16_t : 1; 1298 uint16_t dpl : 2; 1299 uint16_t p : 1; 1300 uint16_t offset1; 1301 uint32_t offset2; uint32_t reserved; 1302 }; 1303 1304 static void set_idt_entry(struct kvm_vm *vm, int vector, unsigned long addr, 1305 int dpl, unsigned short selector) 1306 { 1307 struct idt_entry *base = 1308 (struct idt_entry *)addr_gva2hva(vm, vm->idt); 1309 struct idt_entry *e = &base[vector]; 1310 1311 memset(e, 0, sizeof(*e)); 1312 e->offset0 = addr; 1313 e->selector = selector; 1314 e->ist = 0; 1315 e->type = 14; 1316 e->dpl = dpl; 1317 e->p = 1; 1318 e->offset1 = addr >> 16; 1319 e->offset2 = addr >> 32; 1320 } 1321 1322 void kvm_exit_unexpected_vector(uint32_t value) 1323 { 1324 ucall(UCALL_UNHANDLED, 1, value); 1325 } 1326 1327 void route_exception(struct ex_regs *regs) 1328 { 1329 typedef void(*handler)(struct ex_regs *); 1330 handler *handlers = (handler *)exception_handlers; 1331 1332 if (handlers && handlers[regs->vector]) { 1333 handlers[regs->vector](regs); 1334 return; 1335 } 1336 1337 kvm_exit_unexpected_vector(regs->vector); 1338 } 1339 1340 void vm_init_descriptor_tables(struct kvm_vm *vm) 1341 { 1342 extern void *idt_handlers; 1343 int i; 1344 1345 vm->idt = vm_vaddr_alloc_page(vm); 1346 vm->handlers = vm_vaddr_alloc_page(vm); 1347 /* Handlers have the same address in both address spaces.*/ 1348 for (i = 0; i < NUM_INTERRUPTS; i++) 1349 set_idt_entry(vm, i, (unsigned long)(&idt_handlers)[i], 0, 1350 DEFAULT_CODE_SELECTOR); 1351 } 1352 1353 void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid) 1354 { 1355 struct kvm_sregs sregs; 1356 1357 vcpu_sregs_get(vm, vcpuid, &sregs); 1358 sregs.idt.base = vm->idt; 1359 sregs.idt.limit = NUM_INTERRUPTS * sizeof(struct idt_entry) - 1; 1360 sregs.gdt.base = vm->gdt; 1361 sregs.gdt.limit = getpagesize() - 1; 1362 kvm_seg_set_kernel_data_64bit(NULL, DEFAULT_DATA_SELECTOR, &sregs.gs); 1363 vcpu_sregs_set(vm, vcpuid, &sregs); 1364 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers; 1365 } 1366 1367 void vm_install_exception_handler(struct kvm_vm *vm, int vector, 1368 void (*handler)(struct ex_regs *)) 1369 { 1370 vm_vaddr_t *handlers = (vm_vaddr_t *)addr_gva2hva(vm, vm->handlers); 1371 1372 handlers[vector] = (vm_vaddr_t)handler; 1373 } 1374 1375 void assert_on_unhandled_exception(struct kvm_vm *vm, uint32_t vcpuid) 1376 { 1377 struct ucall uc; 1378 1379 if (get_ucall(vm, vcpuid, &uc) == UCALL_UNHANDLED) { 1380 uint64_t vector = uc.args[0]; 1381 1382 TEST_FAIL("Unexpected vectored event in guest (vector:0x%lx)", 1383 vector); 1384 } 1385 } 1386 1387 bool set_cpuid(struct kvm_cpuid2 *cpuid, 1388 struct kvm_cpuid_entry2 *ent) 1389 { 1390 int i; 1391 1392 for (i = 0; i < cpuid->nent; i++) { 1393 struct kvm_cpuid_entry2 *cur = &cpuid->entries[i]; 1394 1395 if (cur->function != ent->function || cur->index != ent->index) 1396 continue; 1397 1398 memcpy(cur, ent, sizeof(struct kvm_cpuid_entry2)); 1399 return true; 1400 } 1401 1402 return false; 1403 } 1404 1405 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, 1406 uint64_t a3) 1407 { 1408 uint64_t r; 1409 1410 asm volatile("vmcall" 1411 : "=a"(r) 1412 : "b"(a0), "c"(a1), "d"(a2), "S"(a3)); 1413 return r; 1414 } 1415 1416 struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void) 1417 { 1418 static struct kvm_cpuid2 *cpuid; 1419 int ret; 1420 int kvm_fd; 1421 1422 if (cpuid) 1423 return cpuid; 1424 1425 cpuid = allocate_kvm_cpuid2(); 1426 kvm_fd = open_kvm_dev_path_or_exit(); 1427 1428 ret = ioctl(kvm_fd, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1429 TEST_ASSERT(ret == 0, "KVM_GET_SUPPORTED_HV_CPUID failed %d %d\n", 1430 ret, errno); 1431 1432 close(kvm_fd); 1433 return cpuid; 1434 } 1435 1436 void vcpu_set_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 1437 { 1438 static struct kvm_cpuid2 *cpuid_full; 1439 struct kvm_cpuid2 *cpuid_sys, *cpuid_hv; 1440 int i, nent = 0; 1441 1442 if (!cpuid_full) { 1443 cpuid_sys = kvm_get_supported_cpuid(); 1444 cpuid_hv = kvm_get_supported_hv_cpuid(); 1445 1446 cpuid_full = malloc(sizeof(*cpuid_full) + 1447 (cpuid_sys->nent + cpuid_hv->nent) * 1448 sizeof(struct kvm_cpuid_entry2)); 1449 if (!cpuid_full) { 1450 perror("malloc"); 1451 abort(); 1452 } 1453 1454 /* Need to skip KVM CPUID leaves 0x400000xx */ 1455 for (i = 0; i < cpuid_sys->nent; i++) { 1456 if (cpuid_sys->entries[i].function >= 0x40000000 && 1457 cpuid_sys->entries[i].function < 0x40000100) 1458 continue; 1459 cpuid_full->entries[nent] = cpuid_sys->entries[i]; 1460 nent++; 1461 } 1462 1463 memcpy(&cpuid_full->entries[nent], cpuid_hv->entries, 1464 cpuid_hv->nent * sizeof(struct kvm_cpuid_entry2)); 1465 cpuid_full->nent = nent + cpuid_hv->nent; 1466 } 1467 1468 vcpu_set_cpuid(vm, vcpuid, cpuid_full); 1469 } 1470 1471 struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vm *vm, uint32_t vcpuid) 1472 { 1473 static struct kvm_cpuid2 *cpuid; 1474 1475 cpuid = allocate_kvm_cpuid2(); 1476 1477 vcpu_ioctl(vm, vcpuid, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1478 1479 return cpuid; 1480 } 1481 1482 #define X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx 0x68747541 1483 #define X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx 0x444d4163 1484 #define X86EMUL_CPUID_VENDOR_AuthenticAMD_edx 0x69746e65 1485 1486 static inline unsigned x86_family(unsigned int eax) 1487 { 1488 unsigned int x86; 1489 1490 x86 = (eax >> 8) & 0xf; 1491 1492 if (x86 == 0xf) 1493 x86 += (eax >> 20) & 0xff; 1494 1495 return x86; 1496 } 1497 1498 unsigned long vm_compute_max_gfn(struct kvm_vm *vm) 1499 { 1500 const unsigned long num_ht_pages = 12 << (30 - vm->page_shift); /* 12 GiB */ 1501 unsigned long ht_gfn, max_gfn, max_pfn; 1502 uint32_t eax, ebx, ecx, edx, max_ext_leaf; 1503 1504 max_gfn = (1ULL << (vm->pa_bits - vm->page_shift)) - 1; 1505 1506 /* Avoid reserved HyperTransport region on AMD processors. */ 1507 eax = ecx = 0; 1508 cpuid(&eax, &ebx, &ecx, &edx); 1509 if (ebx != X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx || 1510 ecx != X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx || 1511 edx != X86EMUL_CPUID_VENDOR_AuthenticAMD_edx) 1512 return max_gfn; 1513 1514 /* On parts with <40 physical address bits, the area is fully hidden */ 1515 if (vm->pa_bits < 40) 1516 return max_gfn; 1517 1518 /* Before family 17h, the HyperTransport area is just below 1T. */ 1519 ht_gfn = (1 << 28) - num_ht_pages; 1520 eax = 1; 1521 cpuid(&eax, &ebx, &ecx, &edx); 1522 if (x86_family(eax) < 0x17) 1523 goto done; 1524 1525 /* 1526 * Otherwise it's at the top of the physical address space, possibly 1527 * reduced due to SME by bits 11:6 of CPUID[0x8000001f].EBX. Use 1528 * the old conservative value if MAXPHYADDR is not enumerated. 1529 */ 1530 eax = 0x80000000; 1531 cpuid(&eax, &ebx, &ecx, &edx); 1532 max_ext_leaf = eax; 1533 if (max_ext_leaf < 0x80000008) 1534 goto done; 1535 1536 eax = 0x80000008; 1537 cpuid(&eax, &ebx, &ecx, &edx); 1538 max_pfn = (1ULL << ((eax & 0xff) - vm->page_shift)) - 1; 1539 if (max_ext_leaf >= 0x8000001f) { 1540 eax = 0x8000001f; 1541 cpuid(&eax, &ebx, &ecx, &edx); 1542 max_pfn >>= (ebx >> 6) & 0x3f; 1543 } 1544 1545 ht_gfn = max_pfn - num_ht_pages; 1546 done: 1547 return min(max_gfn, ht_gfn - 1); 1548 } 1549