xref: /openbmc/linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision f5fb5ac7cee29cea9156e734fd652a66417d32fc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 
13 #include <assert.h>
14 #include <sched.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 int open_path_or_exit(const char *path, int flags)
26 {
27 	int fd;
28 
29 	fd = open(path, flags);
30 	__TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
31 
32 	return fd;
33 }
34 
35 /*
36  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
37  *
38  * Input Args:
39  *   flags - The flags to pass when opening KVM_DEV_PATH.
40  *
41  * Return:
42  *   The opened file descriptor of /dev/kvm.
43  */
44 static int _open_kvm_dev_path_or_exit(int flags)
45 {
46 	return open_path_or_exit(KVM_DEV_PATH, flags);
47 }
48 
49 int open_kvm_dev_path_or_exit(void)
50 {
51 	return _open_kvm_dev_path_or_exit(O_RDONLY);
52 }
53 
54 static bool get_module_param_bool(const char *module_name, const char *param)
55 {
56 	const int path_size = 128;
57 	char path[path_size];
58 	char value;
59 	ssize_t r;
60 	int fd;
61 
62 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
63 		     module_name, param);
64 	TEST_ASSERT(r < path_size,
65 		    "Failed to construct sysfs path in %d bytes.", path_size);
66 
67 	fd = open_path_or_exit(path, O_RDONLY);
68 
69 	r = read(fd, &value, 1);
70 	TEST_ASSERT(r == 1, "read(%s) failed", path);
71 
72 	r = close(fd);
73 	TEST_ASSERT(!r, "close(%s) failed", path);
74 
75 	if (value == 'Y')
76 		return true;
77 	else if (value == 'N')
78 		return false;
79 
80 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
81 }
82 
83 bool get_kvm_param_bool(const char *param)
84 {
85 	return get_module_param_bool("kvm", param);
86 }
87 
88 bool get_kvm_intel_param_bool(const char *param)
89 {
90 	return get_module_param_bool("kvm_intel", param);
91 }
92 
93 bool get_kvm_amd_param_bool(const char *param)
94 {
95 	return get_module_param_bool("kvm_amd", param);
96 }
97 
98 /*
99  * Capability
100  *
101  * Input Args:
102  *   cap - Capability
103  *
104  * Output Args: None
105  *
106  * Return:
107  *   On success, the Value corresponding to the capability (KVM_CAP_*)
108  *   specified by the value of cap.  On failure a TEST_ASSERT failure
109  *   is produced.
110  *
111  * Looks up and returns the value corresponding to the capability
112  * (KVM_CAP_*) given by cap.
113  */
114 unsigned int kvm_check_cap(long cap)
115 {
116 	int ret;
117 	int kvm_fd;
118 
119 	kvm_fd = open_kvm_dev_path_or_exit();
120 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
121 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
122 
123 	close(kvm_fd);
124 
125 	return (unsigned int)ret;
126 }
127 
128 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
129 {
130 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
131 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
132 	else
133 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
134 	vm->dirty_ring_size = ring_size;
135 }
136 
137 static void vm_open(struct kvm_vm *vm)
138 {
139 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
140 
141 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
142 
143 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
144 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
145 }
146 
147 const char *vm_guest_mode_string(uint32_t i)
148 {
149 	static const char * const strings[] = {
150 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
151 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
152 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
153 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
154 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
155 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
156 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
157 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
158 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
159 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
160 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
161 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
162 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
163 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
164 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
165 	};
166 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
167 		       "Missing new mode strings?");
168 
169 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
170 
171 	return strings[i];
172 }
173 
174 const struct vm_guest_mode_params vm_guest_mode_params[] = {
175 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
176 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
177 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
178 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
179 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
180 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
181 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
182 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
183 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
184 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
185 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
186 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
187 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
188 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
189 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
190 };
191 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
192 	       "Missing new mode params?");
193 
194 /*
195  * Initializes vm->vpages_valid to match the canonical VA space of the
196  * architecture.
197  *
198  * The default implementation is valid for architectures which split the
199  * range addressed by a single page table into a low and high region
200  * based on the MSB of the VA. On architectures with this behavior
201  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
202  */
203 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
204 {
205 	sparsebit_set_num(vm->vpages_valid,
206 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
207 	sparsebit_set_num(vm->vpages_valid,
208 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
209 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
210 }
211 
212 struct kvm_vm *____vm_create(enum vm_guest_mode mode)
213 {
214 	struct kvm_vm *vm;
215 
216 	vm = calloc(1, sizeof(*vm));
217 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
218 
219 	INIT_LIST_HEAD(&vm->vcpus);
220 	vm->regions.gpa_tree = RB_ROOT;
221 	vm->regions.hva_tree = RB_ROOT;
222 	hash_init(vm->regions.slot_hash);
223 
224 	vm->mode = mode;
225 	vm->type = 0;
226 
227 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
228 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
229 	vm->page_size = vm_guest_mode_params[mode].page_size;
230 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
231 
232 	/* Setup mode specific traits. */
233 	switch (vm->mode) {
234 	case VM_MODE_P52V48_4K:
235 		vm->pgtable_levels = 4;
236 		break;
237 	case VM_MODE_P52V48_64K:
238 		vm->pgtable_levels = 3;
239 		break;
240 	case VM_MODE_P48V48_4K:
241 		vm->pgtable_levels = 4;
242 		break;
243 	case VM_MODE_P48V48_64K:
244 		vm->pgtable_levels = 3;
245 		break;
246 	case VM_MODE_P40V48_4K:
247 	case VM_MODE_P36V48_4K:
248 		vm->pgtable_levels = 4;
249 		break;
250 	case VM_MODE_P40V48_64K:
251 	case VM_MODE_P36V48_64K:
252 		vm->pgtable_levels = 3;
253 		break;
254 	case VM_MODE_P48V48_16K:
255 	case VM_MODE_P40V48_16K:
256 	case VM_MODE_P36V48_16K:
257 		vm->pgtable_levels = 4;
258 		break;
259 	case VM_MODE_P36V47_16K:
260 		vm->pgtable_levels = 3;
261 		break;
262 	case VM_MODE_PXXV48_4K:
263 #ifdef __x86_64__
264 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
265 		/*
266 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
267 		 * it doesn't take effect unless a CR4.LA57 is set, which it
268 		 * isn't for this VM_MODE.
269 		 */
270 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
271 			    "Linear address width (%d bits) not supported",
272 			    vm->va_bits);
273 		pr_debug("Guest physical address width detected: %d\n",
274 			 vm->pa_bits);
275 		vm->pgtable_levels = 4;
276 		vm->va_bits = 48;
277 #else
278 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
279 #endif
280 		break;
281 	case VM_MODE_P47V64_4K:
282 		vm->pgtable_levels = 5;
283 		break;
284 	case VM_MODE_P44V64_4K:
285 		vm->pgtable_levels = 5;
286 		break;
287 	default:
288 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
289 	}
290 
291 #ifdef __aarch64__
292 	if (vm->pa_bits != 40)
293 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
294 #endif
295 
296 	vm_open(vm);
297 
298 	/* Limit to VA-bit canonical virtual addresses. */
299 	vm->vpages_valid = sparsebit_alloc();
300 	vm_vaddr_populate_bitmap(vm);
301 
302 	/* Limit physical addresses to PA-bits. */
303 	vm->max_gfn = vm_compute_max_gfn(vm);
304 
305 	/* Allocate and setup memory for guest. */
306 	vm->vpages_mapped = sparsebit_alloc();
307 
308 	return vm;
309 }
310 
311 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
312 				     uint32_t nr_runnable_vcpus,
313 				     uint64_t extra_mem_pages)
314 {
315 	uint64_t page_size = vm_guest_mode_params[mode].page_size;
316 	uint64_t nr_pages;
317 
318 	TEST_ASSERT(nr_runnable_vcpus,
319 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
320 
321 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
322 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
323 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
324 
325 	/*
326 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
327 	 * test code and other per-VM assets that will be loaded into memslot0.
328 	 */
329 	nr_pages = 512;
330 
331 	/* Account for the per-vCPU stacks on behalf of the test. */
332 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
333 
334 	/*
335 	 * Account for the number of pages needed for the page tables.  The
336 	 * maximum page table size for a memory region will be when the
337 	 * smallest page size is used. Considering each page contains x page
338 	 * table descriptors, the total extra size for page tables (for extra
339 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
340 	 * than N/x*2.
341 	 */
342 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
343 
344 	/* Account for the number of pages needed by ucall. */
345 	nr_pages += ucall_nr_pages_required(page_size);
346 
347 	return vm_adjust_num_guest_pages(mode, nr_pages);
348 }
349 
350 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
351 			   uint64_t nr_extra_pages)
352 {
353 	uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
354 						 nr_extra_pages);
355 	struct userspace_mem_region *slot0;
356 	struct kvm_vm *vm;
357 	int i;
358 
359 	pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
360 		 vm_guest_mode_string(mode), nr_pages);
361 
362 	vm = ____vm_create(mode);
363 
364 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
365 	for (i = 0; i < NR_MEM_REGIONS; i++)
366 		vm->memslots[i] = 0;
367 
368 	kvm_vm_elf_load(vm, program_invocation_name);
369 
370 	/*
371 	 * TODO: Add proper defines to protect the library's memslots, and then
372 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
373 	 * read-only memslots as MMIO, and creating a read-only memslot for the
374 	 * MMIO region would prevent silently clobbering the MMIO region.
375 	 */
376 	slot0 = memslot2region(vm, 0);
377 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
378 
379 	kvm_arch_vm_post_create(vm);
380 
381 	return vm;
382 }
383 
384 /*
385  * VM Create with customized parameters
386  *
387  * Input Args:
388  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
389  *   nr_vcpus - VCPU count
390  *   extra_mem_pages - Non-slot0 physical memory total size
391  *   guest_code - Guest entry point
392  *   vcpuids - VCPU IDs
393  *
394  * Output Args: None
395  *
396  * Return:
397  *   Pointer to opaque structure that describes the created VM.
398  *
399  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
400  * extra_mem_pages is only used to calculate the maximum page table size,
401  * no real memory allocation for non-slot0 memory in this function.
402  */
403 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
404 				      uint64_t extra_mem_pages,
405 				      void *guest_code, struct kvm_vcpu *vcpus[])
406 {
407 	struct kvm_vm *vm;
408 	int i;
409 
410 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
411 
412 	vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
413 
414 	for (i = 0; i < nr_vcpus; ++i)
415 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
416 
417 	return vm;
418 }
419 
420 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
421 					 uint64_t extra_mem_pages,
422 					 void *guest_code)
423 {
424 	struct kvm_vcpu *vcpus[1];
425 	struct kvm_vm *vm;
426 
427 	vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
428 				    guest_code, vcpus);
429 
430 	*vcpu = vcpus[0];
431 	return vm;
432 }
433 
434 /*
435  * VM Restart
436  *
437  * Input Args:
438  *   vm - VM that has been released before
439  *
440  * Output Args: None
441  *
442  * Reopens the file descriptors associated to the VM and reinstates the
443  * global state, such as the irqchip and the memory regions that are mapped
444  * into the guest.
445  */
446 void kvm_vm_restart(struct kvm_vm *vmp)
447 {
448 	int ctr;
449 	struct userspace_mem_region *region;
450 
451 	vm_open(vmp);
452 	if (vmp->has_irqchip)
453 		vm_create_irqchip(vmp);
454 
455 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
456 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
457 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
458 			    "  rc: %i errno: %i\n"
459 			    "  slot: %u flags: 0x%x\n"
460 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
461 			    ret, errno, region->region.slot,
462 			    region->region.flags,
463 			    region->region.guest_phys_addr,
464 			    region->region.memory_size);
465 	}
466 }
467 
468 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
469 					      uint32_t vcpu_id)
470 {
471 	return __vm_vcpu_add(vm, vcpu_id);
472 }
473 
474 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
475 {
476 	kvm_vm_restart(vm);
477 
478 	return vm_vcpu_recreate(vm, 0);
479 }
480 
481 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
482 {
483 	cpu_set_t mask;
484 	int r;
485 
486 	CPU_ZERO(&mask);
487 	CPU_SET(pcpu, &mask);
488 	r = sched_setaffinity(0, sizeof(mask), &mask);
489 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.\n", pcpu);
490 }
491 
492 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
493 {
494 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
495 
496 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
497 		    "Not allowed to run on pCPU '%d', check cgroups?\n", pcpu);
498 	return pcpu;
499 }
500 
501 void kvm_print_vcpu_pinning_help(void)
502 {
503 	const char *name = program_invocation_name;
504 
505 	printf(" -c: Pin tasks to physical CPUs.  Takes a list of comma separated\n"
506 	       "     values (target pCPU), one for each vCPU, plus an optional\n"
507 	       "     entry for the main application task (specified via entry\n"
508 	       "     <nr_vcpus + 1>).  If used, entries must be provided for all\n"
509 	       "     vCPUs, i.e. pinning vCPUs is all or nothing.\n\n"
510 	       "     E.g. to create 3 vCPUs, pin vCPU0=>pCPU22, vCPU1=>pCPU23,\n"
511 	       "     vCPU2=>pCPU24, and pin the application task to pCPU50:\n\n"
512 	       "         %s -v 3 -c 22,23,24,50\n\n"
513 	       "     To leave the application task unpinned, drop the final entry:\n\n"
514 	       "         %s -v 3 -c 22,23,24\n\n"
515 	       "     (default: no pinning)\n", name, name);
516 }
517 
518 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
519 			    int nr_vcpus)
520 {
521 	cpu_set_t allowed_mask;
522 	char *cpu, *cpu_list;
523 	char delim[2] = ",";
524 	int i, r;
525 
526 	cpu_list = strdup(pcpus_string);
527 	TEST_ASSERT(cpu_list, "strdup() allocation failed.\n");
528 
529 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
530 	TEST_ASSERT(!r, "sched_getaffinity() failed");
531 
532 	cpu = strtok(cpu_list, delim);
533 
534 	/* 1. Get all pcpus for vcpus. */
535 	for (i = 0; i < nr_vcpus; i++) {
536 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'\n", i);
537 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
538 		cpu = strtok(NULL, delim);
539 	}
540 
541 	/* 2. Check if the main worker needs to be pinned. */
542 	if (cpu) {
543 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
544 		cpu = strtok(NULL, delim);
545 	}
546 
547 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
548 	free(cpu_list);
549 }
550 
551 /*
552  * Userspace Memory Region Find
553  *
554  * Input Args:
555  *   vm - Virtual Machine
556  *   start - Starting VM physical address
557  *   end - Ending VM physical address, inclusive.
558  *
559  * Output Args: None
560  *
561  * Return:
562  *   Pointer to overlapping region, NULL if no such region.
563  *
564  * Searches for a region with any physical memory that overlaps with
565  * any portion of the guest physical addresses from start to end
566  * inclusive.  If multiple overlapping regions exist, a pointer to any
567  * of the regions is returned.  Null is returned only when no overlapping
568  * region exists.
569  */
570 static struct userspace_mem_region *
571 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
572 {
573 	struct rb_node *node;
574 
575 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
576 		struct userspace_mem_region *region =
577 			container_of(node, struct userspace_mem_region, gpa_node);
578 		uint64_t existing_start = region->region.guest_phys_addr;
579 		uint64_t existing_end = region->region.guest_phys_addr
580 			+ region->region.memory_size - 1;
581 		if (start <= existing_end && end >= existing_start)
582 			return region;
583 
584 		if (start < existing_start)
585 			node = node->rb_left;
586 		else
587 			node = node->rb_right;
588 	}
589 
590 	return NULL;
591 }
592 
593 /*
594  * KVM Userspace Memory Region Find
595  *
596  * Input Args:
597  *   vm - Virtual Machine
598  *   start - Starting VM physical address
599  *   end - Ending VM physical address, inclusive.
600  *
601  * Output Args: None
602  *
603  * Return:
604  *   Pointer to overlapping region, NULL if no such region.
605  *
606  * Public interface to userspace_mem_region_find. Allows tests to look up
607  * the memslot datastructure for a given range of guest physical memory.
608  */
609 struct kvm_userspace_memory_region *
610 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
611 				 uint64_t end)
612 {
613 	struct userspace_mem_region *region;
614 
615 	region = userspace_mem_region_find(vm, start, end);
616 	if (!region)
617 		return NULL;
618 
619 	return &region->region;
620 }
621 
622 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
623 {
624 
625 }
626 
627 /*
628  * VM VCPU Remove
629  *
630  * Input Args:
631  *   vcpu - VCPU to remove
632  *
633  * Output Args: None
634  *
635  * Return: None, TEST_ASSERT failures for all error conditions
636  *
637  * Removes a vCPU from a VM and frees its resources.
638  */
639 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
640 {
641 	int ret;
642 
643 	if (vcpu->dirty_gfns) {
644 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
645 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
646 		vcpu->dirty_gfns = NULL;
647 	}
648 
649 	ret = munmap(vcpu->run, vcpu_mmap_sz());
650 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
651 
652 	ret = close(vcpu->fd);
653 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
654 
655 	list_del(&vcpu->list);
656 
657 	vcpu_arch_free(vcpu);
658 	free(vcpu);
659 }
660 
661 void kvm_vm_release(struct kvm_vm *vmp)
662 {
663 	struct kvm_vcpu *vcpu, *tmp;
664 	int ret;
665 
666 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
667 		vm_vcpu_rm(vmp, vcpu);
668 
669 	ret = close(vmp->fd);
670 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
671 
672 	ret = close(vmp->kvm_fd);
673 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
674 }
675 
676 static void __vm_mem_region_delete(struct kvm_vm *vm,
677 				   struct userspace_mem_region *region,
678 				   bool unlink)
679 {
680 	int ret;
681 
682 	if (unlink) {
683 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
684 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
685 		hash_del(&region->slot_node);
686 	}
687 
688 	region->region.memory_size = 0;
689 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
690 
691 	sparsebit_free(&region->unused_phy_pages);
692 	ret = munmap(region->mmap_start, region->mmap_size);
693 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
694 	if (region->fd >= 0) {
695 		/* There's an extra map when using shared memory. */
696 		ret = munmap(region->mmap_alias, region->mmap_size);
697 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
698 		close(region->fd);
699 	}
700 
701 	free(region);
702 }
703 
704 /*
705  * Destroys and frees the VM pointed to by vmp.
706  */
707 void kvm_vm_free(struct kvm_vm *vmp)
708 {
709 	int ctr;
710 	struct hlist_node *node;
711 	struct userspace_mem_region *region;
712 
713 	if (vmp == NULL)
714 		return;
715 
716 	/* Free cached stats metadata and close FD */
717 	if (vmp->stats_fd) {
718 		free(vmp->stats_desc);
719 		close(vmp->stats_fd);
720 	}
721 
722 	/* Free userspace_mem_regions. */
723 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
724 		__vm_mem_region_delete(vmp, region, false);
725 
726 	/* Free sparsebit arrays. */
727 	sparsebit_free(&vmp->vpages_valid);
728 	sparsebit_free(&vmp->vpages_mapped);
729 
730 	kvm_vm_release(vmp);
731 
732 	/* Free the structure describing the VM. */
733 	free(vmp);
734 }
735 
736 int kvm_memfd_alloc(size_t size, bool hugepages)
737 {
738 	int memfd_flags = MFD_CLOEXEC;
739 	int fd, r;
740 
741 	if (hugepages)
742 		memfd_flags |= MFD_HUGETLB;
743 
744 	fd = memfd_create("kvm_selftest", memfd_flags);
745 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
746 
747 	r = ftruncate(fd, size);
748 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
749 
750 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
751 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
752 
753 	return fd;
754 }
755 
756 /*
757  * Memory Compare, host virtual to guest virtual
758  *
759  * Input Args:
760  *   hva - Starting host virtual address
761  *   vm - Virtual Machine
762  *   gva - Starting guest virtual address
763  *   len - number of bytes to compare
764  *
765  * Output Args: None
766  *
767  * Input/Output Args: None
768  *
769  * Return:
770  *   Returns 0 if the bytes starting at hva for a length of len
771  *   are equal the guest virtual bytes starting at gva.  Returns
772  *   a value < 0, if bytes at hva are less than those at gva.
773  *   Otherwise a value > 0 is returned.
774  *
775  * Compares the bytes starting at the host virtual address hva, for
776  * a length of len, to the guest bytes starting at the guest virtual
777  * address given by gva.
778  */
779 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
780 {
781 	size_t amt;
782 
783 	/*
784 	 * Compare a batch of bytes until either a match is found
785 	 * or all the bytes have been compared.
786 	 */
787 	for (uintptr_t offset = 0; offset < len; offset += amt) {
788 		uintptr_t ptr1 = (uintptr_t)hva + offset;
789 
790 		/*
791 		 * Determine host address for guest virtual address
792 		 * at offset.
793 		 */
794 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
795 
796 		/*
797 		 * Determine amount to compare on this pass.
798 		 * Don't allow the comparsion to cross a page boundary.
799 		 */
800 		amt = len - offset;
801 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
802 			amt = vm->page_size - (ptr1 % vm->page_size);
803 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
804 			amt = vm->page_size - (ptr2 % vm->page_size);
805 
806 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
807 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
808 
809 		/*
810 		 * Perform the comparison.  If there is a difference
811 		 * return that result to the caller, otherwise need
812 		 * to continue on looking for a mismatch.
813 		 */
814 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
815 		if (ret != 0)
816 			return ret;
817 	}
818 
819 	/*
820 	 * No mismatch found.  Let the caller know the two memory
821 	 * areas are equal.
822 	 */
823 	return 0;
824 }
825 
826 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
827 					       struct userspace_mem_region *region)
828 {
829 	struct rb_node **cur, *parent;
830 
831 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
832 		struct userspace_mem_region *cregion;
833 
834 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
835 		parent = *cur;
836 		if (region->region.guest_phys_addr <
837 		    cregion->region.guest_phys_addr)
838 			cur = &(*cur)->rb_left;
839 		else {
840 			TEST_ASSERT(region->region.guest_phys_addr !=
841 				    cregion->region.guest_phys_addr,
842 				    "Duplicate GPA in region tree");
843 
844 			cur = &(*cur)->rb_right;
845 		}
846 	}
847 
848 	rb_link_node(&region->gpa_node, parent, cur);
849 	rb_insert_color(&region->gpa_node, gpa_tree);
850 }
851 
852 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
853 					       struct userspace_mem_region *region)
854 {
855 	struct rb_node **cur, *parent;
856 
857 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
858 		struct userspace_mem_region *cregion;
859 
860 		cregion = container_of(*cur, typeof(*cregion), hva_node);
861 		parent = *cur;
862 		if (region->host_mem < cregion->host_mem)
863 			cur = &(*cur)->rb_left;
864 		else {
865 			TEST_ASSERT(region->host_mem !=
866 				    cregion->host_mem,
867 				    "Duplicate HVA in region tree");
868 
869 			cur = &(*cur)->rb_right;
870 		}
871 	}
872 
873 	rb_link_node(&region->hva_node, parent, cur);
874 	rb_insert_color(&region->hva_node, hva_tree);
875 }
876 
877 
878 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
879 				uint64_t gpa, uint64_t size, void *hva)
880 {
881 	struct kvm_userspace_memory_region region = {
882 		.slot = slot,
883 		.flags = flags,
884 		.guest_phys_addr = gpa,
885 		.memory_size = size,
886 		.userspace_addr = (uintptr_t)hva,
887 	};
888 
889 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
890 }
891 
892 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
893 			       uint64_t gpa, uint64_t size, void *hva)
894 {
895 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
896 
897 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
898 		    errno, strerror(errno));
899 }
900 
901 /*
902  * VM Userspace Memory Region Add
903  *
904  * Input Args:
905  *   vm - Virtual Machine
906  *   src_type - Storage source for this region.
907  *              NULL to use anonymous memory.
908  *   guest_paddr - Starting guest physical address
909  *   slot - KVM region slot
910  *   npages - Number of physical pages
911  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
912  *
913  * Output Args: None
914  *
915  * Return: None
916  *
917  * Allocates a memory area of the number of pages specified by npages
918  * and maps it to the VM specified by vm, at a starting physical address
919  * given by guest_paddr.  The region is created with a KVM region slot
920  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
921  * region is created with the flags given by flags.
922  */
923 void vm_userspace_mem_region_add(struct kvm_vm *vm,
924 	enum vm_mem_backing_src_type src_type,
925 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
926 	uint32_t flags)
927 {
928 	int ret;
929 	struct userspace_mem_region *region;
930 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
931 	size_t alignment;
932 
933 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
934 		"Number of guest pages is not compatible with the host. "
935 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
936 
937 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
938 		"address not on a page boundary.\n"
939 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
940 		guest_paddr, vm->page_size);
941 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
942 		<= vm->max_gfn, "Physical range beyond maximum "
943 		"supported physical address,\n"
944 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
945 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
946 		guest_paddr, npages, vm->max_gfn, vm->page_size);
947 
948 	/*
949 	 * Confirm a mem region with an overlapping address doesn't
950 	 * already exist.
951 	 */
952 	region = (struct userspace_mem_region *) userspace_mem_region_find(
953 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
954 	if (region != NULL)
955 		TEST_FAIL("overlapping userspace_mem_region already "
956 			"exists\n"
957 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
958 			"page_size: 0x%x\n"
959 			"  existing guest_paddr: 0x%lx size: 0x%lx",
960 			guest_paddr, npages, vm->page_size,
961 			(uint64_t) region->region.guest_phys_addr,
962 			(uint64_t) region->region.memory_size);
963 
964 	/* Confirm no region with the requested slot already exists. */
965 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
966 			       slot) {
967 		if (region->region.slot != slot)
968 			continue;
969 
970 		TEST_FAIL("A mem region with the requested slot "
971 			"already exists.\n"
972 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
973 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
974 			slot, guest_paddr, npages,
975 			region->region.slot,
976 			(uint64_t) region->region.guest_phys_addr,
977 			(uint64_t) region->region.memory_size);
978 	}
979 
980 	/* Allocate and initialize new mem region structure. */
981 	region = calloc(1, sizeof(*region));
982 	TEST_ASSERT(region != NULL, "Insufficient Memory");
983 	region->mmap_size = npages * vm->page_size;
984 
985 #ifdef __s390x__
986 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
987 	alignment = 0x100000;
988 #else
989 	alignment = 1;
990 #endif
991 
992 	/*
993 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
994 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
995 	 * because mmap will always return an address aligned to the HugeTLB
996 	 * page size.
997 	 */
998 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
999 		alignment = max(backing_src_pagesz, alignment);
1000 
1001 	TEST_ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
1002 
1003 	/* Add enough memory to align up if necessary */
1004 	if (alignment > 1)
1005 		region->mmap_size += alignment;
1006 
1007 	region->fd = -1;
1008 	if (backing_src_is_shared(src_type))
1009 		region->fd = kvm_memfd_alloc(region->mmap_size,
1010 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
1011 
1012 	region->mmap_start = mmap(NULL, region->mmap_size,
1013 				  PROT_READ | PROT_WRITE,
1014 				  vm_mem_backing_src_alias(src_type)->flag,
1015 				  region->fd, 0);
1016 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
1017 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1018 
1019 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1020 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1021 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1022 		    region->mmap_start, backing_src_pagesz);
1023 
1024 	/* Align host address */
1025 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1026 
1027 	/* As needed perform madvise */
1028 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1029 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1030 		ret = madvise(region->host_mem, npages * vm->page_size,
1031 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1032 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1033 			    region->host_mem, npages * vm->page_size,
1034 			    vm_mem_backing_src_alias(src_type)->name);
1035 	}
1036 
1037 	region->backing_src_type = src_type;
1038 	region->unused_phy_pages = sparsebit_alloc();
1039 	sparsebit_set_num(region->unused_phy_pages,
1040 		guest_paddr >> vm->page_shift, npages);
1041 	region->region.slot = slot;
1042 	region->region.flags = flags;
1043 	region->region.guest_phys_addr = guest_paddr;
1044 	region->region.memory_size = npages * vm->page_size;
1045 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1046 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1047 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1048 		"  rc: %i errno: %i\n"
1049 		"  slot: %u flags: 0x%x\n"
1050 		"  guest_phys_addr: 0x%lx size: 0x%lx",
1051 		ret, errno, slot, flags,
1052 		guest_paddr, (uint64_t) region->region.memory_size);
1053 
1054 	/* Add to quick lookup data structures */
1055 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1056 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1057 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1058 
1059 	/* If shared memory, create an alias. */
1060 	if (region->fd >= 0) {
1061 		region->mmap_alias = mmap(NULL, region->mmap_size,
1062 					  PROT_READ | PROT_WRITE,
1063 					  vm_mem_backing_src_alias(src_type)->flag,
1064 					  region->fd, 0);
1065 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1066 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1067 
1068 		/* Align host alias address */
1069 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1070 	}
1071 }
1072 
1073 /*
1074  * Memslot to region
1075  *
1076  * Input Args:
1077  *   vm - Virtual Machine
1078  *   memslot - KVM memory slot ID
1079  *
1080  * Output Args: None
1081  *
1082  * Return:
1083  *   Pointer to memory region structure that describe memory region
1084  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1085  *   on error (e.g. currently no memory region using memslot as a KVM
1086  *   memory slot ID).
1087  */
1088 struct userspace_mem_region *
1089 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1090 {
1091 	struct userspace_mem_region *region;
1092 
1093 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1094 			       memslot)
1095 		if (region->region.slot == memslot)
1096 			return region;
1097 
1098 	fprintf(stderr, "No mem region with the requested slot found,\n"
1099 		"  requested slot: %u\n", memslot);
1100 	fputs("---- vm dump ----\n", stderr);
1101 	vm_dump(stderr, vm, 2);
1102 	TEST_FAIL("Mem region not found");
1103 	return NULL;
1104 }
1105 
1106 /*
1107  * VM Memory Region Flags Set
1108  *
1109  * Input Args:
1110  *   vm - Virtual Machine
1111  *   flags - Starting guest physical address
1112  *
1113  * Output Args: None
1114  *
1115  * Return: None
1116  *
1117  * Sets the flags of the memory region specified by the value of slot,
1118  * to the values given by flags.
1119  */
1120 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1121 {
1122 	int ret;
1123 	struct userspace_mem_region *region;
1124 
1125 	region = memslot2region(vm, slot);
1126 
1127 	region->region.flags = flags;
1128 
1129 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1130 
1131 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1132 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1133 		ret, errno, slot, flags);
1134 }
1135 
1136 /*
1137  * VM Memory Region Move
1138  *
1139  * Input Args:
1140  *   vm - Virtual Machine
1141  *   slot - Slot of the memory region to move
1142  *   new_gpa - Starting guest physical address
1143  *
1144  * Output Args: None
1145  *
1146  * Return: None
1147  *
1148  * Change the gpa of a memory region.
1149  */
1150 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1151 {
1152 	struct userspace_mem_region *region;
1153 	int ret;
1154 
1155 	region = memslot2region(vm, slot);
1156 
1157 	region->region.guest_phys_addr = new_gpa;
1158 
1159 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1160 
1161 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1162 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1163 		    ret, errno, slot, new_gpa);
1164 }
1165 
1166 /*
1167  * VM Memory Region Delete
1168  *
1169  * Input Args:
1170  *   vm - Virtual Machine
1171  *   slot - Slot of the memory region to delete
1172  *
1173  * Output Args: None
1174  *
1175  * Return: None
1176  *
1177  * Delete a memory region.
1178  */
1179 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1180 {
1181 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1182 }
1183 
1184 /* Returns the size of a vCPU's kvm_run structure. */
1185 static int vcpu_mmap_sz(void)
1186 {
1187 	int dev_fd, ret;
1188 
1189 	dev_fd = open_kvm_dev_path_or_exit();
1190 
1191 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1192 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1193 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1194 
1195 	close(dev_fd);
1196 
1197 	return ret;
1198 }
1199 
1200 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1201 {
1202 	struct kvm_vcpu *vcpu;
1203 
1204 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1205 		if (vcpu->id == vcpu_id)
1206 			return true;
1207 	}
1208 
1209 	return false;
1210 }
1211 
1212 /*
1213  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1214  * No additional vCPU setup is done.  Returns the vCPU.
1215  */
1216 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1217 {
1218 	struct kvm_vcpu *vcpu;
1219 
1220 	/* Confirm a vcpu with the specified id doesn't already exist. */
1221 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
1222 
1223 	/* Allocate and initialize new vcpu structure. */
1224 	vcpu = calloc(1, sizeof(*vcpu));
1225 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1226 
1227 	vcpu->vm = vm;
1228 	vcpu->id = vcpu_id;
1229 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1230 	TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
1231 
1232 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1233 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1234 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1235 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1236 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1237 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1238 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1239 
1240 	/* Add to linked-list of VCPUs. */
1241 	list_add(&vcpu->list, &vm->vcpus);
1242 
1243 	return vcpu;
1244 }
1245 
1246 /*
1247  * VM Virtual Address Unused Gap
1248  *
1249  * Input Args:
1250  *   vm - Virtual Machine
1251  *   sz - Size (bytes)
1252  *   vaddr_min - Minimum Virtual Address
1253  *
1254  * Output Args: None
1255  *
1256  * Return:
1257  *   Lowest virtual address at or below vaddr_min, with at least
1258  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1259  *   size sz is available.
1260  *
1261  * Within the VM specified by vm, locates the lowest starting virtual
1262  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1263  * TEST_ASSERT failure occurs for invalid input or no area of at least
1264  * sz unallocated bytes >= vaddr_min is available.
1265  */
1266 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1267 			       vm_vaddr_t vaddr_min)
1268 {
1269 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1270 
1271 	/* Determine lowest permitted virtual page index. */
1272 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1273 	if ((pgidx_start * vm->page_size) < vaddr_min)
1274 		goto no_va_found;
1275 
1276 	/* Loop over section with enough valid virtual page indexes. */
1277 	if (!sparsebit_is_set_num(vm->vpages_valid,
1278 		pgidx_start, pages))
1279 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1280 			pgidx_start, pages);
1281 	do {
1282 		/*
1283 		 * Are there enough unused virtual pages available at
1284 		 * the currently proposed starting virtual page index.
1285 		 * If not, adjust proposed starting index to next
1286 		 * possible.
1287 		 */
1288 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1289 			pgidx_start, pages))
1290 			goto va_found;
1291 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1292 			pgidx_start, pages);
1293 		if (pgidx_start == 0)
1294 			goto no_va_found;
1295 
1296 		/*
1297 		 * If needed, adjust proposed starting virtual address,
1298 		 * to next range of valid virtual addresses.
1299 		 */
1300 		if (!sparsebit_is_set_num(vm->vpages_valid,
1301 			pgidx_start, pages)) {
1302 			pgidx_start = sparsebit_next_set_num(
1303 				vm->vpages_valid, pgidx_start, pages);
1304 			if (pgidx_start == 0)
1305 				goto no_va_found;
1306 		}
1307 	} while (pgidx_start != 0);
1308 
1309 no_va_found:
1310 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1311 
1312 	/* NOT REACHED */
1313 	return -1;
1314 
1315 va_found:
1316 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1317 		pgidx_start, pages),
1318 		"Unexpected, invalid virtual page index range,\n"
1319 		"  pgidx_start: 0x%lx\n"
1320 		"  pages: 0x%lx",
1321 		pgidx_start, pages);
1322 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1323 		pgidx_start, pages),
1324 		"Unexpected, pages already mapped,\n"
1325 		"  pgidx_start: 0x%lx\n"
1326 		"  pages: 0x%lx",
1327 		pgidx_start, pages);
1328 
1329 	return pgidx_start * vm->page_size;
1330 }
1331 
1332 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1333 			    enum kvm_mem_region_type type)
1334 {
1335 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1336 
1337 	virt_pgd_alloc(vm);
1338 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1339 					      KVM_UTIL_MIN_PFN * vm->page_size,
1340 					      vm->memslots[type]);
1341 
1342 	/*
1343 	 * Find an unused range of virtual page addresses of at least
1344 	 * pages in length.
1345 	 */
1346 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1347 
1348 	/* Map the virtual pages. */
1349 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1350 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1351 
1352 		virt_pg_map(vm, vaddr, paddr);
1353 
1354 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1355 	}
1356 
1357 	return vaddr_start;
1358 }
1359 
1360 /*
1361  * VM Virtual Address Allocate
1362  *
1363  * Input Args:
1364  *   vm - Virtual Machine
1365  *   sz - Size in bytes
1366  *   vaddr_min - Minimum starting virtual address
1367  *
1368  * Output Args: None
1369  *
1370  * Return:
1371  *   Starting guest virtual address
1372  *
1373  * Allocates at least sz bytes within the virtual address space of the vm
1374  * given by vm.  The allocated bytes are mapped to a virtual address >=
1375  * the address given by vaddr_min.  Note that each allocation uses a
1376  * a unique set of pages, with the minimum real allocation being at least
1377  * a page. The allocated physical space comes from the TEST_DATA memory region.
1378  */
1379 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1380 {
1381 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1382 }
1383 
1384 /*
1385  * VM Virtual Address Allocate Pages
1386  *
1387  * Input Args:
1388  *   vm - Virtual Machine
1389  *
1390  * Output Args: None
1391  *
1392  * Return:
1393  *   Starting guest virtual address
1394  *
1395  * Allocates at least N system pages worth of bytes within the virtual address
1396  * space of the vm.
1397  */
1398 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1399 {
1400 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1401 }
1402 
1403 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1404 {
1405 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1406 }
1407 
1408 /*
1409  * VM Virtual Address Allocate Page
1410  *
1411  * Input Args:
1412  *   vm - Virtual Machine
1413  *
1414  * Output Args: None
1415  *
1416  * Return:
1417  *   Starting guest virtual address
1418  *
1419  * Allocates at least one system page worth of bytes within the virtual address
1420  * space of the vm.
1421  */
1422 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1423 {
1424 	return vm_vaddr_alloc_pages(vm, 1);
1425 }
1426 
1427 /*
1428  * Map a range of VM virtual address to the VM's physical address
1429  *
1430  * Input Args:
1431  *   vm - Virtual Machine
1432  *   vaddr - Virtuall address to map
1433  *   paddr - VM Physical Address
1434  *   npages - The number of pages to map
1435  *
1436  * Output Args: None
1437  *
1438  * Return: None
1439  *
1440  * Within the VM given by @vm, creates a virtual translation for
1441  * @npages starting at @vaddr to the page range starting at @paddr.
1442  */
1443 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1444 	      unsigned int npages)
1445 {
1446 	size_t page_size = vm->page_size;
1447 	size_t size = npages * page_size;
1448 
1449 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1450 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1451 
1452 	while (npages--) {
1453 		virt_pg_map(vm, vaddr, paddr);
1454 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1455 
1456 		vaddr += page_size;
1457 		paddr += page_size;
1458 	}
1459 }
1460 
1461 /*
1462  * Address VM Physical to Host Virtual
1463  *
1464  * Input Args:
1465  *   vm - Virtual Machine
1466  *   gpa - VM physical address
1467  *
1468  * Output Args: None
1469  *
1470  * Return:
1471  *   Equivalent host virtual address
1472  *
1473  * Locates the memory region containing the VM physical address given
1474  * by gpa, within the VM given by vm.  When found, the host virtual
1475  * address providing the memory to the vm physical address is returned.
1476  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1477  */
1478 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1479 {
1480 	struct userspace_mem_region *region;
1481 
1482 	region = userspace_mem_region_find(vm, gpa, gpa);
1483 	if (!region) {
1484 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1485 		return NULL;
1486 	}
1487 
1488 	return (void *)((uintptr_t)region->host_mem
1489 		+ (gpa - region->region.guest_phys_addr));
1490 }
1491 
1492 /*
1493  * Address Host Virtual to VM Physical
1494  *
1495  * Input Args:
1496  *   vm - Virtual Machine
1497  *   hva - Host virtual address
1498  *
1499  * Output Args: None
1500  *
1501  * Return:
1502  *   Equivalent VM physical address
1503  *
1504  * Locates the memory region containing the host virtual address given
1505  * by hva, within the VM given by vm.  When found, the equivalent
1506  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1507  * region containing hva exists.
1508  */
1509 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1510 {
1511 	struct rb_node *node;
1512 
1513 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1514 		struct userspace_mem_region *region =
1515 			container_of(node, struct userspace_mem_region, hva_node);
1516 
1517 		if (hva >= region->host_mem) {
1518 			if (hva <= (region->host_mem
1519 				+ region->region.memory_size - 1))
1520 				return (vm_paddr_t)((uintptr_t)
1521 					region->region.guest_phys_addr
1522 					+ (hva - (uintptr_t)region->host_mem));
1523 
1524 			node = node->rb_right;
1525 		} else
1526 			node = node->rb_left;
1527 	}
1528 
1529 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1530 	return -1;
1531 }
1532 
1533 /*
1534  * Address VM physical to Host Virtual *alias*.
1535  *
1536  * Input Args:
1537  *   vm - Virtual Machine
1538  *   gpa - VM physical address
1539  *
1540  * Output Args: None
1541  *
1542  * Return:
1543  *   Equivalent address within the host virtual *alias* area, or NULL
1544  *   (without failing the test) if the guest memory is not shared (so
1545  *   no alias exists).
1546  *
1547  * Create a writable, shared virtual=>physical alias for the specific GPA.
1548  * The primary use case is to allow the host selftest to manipulate guest
1549  * memory without mapping said memory in the guest's address space. And, for
1550  * userfaultfd-based demand paging, to do so without triggering userfaults.
1551  */
1552 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1553 {
1554 	struct userspace_mem_region *region;
1555 	uintptr_t offset;
1556 
1557 	region = userspace_mem_region_find(vm, gpa, gpa);
1558 	if (!region)
1559 		return NULL;
1560 
1561 	if (!region->host_alias)
1562 		return NULL;
1563 
1564 	offset = gpa - region->region.guest_phys_addr;
1565 	return (void *) ((uintptr_t) region->host_alias + offset);
1566 }
1567 
1568 /* Create an interrupt controller chip for the specified VM. */
1569 void vm_create_irqchip(struct kvm_vm *vm)
1570 {
1571 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1572 
1573 	vm->has_irqchip = true;
1574 }
1575 
1576 int _vcpu_run(struct kvm_vcpu *vcpu)
1577 {
1578 	int rc;
1579 
1580 	do {
1581 		rc = __vcpu_run(vcpu);
1582 	} while (rc == -1 && errno == EINTR);
1583 
1584 	assert_on_unhandled_exception(vcpu);
1585 
1586 	return rc;
1587 }
1588 
1589 /*
1590  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1591  * Assert if the KVM returns an error (other than -EINTR).
1592  */
1593 void vcpu_run(struct kvm_vcpu *vcpu)
1594 {
1595 	int ret = _vcpu_run(vcpu);
1596 
1597 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1598 }
1599 
1600 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1601 {
1602 	int ret;
1603 
1604 	vcpu->run->immediate_exit = 1;
1605 	ret = __vcpu_run(vcpu);
1606 	vcpu->run->immediate_exit = 0;
1607 
1608 	TEST_ASSERT(ret == -1 && errno == EINTR,
1609 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1610 		    ret, errno);
1611 }
1612 
1613 /*
1614  * Get the list of guest registers which are supported for
1615  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1616  * it is the caller's responsibility to free the list.
1617  */
1618 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1619 {
1620 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1621 	int ret;
1622 
1623 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1624 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1625 
1626 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1627 	reg_list->n = reg_list_n.n;
1628 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1629 	return reg_list;
1630 }
1631 
1632 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1633 {
1634 	uint32_t page_size = getpagesize();
1635 	uint32_t size = vcpu->vm->dirty_ring_size;
1636 
1637 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1638 
1639 	if (!vcpu->dirty_gfns) {
1640 		void *addr;
1641 
1642 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1643 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1644 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1645 
1646 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1647 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1648 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1649 
1650 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1651 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1652 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1653 
1654 		vcpu->dirty_gfns = addr;
1655 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1656 	}
1657 
1658 	return vcpu->dirty_gfns;
1659 }
1660 
1661 /*
1662  * Device Ioctl
1663  */
1664 
1665 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1666 {
1667 	struct kvm_device_attr attribute = {
1668 		.group = group,
1669 		.attr = attr,
1670 		.flags = 0,
1671 	};
1672 
1673 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1674 }
1675 
1676 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1677 {
1678 	struct kvm_create_device create_dev = {
1679 		.type = type,
1680 		.flags = KVM_CREATE_DEVICE_TEST,
1681 	};
1682 
1683 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1684 }
1685 
1686 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1687 {
1688 	struct kvm_create_device create_dev = {
1689 		.type = type,
1690 		.fd = -1,
1691 		.flags = 0,
1692 	};
1693 	int err;
1694 
1695 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1696 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1697 	return err ? : create_dev.fd;
1698 }
1699 
1700 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1701 {
1702 	struct kvm_device_attr kvmattr = {
1703 		.group = group,
1704 		.attr = attr,
1705 		.flags = 0,
1706 		.addr = (uintptr_t)val,
1707 	};
1708 
1709 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1710 }
1711 
1712 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1713 {
1714 	struct kvm_device_attr kvmattr = {
1715 		.group = group,
1716 		.attr = attr,
1717 		.flags = 0,
1718 		.addr = (uintptr_t)val,
1719 	};
1720 
1721 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1722 }
1723 
1724 /*
1725  * IRQ related functions.
1726  */
1727 
1728 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1729 {
1730 	struct kvm_irq_level irq_level = {
1731 		.irq    = irq,
1732 		.level  = level,
1733 	};
1734 
1735 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1736 }
1737 
1738 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1739 {
1740 	int ret = _kvm_irq_line(vm, irq, level);
1741 
1742 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1743 }
1744 
1745 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1746 {
1747 	struct kvm_irq_routing *routing;
1748 	size_t size;
1749 
1750 	size = sizeof(struct kvm_irq_routing);
1751 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1752 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1753 	routing = calloc(1, size);
1754 	assert(routing);
1755 
1756 	return routing;
1757 }
1758 
1759 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1760 		uint32_t gsi, uint32_t pin)
1761 {
1762 	int i;
1763 
1764 	assert(routing);
1765 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1766 
1767 	i = routing->nr;
1768 	routing->entries[i].gsi = gsi;
1769 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1770 	routing->entries[i].flags = 0;
1771 	routing->entries[i].u.irqchip.irqchip = 0;
1772 	routing->entries[i].u.irqchip.pin = pin;
1773 	routing->nr++;
1774 }
1775 
1776 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1777 {
1778 	int ret;
1779 
1780 	assert(routing);
1781 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1782 	free(routing);
1783 
1784 	return ret;
1785 }
1786 
1787 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1788 {
1789 	int ret;
1790 
1791 	ret = _kvm_gsi_routing_write(vm, routing);
1792 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1793 }
1794 
1795 /*
1796  * VM Dump
1797  *
1798  * Input Args:
1799  *   vm - Virtual Machine
1800  *   indent - Left margin indent amount
1801  *
1802  * Output Args:
1803  *   stream - Output FILE stream
1804  *
1805  * Return: None
1806  *
1807  * Dumps the current state of the VM given by vm, to the FILE stream
1808  * given by stream.
1809  */
1810 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1811 {
1812 	int ctr;
1813 	struct userspace_mem_region *region;
1814 	struct kvm_vcpu *vcpu;
1815 
1816 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1817 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1818 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1819 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1820 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1821 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1822 			"host_virt: %p\n", indent + 2, "",
1823 			(uint64_t) region->region.guest_phys_addr,
1824 			(uint64_t) region->region.memory_size,
1825 			region->host_mem);
1826 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1827 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1828 	}
1829 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1830 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1831 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1832 		vm->pgd_created);
1833 	if (vm->pgd_created) {
1834 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1835 			indent + 2, "");
1836 		virt_dump(stream, vm, indent + 4);
1837 	}
1838 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1839 
1840 	list_for_each_entry(vcpu, &vm->vcpus, list)
1841 		vcpu_dump(stream, vcpu, indent + 2);
1842 }
1843 
1844 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1845 
1846 /* Known KVM exit reasons */
1847 static struct exit_reason {
1848 	unsigned int reason;
1849 	const char *name;
1850 } exit_reasons_known[] = {
1851 	KVM_EXIT_STRING(UNKNOWN),
1852 	KVM_EXIT_STRING(EXCEPTION),
1853 	KVM_EXIT_STRING(IO),
1854 	KVM_EXIT_STRING(HYPERCALL),
1855 	KVM_EXIT_STRING(DEBUG),
1856 	KVM_EXIT_STRING(HLT),
1857 	KVM_EXIT_STRING(MMIO),
1858 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1859 	KVM_EXIT_STRING(SHUTDOWN),
1860 	KVM_EXIT_STRING(FAIL_ENTRY),
1861 	KVM_EXIT_STRING(INTR),
1862 	KVM_EXIT_STRING(SET_TPR),
1863 	KVM_EXIT_STRING(TPR_ACCESS),
1864 	KVM_EXIT_STRING(S390_SIEIC),
1865 	KVM_EXIT_STRING(S390_RESET),
1866 	KVM_EXIT_STRING(DCR),
1867 	KVM_EXIT_STRING(NMI),
1868 	KVM_EXIT_STRING(INTERNAL_ERROR),
1869 	KVM_EXIT_STRING(OSI),
1870 	KVM_EXIT_STRING(PAPR_HCALL),
1871 	KVM_EXIT_STRING(S390_UCONTROL),
1872 	KVM_EXIT_STRING(WATCHDOG),
1873 	KVM_EXIT_STRING(S390_TSCH),
1874 	KVM_EXIT_STRING(EPR),
1875 	KVM_EXIT_STRING(SYSTEM_EVENT),
1876 	KVM_EXIT_STRING(S390_STSI),
1877 	KVM_EXIT_STRING(IOAPIC_EOI),
1878 	KVM_EXIT_STRING(HYPERV),
1879 	KVM_EXIT_STRING(ARM_NISV),
1880 	KVM_EXIT_STRING(X86_RDMSR),
1881 	KVM_EXIT_STRING(X86_WRMSR),
1882 	KVM_EXIT_STRING(DIRTY_RING_FULL),
1883 	KVM_EXIT_STRING(AP_RESET_HOLD),
1884 	KVM_EXIT_STRING(X86_BUS_LOCK),
1885 	KVM_EXIT_STRING(XEN),
1886 	KVM_EXIT_STRING(RISCV_SBI),
1887 	KVM_EXIT_STRING(RISCV_CSR),
1888 	KVM_EXIT_STRING(NOTIFY),
1889 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1890 	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
1891 #endif
1892 };
1893 
1894 /*
1895  * Exit Reason String
1896  *
1897  * Input Args:
1898  *   exit_reason - Exit reason
1899  *
1900  * Output Args: None
1901  *
1902  * Return:
1903  *   Constant string pointer describing the exit reason.
1904  *
1905  * Locates and returns a constant string that describes the KVM exit
1906  * reason given by exit_reason.  If no such string is found, a constant
1907  * string of "Unknown" is returned.
1908  */
1909 const char *exit_reason_str(unsigned int exit_reason)
1910 {
1911 	unsigned int n1;
1912 
1913 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1914 		if (exit_reason == exit_reasons_known[n1].reason)
1915 			return exit_reasons_known[n1].name;
1916 	}
1917 
1918 	return "Unknown";
1919 }
1920 
1921 /*
1922  * Physical Contiguous Page Allocator
1923  *
1924  * Input Args:
1925  *   vm - Virtual Machine
1926  *   num - number of pages
1927  *   paddr_min - Physical address minimum
1928  *   memslot - Memory region to allocate page from
1929  *
1930  * Output Args: None
1931  *
1932  * Return:
1933  *   Starting physical address
1934  *
1935  * Within the VM specified by vm, locates a range of available physical
1936  * pages at or above paddr_min. If found, the pages are marked as in use
1937  * and their base address is returned. A TEST_ASSERT failure occurs if
1938  * not enough pages are available at or above paddr_min.
1939  */
1940 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1941 			      vm_paddr_t paddr_min, uint32_t memslot)
1942 {
1943 	struct userspace_mem_region *region;
1944 	sparsebit_idx_t pg, base;
1945 
1946 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1947 
1948 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1949 		"not divisible by page size.\n"
1950 		"  paddr_min: 0x%lx page_size: 0x%x",
1951 		paddr_min, vm->page_size);
1952 
1953 	region = memslot2region(vm, memslot);
1954 	base = pg = paddr_min >> vm->page_shift;
1955 
1956 	do {
1957 		for (; pg < base + num; ++pg) {
1958 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1959 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1960 				break;
1961 			}
1962 		}
1963 	} while (pg && pg != base + num);
1964 
1965 	if (pg == 0) {
1966 		fprintf(stderr, "No guest physical page available, "
1967 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1968 			paddr_min, vm->page_size, memslot);
1969 		fputs("---- vm dump ----\n", stderr);
1970 		vm_dump(stderr, vm, 2);
1971 		abort();
1972 	}
1973 
1974 	for (pg = base; pg < base + num; ++pg)
1975 		sparsebit_clear(region->unused_phy_pages, pg);
1976 
1977 	return base * vm->page_size;
1978 }
1979 
1980 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1981 			     uint32_t memslot)
1982 {
1983 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1984 }
1985 
1986 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
1987 {
1988 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
1989 				 vm->memslots[MEM_REGION_PT]);
1990 }
1991 
1992 /*
1993  * Address Guest Virtual to Host Virtual
1994  *
1995  * Input Args:
1996  *   vm - Virtual Machine
1997  *   gva - VM virtual address
1998  *
1999  * Output Args: None
2000  *
2001  * Return:
2002  *   Equivalent host virtual address
2003  */
2004 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2005 {
2006 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2007 }
2008 
2009 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
2010 {
2011 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2012 }
2013 
2014 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2015 				      unsigned int page_shift,
2016 				      unsigned int new_page_shift,
2017 				      bool ceil)
2018 {
2019 	unsigned int n = 1 << (new_page_shift - page_shift);
2020 
2021 	if (page_shift >= new_page_shift)
2022 		return num_pages * (1 << (page_shift - new_page_shift));
2023 
2024 	return num_pages / n + !!(ceil && num_pages % n);
2025 }
2026 
2027 static inline int getpageshift(void)
2028 {
2029 	return __builtin_ffs(getpagesize()) - 1;
2030 }
2031 
2032 unsigned int
2033 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2034 {
2035 	return vm_calc_num_pages(num_guest_pages,
2036 				 vm_guest_mode_params[mode].page_shift,
2037 				 getpageshift(), true);
2038 }
2039 
2040 unsigned int
2041 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2042 {
2043 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2044 				 vm_guest_mode_params[mode].page_shift, false);
2045 }
2046 
2047 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2048 {
2049 	unsigned int n;
2050 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2051 	return vm_adjust_num_guest_pages(mode, n);
2052 }
2053 
2054 /*
2055  * Read binary stats descriptors
2056  *
2057  * Input Args:
2058  *   stats_fd - the file descriptor for the binary stats file from which to read
2059  *   header - the binary stats metadata header corresponding to the given FD
2060  *
2061  * Output Args: None
2062  *
2063  * Return:
2064  *   A pointer to a newly allocated series of stat descriptors.
2065  *   Caller is responsible for freeing the returned kvm_stats_desc.
2066  *
2067  * Read the stats descriptors from the binary stats interface.
2068  */
2069 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2070 					      struct kvm_stats_header *header)
2071 {
2072 	struct kvm_stats_desc *stats_desc;
2073 	ssize_t desc_size, total_size, ret;
2074 
2075 	desc_size = get_stats_descriptor_size(header);
2076 	total_size = header->num_desc * desc_size;
2077 
2078 	stats_desc = calloc(header->num_desc, desc_size);
2079 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2080 
2081 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2082 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2083 
2084 	return stats_desc;
2085 }
2086 
2087 /*
2088  * Read stat data for a particular stat
2089  *
2090  * Input Args:
2091  *   stats_fd - the file descriptor for the binary stats file from which to read
2092  *   header - the binary stats metadata header corresponding to the given FD
2093  *   desc - the binary stat metadata for the particular stat to be read
2094  *   max_elements - the maximum number of 8-byte values to read into data
2095  *
2096  * Output Args:
2097  *   data - the buffer into which stat data should be read
2098  *
2099  * Read the data values of a specified stat from the binary stats interface.
2100  */
2101 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2102 		    struct kvm_stats_desc *desc, uint64_t *data,
2103 		    size_t max_elements)
2104 {
2105 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2106 	size_t size = nr_elements * sizeof(*data);
2107 	ssize_t ret;
2108 
2109 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2110 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2111 
2112 	ret = pread(stats_fd, data, size,
2113 		    header->data_offset + desc->offset);
2114 
2115 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2116 		    desc->name, errno, strerror(errno));
2117 	TEST_ASSERT(ret == size,
2118 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2119 		    desc->name, size, ret);
2120 }
2121 
2122 /*
2123  * Read the data of the named stat
2124  *
2125  * Input Args:
2126  *   vm - the VM for which the stat should be read
2127  *   stat_name - the name of the stat to read
2128  *   max_elements - the maximum number of 8-byte values to read into data
2129  *
2130  * Output Args:
2131  *   data - the buffer into which stat data should be read
2132  *
2133  * Read the data values of a specified stat from the binary stats interface.
2134  */
2135 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2136 		   size_t max_elements)
2137 {
2138 	struct kvm_stats_desc *desc;
2139 	size_t size_desc;
2140 	int i;
2141 
2142 	if (!vm->stats_fd) {
2143 		vm->stats_fd = vm_get_stats_fd(vm);
2144 		read_stats_header(vm->stats_fd, &vm->stats_header);
2145 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2146 							&vm->stats_header);
2147 	}
2148 
2149 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2150 
2151 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2152 		desc = (void *)vm->stats_desc + (i * size_desc);
2153 
2154 		if (strcmp(desc->name, stat_name))
2155 			continue;
2156 
2157 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2158 			       data, max_elements);
2159 
2160 		break;
2161 	}
2162 }
2163 
2164 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2165 {
2166 }
2167 
2168 __weak void kvm_selftest_arch_init(void)
2169 {
2170 }
2171 
2172 void __attribute((constructor)) kvm_selftest_init(void)
2173 {
2174 	/* Tell stdout not to buffer its content. */
2175 	setbuf(stdout, NULL);
2176 
2177 	kvm_selftest_arch_init();
2178 }
2179