xref: /openbmc/linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision dcabb06bf127b3e0d3fbc94a2b65dd56c2725851)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13 
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_PGS_PER_HUGEPG 512
22 #define KVM_UTIL_MIN_PFN	2
23 
24 static int vcpu_mmap_sz(void);
25 
26 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
27 static void *align(void *x, size_t size)
28 {
29 	size_t mask = size - 1;
30 	TEST_ASSERT(size != 0 && !(size & (size - 1)),
31 		    "size not a power of 2: %lu", size);
32 	return (void *) (((size_t) x + mask) & ~mask);
33 }
34 
35 /*
36  * Capability
37  *
38  * Input Args:
39  *   cap - Capability
40  *
41  * Output Args: None
42  *
43  * Return:
44  *   On success, the Value corresponding to the capability (KVM_CAP_*)
45  *   specified by the value of cap.  On failure a TEST_ASSERT failure
46  *   is produced.
47  *
48  * Looks up and returns the value corresponding to the capability
49  * (KVM_CAP_*) given by cap.
50  */
51 int kvm_check_cap(long cap)
52 {
53 	int ret;
54 	int kvm_fd;
55 
56 	kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
57 	if (kvm_fd < 0)
58 		exit(KSFT_SKIP);
59 
60 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
61 	TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
62 		"  rc: %i errno: %i", ret, errno);
63 
64 	close(kvm_fd);
65 
66 	return ret;
67 }
68 
69 /* VM Enable Capability
70  *
71  * Input Args:
72  *   vm - Virtual Machine
73  *   cap - Capability
74  *
75  * Output Args: None
76  *
77  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
78  *
79  * Enables a capability (KVM_CAP_*) on the VM.
80  */
81 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
82 {
83 	int ret;
84 
85 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
86 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
87 		"  rc: %i errno: %i", ret, errno);
88 
89 	return ret;
90 }
91 
92 /* VCPU Enable Capability
93  *
94  * Input Args:
95  *   vm - Virtual Machine
96  *   vcpu_id - VCPU
97  *   cap - Capability
98  *
99  * Output Args: None
100  *
101  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
102  *
103  * Enables a capability (KVM_CAP_*) on the VCPU.
104  */
105 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
106 		    struct kvm_enable_cap *cap)
107 {
108 	struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
109 	int r;
110 
111 	TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
112 
113 	r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
114 	TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
115 			"  rc: %i, errno: %i", r, errno);
116 
117 	return r;
118 }
119 
120 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
121 {
122 	struct kvm_enable_cap cap = { 0 };
123 
124 	cap.cap = KVM_CAP_DIRTY_LOG_RING;
125 	cap.args[0] = ring_size;
126 	vm_enable_cap(vm, &cap);
127 	vm->dirty_ring_size = ring_size;
128 }
129 
130 static void vm_open(struct kvm_vm *vm, int perm)
131 {
132 	vm->kvm_fd = open(KVM_DEV_PATH, perm);
133 	if (vm->kvm_fd < 0)
134 		exit(KSFT_SKIP);
135 
136 	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
137 		print_skip("immediate_exit not available");
138 		exit(KSFT_SKIP);
139 	}
140 
141 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
142 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
143 		"rc: %i errno: %i", vm->fd, errno);
144 }
145 
146 const char * const vm_guest_mode_string[] = {
147 	"PA-bits:52,  VA-bits:48,  4K pages",
148 	"PA-bits:52,  VA-bits:48, 64K pages",
149 	"PA-bits:48,  VA-bits:48,  4K pages",
150 	"PA-bits:48,  VA-bits:48, 64K pages",
151 	"PA-bits:40,  VA-bits:48,  4K pages",
152 	"PA-bits:40,  VA-bits:48, 64K pages",
153 	"PA-bits:ANY, VA-bits:48,  4K pages",
154 };
155 _Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
156 	       "Missing new mode strings?");
157 
158 const struct vm_guest_mode_params vm_guest_mode_params[] = {
159 	{ 52, 48,  0x1000, 12 },
160 	{ 52, 48, 0x10000, 16 },
161 	{ 48, 48,  0x1000, 12 },
162 	{ 48, 48, 0x10000, 16 },
163 	{ 40, 48,  0x1000, 12 },
164 	{ 40, 48, 0x10000, 16 },
165 	{  0,  0,  0x1000, 12 },
166 };
167 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
168 	       "Missing new mode params?");
169 
170 /*
171  * VM Create
172  *
173  * Input Args:
174  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
175  *   phy_pages - Physical memory pages
176  *   perm - permission
177  *
178  * Output Args: None
179  *
180  * Return:
181  *   Pointer to opaque structure that describes the created VM.
182  *
183  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
184  * When phy_pages is non-zero, a memory region of phy_pages physical pages
185  * is created and mapped starting at guest physical address 0.  The file
186  * descriptor to control the created VM is created with the permissions
187  * given by perm (e.g. O_RDWR).
188  */
189 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
190 {
191 	struct kvm_vm *vm;
192 
193 	pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
194 		 vm_guest_mode_string(mode), phy_pages, perm);
195 
196 	vm = calloc(1, sizeof(*vm));
197 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
198 
199 	INIT_LIST_HEAD(&vm->vcpus);
200 	INIT_LIST_HEAD(&vm->userspace_mem_regions);
201 
202 	vm->mode = mode;
203 	vm->type = 0;
204 
205 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
206 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
207 	vm->page_size = vm_guest_mode_params[mode].page_size;
208 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
209 
210 	/* Setup mode specific traits. */
211 	switch (vm->mode) {
212 	case VM_MODE_P52V48_4K:
213 		vm->pgtable_levels = 4;
214 		break;
215 	case VM_MODE_P52V48_64K:
216 		vm->pgtable_levels = 3;
217 		break;
218 	case VM_MODE_P48V48_4K:
219 		vm->pgtable_levels = 4;
220 		break;
221 	case VM_MODE_P48V48_64K:
222 		vm->pgtable_levels = 3;
223 		break;
224 	case VM_MODE_P40V48_4K:
225 		vm->pgtable_levels = 4;
226 		break;
227 	case VM_MODE_P40V48_64K:
228 		vm->pgtable_levels = 3;
229 		break;
230 	case VM_MODE_PXXV48_4K:
231 #ifdef __x86_64__
232 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
233 		/*
234 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
235 		 * it doesn't take effect unless a CR4.LA57 is set, which it
236 		 * isn't for this VM_MODE.
237 		 */
238 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
239 			    "Linear address width (%d bits) not supported",
240 			    vm->va_bits);
241 		pr_debug("Guest physical address width detected: %d\n",
242 			 vm->pa_bits);
243 		vm->pgtable_levels = 4;
244 		vm->va_bits = 48;
245 #else
246 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
247 #endif
248 		break;
249 	default:
250 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
251 	}
252 
253 #ifdef __aarch64__
254 	if (vm->pa_bits != 40)
255 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
256 #endif
257 
258 	vm_open(vm, perm);
259 
260 	/* Limit to VA-bit canonical virtual addresses. */
261 	vm->vpages_valid = sparsebit_alloc();
262 	sparsebit_set_num(vm->vpages_valid,
263 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
264 	sparsebit_set_num(vm->vpages_valid,
265 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
266 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
267 
268 	/* Limit physical addresses to PA-bits. */
269 	vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
270 
271 	/* Allocate and setup memory for guest. */
272 	vm->vpages_mapped = sparsebit_alloc();
273 	if (phy_pages != 0)
274 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
275 					    0, 0, phy_pages, 0);
276 
277 	return vm;
278 }
279 
280 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
281 				    uint64_t extra_mem_pages, uint32_t num_percpu_pages,
282 				    void *guest_code, uint32_t vcpuids[])
283 {
284 	/* The maximum page table size for a memory region will be when the
285 	 * smallest pages are used. Considering each page contains x page
286 	 * table descriptors, the total extra size for page tables (for extra
287 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
288 	 * than N/x*2.
289 	 */
290 	uint64_t vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
291 	uint64_t extra_pg_pages = (extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
292 	uint64_t pages = DEFAULT_GUEST_PHY_PAGES + vcpu_pages + extra_pg_pages;
293 	struct kvm_vm *vm;
294 	int i;
295 
296 	TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
297 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
298 		    nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
299 
300 	pages = vm_adjust_num_guest_pages(mode, pages);
301 	vm = vm_create(mode, pages, O_RDWR);
302 
303 	kvm_vm_elf_load(vm, program_invocation_name, 0, 0);
304 
305 #ifdef __x86_64__
306 	vm_create_irqchip(vm);
307 #endif
308 
309 	for (i = 0; i < nr_vcpus; ++i) {
310 		uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
311 
312 		vm_vcpu_add_default(vm, vcpuid, guest_code);
313 
314 #ifdef __x86_64__
315 		vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid());
316 #endif
317 	}
318 
319 	return vm;
320 }
321 
322 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
323 					    uint32_t num_percpu_pages, void *guest_code,
324 					    uint32_t vcpuids[])
325 {
326 	return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, extra_mem_pages,
327 				    num_percpu_pages, guest_code, vcpuids);
328 }
329 
330 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
331 				 void *guest_code)
332 {
333 	return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
334 					    (uint32_t []){ vcpuid });
335 }
336 
337 /*
338  * VM Restart
339  *
340  * Input Args:
341  *   vm - VM that has been released before
342  *   perm - permission
343  *
344  * Output Args: None
345  *
346  * Reopens the file descriptors associated to the VM and reinstates the
347  * global state, such as the irqchip and the memory regions that are mapped
348  * into the guest.
349  */
350 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
351 {
352 	struct userspace_mem_region *region;
353 
354 	vm_open(vmp, perm);
355 	if (vmp->has_irqchip)
356 		vm_create_irqchip(vmp);
357 
358 	list_for_each_entry(region, &vmp->userspace_mem_regions, list) {
359 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
360 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
361 			    "  rc: %i errno: %i\n"
362 			    "  slot: %u flags: 0x%x\n"
363 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
364 			    ret, errno, region->region.slot,
365 			    region->region.flags,
366 			    region->region.guest_phys_addr,
367 			    region->region.memory_size);
368 	}
369 }
370 
371 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
372 {
373 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
374 	int ret;
375 
376 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
377 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
378 		    __func__, strerror(-ret));
379 }
380 
381 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
382 			    uint64_t first_page, uint32_t num_pages)
383 {
384 	struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
385 		                            .first_page = first_page,
386 	                                    .num_pages = num_pages };
387 	int ret;
388 
389 	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
390 	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
391 		    __func__, strerror(-ret));
392 }
393 
394 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
395 {
396 	return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
397 }
398 
399 /*
400  * Userspace Memory Region Find
401  *
402  * Input Args:
403  *   vm - Virtual Machine
404  *   start - Starting VM physical address
405  *   end - Ending VM physical address, inclusive.
406  *
407  * Output Args: None
408  *
409  * Return:
410  *   Pointer to overlapping region, NULL if no such region.
411  *
412  * Searches for a region with any physical memory that overlaps with
413  * any portion of the guest physical addresses from start to end
414  * inclusive.  If multiple overlapping regions exist, a pointer to any
415  * of the regions is returned.  Null is returned only when no overlapping
416  * region exists.
417  */
418 static struct userspace_mem_region *
419 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
420 {
421 	struct userspace_mem_region *region;
422 
423 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
424 		uint64_t existing_start = region->region.guest_phys_addr;
425 		uint64_t existing_end = region->region.guest_phys_addr
426 			+ region->region.memory_size - 1;
427 		if (start <= existing_end && end >= existing_start)
428 			return region;
429 	}
430 
431 	return NULL;
432 }
433 
434 /*
435  * KVM Userspace Memory Region Find
436  *
437  * Input Args:
438  *   vm - Virtual Machine
439  *   start - Starting VM physical address
440  *   end - Ending VM physical address, inclusive.
441  *
442  * Output Args: None
443  *
444  * Return:
445  *   Pointer to overlapping region, NULL if no such region.
446  *
447  * Public interface to userspace_mem_region_find. Allows tests to look up
448  * the memslot datastructure for a given range of guest physical memory.
449  */
450 struct kvm_userspace_memory_region *
451 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
452 				 uint64_t end)
453 {
454 	struct userspace_mem_region *region;
455 
456 	region = userspace_mem_region_find(vm, start, end);
457 	if (!region)
458 		return NULL;
459 
460 	return &region->region;
461 }
462 
463 /*
464  * VCPU Find
465  *
466  * Input Args:
467  *   vm - Virtual Machine
468  *   vcpuid - VCPU ID
469  *
470  * Output Args: None
471  *
472  * Return:
473  *   Pointer to VCPU structure
474  *
475  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
476  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
477  * for the specified vcpuid.
478  */
479 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
480 {
481 	struct vcpu *vcpu;
482 
483 	list_for_each_entry(vcpu, &vm->vcpus, list) {
484 		if (vcpu->id == vcpuid)
485 			return vcpu;
486 	}
487 
488 	return NULL;
489 }
490 
491 /*
492  * VM VCPU Remove
493  *
494  * Input Args:
495  *   vcpu - VCPU to remove
496  *
497  * Output Args: None
498  *
499  * Return: None, TEST_ASSERT failures for all error conditions
500  *
501  * Removes a vCPU from a VM and frees its resources.
502  */
503 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
504 {
505 	int ret;
506 
507 	if (vcpu->dirty_gfns) {
508 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
509 		TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
510 			    "rc: %i errno: %i", ret, errno);
511 		vcpu->dirty_gfns = NULL;
512 	}
513 
514 	ret = munmap(vcpu->state, vcpu_mmap_sz());
515 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
516 		"errno: %i", ret, errno);
517 	close(vcpu->fd);
518 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
519 		"errno: %i", ret, errno);
520 
521 	list_del(&vcpu->list);
522 	free(vcpu);
523 }
524 
525 void kvm_vm_release(struct kvm_vm *vmp)
526 {
527 	struct vcpu *vcpu, *tmp;
528 	int ret;
529 
530 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
531 		vm_vcpu_rm(vmp, vcpu);
532 
533 	ret = close(vmp->fd);
534 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
535 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
536 
537 	close(vmp->kvm_fd);
538 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
539 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
540 }
541 
542 static void __vm_mem_region_delete(struct kvm_vm *vm,
543 				   struct userspace_mem_region *region)
544 {
545 	int ret;
546 
547 	list_del(&region->list);
548 
549 	region->region.memory_size = 0;
550 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
551 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
552 		    "rc: %i errno: %i", ret, errno);
553 
554 	sparsebit_free(&region->unused_phy_pages);
555 	ret = munmap(region->mmap_start, region->mmap_size);
556 	TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
557 
558 	free(region);
559 }
560 
561 /*
562  * Destroys and frees the VM pointed to by vmp.
563  */
564 void kvm_vm_free(struct kvm_vm *vmp)
565 {
566 	struct userspace_mem_region *region, *tmp;
567 
568 	if (vmp == NULL)
569 		return;
570 
571 	/* Free userspace_mem_regions. */
572 	list_for_each_entry_safe(region, tmp, &vmp->userspace_mem_regions, list)
573 		__vm_mem_region_delete(vmp, region);
574 
575 	/* Free sparsebit arrays. */
576 	sparsebit_free(&vmp->vpages_valid);
577 	sparsebit_free(&vmp->vpages_mapped);
578 
579 	kvm_vm_release(vmp);
580 
581 	/* Free the structure describing the VM. */
582 	free(vmp);
583 }
584 
585 /*
586  * Memory Compare, host virtual to guest virtual
587  *
588  * Input Args:
589  *   hva - Starting host virtual address
590  *   vm - Virtual Machine
591  *   gva - Starting guest virtual address
592  *   len - number of bytes to compare
593  *
594  * Output Args: None
595  *
596  * Input/Output Args: None
597  *
598  * Return:
599  *   Returns 0 if the bytes starting at hva for a length of len
600  *   are equal the guest virtual bytes starting at gva.  Returns
601  *   a value < 0, if bytes at hva are less than those at gva.
602  *   Otherwise a value > 0 is returned.
603  *
604  * Compares the bytes starting at the host virtual address hva, for
605  * a length of len, to the guest bytes starting at the guest virtual
606  * address given by gva.
607  */
608 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
609 {
610 	size_t amt;
611 
612 	/*
613 	 * Compare a batch of bytes until either a match is found
614 	 * or all the bytes have been compared.
615 	 */
616 	for (uintptr_t offset = 0; offset < len; offset += amt) {
617 		uintptr_t ptr1 = (uintptr_t)hva + offset;
618 
619 		/*
620 		 * Determine host address for guest virtual address
621 		 * at offset.
622 		 */
623 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
624 
625 		/*
626 		 * Determine amount to compare on this pass.
627 		 * Don't allow the comparsion to cross a page boundary.
628 		 */
629 		amt = len - offset;
630 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
631 			amt = vm->page_size - (ptr1 % vm->page_size);
632 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
633 			amt = vm->page_size - (ptr2 % vm->page_size);
634 
635 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
636 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
637 
638 		/*
639 		 * Perform the comparison.  If there is a difference
640 		 * return that result to the caller, otherwise need
641 		 * to continue on looking for a mismatch.
642 		 */
643 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
644 		if (ret != 0)
645 			return ret;
646 	}
647 
648 	/*
649 	 * No mismatch found.  Let the caller know the two memory
650 	 * areas are equal.
651 	 */
652 	return 0;
653 }
654 
655 /*
656  * VM Userspace Memory Region Add
657  *
658  * Input Args:
659  *   vm - Virtual Machine
660  *   backing_src - Storage source for this region.
661  *                 NULL to use anonymous memory.
662  *   guest_paddr - Starting guest physical address
663  *   slot - KVM region slot
664  *   npages - Number of physical pages
665  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
666  *
667  * Output Args: None
668  *
669  * Return: None
670  *
671  * Allocates a memory area of the number of pages specified by npages
672  * and maps it to the VM specified by vm, at a starting physical address
673  * given by guest_paddr.  The region is created with a KVM region slot
674  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
675  * region is created with the flags given by flags.
676  */
677 void vm_userspace_mem_region_add(struct kvm_vm *vm,
678 	enum vm_mem_backing_src_type src_type,
679 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
680 	uint32_t flags)
681 {
682 	int ret;
683 	struct userspace_mem_region *region;
684 	size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
685 	size_t alignment;
686 
687 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
688 		"Number of guest pages is not compatible with the host. "
689 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
690 
691 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
692 		"address not on a page boundary.\n"
693 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
694 		guest_paddr, vm->page_size);
695 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
696 		<= vm->max_gfn, "Physical range beyond maximum "
697 		"supported physical address,\n"
698 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
699 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
700 		guest_paddr, npages, vm->max_gfn, vm->page_size);
701 
702 	/*
703 	 * Confirm a mem region with an overlapping address doesn't
704 	 * already exist.
705 	 */
706 	region = (struct userspace_mem_region *) userspace_mem_region_find(
707 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
708 	if (region != NULL)
709 		TEST_FAIL("overlapping userspace_mem_region already "
710 			"exists\n"
711 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
712 			"page_size: 0x%x\n"
713 			"  existing guest_paddr: 0x%lx size: 0x%lx",
714 			guest_paddr, npages, vm->page_size,
715 			(uint64_t) region->region.guest_phys_addr,
716 			(uint64_t) region->region.memory_size);
717 
718 	/* Confirm no region with the requested slot already exists. */
719 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
720 		if (region->region.slot != slot)
721 			continue;
722 
723 		TEST_FAIL("A mem region with the requested slot "
724 			"already exists.\n"
725 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
726 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
727 			slot, guest_paddr, npages,
728 			region->region.slot,
729 			(uint64_t) region->region.guest_phys_addr,
730 			(uint64_t) region->region.memory_size);
731 	}
732 
733 	/* Allocate and initialize new mem region structure. */
734 	region = calloc(1, sizeof(*region));
735 	TEST_ASSERT(region != NULL, "Insufficient Memory");
736 	region->mmap_size = npages * vm->page_size;
737 
738 #ifdef __s390x__
739 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
740 	alignment = 0x100000;
741 #else
742 	alignment = 1;
743 #endif
744 
745 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
746 		alignment = max(huge_page_size, alignment);
747 
748 	/* Add enough memory to align up if necessary */
749 	if (alignment > 1)
750 		region->mmap_size += alignment;
751 
752 	region->mmap_start = mmap(NULL, region->mmap_size,
753 				  PROT_READ | PROT_WRITE,
754 				  MAP_PRIVATE | MAP_ANONYMOUS
755 				  | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
756 				  -1, 0);
757 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
758 		    "test_malloc failed, mmap_start: %p errno: %i",
759 		    region->mmap_start, errno);
760 
761 	/* Align host address */
762 	region->host_mem = align(region->mmap_start, alignment);
763 
764 	/* As needed perform madvise */
765 	if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
766 		struct stat statbuf;
767 
768 		ret = stat("/sys/kernel/mm/transparent_hugepage", &statbuf);
769 		TEST_ASSERT(ret == 0 || (ret == -1 && errno == ENOENT),
770 			    "stat /sys/kernel/mm/transparent_hugepage");
771 
772 		TEST_ASSERT(ret == 0 || src_type != VM_MEM_SRC_ANONYMOUS_THP,
773 			    "VM_MEM_SRC_ANONYMOUS_THP requires THP to be configured in the host kernel");
774 
775 		if (ret == 0) {
776 			ret = madvise(region->host_mem, npages * vm->page_size,
777 				      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
778 			TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %x",
779 				    region->host_mem, npages * vm->page_size, src_type);
780 		}
781 	}
782 
783 	region->unused_phy_pages = sparsebit_alloc();
784 	sparsebit_set_num(region->unused_phy_pages,
785 		guest_paddr >> vm->page_shift, npages);
786 	region->region.slot = slot;
787 	region->region.flags = flags;
788 	region->region.guest_phys_addr = guest_paddr;
789 	region->region.memory_size = npages * vm->page_size;
790 	region->region.userspace_addr = (uintptr_t) region->host_mem;
791 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
792 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
793 		"  rc: %i errno: %i\n"
794 		"  slot: %u flags: 0x%x\n"
795 		"  guest_phys_addr: 0x%lx size: 0x%lx",
796 		ret, errno, slot, flags,
797 		guest_paddr, (uint64_t) region->region.memory_size);
798 
799 	/* Add to linked-list of memory regions. */
800 	list_add(&region->list, &vm->userspace_mem_regions);
801 }
802 
803 /*
804  * Memslot to region
805  *
806  * Input Args:
807  *   vm - Virtual Machine
808  *   memslot - KVM memory slot ID
809  *
810  * Output Args: None
811  *
812  * Return:
813  *   Pointer to memory region structure that describe memory region
814  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
815  *   on error (e.g. currently no memory region using memslot as a KVM
816  *   memory slot ID).
817  */
818 struct userspace_mem_region *
819 memslot2region(struct kvm_vm *vm, uint32_t memslot)
820 {
821 	struct userspace_mem_region *region;
822 
823 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
824 		if (region->region.slot == memslot)
825 			return region;
826 	}
827 
828 	fprintf(stderr, "No mem region with the requested slot found,\n"
829 		"  requested slot: %u\n", memslot);
830 	fputs("---- vm dump ----\n", stderr);
831 	vm_dump(stderr, vm, 2);
832 	TEST_FAIL("Mem region not found");
833 	return NULL;
834 }
835 
836 /*
837  * VM Memory Region Flags Set
838  *
839  * Input Args:
840  *   vm - Virtual Machine
841  *   flags - Starting guest physical address
842  *
843  * Output Args: None
844  *
845  * Return: None
846  *
847  * Sets the flags of the memory region specified by the value of slot,
848  * to the values given by flags.
849  */
850 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
851 {
852 	int ret;
853 	struct userspace_mem_region *region;
854 
855 	region = memslot2region(vm, slot);
856 
857 	region->region.flags = flags;
858 
859 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
860 
861 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
862 		"  rc: %i errno: %i slot: %u flags: 0x%x",
863 		ret, errno, slot, flags);
864 }
865 
866 /*
867  * VM Memory Region Move
868  *
869  * Input Args:
870  *   vm - Virtual Machine
871  *   slot - Slot of the memory region to move
872  *   new_gpa - Starting guest physical address
873  *
874  * Output Args: None
875  *
876  * Return: None
877  *
878  * Change the gpa of a memory region.
879  */
880 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
881 {
882 	struct userspace_mem_region *region;
883 	int ret;
884 
885 	region = memslot2region(vm, slot);
886 
887 	region->region.guest_phys_addr = new_gpa;
888 
889 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
890 
891 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
892 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
893 		    ret, errno, slot, new_gpa);
894 }
895 
896 /*
897  * VM Memory Region Delete
898  *
899  * Input Args:
900  *   vm - Virtual Machine
901  *   slot - Slot of the memory region to delete
902  *
903  * Output Args: None
904  *
905  * Return: None
906  *
907  * Delete a memory region.
908  */
909 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
910 {
911 	__vm_mem_region_delete(vm, memslot2region(vm, slot));
912 }
913 
914 /*
915  * VCPU mmap Size
916  *
917  * Input Args: None
918  *
919  * Output Args: None
920  *
921  * Return:
922  *   Size of VCPU state
923  *
924  * Returns the size of the structure pointed to by the return value
925  * of vcpu_state().
926  */
927 static int vcpu_mmap_sz(void)
928 {
929 	int dev_fd, ret;
930 
931 	dev_fd = open(KVM_DEV_PATH, O_RDONLY);
932 	if (dev_fd < 0)
933 		exit(KSFT_SKIP);
934 
935 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
936 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
937 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
938 		__func__, ret, errno);
939 
940 	close(dev_fd);
941 
942 	return ret;
943 }
944 
945 /*
946  * VM VCPU Add
947  *
948  * Input Args:
949  *   vm - Virtual Machine
950  *   vcpuid - VCPU ID
951  *
952  * Output Args: None
953  *
954  * Return: None
955  *
956  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
957  * No additional VCPU setup is done.
958  */
959 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
960 {
961 	struct vcpu *vcpu;
962 
963 	/* Confirm a vcpu with the specified id doesn't already exist. */
964 	vcpu = vcpu_find(vm, vcpuid);
965 	if (vcpu != NULL)
966 		TEST_FAIL("vcpu with the specified id "
967 			"already exists,\n"
968 			"  requested vcpuid: %u\n"
969 			"  existing vcpuid: %u state: %p",
970 			vcpuid, vcpu->id, vcpu->state);
971 
972 	/* Allocate and initialize new vcpu structure. */
973 	vcpu = calloc(1, sizeof(*vcpu));
974 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
975 	vcpu->id = vcpuid;
976 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
977 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
978 		vcpu->fd, errno);
979 
980 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
981 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
982 		vcpu_mmap_sz(), sizeof(*vcpu->state));
983 	vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
984 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
985 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
986 		"vcpu id: %u errno: %i", vcpuid, errno);
987 
988 	/* Add to linked-list of VCPUs. */
989 	list_add(&vcpu->list, &vm->vcpus);
990 }
991 
992 /*
993  * VM Virtual Address Unused Gap
994  *
995  * Input Args:
996  *   vm - Virtual Machine
997  *   sz - Size (bytes)
998  *   vaddr_min - Minimum Virtual Address
999  *
1000  * Output Args: None
1001  *
1002  * Return:
1003  *   Lowest virtual address at or below vaddr_min, with at least
1004  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1005  *   size sz is available.
1006  *
1007  * Within the VM specified by vm, locates the lowest starting virtual
1008  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1009  * TEST_ASSERT failure occurs for invalid input or no area of at least
1010  * sz unallocated bytes >= vaddr_min is available.
1011  */
1012 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1013 				      vm_vaddr_t vaddr_min)
1014 {
1015 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1016 
1017 	/* Determine lowest permitted virtual page index. */
1018 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1019 	if ((pgidx_start * vm->page_size) < vaddr_min)
1020 		goto no_va_found;
1021 
1022 	/* Loop over section with enough valid virtual page indexes. */
1023 	if (!sparsebit_is_set_num(vm->vpages_valid,
1024 		pgidx_start, pages))
1025 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1026 			pgidx_start, pages);
1027 	do {
1028 		/*
1029 		 * Are there enough unused virtual pages available at
1030 		 * the currently proposed starting virtual page index.
1031 		 * If not, adjust proposed starting index to next
1032 		 * possible.
1033 		 */
1034 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1035 			pgidx_start, pages))
1036 			goto va_found;
1037 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1038 			pgidx_start, pages);
1039 		if (pgidx_start == 0)
1040 			goto no_va_found;
1041 
1042 		/*
1043 		 * If needed, adjust proposed starting virtual address,
1044 		 * to next range of valid virtual addresses.
1045 		 */
1046 		if (!sparsebit_is_set_num(vm->vpages_valid,
1047 			pgidx_start, pages)) {
1048 			pgidx_start = sparsebit_next_set_num(
1049 				vm->vpages_valid, pgidx_start, pages);
1050 			if (pgidx_start == 0)
1051 				goto no_va_found;
1052 		}
1053 	} while (pgidx_start != 0);
1054 
1055 no_va_found:
1056 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1057 
1058 	/* NOT REACHED */
1059 	return -1;
1060 
1061 va_found:
1062 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1063 		pgidx_start, pages),
1064 		"Unexpected, invalid virtual page index range,\n"
1065 		"  pgidx_start: 0x%lx\n"
1066 		"  pages: 0x%lx",
1067 		pgidx_start, pages);
1068 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1069 		pgidx_start, pages),
1070 		"Unexpected, pages already mapped,\n"
1071 		"  pgidx_start: 0x%lx\n"
1072 		"  pages: 0x%lx",
1073 		pgidx_start, pages);
1074 
1075 	return pgidx_start * vm->page_size;
1076 }
1077 
1078 /*
1079  * VM Virtual Address Allocate
1080  *
1081  * Input Args:
1082  *   vm - Virtual Machine
1083  *   sz - Size in bytes
1084  *   vaddr_min - Minimum starting virtual address
1085  *   data_memslot - Memory region slot for data pages
1086  *   pgd_memslot - Memory region slot for new virtual translation tables
1087  *
1088  * Output Args: None
1089  *
1090  * Return:
1091  *   Starting guest virtual address
1092  *
1093  * Allocates at least sz bytes within the virtual address space of the vm
1094  * given by vm.  The allocated bytes are mapped to a virtual address >=
1095  * the address given by vaddr_min.  Note that each allocation uses a
1096  * a unique set of pages, with the minimum real allocation being at least
1097  * a page.
1098  */
1099 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1100 			  uint32_t data_memslot, uint32_t pgd_memslot)
1101 {
1102 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1103 
1104 	virt_pgd_alloc(vm, pgd_memslot);
1105 
1106 	/*
1107 	 * Find an unused range of virtual page addresses of at least
1108 	 * pages in length.
1109 	 */
1110 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1111 
1112 	/* Map the virtual pages. */
1113 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1114 		pages--, vaddr += vm->page_size) {
1115 		vm_paddr_t paddr;
1116 
1117 		paddr = vm_phy_page_alloc(vm,
1118 				KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
1119 
1120 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1121 
1122 		sparsebit_set(vm->vpages_mapped,
1123 			vaddr >> vm->page_shift);
1124 	}
1125 
1126 	return vaddr_start;
1127 }
1128 
1129 /*
1130  * Map a range of VM virtual address to the VM's physical address
1131  *
1132  * Input Args:
1133  *   vm - Virtual Machine
1134  *   vaddr - Virtuall address to map
1135  *   paddr - VM Physical Address
1136  *   npages - The number of pages to map
1137  *   pgd_memslot - Memory region slot for new virtual translation tables
1138  *
1139  * Output Args: None
1140  *
1141  * Return: None
1142  *
1143  * Within the VM given by @vm, creates a virtual translation for
1144  * @npages starting at @vaddr to the page range starting at @paddr.
1145  */
1146 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1147 	      unsigned int npages, uint32_t pgd_memslot)
1148 {
1149 	size_t page_size = vm->page_size;
1150 	size_t size = npages * page_size;
1151 
1152 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1153 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1154 
1155 	while (npages--) {
1156 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
1157 		vaddr += page_size;
1158 		paddr += page_size;
1159 	}
1160 }
1161 
1162 /*
1163  * Address VM Physical to Host Virtual
1164  *
1165  * Input Args:
1166  *   vm - Virtual Machine
1167  *   gpa - VM physical address
1168  *
1169  * Output Args: None
1170  *
1171  * Return:
1172  *   Equivalent host virtual address
1173  *
1174  * Locates the memory region containing the VM physical address given
1175  * by gpa, within the VM given by vm.  When found, the host virtual
1176  * address providing the memory to the vm physical address is returned.
1177  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1178  */
1179 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1180 {
1181 	struct userspace_mem_region *region;
1182 
1183 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1184 		if ((gpa >= region->region.guest_phys_addr)
1185 			&& (gpa <= (region->region.guest_phys_addr
1186 				+ region->region.memory_size - 1)))
1187 			return (void *) ((uintptr_t) region->host_mem
1188 				+ (gpa - region->region.guest_phys_addr));
1189 	}
1190 
1191 	TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1192 	return NULL;
1193 }
1194 
1195 /*
1196  * Address Host Virtual to VM Physical
1197  *
1198  * Input Args:
1199  *   vm - Virtual Machine
1200  *   hva - Host virtual address
1201  *
1202  * Output Args: None
1203  *
1204  * Return:
1205  *   Equivalent VM physical address
1206  *
1207  * Locates the memory region containing the host virtual address given
1208  * by hva, within the VM given by vm.  When found, the equivalent
1209  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1210  * region containing hva exists.
1211  */
1212 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1213 {
1214 	struct userspace_mem_region *region;
1215 
1216 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1217 		if ((hva >= region->host_mem)
1218 			&& (hva <= (region->host_mem
1219 				+ region->region.memory_size - 1)))
1220 			return (vm_paddr_t) ((uintptr_t)
1221 				region->region.guest_phys_addr
1222 				+ (hva - (uintptr_t) region->host_mem));
1223 	}
1224 
1225 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1226 	return -1;
1227 }
1228 
1229 /*
1230  * VM Create IRQ Chip
1231  *
1232  * Input Args:
1233  *   vm - Virtual Machine
1234  *
1235  * Output Args: None
1236  *
1237  * Return: None
1238  *
1239  * Creates an interrupt controller chip for the VM specified by vm.
1240  */
1241 void vm_create_irqchip(struct kvm_vm *vm)
1242 {
1243 	int ret;
1244 
1245 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1246 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1247 		"rc: %i errno: %i", ret, errno);
1248 
1249 	vm->has_irqchip = true;
1250 }
1251 
1252 /*
1253  * VM VCPU State
1254  *
1255  * Input Args:
1256  *   vm - Virtual Machine
1257  *   vcpuid - VCPU ID
1258  *
1259  * Output Args: None
1260  *
1261  * Return:
1262  *   Pointer to structure that describes the state of the VCPU.
1263  *
1264  * Locates and returns a pointer to a structure that describes the
1265  * state of the VCPU with the given vcpuid.
1266  */
1267 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1268 {
1269 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1270 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1271 
1272 	return vcpu->state;
1273 }
1274 
1275 /*
1276  * VM VCPU Run
1277  *
1278  * Input Args:
1279  *   vm - Virtual Machine
1280  *   vcpuid - VCPU ID
1281  *
1282  * Output Args: None
1283  *
1284  * Return: None
1285  *
1286  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1287  * given by vm.
1288  */
1289 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1290 {
1291 	int ret = _vcpu_run(vm, vcpuid);
1292 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1293 		"rc: %i errno: %i", ret, errno);
1294 }
1295 
1296 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1297 {
1298 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1299 	int rc;
1300 
1301 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1302 	do {
1303 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1304 	} while (rc == -1 && errno == EINTR);
1305 
1306 	assert_on_unhandled_exception(vm, vcpuid);
1307 
1308 	return rc;
1309 }
1310 
1311 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1312 {
1313 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1314 
1315 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1316 
1317 	return vcpu->fd;
1318 }
1319 
1320 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1321 {
1322 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1323 	int ret;
1324 
1325 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1326 
1327 	vcpu->state->immediate_exit = 1;
1328 	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1329 	vcpu->state->immediate_exit = 0;
1330 
1331 	TEST_ASSERT(ret == -1 && errno == EINTR,
1332 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1333 		    ret, errno);
1334 }
1335 
1336 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1337 			  struct kvm_guest_debug *debug)
1338 {
1339 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1340 	int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1341 
1342 	TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1343 }
1344 
1345 /*
1346  * VM VCPU Set MP State
1347  *
1348  * Input Args:
1349  *   vm - Virtual Machine
1350  *   vcpuid - VCPU ID
1351  *   mp_state - mp_state to be set
1352  *
1353  * Output Args: None
1354  *
1355  * Return: None
1356  *
1357  * Sets the MP state of the VCPU given by vcpuid, to the state given
1358  * by mp_state.
1359  */
1360 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1361 		       struct kvm_mp_state *mp_state)
1362 {
1363 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1364 	int ret;
1365 
1366 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1367 
1368 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1369 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1370 		"rc: %i errno: %i", ret, errno);
1371 }
1372 
1373 /*
1374  * VM VCPU Get Reg List
1375  *
1376  * Input Args:
1377  *   vm - Virtual Machine
1378  *   vcpuid - VCPU ID
1379  *
1380  * Output Args:
1381  *   None
1382  *
1383  * Return:
1384  *   A pointer to an allocated struct kvm_reg_list
1385  *
1386  * Get the list of guest registers which are supported for
1387  * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1388  */
1389 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1390 {
1391 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1392 	int ret;
1393 
1394 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1395 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1396 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1397 	reg_list->n = reg_list_n.n;
1398 	vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1399 	return reg_list;
1400 }
1401 
1402 /*
1403  * VM VCPU Regs Get
1404  *
1405  * Input Args:
1406  *   vm - Virtual Machine
1407  *   vcpuid - VCPU ID
1408  *
1409  * Output Args:
1410  *   regs - current state of VCPU regs
1411  *
1412  * Return: None
1413  *
1414  * Obtains the current register state for the VCPU specified by vcpuid
1415  * and stores it at the location given by regs.
1416  */
1417 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1418 {
1419 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1420 	int ret;
1421 
1422 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1423 
1424 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1425 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1426 		ret, errno);
1427 }
1428 
1429 /*
1430  * VM VCPU Regs Set
1431  *
1432  * Input Args:
1433  *   vm - Virtual Machine
1434  *   vcpuid - VCPU ID
1435  *   regs - Values to set VCPU regs to
1436  *
1437  * Output Args: None
1438  *
1439  * Return: None
1440  *
1441  * Sets the regs of the VCPU specified by vcpuid to the values
1442  * given by regs.
1443  */
1444 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1445 {
1446 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1447 	int ret;
1448 
1449 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1450 
1451 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1452 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1453 		ret, errno);
1454 }
1455 
1456 #ifdef __KVM_HAVE_VCPU_EVENTS
1457 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1458 		     struct kvm_vcpu_events *events)
1459 {
1460 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1461 	int ret;
1462 
1463 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1464 
1465 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1466 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1467 		ret, errno);
1468 }
1469 
1470 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1471 		     struct kvm_vcpu_events *events)
1472 {
1473 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1474 	int ret;
1475 
1476 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1477 
1478 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1479 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1480 		ret, errno);
1481 }
1482 #endif
1483 
1484 #ifdef __x86_64__
1485 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1486 			   struct kvm_nested_state *state)
1487 {
1488 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1489 	int ret;
1490 
1491 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1492 
1493 	ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1494 	TEST_ASSERT(ret == 0,
1495 		"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1496 		ret, errno);
1497 }
1498 
1499 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1500 			  struct kvm_nested_state *state, bool ignore_error)
1501 {
1502 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1503 	int ret;
1504 
1505 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1506 
1507 	ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1508 	if (!ignore_error) {
1509 		TEST_ASSERT(ret == 0,
1510 			"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1511 			ret, errno);
1512 	}
1513 
1514 	return ret;
1515 }
1516 #endif
1517 
1518 /*
1519  * VM VCPU System Regs Get
1520  *
1521  * Input Args:
1522  *   vm - Virtual Machine
1523  *   vcpuid - VCPU ID
1524  *
1525  * Output Args:
1526  *   sregs - current state of VCPU system regs
1527  *
1528  * Return: None
1529  *
1530  * Obtains the current system register state for the VCPU specified by
1531  * vcpuid and stores it at the location given by sregs.
1532  */
1533 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1534 {
1535 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1536 	int ret;
1537 
1538 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1539 
1540 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1541 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1542 		ret, errno);
1543 }
1544 
1545 /*
1546  * VM VCPU System Regs Set
1547  *
1548  * Input Args:
1549  *   vm - Virtual Machine
1550  *   vcpuid - VCPU ID
1551  *   sregs - Values to set VCPU system regs to
1552  *
1553  * Output Args: None
1554  *
1555  * Return: None
1556  *
1557  * Sets the system regs of the VCPU specified by vcpuid to the values
1558  * given by sregs.
1559  */
1560 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1561 {
1562 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1563 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1564 		"rc: %i errno: %i", ret, errno);
1565 }
1566 
1567 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1568 {
1569 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1570 
1571 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1572 
1573 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1574 }
1575 
1576 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1577 {
1578 	int ret;
1579 
1580 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1581 	TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1582 		    ret, errno, strerror(errno));
1583 }
1584 
1585 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1586 {
1587 	int ret;
1588 
1589 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1590 	TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1591 		    ret, errno, strerror(errno));
1592 }
1593 
1594 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1595 {
1596 	int ret;
1597 
1598 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1599 	TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1600 		    ret, errno, strerror(errno));
1601 }
1602 
1603 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1604 {
1605 	int ret;
1606 
1607 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1608 	TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1609 		    ret, errno, strerror(errno));
1610 }
1611 
1612 /*
1613  * VCPU Ioctl
1614  *
1615  * Input Args:
1616  *   vm - Virtual Machine
1617  *   vcpuid - VCPU ID
1618  *   cmd - Ioctl number
1619  *   arg - Argument to pass to the ioctl
1620  *
1621  * Return: None
1622  *
1623  * Issues an arbitrary ioctl on a VCPU fd.
1624  */
1625 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1626 		unsigned long cmd, void *arg)
1627 {
1628 	int ret;
1629 
1630 	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1631 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1632 		cmd, ret, errno, strerror(errno));
1633 }
1634 
1635 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1636 		unsigned long cmd, void *arg)
1637 {
1638 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1639 	int ret;
1640 
1641 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1642 
1643 	ret = ioctl(vcpu->fd, cmd, arg);
1644 
1645 	return ret;
1646 }
1647 
1648 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1649 {
1650 	struct vcpu *vcpu;
1651 	uint32_t size = vm->dirty_ring_size;
1652 
1653 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1654 
1655 	vcpu = vcpu_find(vm, vcpuid);
1656 
1657 	TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1658 
1659 	if (!vcpu->dirty_gfns) {
1660 		void *addr;
1661 
1662 		addr = mmap(NULL, size, PROT_READ,
1663 			    MAP_PRIVATE, vcpu->fd,
1664 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1665 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1666 
1667 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1668 			    MAP_PRIVATE, vcpu->fd,
1669 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1670 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1671 
1672 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1673 			    MAP_SHARED, vcpu->fd,
1674 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1675 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1676 
1677 		vcpu->dirty_gfns = addr;
1678 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1679 	}
1680 
1681 	return vcpu->dirty_gfns;
1682 }
1683 
1684 /*
1685  * VM Ioctl
1686  *
1687  * Input Args:
1688  *   vm - Virtual Machine
1689  *   cmd - Ioctl number
1690  *   arg - Argument to pass to the ioctl
1691  *
1692  * Return: None
1693  *
1694  * Issues an arbitrary ioctl on a VM fd.
1695  */
1696 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1697 {
1698 	int ret;
1699 
1700 	ret = _vm_ioctl(vm, cmd, arg);
1701 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1702 		cmd, ret, errno, strerror(errno));
1703 }
1704 
1705 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1706 {
1707 	return ioctl(vm->fd, cmd, arg);
1708 }
1709 
1710 /*
1711  * KVM system ioctl
1712  *
1713  * Input Args:
1714  *   vm - Virtual Machine
1715  *   cmd - Ioctl number
1716  *   arg - Argument to pass to the ioctl
1717  *
1718  * Return: None
1719  *
1720  * Issues an arbitrary ioctl on a KVM fd.
1721  */
1722 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1723 {
1724 	int ret;
1725 
1726 	ret = ioctl(vm->kvm_fd, cmd, arg);
1727 	TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
1728 		cmd, ret, errno, strerror(errno));
1729 }
1730 
1731 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1732 {
1733 	return ioctl(vm->kvm_fd, cmd, arg);
1734 }
1735 
1736 /*
1737  * VM Dump
1738  *
1739  * Input Args:
1740  *   vm - Virtual Machine
1741  *   indent - Left margin indent amount
1742  *
1743  * Output Args:
1744  *   stream - Output FILE stream
1745  *
1746  * Return: None
1747  *
1748  * Dumps the current state of the VM given by vm, to the FILE stream
1749  * given by stream.
1750  */
1751 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1752 {
1753 	struct userspace_mem_region *region;
1754 	struct vcpu *vcpu;
1755 
1756 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1757 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1758 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1759 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1760 	list_for_each_entry(region, &vm->userspace_mem_regions, list) {
1761 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1762 			"host_virt: %p\n", indent + 2, "",
1763 			(uint64_t) region->region.guest_phys_addr,
1764 			(uint64_t) region->region.memory_size,
1765 			region->host_mem);
1766 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1767 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1768 	}
1769 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1770 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1771 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1772 		vm->pgd_created);
1773 	if (vm->pgd_created) {
1774 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1775 			indent + 2, "");
1776 		virt_dump(stream, vm, indent + 4);
1777 	}
1778 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1779 	list_for_each_entry(vcpu, &vm->vcpus, list)
1780 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
1781 }
1782 
1783 /* Known KVM exit reasons */
1784 static struct exit_reason {
1785 	unsigned int reason;
1786 	const char *name;
1787 } exit_reasons_known[] = {
1788 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1789 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1790 	{KVM_EXIT_IO, "IO"},
1791 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1792 	{KVM_EXIT_DEBUG, "DEBUG"},
1793 	{KVM_EXIT_HLT, "HLT"},
1794 	{KVM_EXIT_MMIO, "MMIO"},
1795 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1796 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1797 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1798 	{KVM_EXIT_INTR, "INTR"},
1799 	{KVM_EXIT_SET_TPR, "SET_TPR"},
1800 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1801 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1802 	{KVM_EXIT_S390_RESET, "S390_RESET"},
1803 	{KVM_EXIT_DCR, "DCR"},
1804 	{KVM_EXIT_NMI, "NMI"},
1805 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1806 	{KVM_EXIT_OSI, "OSI"},
1807 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1808 	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1809 	{KVM_EXIT_X86_RDMSR, "RDMSR"},
1810 	{KVM_EXIT_X86_WRMSR, "WRMSR"},
1811 	{KVM_EXIT_XEN, "XEN"},
1812 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1813 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1814 #endif
1815 };
1816 
1817 /*
1818  * Exit Reason String
1819  *
1820  * Input Args:
1821  *   exit_reason - Exit reason
1822  *
1823  * Output Args: None
1824  *
1825  * Return:
1826  *   Constant string pointer describing the exit reason.
1827  *
1828  * Locates and returns a constant string that describes the KVM exit
1829  * reason given by exit_reason.  If no such string is found, a constant
1830  * string of "Unknown" is returned.
1831  */
1832 const char *exit_reason_str(unsigned int exit_reason)
1833 {
1834 	unsigned int n1;
1835 
1836 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1837 		if (exit_reason == exit_reasons_known[n1].reason)
1838 			return exit_reasons_known[n1].name;
1839 	}
1840 
1841 	return "Unknown";
1842 }
1843 
1844 /*
1845  * Physical Contiguous Page Allocator
1846  *
1847  * Input Args:
1848  *   vm - Virtual Machine
1849  *   num - number of pages
1850  *   paddr_min - Physical address minimum
1851  *   memslot - Memory region to allocate page from
1852  *
1853  * Output Args: None
1854  *
1855  * Return:
1856  *   Starting physical address
1857  *
1858  * Within the VM specified by vm, locates a range of available physical
1859  * pages at or above paddr_min. If found, the pages are marked as in use
1860  * and their base address is returned. A TEST_ASSERT failure occurs if
1861  * not enough pages are available at or above paddr_min.
1862  */
1863 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1864 			      vm_paddr_t paddr_min, uint32_t memslot)
1865 {
1866 	struct userspace_mem_region *region;
1867 	sparsebit_idx_t pg, base;
1868 
1869 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1870 
1871 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1872 		"not divisible by page size.\n"
1873 		"  paddr_min: 0x%lx page_size: 0x%x",
1874 		paddr_min, vm->page_size);
1875 
1876 	region = memslot2region(vm, memslot);
1877 	base = pg = paddr_min >> vm->page_shift;
1878 
1879 	do {
1880 		for (; pg < base + num; ++pg) {
1881 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1882 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1883 				break;
1884 			}
1885 		}
1886 	} while (pg && pg != base + num);
1887 
1888 	if (pg == 0) {
1889 		fprintf(stderr, "No guest physical page available, "
1890 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1891 			paddr_min, vm->page_size, memslot);
1892 		fputs("---- vm dump ----\n", stderr);
1893 		vm_dump(stderr, vm, 2);
1894 		abort();
1895 	}
1896 
1897 	for (pg = base; pg < base + num; ++pg)
1898 		sparsebit_clear(region->unused_phy_pages, pg);
1899 
1900 	return base * vm->page_size;
1901 }
1902 
1903 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1904 			     uint32_t memslot)
1905 {
1906 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1907 }
1908 
1909 /*
1910  * Address Guest Virtual to Host Virtual
1911  *
1912  * Input Args:
1913  *   vm - Virtual Machine
1914  *   gva - VM virtual address
1915  *
1916  * Output Args: None
1917  *
1918  * Return:
1919  *   Equivalent host virtual address
1920  */
1921 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1922 {
1923 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1924 }
1925 
1926 /*
1927  * Is Unrestricted Guest
1928  *
1929  * Input Args:
1930  *   vm - Virtual Machine
1931  *
1932  * Output Args: None
1933  *
1934  * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
1935  *
1936  * Check if the unrestricted guest flag is enabled.
1937  */
1938 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1939 {
1940 	char val = 'N';
1941 	size_t count;
1942 	FILE *f;
1943 
1944 	if (vm == NULL) {
1945 		/* Ensure that the KVM vendor-specific module is loaded. */
1946 		f = fopen(KVM_DEV_PATH, "r");
1947 		TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
1948 			    errno);
1949 		fclose(f);
1950 	}
1951 
1952 	f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
1953 	if (f) {
1954 		count = fread(&val, sizeof(char), 1, f);
1955 		TEST_ASSERT(count == 1, "Unable to read from param file.");
1956 		fclose(f);
1957 	}
1958 
1959 	return val == 'Y';
1960 }
1961 
1962 unsigned int vm_get_page_size(struct kvm_vm *vm)
1963 {
1964 	return vm->page_size;
1965 }
1966 
1967 unsigned int vm_get_page_shift(struct kvm_vm *vm)
1968 {
1969 	return vm->page_shift;
1970 }
1971 
1972 unsigned int vm_get_max_gfn(struct kvm_vm *vm)
1973 {
1974 	return vm->max_gfn;
1975 }
1976 
1977 int vm_get_fd(struct kvm_vm *vm)
1978 {
1979 	return vm->fd;
1980 }
1981 
1982 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1983 				      unsigned int page_shift,
1984 				      unsigned int new_page_shift,
1985 				      bool ceil)
1986 {
1987 	unsigned int n = 1 << (new_page_shift - page_shift);
1988 
1989 	if (page_shift >= new_page_shift)
1990 		return num_pages * (1 << (page_shift - new_page_shift));
1991 
1992 	return num_pages / n + !!(ceil && num_pages % n);
1993 }
1994 
1995 static inline int getpageshift(void)
1996 {
1997 	return __builtin_ffs(getpagesize()) - 1;
1998 }
1999 
2000 unsigned int
2001 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2002 {
2003 	return vm_calc_num_pages(num_guest_pages,
2004 				 vm_guest_mode_params[mode].page_shift,
2005 				 getpageshift(), true);
2006 }
2007 
2008 unsigned int
2009 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2010 {
2011 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2012 				 vm_guest_mode_params[mode].page_shift, false);
2013 }
2014 
2015 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2016 {
2017 	unsigned int n;
2018 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2019 	return vm_adjust_num_guest_pages(mode, n);
2020 }
2021