1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "kvm_util_internal.h" 12 #include "processor.h" 13 14 #include <assert.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 int open_path_or_exit(const char *path, int flags) 26 { 27 int fd; 28 29 fd = open(path, flags); 30 if (fd < 0) { 31 print_skip("%s not available (errno: %d)", path, errno); 32 exit(KSFT_SKIP); 33 } 34 35 return fd; 36 } 37 38 /* 39 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 40 * 41 * Input Args: 42 * flags - The flags to pass when opening KVM_DEV_PATH. 43 * 44 * Return: 45 * The opened file descriptor of /dev/kvm. 46 */ 47 static int _open_kvm_dev_path_or_exit(int flags) 48 { 49 return open_path_or_exit(KVM_DEV_PATH, flags); 50 } 51 52 int open_kvm_dev_path_or_exit(void) 53 { 54 return _open_kvm_dev_path_or_exit(O_RDONLY); 55 } 56 57 /* 58 * Capability 59 * 60 * Input Args: 61 * cap - Capability 62 * 63 * Output Args: None 64 * 65 * Return: 66 * On success, the Value corresponding to the capability (KVM_CAP_*) 67 * specified by the value of cap. On failure a TEST_ASSERT failure 68 * is produced. 69 * 70 * Looks up and returns the value corresponding to the capability 71 * (KVM_CAP_*) given by cap. 72 */ 73 int kvm_check_cap(long cap) 74 { 75 int ret; 76 int kvm_fd; 77 78 kvm_fd = open_kvm_dev_path_or_exit(); 79 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); 80 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n" 81 " rc: %i errno: %i", ret, errno); 82 83 close(kvm_fd); 84 85 return ret; 86 } 87 88 /* VM Enable Capability 89 * 90 * Input Args: 91 * vm - Virtual Machine 92 * cap - Capability 93 * 94 * Output Args: None 95 * 96 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 97 * 98 * Enables a capability (KVM_CAP_*) on the VM. 99 */ 100 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap) 101 { 102 int ret; 103 104 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap); 105 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n" 106 " rc: %i errno: %i", ret, errno); 107 108 return ret; 109 } 110 111 /* VCPU Enable Capability 112 * 113 * Input Args: 114 * vm - Virtual Machine 115 * vcpu_id - VCPU 116 * cap - Capability 117 * 118 * Output Args: None 119 * 120 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 121 * 122 * Enables a capability (KVM_CAP_*) on the VCPU. 123 */ 124 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id, 125 struct kvm_enable_cap *cap) 126 { 127 struct vcpu *vcpu = vcpu_find(vm, vcpu_id); 128 int r; 129 130 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id); 131 132 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap); 133 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n" 134 " rc: %i, errno: %i", r, errno); 135 136 return r; 137 } 138 139 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 140 { 141 struct kvm_enable_cap cap = { 0 }; 142 143 cap.cap = KVM_CAP_DIRTY_LOG_RING; 144 cap.args[0] = ring_size; 145 vm_enable_cap(vm, &cap); 146 vm->dirty_ring_size = ring_size; 147 } 148 149 static void vm_open(struct kvm_vm *vm, int perm) 150 { 151 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm); 152 153 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) { 154 print_skip("immediate_exit not available"); 155 exit(KSFT_SKIP); 156 } 157 158 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type); 159 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " 160 "rc: %i errno: %i", vm->fd, errno); 161 } 162 163 const char *vm_guest_mode_string(uint32_t i) 164 { 165 static const char * const strings[] = { 166 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 167 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 168 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 169 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 170 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 171 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 172 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 173 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 174 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 175 }; 176 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 177 "Missing new mode strings?"); 178 179 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 180 181 return strings[i]; 182 } 183 184 const struct vm_guest_mode_params vm_guest_mode_params[] = { 185 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 186 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 187 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 188 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 189 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 190 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 191 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 192 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 193 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 194 }; 195 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 196 "Missing new mode params?"); 197 198 /* 199 * VM Create 200 * 201 * Input Args: 202 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 203 * phy_pages - Physical memory pages 204 * perm - permission 205 * 206 * Output Args: None 207 * 208 * Return: 209 * Pointer to opaque structure that describes the created VM. 210 * 211 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 212 * When phy_pages is non-zero, a memory region of phy_pages physical pages 213 * is created and mapped starting at guest physical address 0. The file 214 * descriptor to control the created VM is created with the permissions 215 * given by perm (e.g. O_RDWR). 216 */ 217 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) 218 { 219 struct kvm_vm *vm; 220 221 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__, 222 vm_guest_mode_string(mode), phy_pages, perm); 223 224 vm = calloc(1, sizeof(*vm)); 225 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 226 227 INIT_LIST_HEAD(&vm->vcpus); 228 vm->regions.gpa_tree = RB_ROOT; 229 vm->regions.hva_tree = RB_ROOT; 230 hash_init(vm->regions.slot_hash); 231 232 vm->mode = mode; 233 vm->type = 0; 234 235 vm->pa_bits = vm_guest_mode_params[mode].pa_bits; 236 vm->va_bits = vm_guest_mode_params[mode].va_bits; 237 vm->page_size = vm_guest_mode_params[mode].page_size; 238 vm->page_shift = vm_guest_mode_params[mode].page_shift; 239 240 /* Setup mode specific traits. */ 241 switch (vm->mode) { 242 case VM_MODE_P52V48_4K: 243 vm->pgtable_levels = 4; 244 break; 245 case VM_MODE_P52V48_64K: 246 vm->pgtable_levels = 3; 247 break; 248 case VM_MODE_P48V48_4K: 249 vm->pgtable_levels = 4; 250 break; 251 case VM_MODE_P48V48_64K: 252 vm->pgtable_levels = 3; 253 break; 254 case VM_MODE_P40V48_4K: 255 vm->pgtable_levels = 4; 256 break; 257 case VM_MODE_P40V48_64K: 258 vm->pgtable_levels = 3; 259 break; 260 case VM_MODE_PXXV48_4K: 261 #ifdef __x86_64__ 262 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 263 /* 264 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 265 * it doesn't take effect unless a CR4.LA57 is set, which it 266 * isn't for this VM_MODE. 267 */ 268 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 269 "Linear address width (%d bits) not supported", 270 vm->va_bits); 271 pr_debug("Guest physical address width detected: %d\n", 272 vm->pa_bits); 273 vm->pgtable_levels = 4; 274 vm->va_bits = 48; 275 #else 276 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 277 #endif 278 break; 279 case VM_MODE_P47V64_4K: 280 vm->pgtable_levels = 5; 281 break; 282 case VM_MODE_P44V64_4K: 283 vm->pgtable_levels = 5; 284 break; 285 default: 286 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode); 287 } 288 289 #ifdef __aarch64__ 290 if (vm->pa_bits != 40) 291 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 292 #endif 293 294 vm_open(vm, perm); 295 296 /* Limit to VA-bit canonical virtual addresses. */ 297 vm->vpages_valid = sparsebit_alloc(); 298 sparsebit_set_num(vm->vpages_valid, 299 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 300 sparsebit_set_num(vm->vpages_valid, 301 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 302 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 303 304 /* Limit physical addresses to PA-bits. */ 305 vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 306 307 /* Allocate and setup memory for guest. */ 308 vm->vpages_mapped = sparsebit_alloc(); 309 if (phy_pages != 0) 310 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 311 0, 0, phy_pages, 0); 312 313 return vm; 314 } 315 316 /* 317 * VM Create with customized parameters 318 * 319 * Input Args: 320 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 321 * nr_vcpus - VCPU count 322 * slot0_mem_pages - Slot0 physical memory size 323 * extra_mem_pages - Non-slot0 physical memory total size 324 * num_percpu_pages - Per-cpu physical memory pages 325 * guest_code - Guest entry point 326 * vcpuids - VCPU IDs 327 * 328 * Output Args: None 329 * 330 * Return: 331 * Pointer to opaque structure that describes the created VM. 332 * 333 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K), 334 * with customized slot0 memory size, at least 512 pages currently. 335 * extra_mem_pages is only used to calculate the maximum page table size, 336 * no real memory allocation for non-slot0 memory in this function. 337 */ 338 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, 339 uint64_t slot0_mem_pages, uint64_t extra_mem_pages, 340 uint32_t num_percpu_pages, void *guest_code, 341 uint32_t vcpuids[]) 342 { 343 uint64_t vcpu_pages, extra_pg_pages, pages; 344 struct kvm_vm *vm; 345 int i; 346 347 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */ 348 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES) 349 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES; 350 351 /* The maximum page table size for a memory region will be when the 352 * smallest pages are used. Considering each page contains x page 353 * table descriptors, the total extra size for page tables (for extra 354 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 355 * than N/x*2. 356 */ 357 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus; 358 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2; 359 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages; 360 361 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 362 "nr_vcpus = %d too large for host, max-vcpus = %d", 363 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 364 365 pages = vm_adjust_num_guest_pages(mode, pages); 366 vm = vm_create(mode, pages, O_RDWR); 367 368 kvm_vm_elf_load(vm, program_invocation_name); 369 370 #ifdef __x86_64__ 371 vm_create_irqchip(vm); 372 #endif 373 374 for (i = 0; i < nr_vcpus; ++i) { 375 uint32_t vcpuid = vcpuids ? vcpuids[i] : i; 376 377 vm_vcpu_add_default(vm, vcpuid, guest_code); 378 } 379 380 return vm; 381 } 382 383 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages, 384 uint32_t num_percpu_pages, void *guest_code, 385 uint32_t vcpuids[]) 386 { 387 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES, 388 extra_mem_pages, num_percpu_pages, guest_code, vcpuids); 389 } 390 391 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, 392 void *guest_code) 393 { 394 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code, 395 (uint32_t []){ vcpuid }); 396 } 397 398 /* 399 * VM Restart 400 * 401 * Input Args: 402 * vm - VM that has been released before 403 * perm - permission 404 * 405 * Output Args: None 406 * 407 * Reopens the file descriptors associated to the VM and reinstates the 408 * global state, such as the irqchip and the memory regions that are mapped 409 * into the guest. 410 */ 411 void kvm_vm_restart(struct kvm_vm *vmp, int perm) 412 { 413 int ctr; 414 struct userspace_mem_region *region; 415 416 vm_open(vmp, perm); 417 if (vmp->has_irqchip) 418 vm_create_irqchip(vmp); 419 420 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 421 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 422 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 423 " rc: %i errno: %i\n" 424 " slot: %u flags: 0x%x\n" 425 " guest_phys_addr: 0x%llx size: 0x%llx", 426 ret, errno, region->region.slot, 427 region->region.flags, 428 region->region.guest_phys_addr, 429 region->region.memory_size); 430 } 431 } 432 433 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 434 { 435 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 436 int ret; 437 438 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args); 439 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s", 440 __func__, strerror(-ret)); 441 } 442 443 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 444 uint64_t first_page, uint32_t num_pages) 445 { 446 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot, 447 .first_page = first_page, 448 .num_pages = num_pages }; 449 int ret; 450 451 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args); 452 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s", 453 __func__, strerror(-ret)); 454 } 455 456 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 457 { 458 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS); 459 } 460 461 /* 462 * Userspace Memory Region Find 463 * 464 * Input Args: 465 * vm - Virtual Machine 466 * start - Starting VM physical address 467 * end - Ending VM physical address, inclusive. 468 * 469 * Output Args: None 470 * 471 * Return: 472 * Pointer to overlapping region, NULL if no such region. 473 * 474 * Searches for a region with any physical memory that overlaps with 475 * any portion of the guest physical addresses from start to end 476 * inclusive. If multiple overlapping regions exist, a pointer to any 477 * of the regions is returned. Null is returned only when no overlapping 478 * region exists. 479 */ 480 static struct userspace_mem_region * 481 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 482 { 483 struct rb_node *node; 484 485 for (node = vm->regions.gpa_tree.rb_node; node; ) { 486 struct userspace_mem_region *region = 487 container_of(node, struct userspace_mem_region, gpa_node); 488 uint64_t existing_start = region->region.guest_phys_addr; 489 uint64_t existing_end = region->region.guest_phys_addr 490 + region->region.memory_size - 1; 491 if (start <= existing_end && end >= existing_start) 492 return region; 493 494 if (start < existing_start) 495 node = node->rb_left; 496 else 497 node = node->rb_right; 498 } 499 500 return NULL; 501 } 502 503 /* 504 * KVM Userspace Memory Region Find 505 * 506 * Input Args: 507 * vm - Virtual Machine 508 * start - Starting VM physical address 509 * end - Ending VM physical address, inclusive. 510 * 511 * Output Args: None 512 * 513 * Return: 514 * Pointer to overlapping region, NULL if no such region. 515 * 516 * Public interface to userspace_mem_region_find. Allows tests to look up 517 * the memslot datastructure for a given range of guest physical memory. 518 */ 519 struct kvm_userspace_memory_region * 520 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, 521 uint64_t end) 522 { 523 struct userspace_mem_region *region; 524 525 region = userspace_mem_region_find(vm, start, end); 526 if (!region) 527 return NULL; 528 529 return ®ion->region; 530 } 531 532 /* 533 * VCPU Find 534 * 535 * Input Args: 536 * vm - Virtual Machine 537 * vcpuid - VCPU ID 538 * 539 * Output Args: None 540 * 541 * Return: 542 * Pointer to VCPU structure 543 * 544 * Locates a vcpu structure that describes the VCPU specified by vcpuid and 545 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU 546 * for the specified vcpuid. 547 */ 548 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid) 549 { 550 struct vcpu *vcpu; 551 552 list_for_each_entry(vcpu, &vm->vcpus, list) { 553 if (vcpu->id == vcpuid) 554 return vcpu; 555 } 556 557 return NULL; 558 } 559 560 /* 561 * VM VCPU Remove 562 * 563 * Input Args: 564 * vcpu - VCPU to remove 565 * 566 * Output Args: None 567 * 568 * Return: None, TEST_ASSERT failures for all error conditions 569 * 570 * Removes a vCPU from a VM and frees its resources. 571 */ 572 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu) 573 { 574 int ret; 575 576 if (vcpu->dirty_gfns) { 577 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 578 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, " 579 "rc: %i errno: %i", ret, errno); 580 vcpu->dirty_gfns = NULL; 581 } 582 583 ret = munmap(vcpu->state, vcpu_mmap_sz()); 584 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i " 585 "errno: %i", ret, errno); 586 ret = close(vcpu->fd); 587 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " 588 "errno: %i", ret, errno); 589 590 list_del(&vcpu->list); 591 free(vcpu); 592 } 593 594 void kvm_vm_release(struct kvm_vm *vmp) 595 { 596 struct vcpu *vcpu, *tmp; 597 int ret; 598 599 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 600 vm_vcpu_rm(vmp, vcpu); 601 602 ret = close(vmp->fd); 603 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" 604 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); 605 606 ret = close(vmp->kvm_fd); 607 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n" 608 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno); 609 } 610 611 static void __vm_mem_region_delete(struct kvm_vm *vm, 612 struct userspace_mem_region *region, 613 bool unlink) 614 { 615 int ret; 616 617 if (unlink) { 618 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 619 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 620 hash_del(®ion->slot_node); 621 } 622 623 region->region.memory_size = 0; 624 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 625 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " 626 "rc: %i errno: %i", ret, errno); 627 628 sparsebit_free(®ion->unused_phy_pages); 629 ret = munmap(region->mmap_start, region->mmap_size); 630 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno); 631 632 free(region); 633 } 634 635 /* 636 * Destroys and frees the VM pointed to by vmp. 637 */ 638 void kvm_vm_free(struct kvm_vm *vmp) 639 { 640 int ctr; 641 struct hlist_node *node; 642 struct userspace_mem_region *region; 643 644 if (vmp == NULL) 645 return; 646 647 /* Free userspace_mem_regions. */ 648 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 649 __vm_mem_region_delete(vmp, region, false); 650 651 /* Free sparsebit arrays. */ 652 sparsebit_free(&vmp->vpages_valid); 653 sparsebit_free(&vmp->vpages_mapped); 654 655 kvm_vm_release(vmp); 656 657 /* Free the structure describing the VM. */ 658 free(vmp); 659 } 660 661 /* 662 * Memory Compare, host virtual to guest virtual 663 * 664 * Input Args: 665 * hva - Starting host virtual address 666 * vm - Virtual Machine 667 * gva - Starting guest virtual address 668 * len - number of bytes to compare 669 * 670 * Output Args: None 671 * 672 * Input/Output Args: None 673 * 674 * Return: 675 * Returns 0 if the bytes starting at hva for a length of len 676 * are equal the guest virtual bytes starting at gva. Returns 677 * a value < 0, if bytes at hva are less than those at gva. 678 * Otherwise a value > 0 is returned. 679 * 680 * Compares the bytes starting at the host virtual address hva, for 681 * a length of len, to the guest bytes starting at the guest virtual 682 * address given by gva. 683 */ 684 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 685 { 686 size_t amt; 687 688 /* 689 * Compare a batch of bytes until either a match is found 690 * or all the bytes have been compared. 691 */ 692 for (uintptr_t offset = 0; offset < len; offset += amt) { 693 uintptr_t ptr1 = (uintptr_t)hva + offset; 694 695 /* 696 * Determine host address for guest virtual address 697 * at offset. 698 */ 699 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 700 701 /* 702 * Determine amount to compare on this pass. 703 * Don't allow the comparsion to cross a page boundary. 704 */ 705 amt = len - offset; 706 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 707 amt = vm->page_size - (ptr1 % vm->page_size); 708 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 709 amt = vm->page_size - (ptr2 % vm->page_size); 710 711 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 712 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 713 714 /* 715 * Perform the comparison. If there is a difference 716 * return that result to the caller, otherwise need 717 * to continue on looking for a mismatch. 718 */ 719 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 720 if (ret != 0) 721 return ret; 722 } 723 724 /* 725 * No mismatch found. Let the caller know the two memory 726 * areas are equal. 727 */ 728 return 0; 729 } 730 731 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 732 struct userspace_mem_region *region) 733 { 734 struct rb_node **cur, *parent; 735 736 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 737 struct userspace_mem_region *cregion; 738 739 cregion = container_of(*cur, typeof(*cregion), gpa_node); 740 parent = *cur; 741 if (region->region.guest_phys_addr < 742 cregion->region.guest_phys_addr) 743 cur = &(*cur)->rb_left; 744 else { 745 TEST_ASSERT(region->region.guest_phys_addr != 746 cregion->region.guest_phys_addr, 747 "Duplicate GPA in region tree"); 748 749 cur = &(*cur)->rb_right; 750 } 751 } 752 753 rb_link_node(®ion->gpa_node, parent, cur); 754 rb_insert_color(®ion->gpa_node, gpa_tree); 755 } 756 757 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 758 struct userspace_mem_region *region) 759 { 760 struct rb_node **cur, *parent; 761 762 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 763 struct userspace_mem_region *cregion; 764 765 cregion = container_of(*cur, typeof(*cregion), hva_node); 766 parent = *cur; 767 if (region->host_mem < cregion->host_mem) 768 cur = &(*cur)->rb_left; 769 else { 770 TEST_ASSERT(region->host_mem != 771 cregion->host_mem, 772 "Duplicate HVA in region tree"); 773 774 cur = &(*cur)->rb_right; 775 } 776 } 777 778 rb_link_node(®ion->hva_node, parent, cur); 779 rb_insert_color(®ion->hva_node, hva_tree); 780 } 781 782 /* 783 * VM Userspace Memory Region Add 784 * 785 * Input Args: 786 * vm - Virtual Machine 787 * src_type - Storage source for this region. 788 * NULL to use anonymous memory. 789 * guest_paddr - Starting guest physical address 790 * slot - KVM region slot 791 * npages - Number of physical pages 792 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) 793 * 794 * Output Args: None 795 * 796 * Return: None 797 * 798 * Allocates a memory area of the number of pages specified by npages 799 * and maps it to the VM specified by vm, at a starting physical address 800 * given by guest_paddr. The region is created with a KVM region slot 801 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The 802 * region is created with the flags given by flags. 803 */ 804 void vm_userspace_mem_region_add(struct kvm_vm *vm, 805 enum vm_mem_backing_src_type src_type, 806 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 807 uint32_t flags) 808 { 809 int ret; 810 struct userspace_mem_region *region; 811 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 812 size_t alignment; 813 814 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 815 "Number of guest pages is not compatible with the host. " 816 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 817 818 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 819 "address not on a page boundary.\n" 820 " guest_paddr: 0x%lx vm->page_size: 0x%x", 821 guest_paddr, vm->page_size); 822 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 823 <= vm->max_gfn, "Physical range beyond maximum " 824 "supported physical address,\n" 825 " guest_paddr: 0x%lx npages: 0x%lx\n" 826 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 827 guest_paddr, npages, vm->max_gfn, vm->page_size); 828 829 /* 830 * Confirm a mem region with an overlapping address doesn't 831 * already exist. 832 */ 833 region = (struct userspace_mem_region *) userspace_mem_region_find( 834 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 835 if (region != NULL) 836 TEST_FAIL("overlapping userspace_mem_region already " 837 "exists\n" 838 " requested guest_paddr: 0x%lx npages: 0x%lx " 839 "page_size: 0x%x\n" 840 " existing guest_paddr: 0x%lx size: 0x%lx", 841 guest_paddr, npages, vm->page_size, 842 (uint64_t) region->region.guest_phys_addr, 843 (uint64_t) region->region.memory_size); 844 845 /* Confirm no region with the requested slot already exists. */ 846 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 847 slot) { 848 if (region->region.slot != slot) 849 continue; 850 851 TEST_FAIL("A mem region with the requested slot " 852 "already exists.\n" 853 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 854 " existing slot: %u paddr: 0x%lx size: 0x%lx", 855 slot, guest_paddr, npages, 856 region->region.slot, 857 (uint64_t) region->region.guest_phys_addr, 858 (uint64_t) region->region.memory_size); 859 } 860 861 /* Allocate and initialize new mem region structure. */ 862 region = calloc(1, sizeof(*region)); 863 TEST_ASSERT(region != NULL, "Insufficient Memory"); 864 region->mmap_size = npages * vm->page_size; 865 866 #ifdef __s390x__ 867 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 868 alignment = 0x100000; 869 #else 870 alignment = 1; 871 #endif 872 873 /* 874 * When using THP mmap is not guaranteed to returned a hugepage aligned 875 * address so we have to pad the mmap. Padding is not needed for HugeTLB 876 * because mmap will always return an address aligned to the HugeTLB 877 * page size. 878 */ 879 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 880 alignment = max(backing_src_pagesz, alignment); 881 882 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 883 884 /* Add enough memory to align up if necessary */ 885 if (alignment > 1) 886 region->mmap_size += alignment; 887 888 region->fd = -1; 889 if (backing_src_is_shared(src_type)) { 890 int memfd_flags = MFD_CLOEXEC; 891 892 if (src_type == VM_MEM_SRC_SHARED_HUGETLB) 893 memfd_flags |= MFD_HUGETLB; 894 895 region->fd = memfd_create("kvm_selftest", memfd_flags); 896 TEST_ASSERT(region->fd != -1, 897 "memfd_create failed, errno: %i", errno); 898 899 ret = ftruncate(region->fd, region->mmap_size); 900 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno); 901 902 ret = fallocate(region->fd, 903 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, 904 region->mmap_size); 905 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno); 906 } 907 908 region->mmap_start = mmap(NULL, region->mmap_size, 909 PROT_READ | PROT_WRITE, 910 vm_mem_backing_src_alias(src_type)->flag, 911 region->fd, 0); 912 TEST_ASSERT(region->mmap_start != MAP_FAILED, 913 "test_malloc failed, mmap_start: %p errno: %i", 914 region->mmap_start, errno); 915 916 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 917 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 918 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 919 region->mmap_start, backing_src_pagesz); 920 921 /* Align host address */ 922 region->host_mem = align_ptr_up(region->mmap_start, alignment); 923 924 /* As needed perform madvise */ 925 if ((src_type == VM_MEM_SRC_ANONYMOUS || 926 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 927 ret = madvise(region->host_mem, npages * vm->page_size, 928 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 929 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 930 region->host_mem, npages * vm->page_size, 931 vm_mem_backing_src_alias(src_type)->name); 932 } 933 934 region->unused_phy_pages = sparsebit_alloc(); 935 sparsebit_set_num(region->unused_phy_pages, 936 guest_paddr >> vm->page_shift, npages); 937 region->region.slot = slot; 938 region->region.flags = flags; 939 region->region.guest_phys_addr = guest_paddr; 940 region->region.memory_size = npages * vm->page_size; 941 region->region.userspace_addr = (uintptr_t) region->host_mem; 942 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 943 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 944 " rc: %i errno: %i\n" 945 " slot: %u flags: 0x%x\n" 946 " guest_phys_addr: 0x%lx size: 0x%lx", 947 ret, errno, slot, flags, 948 guest_paddr, (uint64_t) region->region.memory_size); 949 950 /* Add to quick lookup data structures */ 951 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 952 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 953 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 954 955 /* If shared memory, create an alias. */ 956 if (region->fd >= 0) { 957 region->mmap_alias = mmap(NULL, region->mmap_size, 958 PROT_READ | PROT_WRITE, 959 vm_mem_backing_src_alias(src_type)->flag, 960 region->fd, 0); 961 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 962 "mmap of alias failed, errno: %i", errno); 963 964 /* Align host alias address */ 965 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 966 } 967 } 968 969 /* 970 * Memslot to region 971 * 972 * Input Args: 973 * vm - Virtual Machine 974 * memslot - KVM memory slot ID 975 * 976 * Output Args: None 977 * 978 * Return: 979 * Pointer to memory region structure that describe memory region 980 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 981 * on error (e.g. currently no memory region using memslot as a KVM 982 * memory slot ID). 983 */ 984 struct userspace_mem_region * 985 memslot2region(struct kvm_vm *vm, uint32_t memslot) 986 { 987 struct userspace_mem_region *region; 988 989 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 990 memslot) 991 if (region->region.slot == memslot) 992 return region; 993 994 fprintf(stderr, "No mem region with the requested slot found,\n" 995 " requested slot: %u\n", memslot); 996 fputs("---- vm dump ----\n", stderr); 997 vm_dump(stderr, vm, 2); 998 TEST_FAIL("Mem region not found"); 999 return NULL; 1000 } 1001 1002 /* 1003 * VM Memory Region Flags Set 1004 * 1005 * Input Args: 1006 * vm - Virtual Machine 1007 * flags - Starting guest physical address 1008 * 1009 * Output Args: None 1010 * 1011 * Return: None 1012 * 1013 * Sets the flags of the memory region specified by the value of slot, 1014 * to the values given by flags. 1015 */ 1016 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1017 { 1018 int ret; 1019 struct userspace_mem_region *region; 1020 1021 region = memslot2region(vm, slot); 1022 1023 region->region.flags = flags; 1024 1025 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1026 1027 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 1028 " rc: %i errno: %i slot: %u flags: 0x%x", 1029 ret, errno, slot, flags); 1030 } 1031 1032 /* 1033 * VM Memory Region Move 1034 * 1035 * Input Args: 1036 * vm - Virtual Machine 1037 * slot - Slot of the memory region to move 1038 * new_gpa - Starting guest physical address 1039 * 1040 * Output Args: None 1041 * 1042 * Return: None 1043 * 1044 * Change the gpa of a memory region. 1045 */ 1046 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1047 { 1048 struct userspace_mem_region *region; 1049 int ret; 1050 1051 region = memslot2region(vm, slot); 1052 1053 region->region.guest_phys_addr = new_gpa; 1054 1055 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1056 1057 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n" 1058 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1059 ret, errno, slot, new_gpa); 1060 } 1061 1062 /* 1063 * VM Memory Region Delete 1064 * 1065 * Input Args: 1066 * vm - Virtual Machine 1067 * slot - Slot of the memory region to delete 1068 * 1069 * Output Args: None 1070 * 1071 * Return: None 1072 * 1073 * Delete a memory region. 1074 */ 1075 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1076 { 1077 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1078 } 1079 1080 /* 1081 * VCPU mmap Size 1082 * 1083 * Input Args: None 1084 * 1085 * Output Args: None 1086 * 1087 * Return: 1088 * Size of VCPU state 1089 * 1090 * Returns the size of the structure pointed to by the return value 1091 * of vcpu_state(). 1092 */ 1093 static int vcpu_mmap_sz(void) 1094 { 1095 int dev_fd, ret; 1096 1097 dev_fd = open_kvm_dev_path_or_exit(); 1098 1099 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1100 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1101 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", 1102 __func__, ret, errno); 1103 1104 close(dev_fd); 1105 1106 return ret; 1107 } 1108 1109 /* 1110 * VM VCPU Add 1111 * 1112 * Input Args: 1113 * vm - Virtual Machine 1114 * vcpuid - VCPU ID 1115 * 1116 * Output Args: None 1117 * 1118 * Return: None 1119 * 1120 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid. 1121 * No additional VCPU setup is done. 1122 */ 1123 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid) 1124 { 1125 struct vcpu *vcpu; 1126 1127 /* Confirm a vcpu with the specified id doesn't already exist. */ 1128 vcpu = vcpu_find(vm, vcpuid); 1129 if (vcpu != NULL) 1130 TEST_FAIL("vcpu with the specified id " 1131 "already exists,\n" 1132 " requested vcpuid: %u\n" 1133 " existing vcpuid: %u state: %p", 1134 vcpuid, vcpu->id, vcpu->state); 1135 1136 /* Allocate and initialize new vcpu structure. */ 1137 vcpu = calloc(1, sizeof(*vcpu)); 1138 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1139 vcpu->id = vcpuid; 1140 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); 1141 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", 1142 vcpu->fd, errno); 1143 1144 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " 1145 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1146 vcpu_mmap_sz(), sizeof(*vcpu->state)); 1147 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1148 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1149 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " 1150 "vcpu id: %u errno: %i", vcpuid, errno); 1151 1152 /* Add to linked-list of VCPUs. */ 1153 list_add(&vcpu->list, &vm->vcpus); 1154 } 1155 1156 /* 1157 * VM Virtual Address Unused Gap 1158 * 1159 * Input Args: 1160 * vm - Virtual Machine 1161 * sz - Size (bytes) 1162 * vaddr_min - Minimum Virtual Address 1163 * 1164 * Output Args: None 1165 * 1166 * Return: 1167 * Lowest virtual address at or below vaddr_min, with at least 1168 * sz unused bytes. TEST_ASSERT failure if no area of at least 1169 * size sz is available. 1170 * 1171 * Within the VM specified by vm, locates the lowest starting virtual 1172 * address >= vaddr_min, that has at least sz unallocated bytes. A 1173 * TEST_ASSERT failure occurs for invalid input or no area of at least 1174 * sz unallocated bytes >= vaddr_min is available. 1175 */ 1176 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1177 vm_vaddr_t vaddr_min) 1178 { 1179 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1180 1181 /* Determine lowest permitted virtual page index. */ 1182 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1183 if ((pgidx_start * vm->page_size) < vaddr_min) 1184 goto no_va_found; 1185 1186 /* Loop over section with enough valid virtual page indexes. */ 1187 if (!sparsebit_is_set_num(vm->vpages_valid, 1188 pgidx_start, pages)) 1189 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1190 pgidx_start, pages); 1191 do { 1192 /* 1193 * Are there enough unused virtual pages available at 1194 * the currently proposed starting virtual page index. 1195 * If not, adjust proposed starting index to next 1196 * possible. 1197 */ 1198 if (sparsebit_is_clear_num(vm->vpages_mapped, 1199 pgidx_start, pages)) 1200 goto va_found; 1201 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1202 pgidx_start, pages); 1203 if (pgidx_start == 0) 1204 goto no_va_found; 1205 1206 /* 1207 * If needed, adjust proposed starting virtual address, 1208 * to next range of valid virtual addresses. 1209 */ 1210 if (!sparsebit_is_set_num(vm->vpages_valid, 1211 pgidx_start, pages)) { 1212 pgidx_start = sparsebit_next_set_num( 1213 vm->vpages_valid, pgidx_start, pages); 1214 if (pgidx_start == 0) 1215 goto no_va_found; 1216 } 1217 } while (pgidx_start != 0); 1218 1219 no_va_found: 1220 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1221 1222 /* NOT REACHED */ 1223 return -1; 1224 1225 va_found: 1226 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1227 pgidx_start, pages), 1228 "Unexpected, invalid virtual page index range,\n" 1229 " pgidx_start: 0x%lx\n" 1230 " pages: 0x%lx", 1231 pgidx_start, pages); 1232 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1233 pgidx_start, pages), 1234 "Unexpected, pages already mapped,\n" 1235 " pgidx_start: 0x%lx\n" 1236 " pages: 0x%lx", 1237 pgidx_start, pages); 1238 1239 return pgidx_start * vm->page_size; 1240 } 1241 1242 /* 1243 * VM Virtual Address Allocate 1244 * 1245 * Input Args: 1246 * vm - Virtual Machine 1247 * sz - Size in bytes 1248 * vaddr_min - Minimum starting virtual address 1249 * data_memslot - Memory region slot for data pages 1250 * pgd_memslot - Memory region slot for new virtual translation tables 1251 * 1252 * Output Args: None 1253 * 1254 * Return: 1255 * Starting guest virtual address 1256 * 1257 * Allocates at least sz bytes within the virtual address space of the vm 1258 * given by vm. The allocated bytes are mapped to a virtual address >= 1259 * the address given by vaddr_min. Note that each allocation uses a 1260 * a unique set of pages, with the minimum real allocation being at least 1261 * a page. 1262 */ 1263 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1264 { 1265 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1266 1267 virt_pgd_alloc(vm); 1268 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, 1269 KVM_UTIL_MIN_PFN * vm->page_size, 0); 1270 1271 /* 1272 * Find an unused range of virtual page addresses of at least 1273 * pages in length. 1274 */ 1275 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1276 1277 /* Map the virtual pages. */ 1278 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1279 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1280 1281 virt_pg_map(vm, vaddr, paddr); 1282 1283 sparsebit_set(vm->vpages_mapped, 1284 vaddr >> vm->page_shift); 1285 } 1286 1287 return vaddr_start; 1288 } 1289 1290 /* 1291 * VM Virtual Address Allocate Pages 1292 * 1293 * Input Args: 1294 * vm - Virtual Machine 1295 * 1296 * Output Args: None 1297 * 1298 * Return: 1299 * Starting guest virtual address 1300 * 1301 * Allocates at least N system pages worth of bytes within the virtual address 1302 * space of the vm. 1303 */ 1304 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1305 { 1306 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1307 } 1308 1309 /* 1310 * VM Virtual Address Allocate Page 1311 * 1312 * Input Args: 1313 * vm - Virtual Machine 1314 * 1315 * Output Args: None 1316 * 1317 * Return: 1318 * Starting guest virtual address 1319 * 1320 * Allocates at least one system page worth of bytes within the virtual address 1321 * space of the vm. 1322 */ 1323 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1324 { 1325 return vm_vaddr_alloc_pages(vm, 1); 1326 } 1327 1328 /* 1329 * Map a range of VM virtual address to the VM's physical address 1330 * 1331 * Input Args: 1332 * vm - Virtual Machine 1333 * vaddr - Virtuall address to map 1334 * paddr - VM Physical Address 1335 * npages - The number of pages to map 1336 * pgd_memslot - Memory region slot for new virtual translation tables 1337 * 1338 * Output Args: None 1339 * 1340 * Return: None 1341 * 1342 * Within the VM given by @vm, creates a virtual translation for 1343 * @npages starting at @vaddr to the page range starting at @paddr. 1344 */ 1345 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1346 unsigned int npages) 1347 { 1348 size_t page_size = vm->page_size; 1349 size_t size = npages * page_size; 1350 1351 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1352 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1353 1354 while (npages--) { 1355 virt_pg_map(vm, vaddr, paddr); 1356 vaddr += page_size; 1357 paddr += page_size; 1358 } 1359 } 1360 1361 /* 1362 * Address VM Physical to Host Virtual 1363 * 1364 * Input Args: 1365 * vm - Virtual Machine 1366 * gpa - VM physical address 1367 * 1368 * Output Args: None 1369 * 1370 * Return: 1371 * Equivalent host virtual address 1372 * 1373 * Locates the memory region containing the VM physical address given 1374 * by gpa, within the VM given by vm. When found, the host virtual 1375 * address providing the memory to the vm physical address is returned. 1376 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1377 */ 1378 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1379 { 1380 struct userspace_mem_region *region; 1381 1382 region = userspace_mem_region_find(vm, gpa, gpa); 1383 if (!region) { 1384 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1385 return NULL; 1386 } 1387 1388 return (void *)((uintptr_t)region->host_mem 1389 + (gpa - region->region.guest_phys_addr)); 1390 } 1391 1392 /* 1393 * Address Host Virtual to VM Physical 1394 * 1395 * Input Args: 1396 * vm - Virtual Machine 1397 * hva - Host virtual address 1398 * 1399 * Output Args: None 1400 * 1401 * Return: 1402 * Equivalent VM physical address 1403 * 1404 * Locates the memory region containing the host virtual address given 1405 * by hva, within the VM given by vm. When found, the equivalent 1406 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1407 * region containing hva exists. 1408 */ 1409 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1410 { 1411 struct rb_node *node; 1412 1413 for (node = vm->regions.hva_tree.rb_node; node; ) { 1414 struct userspace_mem_region *region = 1415 container_of(node, struct userspace_mem_region, hva_node); 1416 1417 if (hva >= region->host_mem) { 1418 if (hva <= (region->host_mem 1419 + region->region.memory_size - 1)) 1420 return (vm_paddr_t)((uintptr_t) 1421 region->region.guest_phys_addr 1422 + (hva - (uintptr_t)region->host_mem)); 1423 1424 node = node->rb_right; 1425 } else 1426 node = node->rb_left; 1427 } 1428 1429 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1430 return -1; 1431 } 1432 1433 /* 1434 * Address VM physical to Host Virtual *alias*. 1435 * 1436 * Input Args: 1437 * vm - Virtual Machine 1438 * gpa - VM physical address 1439 * 1440 * Output Args: None 1441 * 1442 * Return: 1443 * Equivalent address within the host virtual *alias* area, or NULL 1444 * (without failing the test) if the guest memory is not shared (so 1445 * no alias exists). 1446 * 1447 * When vm_create() and related functions are called with a shared memory 1448 * src_type, we also create a writable, shared alias mapping of the 1449 * underlying guest memory. This allows the host to manipulate guest memory 1450 * without mapping that memory in the guest's address space. And, for 1451 * userfaultfd-based demand paging, we can do so without triggering userfaults. 1452 */ 1453 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1454 { 1455 struct userspace_mem_region *region; 1456 uintptr_t offset; 1457 1458 region = userspace_mem_region_find(vm, gpa, gpa); 1459 if (!region) 1460 return NULL; 1461 1462 if (!region->host_alias) 1463 return NULL; 1464 1465 offset = gpa - region->region.guest_phys_addr; 1466 return (void *) ((uintptr_t) region->host_alias + offset); 1467 } 1468 1469 /* 1470 * VM Create IRQ Chip 1471 * 1472 * Input Args: 1473 * vm - Virtual Machine 1474 * 1475 * Output Args: None 1476 * 1477 * Return: None 1478 * 1479 * Creates an interrupt controller chip for the VM specified by vm. 1480 */ 1481 void vm_create_irqchip(struct kvm_vm *vm) 1482 { 1483 int ret; 1484 1485 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); 1486 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " 1487 "rc: %i errno: %i", ret, errno); 1488 1489 vm->has_irqchip = true; 1490 } 1491 1492 /* 1493 * VM VCPU State 1494 * 1495 * Input Args: 1496 * vm - Virtual Machine 1497 * vcpuid - VCPU ID 1498 * 1499 * Output Args: None 1500 * 1501 * Return: 1502 * Pointer to structure that describes the state of the VCPU. 1503 * 1504 * Locates and returns a pointer to a structure that describes the 1505 * state of the VCPU with the given vcpuid. 1506 */ 1507 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) 1508 { 1509 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1510 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1511 1512 return vcpu->state; 1513 } 1514 1515 /* 1516 * VM VCPU Run 1517 * 1518 * Input Args: 1519 * vm - Virtual Machine 1520 * vcpuid - VCPU ID 1521 * 1522 * Output Args: None 1523 * 1524 * Return: None 1525 * 1526 * Switch to executing the code for the VCPU given by vcpuid, within the VM 1527 * given by vm. 1528 */ 1529 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1530 { 1531 int ret = _vcpu_run(vm, vcpuid); 1532 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " 1533 "rc: %i errno: %i", ret, errno); 1534 } 1535 1536 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1537 { 1538 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1539 int rc; 1540 1541 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1542 do { 1543 rc = ioctl(vcpu->fd, KVM_RUN, NULL); 1544 } while (rc == -1 && errno == EINTR); 1545 1546 assert_on_unhandled_exception(vm, vcpuid); 1547 1548 return rc; 1549 } 1550 1551 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid) 1552 { 1553 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1554 1555 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1556 1557 return vcpu->fd; 1558 } 1559 1560 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid) 1561 { 1562 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1563 int ret; 1564 1565 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1566 1567 vcpu->state->immediate_exit = 1; 1568 ret = ioctl(vcpu->fd, KVM_RUN, NULL); 1569 vcpu->state->immediate_exit = 0; 1570 1571 TEST_ASSERT(ret == -1 && errno == EINTR, 1572 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1573 ret, errno); 1574 } 1575 1576 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid, 1577 struct kvm_guest_debug *debug) 1578 { 1579 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1580 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug); 1581 1582 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret); 1583 } 1584 1585 /* 1586 * VM VCPU Set MP State 1587 * 1588 * Input Args: 1589 * vm - Virtual Machine 1590 * vcpuid - VCPU ID 1591 * mp_state - mp_state to be set 1592 * 1593 * Output Args: None 1594 * 1595 * Return: None 1596 * 1597 * Sets the MP state of the VCPU given by vcpuid, to the state given 1598 * by mp_state. 1599 */ 1600 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, 1601 struct kvm_mp_state *mp_state) 1602 { 1603 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1604 int ret; 1605 1606 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1607 1608 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); 1609 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " 1610 "rc: %i errno: %i", ret, errno); 1611 } 1612 1613 /* 1614 * VM VCPU Get Reg List 1615 * 1616 * Input Args: 1617 * vm - Virtual Machine 1618 * vcpuid - VCPU ID 1619 * 1620 * Output Args: 1621 * None 1622 * 1623 * Return: 1624 * A pointer to an allocated struct kvm_reg_list 1625 * 1626 * Get the list of guest registers which are supported for 1627 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls 1628 */ 1629 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid) 1630 { 1631 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1632 int ret; 1633 1634 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n); 1635 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1636 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1637 reg_list->n = reg_list_n.n; 1638 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list); 1639 return reg_list; 1640 } 1641 1642 /* 1643 * VM VCPU Regs Get 1644 * 1645 * Input Args: 1646 * vm - Virtual Machine 1647 * vcpuid - VCPU ID 1648 * 1649 * Output Args: 1650 * regs - current state of VCPU regs 1651 * 1652 * Return: None 1653 * 1654 * Obtains the current register state for the VCPU specified by vcpuid 1655 * and stores it at the location given by regs. 1656 */ 1657 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1658 { 1659 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1660 int ret; 1661 1662 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1663 1664 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); 1665 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", 1666 ret, errno); 1667 } 1668 1669 /* 1670 * VM VCPU Regs Set 1671 * 1672 * Input Args: 1673 * vm - Virtual Machine 1674 * vcpuid - VCPU ID 1675 * regs - Values to set VCPU regs to 1676 * 1677 * Output Args: None 1678 * 1679 * Return: None 1680 * 1681 * Sets the regs of the VCPU specified by vcpuid to the values 1682 * given by regs. 1683 */ 1684 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1685 { 1686 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1687 int ret; 1688 1689 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1690 1691 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); 1692 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", 1693 ret, errno); 1694 } 1695 1696 #ifdef __KVM_HAVE_VCPU_EVENTS 1697 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, 1698 struct kvm_vcpu_events *events) 1699 { 1700 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1701 int ret; 1702 1703 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1704 1705 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); 1706 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", 1707 ret, errno); 1708 } 1709 1710 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, 1711 struct kvm_vcpu_events *events) 1712 { 1713 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1714 int ret; 1715 1716 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1717 1718 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); 1719 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", 1720 ret, errno); 1721 } 1722 #endif 1723 1724 #ifdef __x86_64__ 1725 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid, 1726 struct kvm_nested_state *state) 1727 { 1728 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1729 int ret; 1730 1731 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1732 1733 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state); 1734 TEST_ASSERT(ret == 0, 1735 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1736 ret, errno); 1737 } 1738 1739 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid, 1740 struct kvm_nested_state *state, bool ignore_error) 1741 { 1742 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1743 int ret; 1744 1745 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1746 1747 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state); 1748 if (!ignore_error) { 1749 TEST_ASSERT(ret == 0, 1750 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1751 ret, errno); 1752 } 1753 1754 return ret; 1755 } 1756 #endif 1757 1758 /* 1759 * VM VCPU System Regs Get 1760 * 1761 * Input Args: 1762 * vm - Virtual Machine 1763 * vcpuid - VCPU ID 1764 * 1765 * Output Args: 1766 * sregs - current state of VCPU system regs 1767 * 1768 * Return: None 1769 * 1770 * Obtains the current system register state for the VCPU specified by 1771 * vcpuid and stores it at the location given by sregs. 1772 */ 1773 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1774 { 1775 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1776 int ret; 1777 1778 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1779 1780 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); 1781 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", 1782 ret, errno); 1783 } 1784 1785 /* 1786 * VM VCPU System Regs Set 1787 * 1788 * Input Args: 1789 * vm - Virtual Machine 1790 * vcpuid - VCPU ID 1791 * sregs - Values to set VCPU system regs to 1792 * 1793 * Output Args: None 1794 * 1795 * Return: None 1796 * 1797 * Sets the system regs of the VCPU specified by vcpuid to the values 1798 * given by sregs. 1799 */ 1800 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1801 { 1802 int ret = _vcpu_sregs_set(vm, vcpuid, sregs); 1803 TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, " 1804 "rc: %i errno: %i", ret, errno); 1805 } 1806 1807 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1808 { 1809 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1810 1811 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1812 1813 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); 1814 } 1815 1816 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1817 { 1818 int ret; 1819 1820 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu); 1821 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)", 1822 ret, errno, strerror(errno)); 1823 } 1824 1825 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1826 { 1827 int ret; 1828 1829 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu); 1830 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)", 1831 ret, errno, strerror(errno)); 1832 } 1833 1834 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1835 { 1836 int ret; 1837 1838 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg); 1839 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)", 1840 ret, errno, strerror(errno)); 1841 } 1842 1843 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1844 { 1845 int ret; 1846 1847 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg); 1848 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)", 1849 ret, errno, strerror(errno)); 1850 } 1851 1852 /* 1853 * VCPU Ioctl 1854 * 1855 * Input Args: 1856 * vm - Virtual Machine 1857 * vcpuid - VCPU ID 1858 * cmd - Ioctl number 1859 * arg - Argument to pass to the ioctl 1860 * 1861 * Return: None 1862 * 1863 * Issues an arbitrary ioctl on a VCPU fd. 1864 */ 1865 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1866 unsigned long cmd, void *arg) 1867 { 1868 int ret; 1869 1870 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg); 1871 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", 1872 cmd, ret, errno, strerror(errno)); 1873 } 1874 1875 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1876 unsigned long cmd, void *arg) 1877 { 1878 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1879 int ret; 1880 1881 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1882 1883 ret = ioctl(vcpu->fd, cmd, arg); 1884 1885 return ret; 1886 } 1887 1888 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid) 1889 { 1890 struct vcpu *vcpu; 1891 uint32_t size = vm->dirty_ring_size; 1892 1893 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1894 1895 vcpu = vcpu_find(vm, vcpuid); 1896 1897 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid); 1898 1899 if (!vcpu->dirty_gfns) { 1900 void *addr; 1901 1902 addr = mmap(NULL, size, PROT_READ, 1903 MAP_PRIVATE, vcpu->fd, 1904 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1905 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1906 1907 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, 1908 MAP_PRIVATE, vcpu->fd, 1909 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1910 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1911 1912 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, 1913 MAP_SHARED, vcpu->fd, 1914 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1915 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1916 1917 vcpu->dirty_gfns = addr; 1918 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1919 } 1920 1921 return vcpu->dirty_gfns; 1922 } 1923 1924 /* 1925 * VM Ioctl 1926 * 1927 * Input Args: 1928 * vm - Virtual Machine 1929 * cmd - Ioctl number 1930 * arg - Argument to pass to the ioctl 1931 * 1932 * Return: None 1933 * 1934 * Issues an arbitrary ioctl on a VM fd. 1935 */ 1936 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1937 { 1938 int ret; 1939 1940 ret = _vm_ioctl(vm, cmd, arg); 1941 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", 1942 cmd, ret, errno, strerror(errno)); 1943 } 1944 1945 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1946 { 1947 return ioctl(vm->fd, cmd, arg); 1948 } 1949 1950 /* 1951 * KVM system ioctl 1952 * 1953 * Input Args: 1954 * vm - Virtual Machine 1955 * cmd - Ioctl number 1956 * arg - Argument to pass to the ioctl 1957 * 1958 * Return: None 1959 * 1960 * Issues an arbitrary ioctl on a KVM fd. 1961 */ 1962 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1963 { 1964 int ret; 1965 1966 ret = ioctl(vm->kvm_fd, cmd, arg); 1967 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)", 1968 cmd, ret, errno, strerror(errno)); 1969 } 1970 1971 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1972 { 1973 return ioctl(vm->kvm_fd, cmd, arg); 1974 } 1975 1976 /* 1977 * Device Ioctl 1978 */ 1979 1980 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 1981 { 1982 struct kvm_device_attr attribute = { 1983 .group = group, 1984 .attr = attr, 1985 .flags = 0, 1986 }; 1987 1988 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1989 } 1990 1991 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 1992 { 1993 int ret = _kvm_device_check_attr(dev_fd, group, attr); 1994 1995 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 1996 return ret; 1997 } 1998 1999 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd) 2000 { 2001 struct kvm_create_device create_dev; 2002 int ret; 2003 2004 create_dev.type = type; 2005 create_dev.fd = -1; 2006 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2007 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev); 2008 *fd = create_dev.fd; 2009 return ret; 2010 } 2011 2012 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test) 2013 { 2014 int fd, ret; 2015 2016 ret = _kvm_create_device(vm, type, test, &fd); 2017 2018 if (!test) { 2019 TEST_ASSERT(!ret, 2020 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno); 2021 return fd; 2022 } 2023 return ret; 2024 } 2025 2026 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2027 void *val, bool write) 2028 { 2029 struct kvm_device_attr kvmattr = { 2030 .group = group, 2031 .attr = attr, 2032 .flags = 0, 2033 .addr = (uintptr_t)val, 2034 }; 2035 int ret; 2036 2037 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2038 &kvmattr); 2039 return ret; 2040 } 2041 2042 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2043 void *val, bool write) 2044 { 2045 int ret = _kvm_device_access(dev_fd, group, attr, val, write); 2046 2047 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2048 return ret; 2049 } 2050 2051 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2052 uint64_t attr) 2053 { 2054 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2055 2056 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2057 2058 return _kvm_device_check_attr(vcpu->fd, group, attr); 2059 } 2060 2061 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2062 uint64_t attr) 2063 { 2064 int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr); 2065 2066 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2067 return ret; 2068 } 2069 2070 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2071 uint64_t attr, void *val, bool write) 2072 { 2073 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2074 2075 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2076 2077 return _kvm_device_access(vcpu->fd, group, attr, val, write); 2078 } 2079 2080 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2081 uint64_t attr, void *val, bool write) 2082 { 2083 int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write); 2084 2085 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2086 return ret; 2087 } 2088 2089 /* 2090 * VM Dump 2091 * 2092 * Input Args: 2093 * vm - Virtual Machine 2094 * indent - Left margin indent amount 2095 * 2096 * Output Args: 2097 * stream - Output FILE stream 2098 * 2099 * Return: None 2100 * 2101 * Dumps the current state of the VM given by vm, to the FILE stream 2102 * given by stream. 2103 */ 2104 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 2105 { 2106 int ctr; 2107 struct userspace_mem_region *region; 2108 struct vcpu *vcpu; 2109 2110 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 2111 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 2112 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 2113 fprintf(stream, "%*sMem Regions:\n", indent, ""); 2114 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 2115 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 2116 "host_virt: %p\n", indent + 2, "", 2117 (uint64_t) region->region.guest_phys_addr, 2118 (uint64_t) region->region.memory_size, 2119 region->host_mem); 2120 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 2121 sparsebit_dump(stream, region->unused_phy_pages, 0); 2122 } 2123 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 2124 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 2125 fprintf(stream, "%*spgd_created: %u\n", indent, "", 2126 vm->pgd_created); 2127 if (vm->pgd_created) { 2128 fprintf(stream, "%*sVirtual Translation Tables:\n", 2129 indent + 2, ""); 2130 virt_dump(stream, vm, indent + 4); 2131 } 2132 fprintf(stream, "%*sVCPUs:\n", indent, ""); 2133 list_for_each_entry(vcpu, &vm->vcpus, list) 2134 vcpu_dump(stream, vm, vcpu->id, indent + 2); 2135 } 2136 2137 /* Known KVM exit reasons */ 2138 static struct exit_reason { 2139 unsigned int reason; 2140 const char *name; 2141 } exit_reasons_known[] = { 2142 {KVM_EXIT_UNKNOWN, "UNKNOWN"}, 2143 {KVM_EXIT_EXCEPTION, "EXCEPTION"}, 2144 {KVM_EXIT_IO, "IO"}, 2145 {KVM_EXIT_HYPERCALL, "HYPERCALL"}, 2146 {KVM_EXIT_DEBUG, "DEBUG"}, 2147 {KVM_EXIT_HLT, "HLT"}, 2148 {KVM_EXIT_MMIO, "MMIO"}, 2149 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, 2150 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, 2151 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, 2152 {KVM_EXIT_INTR, "INTR"}, 2153 {KVM_EXIT_SET_TPR, "SET_TPR"}, 2154 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, 2155 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, 2156 {KVM_EXIT_S390_RESET, "S390_RESET"}, 2157 {KVM_EXIT_DCR, "DCR"}, 2158 {KVM_EXIT_NMI, "NMI"}, 2159 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, 2160 {KVM_EXIT_OSI, "OSI"}, 2161 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, 2162 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"}, 2163 {KVM_EXIT_X86_RDMSR, "RDMSR"}, 2164 {KVM_EXIT_X86_WRMSR, "WRMSR"}, 2165 {KVM_EXIT_XEN, "XEN"}, 2166 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 2167 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, 2168 #endif 2169 }; 2170 2171 /* 2172 * Exit Reason String 2173 * 2174 * Input Args: 2175 * exit_reason - Exit reason 2176 * 2177 * Output Args: None 2178 * 2179 * Return: 2180 * Constant string pointer describing the exit reason. 2181 * 2182 * Locates and returns a constant string that describes the KVM exit 2183 * reason given by exit_reason. If no such string is found, a constant 2184 * string of "Unknown" is returned. 2185 */ 2186 const char *exit_reason_str(unsigned int exit_reason) 2187 { 2188 unsigned int n1; 2189 2190 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2191 if (exit_reason == exit_reasons_known[n1].reason) 2192 return exit_reasons_known[n1].name; 2193 } 2194 2195 return "Unknown"; 2196 } 2197 2198 /* 2199 * Physical Contiguous Page Allocator 2200 * 2201 * Input Args: 2202 * vm - Virtual Machine 2203 * num - number of pages 2204 * paddr_min - Physical address minimum 2205 * memslot - Memory region to allocate page from 2206 * 2207 * Output Args: None 2208 * 2209 * Return: 2210 * Starting physical address 2211 * 2212 * Within the VM specified by vm, locates a range of available physical 2213 * pages at or above paddr_min. If found, the pages are marked as in use 2214 * and their base address is returned. A TEST_ASSERT failure occurs if 2215 * not enough pages are available at or above paddr_min. 2216 */ 2217 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2218 vm_paddr_t paddr_min, uint32_t memslot) 2219 { 2220 struct userspace_mem_region *region; 2221 sparsebit_idx_t pg, base; 2222 2223 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2224 2225 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2226 "not divisible by page size.\n" 2227 " paddr_min: 0x%lx page_size: 0x%x", 2228 paddr_min, vm->page_size); 2229 2230 region = memslot2region(vm, memslot); 2231 base = pg = paddr_min >> vm->page_shift; 2232 2233 do { 2234 for (; pg < base + num; ++pg) { 2235 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2236 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2237 break; 2238 } 2239 } 2240 } while (pg && pg != base + num); 2241 2242 if (pg == 0) { 2243 fprintf(stderr, "No guest physical page available, " 2244 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2245 paddr_min, vm->page_size, memslot); 2246 fputs("---- vm dump ----\n", stderr); 2247 vm_dump(stderr, vm, 2); 2248 abort(); 2249 } 2250 2251 for (pg = base; pg < base + num; ++pg) 2252 sparsebit_clear(region->unused_phy_pages, pg); 2253 2254 return base * vm->page_size; 2255 } 2256 2257 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2258 uint32_t memslot) 2259 { 2260 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2261 } 2262 2263 /* Arbitrary minimum physical address used for virtual translation tables. */ 2264 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 2265 2266 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2267 { 2268 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0); 2269 } 2270 2271 /* 2272 * Address Guest Virtual to Host Virtual 2273 * 2274 * Input Args: 2275 * vm - Virtual Machine 2276 * gva - VM virtual address 2277 * 2278 * Output Args: None 2279 * 2280 * Return: 2281 * Equivalent host virtual address 2282 */ 2283 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2284 { 2285 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2286 } 2287 2288 /* 2289 * Is Unrestricted Guest 2290 * 2291 * Input Args: 2292 * vm - Virtual Machine 2293 * 2294 * Output Args: None 2295 * 2296 * Return: True if the unrestricted guest is set to 'Y', otherwise return false. 2297 * 2298 * Check if the unrestricted guest flag is enabled. 2299 */ 2300 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 2301 { 2302 char val = 'N'; 2303 size_t count; 2304 FILE *f; 2305 2306 if (vm == NULL) { 2307 /* Ensure that the KVM vendor-specific module is loaded. */ 2308 close(open_kvm_dev_path_or_exit()); 2309 } 2310 2311 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r"); 2312 if (f) { 2313 count = fread(&val, sizeof(char), 1, f); 2314 TEST_ASSERT(count == 1, "Unable to read from param file."); 2315 fclose(f); 2316 } 2317 2318 return val == 'Y'; 2319 } 2320 2321 unsigned int vm_get_page_size(struct kvm_vm *vm) 2322 { 2323 return vm->page_size; 2324 } 2325 2326 unsigned int vm_get_page_shift(struct kvm_vm *vm) 2327 { 2328 return vm->page_shift; 2329 } 2330 2331 uint64_t vm_get_max_gfn(struct kvm_vm *vm) 2332 { 2333 return vm->max_gfn; 2334 } 2335 2336 int vm_get_fd(struct kvm_vm *vm) 2337 { 2338 return vm->fd; 2339 } 2340 2341 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2342 unsigned int page_shift, 2343 unsigned int new_page_shift, 2344 bool ceil) 2345 { 2346 unsigned int n = 1 << (new_page_shift - page_shift); 2347 2348 if (page_shift >= new_page_shift) 2349 return num_pages * (1 << (page_shift - new_page_shift)); 2350 2351 return num_pages / n + !!(ceil && num_pages % n); 2352 } 2353 2354 static inline int getpageshift(void) 2355 { 2356 return __builtin_ffs(getpagesize()) - 1; 2357 } 2358 2359 unsigned int 2360 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2361 { 2362 return vm_calc_num_pages(num_guest_pages, 2363 vm_guest_mode_params[mode].page_shift, 2364 getpageshift(), true); 2365 } 2366 2367 unsigned int 2368 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2369 { 2370 return vm_calc_num_pages(num_host_pages, getpageshift(), 2371 vm_guest_mode_params[mode].page_shift, false); 2372 } 2373 2374 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2375 { 2376 unsigned int n; 2377 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2378 return vm_adjust_num_guest_pages(mode, n); 2379 } 2380 2381 int vm_get_stats_fd(struct kvm_vm *vm) 2382 { 2383 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL); 2384 } 2385 2386 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid) 2387 { 2388 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2389 2390 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL); 2391 } 2392