1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "kvm_util_internal.h" 12 #include "processor.h" 13 14 #include <assert.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 /* Aligns x up to the next multiple of size. Size must be a power of 2. */ 26 static void *align(void *x, size_t size) 27 { 28 size_t mask = size - 1; 29 TEST_ASSERT(size != 0 && !(size & (size - 1)), 30 "size not a power of 2: %lu", size); 31 return (void *) (((size_t) x + mask) & ~mask); 32 } 33 34 /* 35 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 36 * 37 * Input Args: 38 * flags - The flags to pass when opening KVM_DEV_PATH. 39 * 40 * Return: 41 * The opened file descriptor of /dev/kvm. 42 */ 43 static int _open_kvm_dev_path_or_exit(int flags) 44 { 45 int fd; 46 47 fd = open(KVM_DEV_PATH, flags); 48 if (fd < 0) { 49 print_skip("%s not available, is KVM loaded? (errno: %d)", 50 KVM_DEV_PATH, errno); 51 exit(KSFT_SKIP); 52 } 53 54 return fd; 55 } 56 57 int open_kvm_dev_path_or_exit(void) 58 { 59 return _open_kvm_dev_path_or_exit(O_RDONLY); 60 } 61 62 /* 63 * Capability 64 * 65 * Input Args: 66 * cap - Capability 67 * 68 * Output Args: None 69 * 70 * Return: 71 * On success, the Value corresponding to the capability (KVM_CAP_*) 72 * specified by the value of cap. On failure a TEST_ASSERT failure 73 * is produced. 74 * 75 * Looks up and returns the value corresponding to the capability 76 * (KVM_CAP_*) given by cap. 77 */ 78 int kvm_check_cap(long cap) 79 { 80 int ret; 81 int kvm_fd; 82 83 kvm_fd = open_kvm_dev_path_or_exit(); 84 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); 85 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n" 86 " rc: %i errno: %i", ret, errno); 87 88 close(kvm_fd); 89 90 return ret; 91 } 92 93 /* VM Enable Capability 94 * 95 * Input Args: 96 * vm - Virtual Machine 97 * cap - Capability 98 * 99 * Output Args: None 100 * 101 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 102 * 103 * Enables a capability (KVM_CAP_*) on the VM. 104 */ 105 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap) 106 { 107 int ret; 108 109 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap); 110 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n" 111 " rc: %i errno: %i", ret, errno); 112 113 return ret; 114 } 115 116 /* VCPU Enable Capability 117 * 118 * Input Args: 119 * vm - Virtual Machine 120 * vcpu_id - VCPU 121 * cap - Capability 122 * 123 * Output Args: None 124 * 125 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 126 * 127 * Enables a capability (KVM_CAP_*) on the VCPU. 128 */ 129 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id, 130 struct kvm_enable_cap *cap) 131 { 132 struct vcpu *vcpu = vcpu_find(vm, vcpu_id); 133 int r; 134 135 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id); 136 137 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap); 138 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n" 139 " rc: %i, errno: %i", r, errno); 140 141 return r; 142 } 143 144 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 145 { 146 struct kvm_enable_cap cap = { 0 }; 147 148 cap.cap = KVM_CAP_DIRTY_LOG_RING; 149 cap.args[0] = ring_size; 150 vm_enable_cap(vm, &cap); 151 vm->dirty_ring_size = ring_size; 152 } 153 154 static void vm_open(struct kvm_vm *vm, int perm) 155 { 156 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm); 157 158 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) { 159 print_skip("immediate_exit not available"); 160 exit(KSFT_SKIP); 161 } 162 163 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type); 164 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " 165 "rc: %i errno: %i", vm->fd, errno); 166 } 167 168 const char *vm_guest_mode_string(uint32_t i) 169 { 170 static const char * const strings[] = { 171 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 172 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 173 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 174 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 175 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 176 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 177 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 178 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 179 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 180 }; 181 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 182 "Missing new mode strings?"); 183 184 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 185 186 return strings[i]; 187 } 188 189 const struct vm_guest_mode_params vm_guest_mode_params[] = { 190 { 52, 48, 0x1000, 12 }, 191 { 52, 48, 0x10000, 16 }, 192 { 48, 48, 0x1000, 12 }, 193 { 48, 48, 0x10000, 16 }, 194 { 40, 48, 0x1000, 12 }, 195 { 40, 48, 0x10000, 16 }, 196 { 0, 0, 0x1000, 12 }, 197 { 47, 64, 0x1000, 12 }, 198 { 44, 64, 0x1000, 12 }, 199 }; 200 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 201 "Missing new mode params?"); 202 203 /* 204 * VM Create 205 * 206 * Input Args: 207 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 208 * phy_pages - Physical memory pages 209 * perm - permission 210 * 211 * Output Args: None 212 * 213 * Return: 214 * Pointer to opaque structure that describes the created VM. 215 * 216 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 217 * When phy_pages is non-zero, a memory region of phy_pages physical pages 218 * is created and mapped starting at guest physical address 0. The file 219 * descriptor to control the created VM is created with the permissions 220 * given by perm (e.g. O_RDWR). 221 */ 222 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) 223 { 224 struct kvm_vm *vm; 225 226 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__, 227 vm_guest_mode_string(mode), phy_pages, perm); 228 229 vm = calloc(1, sizeof(*vm)); 230 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 231 232 INIT_LIST_HEAD(&vm->vcpus); 233 vm->regions.gpa_tree = RB_ROOT; 234 vm->regions.hva_tree = RB_ROOT; 235 hash_init(vm->regions.slot_hash); 236 237 vm->mode = mode; 238 vm->type = 0; 239 240 vm->pa_bits = vm_guest_mode_params[mode].pa_bits; 241 vm->va_bits = vm_guest_mode_params[mode].va_bits; 242 vm->page_size = vm_guest_mode_params[mode].page_size; 243 vm->page_shift = vm_guest_mode_params[mode].page_shift; 244 245 /* Setup mode specific traits. */ 246 switch (vm->mode) { 247 case VM_MODE_P52V48_4K: 248 vm->pgtable_levels = 4; 249 break; 250 case VM_MODE_P52V48_64K: 251 vm->pgtable_levels = 3; 252 break; 253 case VM_MODE_P48V48_4K: 254 vm->pgtable_levels = 4; 255 break; 256 case VM_MODE_P48V48_64K: 257 vm->pgtable_levels = 3; 258 break; 259 case VM_MODE_P40V48_4K: 260 vm->pgtable_levels = 4; 261 break; 262 case VM_MODE_P40V48_64K: 263 vm->pgtable_levels = 3; 264 break; 265 case VM_MODE_PXXV48_4K: 266 #ifdef __x86_64__ 267 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 268 /* 269 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 270 * it doesn't take effect unless a CR4.LA57 is set, which it 271 * isn't for this VM_MODE. 272 */ 273 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 274 "Linear address width (%d bits) not supported", 275 vm->va_bits); 276 pr_debug("Guest physical address width detected: %d\n", 277 vm->pa_bits); 278 vm->pgtable_levels = 4; 279 vm->va_bits = 48; 280 #else 281 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 282 #endif 283 break; 284 case VM_MODE_P47V64_4K: 285 vm->pgtable_levels = 5; 286 break; 287 case VM_MODE_P44V64_4K: 288 vm->pgtable_levels = 5; 289 break; 290 default: 291 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode); 292 } 293 294 #ifdef __aarch64__ 295 if (vm->pa_bits != 40) 296 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 297 #endif 298 299 vm_open(vm, perm); 300 301 /* Limit to VA-bit canonical virtual addresses. */ 302 vm->vpages_valid = sparsebit_alloc(); 303 sparsebit_set_num(vm->vpages_valid, 304 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 305 sparsebit_set_num(vm->vpages_valid, 306 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 307 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 308 309 /* Limit physical addresses to PA-bits. */ 310 vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 311 312 /* Allocate and setup memory for guest. */ 313 vm->vpages_mapped = sparsebit_alloc(); 314 if (phy_pages != 0) 315 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 316 0, 0, phy_pages, 0); 317 318 return vm; 319 } 320 321 /* 322 * VM Create with customized parameters 323 * 324 * Input Args: 325 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 326 * nr_vcpus - VCPU count 327 * slot0_mem_pages - Slot0 physical memory size 328 * extra_mem_pages - Non-slot0 physical memory total size 329 * num_percpu_pages - Per-cpu physical memory pages 330 * guest_code - Guest entry point 331 * vcpuids - VCPU IDs 332 * 333 * Output Args: None 334 * 335 * Return: 336 * Pointer to opaque structure that describes the created VM. 337 * 338 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K), 339 * with customized slot0 memory size, at least 512 pages currently. 340 * extra_mem_pages is only used to calculate the maximum page table size, 341 * no real memory allocation for non-slot0 memory in this function. 342 */ 343 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, 344 uint64_t slot0_mem_pages, uint64_t extra_mem_pages, 345 uint32_t num_percpu_pages, void *guest_code, 346 uint32_t vcpuids[]) 347 { 348 uint64_t vcpu_pages, extra_pg_pages, pages; 349 struct kvm_vm *vm; 350 int i; 351 352 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */ 353 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES) 354 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES; 355 356 /* The maximum page table size for a memory region will be when the 357 * smallest pages are used. Considering each page contains x page 358 * table descriptors, the total extra size for page tables (for extra 359 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 360 * than N/x*2. 361 */ 362 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus; 363 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2; 364 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages; 365 366 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 367 "nr_vcpus = %d too large for host, max-vcpus = %d", 368 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 369 370 pages = vm_adjust_num_guest_pages(mode, pages); 371 vm = vm_create(mode, pages, O_RDWR); 372 373 kvm_vm_elf_load(vm, program_invocation_name); 374 375 #ifdef __x86_64__ 376 vm_create_irqchip(vm); 377 #endif 378 379 for (i = 0; i < nr_vcpus; ++i) { 380 uint32_t vcpuid = vcpuids ? vcpuids[i] : i; 381 382 vm_vcpu_add_default(vm, vcpuid, guest_code); 383 } 384 385 return vm; 386 } 387 388 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages, 389 uint32_t num_percpu_pages, void *guest_code, 390 uint32_t vcpuids[]) 391 { 392 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES, 393 extra_mem_pages, num_percpu_pages, guest_code, vcpuids); 394 } 395 396 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, 397 void *guest_code) 398 { 399 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code, 400 (uint32_t []){ vcpuid }); 401 } 402 403 /* 404 * VM Restart 405 * 406 * Input Args: 407 * vm - VM that has been released before 408 * perm - permission 409 * 410 * Output Args: None 411 * 412 * Reopens the file descriptors associated to the VM and reinstates the 413 * global state, such as the irqchip and the memory regions that are mapped 414 * into the guest. 415 */ 416 void kvm_vm_restart(struct kvm_vm *vmp, int perm) 417 { 418 int ctr; 419 struct userspace_mem_region *region; 420 421 vm_open(vmp, perm); 422 if (vmp->has_irqchip) 423 vm_create_irqchip(vmp); 424 425 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 426 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 427 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 428 " rc: %i errno: %i\n" 429 " slot: %u flags: 0x%x\n" 430 " guest_phys_addr: 0x%llx size: 0x%llx", 431 ret, errno, region->region.slot, 432 region->region.flags, 433 region->region.guest_phys_addr, 434 region->region.memory_size); 435 } 436 } 437 438 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 439 { 440 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 441 int ret; 442 443 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args); 444 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s", 445 __func__, strerror(-ret)); 446 } 447 448 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 449 uint64_t first_page, uint32_t num_pages) 450 { 451 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot, 452 .first_page = first_page, 453 .num_pages = num_pages }; 454 int ret; 455 456 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args); 457 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s", 458 __func__, strerror(-ret)); 459 } 460 461 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 462 { 463 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS); 464 } 465 466 /* 467 * Userspace Memory Region Find 468 * 469 * Input Args: 470 * vm - Virtual Machine 471 * start - Starting VM physical address 472 * end - Ending VM physical address, inclusive. 473 * 474 * Output Args: None 475 * 476 * Return: 477 * Pointer to overlapping region, NULL if no such region. 478 * 479 * Searches for a region with any physical memory that overlaps with 480 * any portion of the guest physical addresses from start to end 481 * inclusive. If multiple overlapping regions exist, a pointer to any 482 * of the regions is returned. Null is returned only when no overlapping 483 * region exists. 484 */ 485 static struct userspace_mem_region * 486 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 487 { 488 struct rb_node *node; 489 490 for (node = vm->regions.gpa_tree.rb_node; node; ) { 491 struct userspace_mem_region *region = 492 container_of(node, struct userspace_mem_region, gpa_node); 493 uint64_t existing_start = region->region.guest_phys_addr; 494 uint64_t existing_end = region->region.guest_phys_addr 495 + region->region.memory_size - 1; 496 if (start <= existing_end && end >= existing_start) 497 return region; 498 499 if (start < existing_start) 500 node = node->rb_left; 501 else 502 node = node->rb_right; 503 } 504 505 return NULL; 506 } 507 508 /* 509 * KVM Userspace Memory Region Find 510 * 511 * Input Args: 512 * vm - Virtual Machine 513 * start - Starting VM physical address 514 * end - Ending VM physical address, inclusive. 515 * 516 * Output Args: None 517 * 518 * Return: 519 * Pointer to overlapping region, NULL if no such region. 520 * 521 * Public interface to userspace_mem_region_find. Allows tests to look up 522 * the memslot datastructure for a given range of guest physical memory. 523 */ 524 struct kvm_userspace_memory_region * 525 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, 526 uint64_t end) 527 { 528 struct userspace_mem_region *region; 529 530 region = userspace_mem_region_find(vm, start, end); 531 if (!region) 532 return NULL; 533 534 return ®ion->region; 535 } 536 537 /* 538 * VCPU Find 539 * 540 * Input Args: 541 * vm - Virtual Machine 542 * vcpuid - VCPU ID 543 * 544 * Output Args: None 545 * 546 * Return: 547 * Pointer to VCPU structure 548 * 549 * Locates a vcpu structure that describes the VCPU specified by vcpuid and 550 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU 551 * for the specified vcpuid. 552 */ 553 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid) 554 { 555 struct vcpu *vcpu; 556 557 list_for_each_entry(vcpu, &vm->vcpus, list) { 558 if (vcpu->id == vcpuid) 559 return vcpu; 560 } 561 562 return NULL; 563 } 564 565 /* 566 * VM VCPU Remove 567 * 568 * Input Args: 569 * vcpu - VCPU to remove 570 * 571 * Output Args: None 572 * 573 * Return: None, TEST_ASSERT failures for all error conditions 574 * 575 * Removes a vCPU from a VM and frees its resources. 576 */ 577 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu) 578 { 579 int ret; 580 581 if (vcpu->dirty_gfns) { 582 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 583 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, " 584 "rc: %i errno: %i", ret, errno); 585 vcpu->dirty_gfns = NULL; 586 } 587 588 ret = munmap(vcpu->state, vcpu_mmap_sz()); 589 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i " 590 "errno: %i", ret, errno); 591 ret = close(vcpu->fd); 592 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " 593 "errno: %i", ret, errno); 594 595 list_del(&vcpu->list); 596 free(vcpu); 597 } 598 599 void kvm_vm_release(struct kvm_vm *vmp) 600 { 601 struct vcpu *vcpu, *tmp; 602 int ret; 603 604 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 605 vm_vcpu_rm(vmp, vcpu); 606 607 ret = close(vmp->fd); 608 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" 609 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); 610 611 ret = close(vmp->kvm_fd); 612 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n" 613 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno); 614 } 615 616 static void __vm_mem_region_delete(struct kvm_vm *vm, 617 struct userspace_mem_region *region, 618 bool unlink) 619 { 620 int ret; 621 622 if (unlink) { 623 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 624 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 625 hash_del(®ion->slot_node); 626 } 627 628 region->region.memory_size = 0; 629 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 630 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " 631 "rc: %i errno: %i", ret, errno); 632 633 sparsebit_free(®ion->unused_phy_pages); 634 ret = munmap(region->mmap_start, region->mmap_size); 635 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno); 636 637 free(region); 638 } 639 640 /* 641 * Destroys and frees the VM pointed to by vmp. 642 */ 643 void kvm_vm_free(struct kvm_vm *vmp) 644 { 645 int ctr; 646 struct hlist_node *node; 647 struct userspace_mem_region *region; 648 649 if (vmp == NULL) 650 return; 651 652 /* Free userspace_mem_regions. */ 653 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 654 __vm_mem_region_delete(vmp, region, false); 655 656 /* Free sparsebit arrays. */ 657 sparsebit_free(&vmp->vpages_valid); 658 sparsebit_free(&vmp->vpages_mapped); 659 660 kvm_vm_release(vmp); 661 662 /* Free the structure describing the VM. */ 663 free(vmp); 664 } 665 666 /* 667 * Memory Compare, host virtual to guest virtual 668 * 669 * Input Args: 670 * hva - Starting host virtual address 671 * vm - Virtual Machine 672 * gva - Starting guest virtual address 673 * len - number of bytes to compare 674 * 675 * Output Args: None 676 * 677 * Input/Output Args: None 678 * 679 * Return: 680 * Returns 0 if the bytes starting at hva for a length of len 681 * are equal the guest virtual bytes starting at gva. Returns 682 * a value < 0, if bytes at hva are less than those at gva. 683 * Otherwise a value > 0 is returned. 684 * 685 * Compares the bytes starting at the host virtual address hva, for 686 * a length of len, to the guest bytes starting at the guest virtual 687 * address given by gva. 688 */ 689 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 690 { 691 size_t amt; 692 693 /* 694 * Compare a batch of bytes until either a match is found 695 * or all the bytes have been compared. 696 */ 697 for (uintptr_t offset = 0; offset < len; offset += amt) { 698 uintptr_t ptr1 = (uintptr_t)hva + offset; 699 700 /* 701 * Determine host address for guest virtual address 702 * at offset. 703 */ 704 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 705 706 /* 707 * Determine amount to compare on this pass. 708 * Don't allow the comparsion to cross a page boundary. 709 */ 710 amt = len - offset; 711 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 712 amt = vm->page_size - (ptr1 % vm->page_size); 713 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 714 amt = vm->page_size - (ptr2 % vm->page_size); 715 716 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 717 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 718 719 /* 720 * Perform the comparison. If there is a difference 721 * return that result to the caller, otherwise need 722 * to continue on looking for a mismatch. 723 */ 724 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 725 if (ret != 0) 726 return ret; 727 } 728 729 /* 730 * No mismatch found. Let the caller know the two memory 731 * areas are equal. 732 */ 733 return 0; 734 } 735 736 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 737 struct userspace_mem_region *region) 738 { 739 struct rb_node **cur, *parent; 740 741 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 742 struct userspace_mem_region *cregion; 743 744 cregion = container_of(*cur, typeof(*cregion), gpa_node); 745 parent = *cur; 746 if (region->region.guest_phys_addr < 747 cregion->region.guest_phys_addr) 748 cur = &(*cur)->rb_left; 749 else { 750 TEST_ASSERT(region->region.guest_phys_addr != 751 cregion->region.guest_phys_addr, 752 "Duplicate GPA in region tree"); 753 754 cur = &(*cur)->rb_right; 755 } 756 } 757 758 rb_link_node(®ion->gpa_node, parent, cur); 759 rb_insert_color(®ion->gpa_node, gpa_tree); 760 } 761 762 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 763 struct userspace_mem_region *region) 764 { 765 struct rb_node **cur, *parent; 766 767 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 768 struct userspace_mem_region *cregion; 769 770 cregion = container_of(*cur, typeof(*cregion), hva_node); 771 parent = *cur; 772 if (region->host_mem < cregion->host_mem) 773 cur = &(*cur)->rb_left; 774 else { 775 TEST_ASSERT(region->host_mem != 776 cregion->host_mem, 777 "Duplicate HVA in region tree"); 778 779 cur = &(*cur)->rb_right; 780 } 781 } 782 783 rb_link_node(®ion->hva_node, parent, cur); 784 rb_insert_color(®ion->hva_node, hva_tree); 785 } 786 787 /* 788 * VM Userspace Memory Region Add 789 * 790 * Input Args: 791 * vm - Virtual Machine 792 * src_type - Storage source for this region. 793 * NULL to use anonymous memory. 794 * guest_paddr - Starting guest physical address 795 * slot - KVM region slot 796 * npages - Number of physical pages 797 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) 798 * 799 * Output Args: None 800 * 801 * Return: None 802 * 803 * Allocates a memory area of the number of pages specified by npages 804 * and maps it to the VM specified by vm, at a starting physical address 805 * given by guest_paddr. The region is created with a KVM region slot 806 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The 807 * region is created with the flags given by flags. 808 */ 809 void vm_userspace_mem_region_add(struct kvm_vm *vm, 810 enum vm_mem_backing_src_type src_type, 811 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 812 uint32_t flags) 813 { 814 int ret; 815 struct userspace_mem_region *region; 816 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 817 size_t alignment; 818 819 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 820 "Number of guest pages is not compatible with the host. " 821 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 822 823 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 824 "address not on a page boundary.\n" 825 " guest_paddr: 0x%lx vm->page_size: 0x%x", 826 guest_paddr, vm->page_size); 827 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 828 <= vm->max_gfn, "Physical range beyond maximum " 829 "supported physical address,\n" 830 " guest_paddr: 0x%lx npages: 0x%lx\n" 831 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 832 guest_paddr, npages, vm->max_gfn, vm->page_size); 833 834 /* 835 * Confirm a mem region with an overlapping address doesn't 836 * already exist. 837 */ 838 region = (struct userspace_mem_region *) userspace_mem_region_find( 839 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 840 if (region != NULL) 841 TEST_FAIL("overlapping userspace_mem_region already " 842 "exists\n" 843 " requested guest_paddr: 0x%lx npages: 0x%lx " 844 "page_size: 0x%x\n" 845 " existing guest_paddr: 0x%lx size: 0x%lx", 846 guest_paddr, npages, vm->page_size, 847 (uint64_t) region->region.guest_phys_addr, 848 (uint64_t) region->region.memory_size); 849 850 /* Confirm no region with the requested slot already exists. */ 851 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 852 slot) { 853 if (region->region.slot != slot) 854 continue; 855 856 TEST_FAIL("A mem region with the requested slot " 857 "already exists.\n" 858 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 859 " existing slot: %u paddr: 0x%lx size: 0x%lx", 860 slot, guest_paddr, npages, 861 region->region.slot, 862 (uint64_t) region->region.guest_phys_addr, 863 (uint64_t) region->region.memory_size); 864 } 865 866 /* Allocate and initialize new mem region structure. */ 867 region = calloc(1, sizeof(*region)); 868 TEST_ASSERT(region != NULL, "Insufficient Memory"); 869 region->mmap_size = npages * vm->page_size; 870 871 #ifdef __s390x__ 872 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 873 alignment = 0x100000; 874 #else 875 alignment = 1; 876 #endif 877 878 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 879 alignment = max(backing_src_pagesz, alignment); 880 881 /* Add enough memory to align up if necessary */ 882 if (alignment > 1) 883 region->mmap_size += alignment; 884 885 region->fd = -1; 886 if (backing_src_is_shared(src_type)) { 887 int memfd_flags = MFD_CLOEXEC; 888 889 if (src_type == VM_MEM_SRC_SHARED_HUGETLB) 890 memfd_flags |= MFD_HUGETLB; 891 892 region->fd = memfd_create("kvm_selftest", memfd_flags); 893 TEST_ASSERT(region->fd != -1, 894 "memfd_create failed, errno: %i", errno); 895 896 ret = ftruncate(region->fd, region->mmap_size); 897 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno); 898 899 ret = fallocate(region->fd, 900 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, 901 region->mmap_size); 902 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno); 903 } 904 905 region->mmap_start = mmap(NULL, region->mmap_size, 906 PROT_READ | PROT_WRITE, 907 vm_mem_backing_src_alias(src_type)->flag, 908 region->fd, 0); 909 TEST_ASSERT(region->mmap_start != MAP_FAILED, 910 "test_malloc failed, mmap_start: %p errno: %i", 911 region->mmap_start, errno); 912 913 /* Align host address */ 914 region->host_mem = align(region->mmap_start, alignment); 915 916 /* As needed perform madvise */ 917 if ((src_type == VM_MEM_SRC_ANONYMOUS || 918 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 919 ret = madvise(region->host_mem, npages * vm->page_size, 920 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 921 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 922 region->host_mem, npages * vm->page_size, 923 vm_mem_backing_src_alias(src_type)->name); 924 } 925 926 region->unused_phy_pages = sparsebit_alloc(); 927 sparsebit_set_num(region->unused_phy_pages, 928 guest_paddr >> vm->page_shift, npages); 929 region->region.slot = slot; 930 region->region.flags = flags; 931 region->region.guest_phys_addr = guest_paddr; 932 region->region.memory_size = npages * vm->page_size; 933 region->region.userspace_addr = (uintptr_t) region->host_mem; 934 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 935 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 936 " rc: %i errno: %i\n" 937 " slot: %u flags: 0x%x\n" 938 " guest_phys_addr: 0x%lx size: 0x%lx", 939 ret, errno, slot, flags, 940 guest_paddr, (uint64_t) region->region.memory_size); 941 942 /* Add to quick lookup data structures */ 943 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 944 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 945 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 946 947 /* If shared memory, create an alias. */ 948 if (region->fd >= 0) { 949 region->mmap_alias = mmap(NULL, region->mmap_size, 950 PROT_READ | PROT_WRITE, 951 vm_mem_backing_src_alias(src_type)->flag, 952 region->fd, 0); 953 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 954 "mmap of alias failed, errno: %i", errno); 955 956 /* Align host alias address */ 957 region->host_alias = align(region->mmap_alias, alignment); 958 } 959 } 960 961 /* 962 * Memslot to region 963 * 964 * Input Args: 965 * vm - Virtual Machine 966 * memslot - KVM memory slot ID 967 * 968 * Output Args: None 969 * 970 * Return: 971 * Pointer to memory region structure that describe memory region 972 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 973 * on error (e.g. currently no memory region using memslot as a KVM 974 * memory slot ID). 975 */ 976 struct userspace_mem_region * 977 memslot2region(struct kvm_vm *vm, uint32_t memslot) 978 { 979 struct userspace_mem_region *region; 980 981 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 982 memslot) 983 if (region->region.slot == memslot) 984 return region; 985 986 fprintf(stderr, "No mem region with the requested slot found,\n" 987 " requested slot: %u\n", memslot); 988 fputs("---- vm dump ----\n", stderr); 989 vm_dump(stderr, vm, 2); 990 TEST_FAIL("Mem region not found"); 991 return NULL; 992 } 993 994 /* 995 * VM Memory Region Flags Set 996 * 997 * Input Args: 998 * vm - Virtual Machine 999 * flags - Starting guest physical address 1000 * 1001 * Output Args: None 1002 * 1003 * Return: None 1004 * 1005 * Sets the flags of the memory region specified by the value of slot, 1006 * to the values given by flags. 1007 */ 1008 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1009 { 1010 int ret; 1011 struct userspace_mem_region *region; 1012 1013 region = memslot2region(vm, slot); 1014 1015 region->region.flags = flags; 1016 1017 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1018 1019 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 1020 " rc: %i errno: %i slot: %u flags: 0x%x", 1021 ret, errno, slot, flags); 1022 } 1023 1024 /* 1025 * VM Memory Region Move 1026 * 1027 * Input Args: 1028 * vm - Virtual Machine 1029 * slot - Slot of the memory region to move 1030 * new_gpa - Starting guest physical address 1031 * 1032 * Output Args: None 1033 * 1034 * Return: None 1035 * 1036 * Change the gpa of a memory region. 1037 */ 1038 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1039 { 1040 struct userspace_mem_region *region; 1041 int ret; 1042 1043 region = memslot2region(vm, slot); 1044 1045 region->region.guest_phys_addr = new_gpa; 1046 1047 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1048 1049 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n" 1050 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1051 ret, errno, slot, new_gpa); 1052 } 1053 1054 /* 1055 * VM Memory Region Delete 1056 * 1057 * Input Args: 1058 * vm - Virtual Machine 1059 * slot - Slot of the memory region to delete 1060 * 1061 * Output Args: None 1062 * 1063 * Return: None 1064 * 1065 * Delete a memory region. 1066 */ 1067 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1068 { 1069 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1070 } 1071 1072 /* 1073 * VCPU mmap Size 1074 * 1075 * Input Args: None 1076 * 1077 * Output Args: None 1078 * 1079 * Return: 1080 * Size of VCPU state 1081 * 1082 * Returns the size of the structure pointed to by the return value 1083 * of vcpu_state(). 1084 */ 1085 static int vcpu_mmap_sz(void) 1086 { 1087 int dev_fd, ret; 1088 1089 dev_fd = open_kvm_dev_path_or_exit(); 1090 1091 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1092 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1093 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", 1094 __func__, ret, errno); 1095 1096 close(dev_fd); 1097 1098 return ret; 1099 } 1100 1101 /* 1102 * VM VCPU Add 1103 * 1104 * Input Args: 1105 * vm - Virtual Machine 1106 * vcpuid - VCPU ID 1107 * 1108 * Output Args: None 1109 * 1110 * Return: None 1111 * 1112 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid. 1113 * No additional VCPU setup is done. 1114 */ 1115 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid) 1116 { 1117 struct vcpu *vcpu; 1118 1119 /* Confirm a vcpu with the specified id doesn't already exist. */ 1120 vcpu = vcpu_find(vm, vcpuid); 1121 if (vcpu != NULL) 1122 TEST_FAIL("vcpu with the specified id " 1123 "already exists,\n" 1124 " requested vcpuid: %u\n" 1125 " existing vcpuid: %u state: %p", 1126 vcpuid, vcpu->id, vcpu->state); 1127 1128 /* Allocate and initialize new vcpu structure. */ 1129 vcpu = calloc(1, sizeof(*vcpu)); 1130 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1131 vcpu->id = vcpuid; 1132 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); 1133 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", 1134 vcpu->fd, errno); 1135 1136 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " 1137 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1138 vcpu_mmap_sz(), sizeof(*vcpu->state)); 1139 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1140 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1141 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " 1142 "vcpu id: %u errno: %i", vcpuid, errno); 1143 1144 /* Add to linked-list of VCPUs. */ 1145 list_add(&vcpu->list, &vm->vcpus); 1146 } 1147 1148 /* 1149 * VM Virtual Address Unused Gap 1150 * 1151 * Input Args: 1152 * vm - Virtual Machine 1153 * sz - Size (bytes) 1154 * vaddr_min - Minimum Virtual Address 1155 * 1156 * Output Args: None 1157 * 1158 * Return: 1159 * Lowest virtual address at or below vaddr_min, with at least 1160 * sz unused bytes. TEST_ASSERT failure if no area of at least 1161 * size sz is available. 1162 * 1163 * Within the VM specified by vm, locates the lowest starting virtual 1164 * address >= vaddr_min, that has at least sz unallocated bytes. A 1165 * TEST_ASSERT failure occurs for invalid input or no area of at least 1166 * sz unallocated bytes >= vaddr_min is available. 1167 */ 1168 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1169 vm_vaddr_t vaddr_min) 1170 { 1171 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1172 1173 /* Determine lowest permitted virtual page index. */ 1174 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1175 if ((pgidx_start * vm->page_size) < vaddr_min) 1176 goto no_va_found; 1177 1178 /* Loop over section with enough valid virtual page indexes. */ 1179 if (!sparsebit_is_set_num(vm->vpages_valid, 1180 pgidx_start, pages)) 1181 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1182 pgidx_start, pages); 1183 do { 1184 /* 1185 * Are there enough unused virtual pages available at 1186 * the currently proposed starting virtual page index. 1187 * If not, adjust proposed starting index to next 1188 * possible. 1189 */ 1190 if (sparsebit_is_clear_num(vm->vpages_mapped, 1191 pgidx_start, pages)) 1192 goto va_found; 1193 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1194 pgidx_start, pages); 1195 if (pgidx_start == 0) 1196 goto no_va_found; 1197 1198 /* 1199 * If needed, adjust proposed starting virtual address, 1200 * to next range of valid virtual addresses. 1201 */ 1202 if (!sparsebit_is_set_num(vm->vpages_valid, 1203 pgidx_start, pages)) { 1204 pgidx_start = sparsebit_next_set_num( 1205 vm->vpages_valid, pgidx_start, pages); 1206 if (pgidx_start == 0) 1207 goto no_va_found; 1208 } 1209 } while (pgidx_start != 0); 1210 1211 no_va_found: 1212 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1213 1214 /* NOT REACHED */ 1215 return -1; 1216 1217 va_found: 1218 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1219 pgidx_start, pages), 1220 "Unexpected, invalid virtual page index range,\n" 1221 " pgidx_start: 0x%lx\n" 1222 " pages: 0x%lx", 1223 pgidx_start, pages); 1224 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1225 pgidx_start, pages), 1226 "Unexpected, pages already mapped,\n" 1227 " pgidx_start: 0x%lx\n" 1228 " pages: 0x%lx", 1229 pgidx_start, pages); 1230 1231 return pgidx_start * vm->page_size; 1232 } 1233 1234 /* 1235 * VM Virtual Address Allocate 1236 * 1237 * Input Args: 1238 * vm - Virtual Machine 1239 * sz - Size in bytes 1240 * vaddr_min - Minimum starting virtual address 1241 * data_memslot - Memory region slot for data pages 1242 * pgd_memslot - Memory region slot for new virtual translation tables 1243 * 1244 * Output Args: None 1245 * 1246 * Return: 1247 * Starting guest virtual address 1248 * 1249 * Allocates at least sz bytes within the virtual address space of the vm 1250 * given by vm. The allocated bytes are mapped to a virtual address >= 1251 * the address given by vaddr_min. Note that each allocation uses a 1252 * a unique set of pages, with the minimum real allocation being at least 1253 * a page. 1254 */ 1255 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1256 { 1257 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1258 1259 virt_pgd_alloc(vm); 1260 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, 1261 KVM_UTIL_MIN_PFN * vm->page_size, 0); 1262 1263 /* 1264 * Find an unused range of virtual page addresses of at least 1265 * pages in length. 1266 */ 1267 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1268 1269 /* Map the virtual pages. */ 1270 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1271 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1272 1273 virt_pg_map(vm, vaddr, paddr); 1274 1275 sparsebit_set(vm->vpages_mapped, 1276 vaddr >> vm->page_shift); 1277 } 1278 1279 return vaddr_start; 1280 } 1281 1282 /* 1283 * VM Virtual Address Allocate Pages 1284 * 1285 * Input Args: 1286 * vm - Virtual Machine 1287 * 1288 * Output Args: None 1289 * 1290 * Return: 1291 * Starting guest virtual address 1292 * 1293 * Allocates at least N system pages worth of bytes within the virtual address 1294 * space of the vm. 1295 */ 1296 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1297 { 1298 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1299 } 1300 1301 /* 1302 * VM Virtual Address Allocate Page 1303 * 1304 * Input Args: 1305 * vm - Virtual Machine 1306 * 1307 * Output Args: None 1308 * 1309 * Return: 1310 * Starting guest virtual address 1311 * 1312 * Allocates at least one system page worth of bytes within the virtual address 1313 * space of the vm. 1314 */ 1315 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1316 { 1317 return vm_vaddr_alloc_pages(vm, 1); 1318 } 1319 1320 /* 1321 * Map a range of VM virtual address to the VM's physical address 1322 * 1323 * Input Args: 1324 * vm - Virtual Machine 1325 * vaddr - Virtuall address to map 1326 * paddr - VM Physical Address 1327 * npages - The number of pages to map 1328 * pgd_memslot - Memory region slot for new virtual translation tables 1329 * 1330 * Output Args: None 1331 * 1332 * Return: None 1333 * 1334 * Within the VM given by @vm, creates a virtual translation for 1335 * @npages starting at @vaddr to the page range starting at @paddr. 1336 */ 1337 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1338 unsigned int npages) 1339 { 1340 size_t page_size = vm->page_size; 1341 size_t size = npages * page_size; 1342 1343 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1344 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1345 1346 while (npages--) { 1347 virt_pg_map(vm, vaddr, paddr); 1348 vaddr += page_size; 1349 paddr += page_size; 1350 } 1351 } 1352 1353 /* 1354 * Address VM Physical to Host Virtual 1355 * 1356 * Input Args: 1357 * vm - Virtual Machine 1358 * gpa - VM physical address 1359 * 1360 * Output Args: None 1361 * 1362 * Return: 1363 * Equivalent host virtual address 1364 * 1365 * Locates the memory region containing the VM physical address given 1366 * by gpa, within the VM given by vm. When found, the host virtual 1367 * address providing the memory to the vm physical address is returned. 1368 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1369 */ 1370 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1371 { 1372 struct userspace_mem_region *region; 1373 1374 region = userspace_mem_region_find(vm, gpa, gpa); 1375 if (!region) { 1376 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1377 return NULL; 1378 } 1379 1380 return (void *)((uintptr_t)region->host_mem 1381 + (gpa - region->region.guest_phys_addr)); 1382 } 1383 1384 /* 1385 * Address Host Virtual to VM Physical 1386 * 1387 * Input Args: 1388 * vm - Virtual Machine 1389 * hva - Host virtual address 1390 * 1391 * Output Args: None 1392 * 1393 * Return: 1394 * Equivalent VM physical address 1395 * 1396 * Locates the memory region containing the host virtual address given 1397 * by hva, within the VM given by vm. When found, the equivalent 1398 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1399 * region containing hva exists. 1400 */ 1401 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1402 { 1403 struct rb_node *node; 1404 1405 for (node = vm->regions.hva_tree.rb_node; node; ) { 1406 struct userspace_mem_region *region = 1407 container_of(node, struct userspace_mem_region, hva_node); 1408 1409 if (hva >= region->host_mem) { 1410 if (hva <= (region->host_mem 1411 + region->region.memory_size - 1)) 1412 return (vm_paddr_t)((uintptr_t) 1413 region->region.guest_phys_addr 1414 + (hva - (uintptr_t)region->host_mem)); 1415 1416 node = node->rb_right; 1417 } else 1418 node = node->rb_left; 1419 } 1420 1421 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1422 return -1; 1423 } 1424 1425 /* 1426 * Address VM physical to Host Virtual *alias*. 1427 * 1428 * Input Args: 1429 * vm - Virtual Machine 1430 * gpa - VM physical address 1431 * 1432 * Output Args: None 1433 * 1434 * Return: 1435 * Equivalent address within the host virtual *alias* area, or NULL 1436 * (without failing the test) if the guest memory is not shared (so 1437 * no alias exists). 1438 * 1439 * When vm_create() and related functions are called with a shared memory 1440 * src_type, we also create a writable, shared alias mapping of the 1441 * underlying guest memory. This allows the host to manipulate guest memory 1442 * without mapping that memory in the guest's address space. And, for 1443 * userfaultfd-based demand paging, we can do so without triggering userfaults. 1444 */ 1445 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1446 { 1447 struct userspace_mem_region *region; 1448 uintptr_t offset; 1449 1450 region = userspace_mem_region_find(vm, gpa, gpa); 1451 if (!region) 1452 return NULL; 1453 1454 if (!region->host_alias) 1455 return NULL; 1456 1457 offset = gpa - region->region.guest_phys_addr; 1458 return (void *) ((uintptr_t) region->host_alias + offset); 1459 } 1460 1461 /* 1462 * VM Create IRQ Chip 1463 * 1464 * Input Args: 1465 * vm - Virtual Machine 1466 * 1467 * Output Args: None 1468 * 1469 * Return: None 1470 * 1471 * Creates an interrupt controller chip for the VM specified by vm. 1472 */ 1473 void vm_create_irqchip(struct kvm_vm *vm) 1474 { 1475 int ret; 1476 1477 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); 1478 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " 1479 "rc: %i errno: %i", ret, errno); 1480 1481 vm->has_irqchip = true; 1482 } 1483 1484 /* 1485 * VM VCPU State 1486 * 1487 * Input Args: 1488 * vm - Virtual Machine 1489 * vcpuid - VCPU ID 1490 * 1491 * Output Args: None 1492 * 1493 * Return: 1494 * Pointer to structure that describes the state of the VCPU. 1495 * 1496 * Locates and returns a pointer to a structure that describes the 1497 * state of the VCPU with the given vcpuid. 1498 */ 1499 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) 1500 { 1501 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1502 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1503 1504 return vcpu->state; 1505 } 1506 1507 /* 1508 * VM VCPU Run 1509 * 1510 * Input Args: 1511 * vm - Virtual Machine 1512 * vcpuid - VCPU ID 1513 * 1514 * Output Args: None 1515 * 1516 * Return: None 1517 * 1518 * Switch to executing the code for the VCPU given by vcpuid, within the VM 1519 * given by vm. 1520 */ 1521 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1522 { 1523 int ret = _vcpu_run(vm, vcpuid); 1524 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " 1525 "rc: %i errno: %i", ret, errno); 1526 } 1527 1528 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1529 { 1530 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1531 int rc; 1532 1533 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1534 do { 1535 rc = ioctl(vcpu->fd, KVM_RUN, NULL); 1536 } while (rc == -1 && errno == EINTR); 1537 1538 assert_on_unhandled_exception(vm, vcpuid); 1539 1540 return rc; 1541 } 1542 1543 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid) 1544 { 1545 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1546 1547 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1548 1549 return vcpu->fd; 1550 } 1551 1552 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid) 1553 { 1554 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1555 int ret; 1556 1557 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1558 1559 vcpu->state->immediate_exit = 1; 1560 ret = ioctl(vcpu->fd, KVM_RUN, NULL); 1561 vcpu->state->immediate_exit = 0; 1562 1563 TEST_ASSERT(ret == -1 && errno == EINTR, 1564 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1565 ret, errno); 1566 } 1567 1568 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid, 1569 struct kvm_guest_debug *debug) 1570 { 1571 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1572 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug); 1573 1574 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret); 1575 } 1576 1577 /* 1578 * VM VCPU Set MP State 1579 * 1580 * Input Args: 1581 * vm - Virtual Machine 1582 * vcpuid - VCPU ID 1583 * mp_state - mp_state to be set 1584 * 1585 * Output Args: None 1586 * 1587 * Return: None 1588 * 1589 * Sets the MP state of the VCPU given by vcpuid, to the state given 1590 * by mp_state. 1591 */ 1592 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, 1593 struct kvm_mp_state *mp_state) 1594 { 1595 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1596 int ret; 1597 1598 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1599 1600 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); 1601 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " 1602 "rc: %i errno: %i", ret, errno); 1603 } 1604 1605 /* 1606 * VM VCPU Get Reg List 1607 * 1608 * Input Args: 1609 * vm - Virtual Machine 1610 * vcpuid - VCPU ID 1611 * 1612 * Output Args: 1613 * None 1614 * 1615 * Return: 1616 * A pointer to an allocated struct kvm_reg_list 1617 * 1618 * Get the list of guest registers which are supported for 1619 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls 1620 */ 1621 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid) 1622 { 1623 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1624 int ret; 1625 1626 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n); 1627 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1628 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1629 reg_list->n = reg_list_n.n; 1630 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list); 1631 return reg_list; 1632 } 1633 1634 /* 1635 * VM VCPU Regs Get 1636 * 1637 * Input Args: 1638 * vm - Virtual Machine 1639 * vcpuid - VCPU ID 1640 * 1641 * Output Args: 1642 * regs - current state of VCPU regs 1643 * 1644 * Return: None 1645 * 1646 * Obtains the current register state for the VCPU specified by vcpuid 1647 * and stores it at the location given by regs. 1648 */ 1649 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1650 { 1651 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1652 int ret; 1653 1654 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1655 1656 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); 1657 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", 1658 ret, errno); 1659 } 1660 1661 /* 1662 * VM VCPU Regs Set 1663 * 1664 * Input Args: 1665 * vm - Virtual Machine 1666 * vcpuid - VCPU ID 1667 * regs - Values to set VCPU regs to 1668 * 1669 * Output Args: None 1670 * 1671 * Return: None 1672 * 1673 * Sets the regs of the VCPU specified by vcpuid to the values 1674 * given by regs. 1675 */ 1676 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1677 { 1678 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1679 int ret; 1680 1681 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1682 1683 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); 1684 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", 1685 ret, errno); 1686 } 1687 1688 #ifdef __KVM_HAVE_VCPU_EVENTS 1689 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, 1690 struct kvm_vcpu_events *events) 1691 { 1692 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1693 int ret; 1694 1695 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1696 1697 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); 1698 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", 1699 ret, errno); 1700 } 1701 1702 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, 1703 struct kvm_vcpu_events *events) 1704 { 1705 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1706 int ret; 1707 1708 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1709 1710 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); 1711 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", 1712 ret, errno); 1713 } 1714 #endif 1715 1716 #ifdef __x86_64__ 1717 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid, 1718 struct kvm_nested_state *state) 1719 { 1720 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1721 int ret; 1722 1723 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1724 1725 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state); 1726 TEST_ASSERT(ret == 0, 1727 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1728 ret, errno); 1729 } 1730 1731 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid, 1732 struct kvm_nested_state *state, bool ignore_error) 1733 { 1734 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1735 int ret; 1736 1737 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1738 1739 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state); 1740 if (!ignore_error) { 1741 TEST_ASSERT(ret == 0, 1742 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1743 ret, errno); 1744 } 1745 1746 return ret; 1747 } 1748 #endif 1749 1750 /* 1751 * VM VCPU System Regs Get 1752 * 1753 * Input Args: 1754 * vm - Virtual Machine 1755 * vcpuid - VCPU ID 1756 * 1757 * Output Args: 1758 * sregs - current state of VCPU system regs 1759 * 1760 * Return: None 1761 * 1762 * Obtains the current system register state for the VCPU specified by 1763 * vcpuid and stores it at the location given by sregs. 1764 */ 1765 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1766 { 1767 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1768 int ret; 1769 1770 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1771 1772 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); 1773 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", 1774 ret, errno); 1775 } 1776 1777 /* 1778 * VM VCPU System Regs Set 1779 * 1780 * Input Args: 1781 * vm - Virtual Machine 1782 * vcpuid - VCPU ID 1783 * sregs - Values to set VCPU system regs to 1784 * 1785 * Output Args: None 1786 * 1787 * Return: None 1788 * 1789 * Sets the system regs of the VCPU specified by vcpuid to the values 1790 * given by sregs. 1791 */ 1792 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1793 { 1794 int ret = _vcpu_sregs_set(vm, vcpuid, sregs); 1795 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " 1796 "rc: %i errno: %i", ret, errno); 1797 } 1798 1799 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1800 { 1801 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1802 1803 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1804 1805 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); 1806 } 1807 1808 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1809 { 1810 int ret; 1811 1812 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu); 1813 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)", 1814 ret, errno, strerror(errno)); 1815 } 1816 1817 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1818 { 1819 int ret; 1820 1821 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu); 1822 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)", 1823 ret, errno, strerror(errno)); 1824 } 1825 1826 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1827 { 1828 int ret; 1829 1830 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg); 1831 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)", 1832 ret, errno, strerror(errno)); 1833 } 1834 1835 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1836 { 1837 int ret; 1838 1839 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg); 1840 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)", 1841 ret, errno, strerror(errno)); 1842 } 1843 1844 /* 1845 * VCPU Ioctl 1846 * 1847 * Input Args: 1848 * vm - Virtual Machine 1849 * vcpuid - VCPU ID 1850 * cmd - Ioctl number 1851 * arg - Argument to pass to the ioctl 1852 * 1853 * Return: None 1854 * 1855 * Issues an arbitrary ioctl on a VCPU fd. 1856 */ 1857 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1858 unsigned long cmd, void *arg) 1859 { 1860 int ret; 1861 1862 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg); 1863 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", 1864 cmd, ret, errno, strerror(errno)); 1865 } 1866 1867 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1868 unsigned long cmd, void *arg) 1869 { 1870 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1871 int ret; 1872 1873 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1874 1875 ret = ioctl(vcpu->fd, cmd, arg); 1876 1877 return ret; 1878 } 1879 1880 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid) 1881 { 1882 struct vcpu *vcpu; 1883 uint32_t size = vm->dirty_ring_size; 1884 1885 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1886 1887 vcpu = vcpu_find(vm, vcpuid); 1888 1889 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid); 1890 1891 if (!vcpu->dirty_gfns) { 1892 void *addr; 1893 1894 addr = mmap(NULL, size, PROT_READ, 1895 MAP_PRIVATE, vcpu->fd, 1896 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1897 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1898 1899 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, 1900 MAP_PRIVATE, vcpu->fd, 1901 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1902 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1903 1904 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, 1905 MAP_SHARED, vcpu->fd, 1906 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1907 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1908 1909 vcpu->dirty_gfns = addr; 1910 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1911 } 1912 1913 return vcpu->dirty_gfns; 1914 } 1915 1916 /* 1917 * VM Ioctl 1918 * 1919 * Input Args: 1920 * vm - Virtual Machine 1921 * cmd - Ioctl number 1922 * arg - Argument to pass to the ioctl 1923 * 1924 * Return: None 1925 * 1926 * Issues an arbitrary ioctl on a VM fd. 1927 */ 1928 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1929 { 1930 int ret; 1931 1932 ret = _vm_ioctl(vm, cmd, arg); 1933 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", 1934 cmd, ret, errno, strerror(errno)); 1935 } 1936 1937 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1938 { 1939 return ioctl(vm->fd, cmd, arg); 1940 } 1941 1942 /* 1943 * KVM system ioctl 1944 * 1945 * Input Args: 1946 * vm - Virtual Machine 1947 * cmd - Ioctl number 1948 * arg - Argument to pass to the ioctl 1949 * 1950 * Return: None 1951 * 1952 * Issues an arbitrary ioctl on a KVM fd. 1953 */ 1954 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1955 { 1956 int ret; 1957 1958 ret = ioctl(vm->kvm_fd, cmd, arg); 1959 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)", 1960 cmd, ret, errno, strerror(errno)); 1961 } 1962 1963 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1964 { 1965 return ioctl(vm->kvm_fd, cmd, arg); 1966 } 1967 1968 /* 1969 * Device Ioctl 1970 */ 1971 1972 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 1973 { 1974 struct kvm_device_attr attribute = { 1975 .group = group, 1976 .attr = attr, 1977 .flags = 0, 1978 }; 1979 1980 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1981 } 1982 1983 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 1984 { 1985 int ret = _kvm_device_check_attr(dev_fd, group, attr); 1986 1987 TEST_ASSERT(ret >= 0, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 1988 return ret; 1989 } 1990 1991 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd) 1992 { 1993 struct kvm_create_device create_dev; 1994 int ret; 1995 1996 create_dev.type = type; 1997 create_dev.fd = -1; 1998 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 1999 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev); 2000 *fd = create_dev.fd; 2001 return ret; 2002 } 2003 2004 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test) 2005 { 2006 int fd, ret; 2007 2008 ret = _kvm_create_device(vm, type, test, &fd); 2009 2010 if (!test) { 2011 TEST_ASSERT(ret >= 0, 2012 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno); 2013 return fd; 2014 } 2015 return ret; 2016 } 2017 2018 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2019 void *val, bool write) 2020 { 2021 struct kvm_device_attr kvmattr = { 2022 .group = group, 2023 .attr = attr, 2024 .flags = 0, 2025 .addr = (uintptr_t)val, 2026 }; 2027 int ret; 2028 2029 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2030 &kvmattr); 2031 return ret; 2032 } 2033 2034 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2035 void *val, bool write) 2036 { 2037 int ret = _kvm_device_access(dev_fd, group, attr, val, write); 2038 2039 TEST_ASSERT(ret >= 0, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2040 return ret; 2041 } 2042 2043 /* 2044 * VM Dump 2045 * 2046 * Input Args: 2047 * vm - Virtual Machine 2048 * indent - Left margin indent amount 2049 * 2050 * Output Args: 2051 * stream - Output FILE stream 2052 * 2053 * Return: None 2054 * 2055 * Dumps the current state of the VM given by vm, to the FILE stream 2056 * given by stream. 2057 */ 2058 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 2059 { 2060 int ctr; 2061 struct userspace_mem_region *region; 2062 struct vcpu *vcpu; 2063 2064 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 2065 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 2066 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 2067 fprintf(stream, "%*sMem Regions:\n", indent, ""); 2068 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 2069 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 2070 "host_virt: %p\n", indent + 2, "", 2071 (uint64_t) region->region.guest_phys_addr, 2072 (uint64_t) region->region.memory_size, 2073 region->host_mem); 2074 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 2075 sparsebit_dump(stream, region->unused_phy_pages, 0); 2076 } 2077 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 2078 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 2079 fprintf(stream, "%*spgd_created: %u\n", indent, "", 2080 vm->pgd_created); 2081 if (vm->pgd_created) { 2082 fprintf(stream, "%*sVirtual Translation Tables:\n", 2083 indent + 2, ""); 2084 virt_dump(stream, vm, indent + 4); 2085 } 2086 fprintf(stream, "%*sVCPUs:\n", indent, ""); 2087 list_for_each_entry(vcpu, &vm->vcpus, list) 2088 vcpu_dump(stream, vm, vcpu->id, indent + 2); 2089 } 2090 2091 /* Known KVM exit reasons */ 2092 static struct exit_reason { 2093 unsigned int reason; 2094 const char *name; 2095 } exit_reasons_known[] = { 2096 {KVM_EXIT_UNKNOWN, "UNKNOWN"}, 2097 {KVM_EXIT_EXCEPTION, "EXCEPTION"}, 2098 {KVM_EXIT_IO, "IO"}, 2099 {KVM_EXIT_HYPERCALL, "HYPERCALL"}, 2100 {KVM_EXIT_DEBUG, "DEBUG"}, 2101 {KVM_EXIT_HLT, "HLT"}, 2102 {KVM_EXIT_MMIO, "MMIO"}, 2103 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, 2104 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, 2105 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, 2106 {KVM_EXIT_INTR, "INTR"}, 2107 {KVM_EXIT_SET_TPR, "SET_TPR"}, 2108 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, 2109 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, 2110 {KVM_EXIT_S390_RESET, "S390_RESET"}, 2111 {KVM_EXIT_DCR, "DCR"}, 2112 {KVM_EXIT_NMI, "NMI"}, 2113 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, 2114 {KVM_EXIT_OSI, "OSI"}, 2115 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, 2116 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"}, 2117 {KVM_EXIT_X86_RDMSR, "RDMSR"}, 2118 {KVM_EXIT_X86_WRMSR, "WRMSR"}, 2119 {KVM_EXIT_XEN, "XEN"}, 2120 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 2121 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, 2122 #endif 2123 }; 2124 2125 /* 2126 * Exit Reason String 2127 * 2128 * Input Args: 2129 * exit_reason - Exit reason 2130 * 2131 * Output Args: None 2132 * 2133 * Return: 2134 * Constant string pointer describing the exit reason. 2135 * 2136 * Locates and returns a constant string that describes the KVM exit 2137 * reason given by exit_reason. If no such string is found, a constant 2138 * string of "Unknown" is returned. 2139 */ 2140 const char *exit_reason_str(unsigned int exit_reason) 2141 { 2142 unsigned int n1; 2143 2144 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2145 if (exit_reason == exit_reasons_known[n1].reason) 2146 return exit_reasons_known[n1].name; 2147 } 2148 2149 return "Unknown"; 2150 } 2151 2152 /* 2153 * Physical Contiguous Page Allocator 2154 * 2155 * Input Args: 2156 * vm - Virtual Machine 2157 * num - number of pages 2158 * paddr_min - Physical address minimum 2159 * memslot - Memory region to allocate page from 2160 * 2161 * Output Args: None 2162 * 2163 * Return: 2164 * Starting physical address 2165 * 2166 * Within the VM specified by vm, locates a range of available physical 2167 * pages at or above paddr_min. If found, the pages are marked as in use 2168 * and their base address is returned. A TEST_ASSERT failure occurs if 2169 * not enough pages are available at or above paddr_min. 2170 */ 2171 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2172 vm_paddr_t paddr_min, uint32_t memslot) 2173 { 2174 struct userspace_mem_region *region; 2175 sparsebit_idx_t pg, base; 2176 2177 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2178 2179 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2180 "not divisible by page size.\n" 2181 " paddr_min: 0x%lx page_size: 0x%x", 2182 paddr_min, vm->page_size); 2183 2184 region = memslot2region(vm, memslot); 2185 base = pg = paddr_min >> vm->page_shift; 2186 2187 do { 2188 for (; pg < base + num; ++pg) { 2189 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2190 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2191 break; 2192 } 2193 } 2194 } while (pg && pg != base + num); 2195 2196 if (pg == 0) { 2197 fprintf(stderr, "No guest physical page available, " 2198 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2199 paddr_min, vm->page_size, memslot); 2200 fputs("---- vm dump ----\n", stderr); 2201 vm_dump(stderr, vm, 2); 2202 abort(); 2203 } 2204 2205 for (pg = base; pg < base + num; ++pg) 2206 sparsebit_clear(region->unused_phy_pages, pg); 2207 2208 return base * vm->page_size; 2209 } 2210 2211 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2212 uint32_t memslot) 2213 { 2214 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2215 } 2216 2217 /* Arbitrary minimum physical address used for virtual translation tables. */ 2218 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 2219 2220 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2221 { 2222 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0); 2223 } 2224 2225 /* 2226 * Address Guest Virtual to Host Virtual 2227 * 2228 * Input Args: 2229 * vm - Virtual Machine 2230 * gva - VM virtual address 2231 * 2232 * Output Args: None 2233 * 2234 * Return: 2235 * Equivalent host virtual address 2236 */ 2237 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2238 { 2239 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2240 } 2241 2242 /* 2243 * Is Unrestricted Guest 2244 * 2245 * Input Args: 2246 * vm - Virtual Machine 2247 * 2248 * Output Args: None 2249 * 2250 * Return: True if the unrestricted guest is set to 'Y', otherwise return false. 2251 * 2252 * Check if the unrestricted guest flag is enabled. 2253 */ 2254 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 2255 { 2256 char val = 'N'; 2257 size_t count; 2258 FILE *f; 2259 2260 if (vm == NULL) { 2261 /* Ensure that the KVM vendor-specific module is loaded. */ 2262 close(open_kvm_dev_path_or_exit()); 2263 } 2264 2265 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r"); 2266 if (f) { 2267 count = fread(&val, sizeof(char), 1, f); 2268 TEST_ASSERT(count == 1, "Unable to read from param file."); 2269 fclose(f); 2270 } 2271 2272 return val == 'Y'; 2273 } 2274 2275 unsigned int vm_get_page_size(struct kvm_vm *vm) 2276 { 2277 return vm->page_size; 2278 } 2279 2280 unsigned int vm_get_page_shift(struct kvm_vm *vm) 2281 { 2282 return vm->page_shift; 2283 } 2284 2285 uint64_t vm_get_max_gfn(struct kvm_vm *vm) 2286 { 2287 return vm->max_gfn; 2288 } 2289 2290 int vm_get_fd(struct kvm_vm *vm) 2291 { 2292 return vm->fd; 2293 } 2294 2295 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2296 unsigned int page_shift, 2297 unsigned int new_page_shift, 2298 bool ceil) 2299 { 2300 unsigned int n = 1 << (new_page_shift - page_shift); 2301 2302 if (page_shift >= new_page_shift) 2303 return num_pages * (1 << (page_shift - new_page_shift)); 2304 2305 return num_pages / n + !!(ceil && num_pages % n); 2306 } 2307 2308 static inline int getpageshift(void) 2309 { 2310 return __builtin_ffs(getpagesize()) - 1; 2311 } 2312 2313 unsigned int 2314 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2315 { 2316 return vm_calc_num_pages(num_guest_pages, 2317 vm_guest_mode_params[mode].page_shift, 2318 getpageshift(), true); 2319 } 2320 2321 unsigned int 2322 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2323 { 2324 return vm_calc_num_pages(num_host_pages, getpageshift(), 2325 vm_guest_mode_params[mode].page_shift, false); 2326 } 2327 2328 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2329 { 2330 unsigned int n; 2331 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2332 return vm_adjust_num_guest_pages(mode, n); 2333 } 2334 2335 int vm_get_stats_fd(struct kvm_vm *vm) 2336 { 2337 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL); 2338 } 2339 2340 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid) 2341 { 2342 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2343 2344 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL); 2345 } 2346