1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13 
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
26 static void *align(void *x, size_t size)
27 {
28 	size_t mask = size - 1;
29 	TEST_ASSERT(size != 0 && !(size & (size - 1)),
30 		    "size not a power of 2: %lu", size);
31 	return (void *) (((size_t) x + mask) & ~mask);
32 }
33 
34 /*
35  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
36  *
37  * Input Args:
38  *   flags - The flags to pass when opening KVM_DEV_PATH.
39  *
40  * Return:
41  *   The opened file descriptor of /dev/kvm.
42  */
43 static int _open_kvm_dev_path_or_exit(int flags)
44 {
45 	int fd;
46 
47 	fd = open(KVM_DEV_PATH, flags);
48 	if (fd < 0) {
49 		print_skip("%s not available, is KVM loaded? (errno: %d)",
50 			   KVM_DEV_PATH, errno);
51 		exit(KSFT_SKIP);
52 	}
53 
54 	return fd;
55 }
56 
57 int open_kvm_dev_path_or_exit(void)
58 {
59 	return _open_kvm_dev_path_or_exit(O_RDONLY);
60 }
61 
62 /*
63  * Capability
64  *
65  * Input Args:
66  *   cap - Capability
67  *
68  * Output Args: None
69  *
70  * Return:
71  *   On success, the Value corresponding to the capability (KVM_CAP_*)
72  *   specified by the value of cap.  On failure a TEST_ASSERT failure
73  *   is produced.
74  *
75  * Looks up and returns the value corresponding to the capability
76  * (KVM_CAP_*) given by cap.
77  */
78 int kvm_check_cap(long cap)
79 {
80 	int ret;
81 	int kvm_fd;
82 
83 	kvm_fd = open_kvm_dev_path_or_exit();
84 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
85 	TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
86 		"  rc: %i errno: %i", ret, errno);
87 
88 	close(kvm_fd);
89 
90 	return ret;
91 }
92 
93 /* VM Enable Capability
94  *
95  * Input Args:
96  *   vm - Virtual Machine
97  *   cap - Capability
98  *
99  * Output Args: None
100  *
101  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
102  *
103  * Enables a capability (KVM_CAP_*) on the VM.
104  */
105 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
106 {
107 	int ret;
108 
109 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
110 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
111 		"  rc: %i errno: %i", ret, errno);
112 
113 	return ret;
114 }
115 
116 /* VCPU Enable Capability
117  *
118  * Input Args:
119  *   vm - Virtual Machine
120  *   vcpu_id - VCPU
121  *   cap - Capability
122  *
123  * Output Args: None
124  *
125  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
126  *
127  * Enables a capability (KVM_CAP_*) on the VCPU.
128  */
129 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
130 		    struct kvm_enable_cap *cap)
131 {
132 	struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
133 	int r;
134 
135 	TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
136 
137 	r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
138 	TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
139 			"  rc: %i, errno: %i", r, errno);
140 
141 	return r;
142 }
143 
144 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
145 {
146 	struct kvm_enable_cap cap = { 0 };
147 
148 	cap.cap = KVM_CAP_DIRTY_LOG_RING;
149 	cap.args[0] = ring_size;
150 	vm_enable_cap(vm, &cap);
151 	vm->dirty_ring_size = ring_size;
152 }
153 
154 static void vm_open(struct kvm_vm *vm, int perm)
155 {
156 	vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
157 
158 	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
159 		print_skip("immediate_exit not available");
160 		exit(KSFT_SKIP);
161 	}
162 
163 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
164 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
165 		"rc: %i errno: %i", vm->fd, errno);
166 }
167 
168 const char *vm_guest_mode_string(uint32_t i)
169 {
170 	static const char * const strings[] = {
171 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
172 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
173 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
174 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
175 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
176 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
177 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
178 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
179 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
180 	};
181 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
182 		       "Missing new mode strings?");
183 
184 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
185 
186 	return strings[i];
187 }
188 
189 const struct vm_guest_mode_params vm_guest_mode_params[] = {
190 	{ 52, 48,  0x1000, 12 },
191 	{ 52, 48, 0x10000, 16 },
192 	{ 48, 48,  0x1000, 12 },
193 	{ 48, 48, 0x10000, 16 },
194 	{ 40, 48,  0x1000, 12 },
195 	{ 40, 48, 0x10000, 16 },
196 	{  0,  0,  0x1000, 12 },
197 	{ 47, 64,  0x1000, 12 },
198 	{ 44, 64,  0x1000, 12 },
199 };
200 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
201 	       "Missing new mode params?");
202 
203 /*
204  * VM Create
205  *
206  * Input Args:
207  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
208  *   phy_pages - Physical memory pages
209  *   perm - permission
210  *
211  * Output Args: None
212  *
213  * Return:
214  *   Pointer to opaque structure that describes the created VM.
215  *
216  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
217  * When phy_pages is non-zero, a memory region of phy_pages physical pages
218  * is created and mapped starting at guest physical address 0.  The file
219  * descriptor to control the created VM is created with the permissions
220  * given by perm (e.g. O_RDWR).
221  */
222 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
223 {
224 	struct kvm_vm *vm;
225 
226 	pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
227 		 vm_guest_mode_string(mode), phy_pages, perm);
228 
229 	vm = calloc(1, sizeof(*vm));
230 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
231 
232 	INIT_LIST_HEAD(&vm->vcpus);
233 	vm->regions.gpa_tree = RB_ROOT;
234 	vm->regions.hva_tree = RB_ROOT;
235 	hash_init(vm->regions.slot_hash);
236 
237 	vm->mode = mode;
238 	vm->type = 0;
239 
240 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
241 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
242 	vm->page_size = vm_guest_mode_params[mode].page_size;
243 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
244 
245 	/* Setup mode specific traits. */
246 	switch (vm->mode) {
247 	case VM_MODE_P52V48_4K:
248 		vm->pgtable_levels = 4;
249 		break;
250 	case VM_MODE_P52V48_64K:
251 		vm->pgtable_levels = 3;
252 		break;
253 	case VM_MODE_P48V48_4K:
254 		vm->pgtable_levels = 4;
255 		break;
256 	case VM_MODE_P48V48_64K:
257 		vm->pgtable_levels = 3;
258 		break;
259 	case VM_MODE_P40V48_4K:
260 		vm->pgtable_levels = 4;
261 		break;
262 	case VM_MODE_P40V48_64K:
263 		vm->pgtable_levels = 3;
264 		break;
265 	case VM_MODE_PXXV48_4K:
266 #ifdef __x86_64__
267 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
268 		/*
269 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
270 		 * it doesn't take effect unless a CR4.LA57 is set, which it
271 		 * isn't for this VM_MODE.
272 		 */
273 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
274 			    "Linear address width (%d bits) not supported",
275 			    vm->va_bits);
276 		pr_debug("Guest physical address width detected: %d\n",
277 			 vm->pa_bits);
278 		vm->pgtable_levels = 4;
279 		vm->va_bits = 48;
280 #else
281 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
282 #endif
283 		break;
284 	case VM_MODE_P47V64_4K:
285 		vm->pgtable_levels = 5;
286 		break;
287 	case VM_MODE_P44V64_4K:
288 		vm->pgtable_levels = 5;
289 		break;
290 	default:
291 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
292 	}
293 
294 #ifdef __aarch64__
295 	if (vm->pa_bits != 40)
296 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
297 #endif
298 
299 	vm_open(vm, perm);
300 
301 	/* Limit to VA-bit canonical virtual addresses. */
302 	vm->vpages_valid = sparsebit_alloc();
303 	sparsebit_set_num(vm->vpages_valid,
304 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
305 	sparsebit_set_num(vm->vpages_valid,
306 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
307 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
308 
309 	/* Limit physical addresses to PA-bits. */
310 	vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
311 
312 	/* Allocate and setup memory for guest. */
313 	vm->vpages_mapped = sparsebit_alloc();
314 	if (phy_pages != 0)
315 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
316 					    0, 0, phy_pages, 0);
317 
318 	return vm;
319 }
320 
321 /*
322  * VM Create with customized parameters
323  *
324  * Input Args:
325  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
326  *   nr_vcpus - VCPU count
327  *   slot0_mem_pages - Slot0 physical memory size
328  *   extra_mem_pages - Non-slot0 physical memory total size
329  *   num_percpu_pages - Per-cpu physical memory pages
330  *   guest_code - Guest entry point
331  *   vcpuids - VCPU IDs
332  *
333  * Output Args: None
334  *
335  * Return:
336  *   Pointer to opaque structure that describes the created VM.
337  *
338  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
339  * with customized slot0 memory size, at least 512 pages currently.
340  * extra_mem_pages is only used to calculate the maximum page table size,
341  * no real memory allocation for non-slot0 memory in this function.
342  */
343 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
344 				    uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
345 				    uint32_t num_percpu_pages, void *guest_code,
346 				    uint32_t vcpuids[])
347 {
348 	uint64_t vcpu_pages, extra_pg_pages, pages;
349 	struct kvm_vm *vm;
350 	int i;
351 
352 	/* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
353 	if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
354 		slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
355 
356 	/* The maximum page table size for a memory region will be when the
357 	 * smallest pages are used. Considering each page contains x page
358 	 * table descriptors, the total extra size for page tables (for extra
359 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
360 	 * than N/x*2.
361 	 */
362 	vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
363 	extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
364 	pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
365 
366 	TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
367 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
368 		    nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
369 
370 	pages = vm_adjust_num_guest_pages(mode, pages);
371 	vm = vm_create(mode, pages, O_RDWR);
372 
373 	kvm_vm_elf_load(vm, program_invocation_name);
374 
375 #ifdef __x86_64__
376 	vm_create_irqchip(vm);
377 #endif
378 
379 	for (i = 0; i < nr_vcpus; ++i) {
380 		uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
381 
382 		vm_vcpu_add_default(vm, vcpuid, guest_code);
383 	}
384 
385 	return vm;
386 }
387 
388 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
389 					    uint32_t num_percpu_pages, void *guest_code,
390 					    uint32_t vcpuids[])
391 {
392 	return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
393 				    extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
394 }
395 
396 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
397 				 void *guest_code)
398 {
399 	return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
400 					    (uint32_t []){ vcpuid });
401 }
402 
403 /*
404  * VM Restart
405  *
406  * Input Args:
407  *   vm - VM that has been released before
408  *   perm - permission
409  *
410  * Output Args: None
411  *
412  * Reopens the file descriptors associated to the VM and reinstates the
413  * global state, such as the irqchip and the memory regions that are mapped
414  * into the guest.
415  */
416 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
417 {
418 	int ctr;
419 	struct userspace_mem_region *region;
420 
421 	vm_open(vmp, perm);
422 	if (vmp->has_irqchip)
423 		vm_create_irqchip(vmp);
424 
425 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
426 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
427 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
428 			    "  rc: %i errno: %i\n"
429 			    "  slot: %u flags: 0x%x\n"
430 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
431 			    ret, errno, region->region.slot,
432 			    region->region.flags,
433 			    region->region.guest_phys_addr,
434 			    region->region.memory_size);
435 	}
436 }
437 
438 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
439 {
440 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
441 	int ret;
442 
443 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
444 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
445 		    __func__, strerror(-ret));
446 }
447 
448 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
449 			    uint64_t first_page, uint32_t num_pages)
450 {
451 	struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
452 		                            .first_page = first_page,
453 	                                    .num_pages = num_pages };
454 	int ret;
455 
456 	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
457 	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
458 		    __func__, strerror(-ret));
459 }
460 
461 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
462 {
463 	return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
464 }
465 
466 /*
467  * Userspace Memory Region Find
468  *
469  * Input Args:
470  *   vm - Virtual Machine
471  *   start - Starting VM physical address
472  *   end - Ending VM physical address, inclusive.
473  *
474  * Output Args: None
475  *
476  * Return:
477  *   Pointer to overlapping region, NULL if no such region.
478  *
479  * Searches for a region with any physical memory that overlaps with
480  * any portion of the guest physical addresses from start to end
481  * inclusive.  If multiple overlapping regions exist, a pointer to any
482  * of the regions is returned.  Null is returned only when no overlapping
483  * region exists.
484  */
485 static struct userspace_mem_region *
486 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
487 {
488 	struct rb_node *node;
489 
490 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
491 		struct userspace_mem_region *region =
492 			container_of(node, struct userspace_mem_region, gpa_node);
493 		uint64_t existing_start = region->region.guest_phys_addr;
494 		uint64_t existing_end = region->region.guest_phys_addr
495 			+ region->region.memory_size - 1;
496 		if (start <= existing_end && end >= existing_start)
497 			return region;
498 
499 		if (start < existing_start)
500 			node = node->rb_left;
501 		else
502 			node = node->rb_right;
503 	}
504 
505 	return NULL;
506 }
507 
508 /*
509  * KVM Userspace Memory Region Find
510  *
511  * Input Args:
512  *   vm - Virtual Machine
513  *   start - Starting VM physical address
514  *   end - Ending VM physical address, inclusive.
515  *
516  * Output Args: None
517  *
518  * Return:
519  *   Pointer to overlapping region, NULL if no such region.
520  *
521  * Public interface to userspace_mem_region_find. Allows tests to look up
522  * the memslot datastructure for a given range of guest physical memory.
523  */
524 struct kvm_userspace_memory_region *
525 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
526 				 uint64_t end)
527 {
528 	struct userspace_mem_region *region;
529 
530 	region = userspace_mem_region_find(vm, start, end);
531 	if (!region)
532 		return NULL;
533 
534 	return &region->region;
535 }
536 
537 /*
538  * VCPU Find
539  *
540  * Input Args:
541  *   vm - Virtual Machine
542  *   vcpuid - VCPU ID
543  *
544  * Output Args: None
545  *
546  * Return:
547  *   Pointer to VCPU structure
548  *
549  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
550  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
551  * for the specified vcpuid.
552  */
553 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
554 {
555 	struct vcpu *vcpu;
556 
557 	list_for_each_entry(vcpu, &vm->vcpus, list) {
558 		if (vcpu->id == vcpuid)
559 			return vcpu;
560 	}
561 
562 	return NULL;
563 }
564 
565 /*
566  * VM VCPU Remove
567  *
568  * Input Args:
569  *   vcpu - VCPU to remove
570  *
571  * Output Args: None
572  *
573  * Return: None, TEST_ASSERT failures for all error conditions
574  *
575  * Removes a vCPU from a VM and frees its resources.
576  */
577 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
578 {
579 	int ret;
580 
581 	if (vcpu->dirty_gfns) {
582 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
583 		TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
584 			    "rc: %i errno: %i", ret, errno);
585 		vcpu->dirty_gfns = NULL;
586 	}
587 
588 	ret = munmap(vcpu->state, vcpu_mmap_sz());
589 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
590 		"errno: %i", ret, errno);
591 	ret = close(vcpu->fd);
592 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
593 		"errno: %i", ret, errno);
594 
595 	list_del(&vcpu->list);
596 	free(vcpu);
597 }
598 
599 void kvm_vm_release(struct kvm_vm *vmp)
600 {
601 	struct vcpu *vcpu, *tmp;
602 	int ret;
603 
604 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
605 		vm_vcpu_rm(vmp, vcpu);
606 
607 	ret = close(vmp->fd);
608 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
609 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
610 
611 	ret = close(vmp->kvm_fd);
612 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
613 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
614 }
615 
616 static void __vm_mem_region_delete(struct kvm_vm *vm,
617 				   struct userspace_mem_region *region,
618 				   bool unlink)
619 {
620 	int ret;
621 
622 	if (unlink) {
623 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
624 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
625 		hash_del(&region->slot_node);
626 	}
627 
628 	region->region.memory_size = 0;
629 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
630 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
631 		    "rc: %i errno: %i", ret, errno);
632 
633 	sparsebit_free(&region->unused_phy_pages);
634 	ret = munmap(region->mmap_start, region->mmap_size);
635 	TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
636 
637 	free(region);
638 }
639 
640 /*
641  * Destroys and frees the VM pointed to by vmp.
642  */
643 void kvm_vm_free(struct kvm_vm *vmp)
644 {
645 	int ctr;
646 	struct hlist_node *node;
647 	struct userspace_mem_region *region;
648 
649 	if (vmp == NULL)
650 		return;
651 
652 	/* Free userspace_mem_regions. */
653 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
654 		__vm_mem_region_delete(vmp, region, false);
655 
656 	/* Free sparsebit arrays. */
657 	sparsebit_free(&vmp->vpages_valid);
658 	sparsebit_free(&vmp->vpages_mapped);
659 
660 	kvm_vm_release(vmp);
661 
662 	/* Free the structure describing the VM. */
663 	free(vmp);
664 }
665 
666 /*
667  * Memory Compare, host virtual to guest virtual
668  *
669  * Input Args:
670  *   hva - Starting host virtual address
671  *   vm - Virtual Machine
672  *   gva - Starting guest virtual address
673  *   len - number of bytes to compare
674  *
675  * Output Args: None
676  *
677  * Input/Output Args: None
678  *
679  * Return:
680  *   Returns 0 if the bytes starting at hva for a length of len
681  *   are equal the guest virtual bytes starting at gva.  Returns
682  *   a value < 0, if bytes at hva are less than those at gva.
683  *   Otherwise a value > 0 is returned.
684  *
685  * Compares the bytes starting at the host virtual address hva, for
686  * a length of len, to the guest bytes starting at the guest virtual
687  * address given by gva.
688  */
689 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
690 {
691 	size_t amt;
692 
693 	/*
694 	 * Compare a batch of bytes until either a match is found
695 	 * or all the bytes have been compared.
696 	 */
697 	for (uintptr_t offset = 0; offset < len; offset += amt) {
698 		uintptr_t ptr1 = (uintptr_t)hva + offset;
699 
700 		/*
701 		 * Determine host address for guest virtual address
702 		 * at offset.
703 		 */
704 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
705 
706 		/*
707 		 * Determine amount to compare on this pass.
708 		 * Don't allow the comparsion to cross a page boundary.
709 		 */
710 		amt = len - offset;
711 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
712 			amt = vm->page_size - (ptr1 % vm->page_size);
713 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
714 			amt = vm->page_size - (ptr2 % vm->page_size);
715 
716 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
717 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
718 
719 		/*
720 		 * Perform the comparison.  If there is a difference
721 		 * return that result to the caller, otherwise need
722 		 * to continue on looking for a mismatch.
723 		 */
724 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
725 		if (ret != 0)
726 			return ret;
727 	}
728 
729 	/*
730 	 * No mismatch found.  Let the caller know the two memory
731 	 * areas are equal.
732 	 */
733 	return 0;
734 }
735 
736 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
737 					       struct userspace_mem_region *region)
738 {
739 	struct rb_node **cur, *parent;
740 
741 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
742 		struct userspace_mem_region *cregion;
743 
744 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
745 		parent = *cur;
746 		if (region->region.guest_phys_addr <
747 		    cregion->region.guest_phys_addr)
748 			cur = &(*cur)->rb_left;
749 		else {
750 			TEST_ASSERT(region->region.guest_phys_addr !=
751 				    cregion->region.guest_phys_addr,
752 				    "Duplicate GPA in region tree");
753 
754 			cur = &(*cur)->rb_right;
755 		}
756 	}
757 
758 	rb_link_node(&region->gpa_node, parent, cur);
759 	rb_insert_color(&region->gpa_node, gpa_tree);
760 }
761 
762 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
763 					       struct userspace_mem_region *region)
764 {
765 	struct rb_node **cur, *parent;
766 
767 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
768 		struct userspace_mem_region *cregion;
769 
770 		cregion = container_of(*cur, typeof(*cregion), hva_node);
771 		parent = *cur;
772 		if (region->host_mem < cregion->host_mem)
773 			cur = &(*cur)->rb_left;
774 		else {
775 			TEST_ASSERT(region->host_mem !=
776 				    cregion->host_mem,
777 				    "Duplicate HVA in region tree");
778 
779 			cur = &(*cur)->rb_right;
780 		}
781 	}
782 
783 	rb_link_node(&region->hva_node, parent, cur);
784 	rb_insert_color(&region->hva_node, hva_tree);
785 }
786 
787 /*
788  * VM Userspace Memory Region Add
789  *
790  * Input Args:
791  *   vm - Virtual Machine
792  *   src_type - Storage source for this region.
793  *              NULL to use anonymous memory.
794  *   guest_paddr - Starting guest physical address
795  *   slot - KVM region slot
796  *   npages - Number of physical pages
797  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
798  *
799  * Output Args: None
800  *
801  * Return: None
802  *
803  * Allocates a memory area of the number of pages specified by npages
804  * and maps it to the VM specified by vm, at a starting physical address
805  * given by guest_paddr.  The region is created with a KVM region slot
806  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
807  * region is created with the flags given by flags.
808  */
809 void vm_userspace_mem_region_add(struct kvm_vm *vm,
810 	enum vm_mem_backing_src_type src_type,
811 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
812 	uint32_t flags)
813 {
814 	int ret;
815 	struct userspace_mem_region *region;
816 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
817 	size_t alignment;
818 
819 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
820 		"Number of guest pages is not compatible with the host. "
821 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
822 
823 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
824 		"address not on a page boundary.\n"
825 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
826 		guest_paddr, vm->page_size);
827 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
828 		<= vm->max_gfn, "Physical range beyond maximum "
829 		"supported physical address,\n"
830 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
831 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
832 		guest_paddr, npages, vm->max_gfn, vm->page_size);
833 
834 	/*
835 	 * Confirm a mem region with an overlapping address doesn't
836 	 * already exist.
837 	 */
838 	region = (struct userspace_mem_region *) userspace_mem_region_find(
839 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
840 	if (region != NULL)
841 		TEST_FAIL("overlapping userspace_mem_region already "
842 			"exists\n"
843 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
844 			"page_size: 0x%x\n"
845 			"  existing guest_paddr: 0x%lx size: 0x%lx",
846 			guest_paddr, npages, vm->page_size,
847 			(uint64_t) region->region.guest_phys_addr,
848 			(uint64_t) region->region.memory_size);
849 
850 	/* Confirm no region with the requested slot already exists. */
851 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
852 			       slot) {
853 		if (region->region.slot != slot)
854 			continue;
855 
856 		TEST_FAIL("A mem region with the requested slot "
857 			"already exists.\n"
858 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
859 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
860 			slot, guest_paddr, npages,
861 			region->region.slot,
862 			(uint64_t) region->region.guest_phys_addr,
863 			(uint64_t) region->region.memory_size);
864 	}
865 
866 	/* Allocate and initialize new mem region structure. */
867 	region = calloc(1, sizeof(*region));
868 	TEST_ASSERT(region != NULL, "Insufficient Memory");
869 	region->mmap_size = npages * vm->page_size;
870 
871 #ifdef __s390x__
872 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
873 	alignment = 0x100000;
874 #else
875 	alignment = 1;
876 #endif
877 
878 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
879 		alignment = max(backing_src_pagesz, alignment);
880 
881 	/* Add enough memory to align up if necessary */
882 	if (alignment > 1)
883 		region->mmap_size += alignment;
884 
885 	region->fd = -1;
886 	if (backing_src_is_shared(src_type)) {
887 		int memfd_flags = MFD_CLOEXEC;
888 
889 		if (src_type == VM_MEM_SRC_SHARED_HUGETLB)
890 			memfd_flags |= MFD_HUGETLB;
891 
892 		region->fd = memfd_create("kvm_selftest", memfd_flags);
893 		TEST_ASSERT(region->fd != -1,
894 			    "memfd_create failed, errno: %i", errno);
895 
896 		ret = ftruncate(region->fd, region->mmap_size);
897 		TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno);
898 
899 		ret = fallocate(region->fd,
900 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0,
901 				region->mmap_size);
902 		TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno);
903 	}
904 
905 	region->mmap_start = mmap(NULL, region->mmap_size,
906 				  PROT_READ | PROT_WRITE,
907 				  vm_mem_backing_src_alias(src_type)->flag,
908 				  region->fd, 0);
909 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
910 		    "test_malloc failed, mmap_start: %p errno: %i",
911 		    region->mmap_start, errno);
912 
913 	/* Align host address */
914 	region->host_mem = align(region->mmap_start, alignment);
915 
916 	/* As needed perform madvise */
917 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
918 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
919 		ret = madvise(region->host_mem, npages * vm->page_size,
920 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
921 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
922 			    region->host_mem, npages * vm->page_size,
923 			    vm_mem_backing_src_alias(src_type)->name);
924 	}
925 
926 	region->unused_phy_pages = sparsebit_alloc();
927 	sparsebit_set_num(region->unused_phy_pages,
928 		guest_paddr >> vm->page_shift, npages);
929 	region->region.slot = slot;
930 	region->region.flags = flags;
931 	region->region.guest_phys_addr = guest_paddr;
932 	region->region.memory_size = npages * vm->page_size;
933 	region->region.userspace_addr = (uintptr_t) region->host_mem;
934 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
935 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
936 		"  rc: %i errno: %i\n"
937 		"  slot: %u flags: 0x%x\n"
938 		"  guest_phys_addr: 0x%lx size: 0x%lx",
939 		ret, errno, slot, flags,
940 		guest_paddr, (uint64_t) region->region.memory_size);
941 
942 	/* Add to quick lookup data structures */
943 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
944 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
945 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
946 
947 	/* If shared memory, create an alias. */
948 	if (region->fd >= 0) {
949 		region->mmap_alias = mmap(NULL, region->mmap_size,
950 					  PROT_READ | PROT_WRITE,
951 					  vm_mem_backing_src_alias(src_type)->flag,
952 					  region->fd, 0);
953 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
954 			    "mmap of alias failed, errno: %i", errno);
955 
956 		/* Align host alias address */
957 		region->host_alias = align(region->mmap_alias, alignment);
958 	}
959 }
960 
961 /*
962  * Memslot to region
963  *
964  * Input Args:
965  *   vm - Virtual Machine
966  *   memslot - KVM memory slot ID
967  *
968  * Output Args: None
969  *
970  * Return:
971  *   Pointer to memory region structure that describe memory region
972  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
973  *   on error (e.g. currently no memory region using memslot as a KVM
974  *   memory slot ID).
975  */
976 struct userspace_mem_region *
977 memslot2region(struct kvm_vm *vm, uint32_t memslot)
978 {
979 	struct userspace_mem_region *region;
980 
981 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
982 			       memslot)
983 		if (region->region.slot == memslot)
984 			return region;
985 
986 	fprintf(stderr, "No mem region with the requested slot found,\n"
987 		"  requested slot: %u\n", memslot);
988 	fputs("---- vm dump ----\n", stderr);
989 	vm_dump(stderr, vm, 2);
990 	TEST_FAIL("Mem region not found");
991 	return NULL;
992 }
993 
994 /*
995  * VM Memory Region Flags Set
996  *
997  * Input Args:
998  *   vm - Virtual Machine
999  *   flags - Starting guest physical address
1000  *
1001  * Output Args: None
1002  *
1003  * Return: None
1004  *
1005  * Sets the flags of the memory region specified by the value of slot,
1006  * to the values given by flags.
1007  */
1008 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1009 {
1010 	int ret;
1011 	struct userspace_mem_region *region;
1012 
1013 	region = memslot2region(vm, slot);
1014 
1015 	region->region.flags = flags;
1016 
1017 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1018 
1019 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1020 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1021 		ret, errno, slot, flags);
1022 }
1023 
1024 /*
1025  * VM Memory Region Move
1026  *
1027  * Input Args:
1028  *   vm - Virtual Machine
1029  *   slot - Slot of the memory region to move
1030  *   new_gpa - Starting guest physical address
1031  *
1032  * Output Args: None
1033  *
1034  * Return: None
1035  *
1036  * Change the gpa of a memory region.
1037  */
1038 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1039 {
1040 	struct userspace_mem_region *region;
1041 	int ret;
1042 
1043 	region = memslot2region(vm, slot);
1044 
1045 	region->region.guest_phys_addr = new_gpa;
1046 
1047 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1048 
1049 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1050 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1051 		    ret, errno, slot, new_gpa);
1052 }
1053 
1054 /*
1055  * VM Memory Region Delete
1056  *
1057  * Input Args:
1058  *   vm - Virtual Machine
1059  *   slot - Slot of the memory region to delete
1060  *
1061  * Output Args: None
1062  *
1063  * Return: None
1064  *
1065  * Delete a memory region.
1066  */
1067 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1068 {
1069 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1070 }
1071 
1072 /*
1073  * VCPU mmap Size
1074  *
1075  * Input Args: None
1076  *
1077  * Output Args: None
1078  *
1079  * Return:
1080  *   Size of VCPU state
1081  *
1082  * Returns the size of the structure pointed to by the return value
1083  * of vcpu_state().
1084  */
1085 static int vcpu_mmap_sz(void)
1086 {
1087 	int dev_fd, ret;
1088 
1089 	dev_fd = open_kvm_dev_path_or_exit();
1090 
1091 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1092 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1093 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1094 		__func__, ret, errno);
1095 
1096 	close(dev_fd);
1097 
1098 	return ret;
1099 }
1100 
1101 /*
1102  * VM VCPU Add
1103  *
1104  * Input Args:
1105  *   vm - Virtual Machine
1106  *   vcpuid - VCPU ID
1107  *
1108  * Output Args: None
1109  *
1110  * Return: None
1111  *
1112  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1113  * No additional VCPU setup is done.
1114  */
1115 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1116 {
1117 	struct vcpu *vcpu;
1118 
1119 	/* Confirm a vcpu with the specified id doesn't already exist. */
1120 	vcpu = vcpu_find(vm, vcpuid);
1121 	if (vcpu != NULL)
1122 		TEST_FAIL("vcpu with the specified id "
1123 			"already exists,\n"
1124 			"  requested vcpuid: %u\n"
1125 			"  existing vcpuid: %u state: %p",
1126 			vcpuid, vcpu->id, vcpu->state);
1127 
1128 	/* Allocate and initialize new vcpu structure. */
1129 	vcpu = calloc(1, sizeof(*vcpu));
1130 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1131 	vcpu->id = vcpuid;
1132 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1133 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1134 		vcpu->fd, errno);
1135 
1136 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1137 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1138 		vcpu_mmap_sz(), sizeof(*vcpu->state));
1139 	vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1140 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1141 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1142 		"vcpu id: %u errno: %i", vcpuid, errno);
1143 
1144 	/* Add to linked-list of VCPUs. */
1145 	list_add(&vcpu->list, &vm->vcpus);
1146 }
1147 
1148 /*
1149  * VM Virtual Address Unused Gap
1150  *
1151  * Input Args:
1152  *   vm - Virtual Machine
1153  *   sz - Size (bytes)
1154  *   vaddr_min - Minimum Virtual Address
1155  *
1156  * Output Args: None
1157  *
1158  * Return:
1159  *   Lowest virtual address at or below vaddr_min, with at least
1160  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1161  *   size sz is available.
1162  *
1163  * Within the VM specified by vm, locates the lowest starting virtual
1164  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1165  * TEST_ASSERT failure occurs for invalid input or no area of at least
1166  * sz unallocated bytes >= vaddr_min is available.
1167  */
1168 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1169 				      vm_vaddr_t vaddr_min)
1170 {
1171 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1172 
1173 	/* Determine lowest permitted virtual page index. */
1174 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1175 	if ((pgidx_start * vm->page_size) < vaddr_min)
1176 		goto no_va_found;
1177 
1178 	/* Loop over section with enough valid virtual page indexes. */
1179 	if (!sparsebit_is_set_num(vm->vpages_valid,
1180 		pgidx_start, pages))
1181 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1182 			pgidx_start, pages);
1183 	do {
1184 		/*
1185 		 * Are there enough unused virtual pages available at
1186 		 * the currently proposed starting virtual page index.
1187 		 * If not, adjust proposed starting index to next
1188 		 * possible.
1189 		 */
1190 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1191 			pgidx_start, pages))
1192 			goto va_found;
1193 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1194 			pgidx_start, pages);
1195 		if (pgidx_start == 0)
1196 			goto no_va_found;
1197 
1198 		/*
1199 		 * If needed, adjust proposed starting virtual address,
1200 		 * to next range of valid virtual addresses.
1201 		 */
1202 		if (!sparsebit_is_set_num(vm->vpages_valid,
1203 			pgidx_start, pages)) {
1204 			pgidx_start = sparsebit_next_set_num(
1205 				vm->vpages_valid, pgidx_start, pages);
1206 			if (pgidx_start == 0)
1207 				goto no_va_found;
1208 		}
1209 	} while (pgidx_start != 0);
1210 
1211 no_va_found:
1212 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1213 
1214 	/* NOT REACHED */
1215 	return -1;
1216 
1217 va_found:
1218 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1219 		pgidx_start, pages),
1220 		"Unexpected, invalid virtual page index range,\n"
1221 		"  pgidx_start: 0x%lx\n"
1222 		"  pages: 0x%lx",
1223 		pgidx_start, pages);
1224 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1225 		pgidx_start, pages),
1226 		"Unexpected, pages already mapped,\n"
1227 		"  pgidx_start: 0x%lx\n"
1228 		"  pages: 0x%lx",
1229 		pgidx_start, pages);
1230 
1231 	return pgidx_start * vm->page_size;
1232 }
1233 
1234 /*
1235  * VM Virtual Address Allocate
1236  *
1237  * Input Args:
1238  *   vm - Virtual Machine
1239  *   sz - Size in bytes
1240  *   vaddr_min - Minimum starting virtual address
1241  *   data_memslot - Memory region slot for data pages
1242  *   pgd_memslot - Memory region slot for new virtual translation tables
1243  *
1244  * Output Args: None
1245  *
1246  * Return:
1247  *   Starting guest virtual address
1248  *
1249  * Allocates at least sz bytes within the virtual address space of the vm
1250  * given by vm.  The allocated bytes are mapped to a virtual address >=
1251  * the address given by vaddr_min.  Note that each allocation uses a
1252  * a unique set of pages, with the minimum real allocation being at least
1253  * a page.
1254  */
1255 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1256 {
1257 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1258 
1259 	virt_pgd_alloc(vm);
1260 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1261 					      KVM_UTIL_MIN_PFN * vm->page_size, 0);
1262 
1263 	/*
1264 	 * Find an unused range of virtual page addresses of at least
1265 	 * pages in length.
1266 	 */
1267 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1268 
1269 	/* Map the virtual pages. */
1270 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1271 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1272 
1273 		virt_pg_map(vm, vaddr, paddr);
1274 
1275 		sparsebit_set(vm->vpages_mapped,
1276 			vaddr >> vm->page_shift);
1277 	}
1278 
1279 	return vaddr_start;
1280 }
1281 
1282 /*
1283  * VM Virtual Address Allocate Pages
1284  *
1285  * Input Args:
1286  *   vm - Virtual Machine
1287  *
1288  * Output Args: None
1289  *
1290  * Return:
1291  *   Starting guest virtual address
1292  *
1293  * Allocates at least N system pages worth of bytes within the virtual address
1294  * space of the vm.
1295  */
1296 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1297 {
1298 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1299 }
1300 
1301 /*
1302  * VM Virtual Address Allocate Page
1303  *
1304  * Input Args:
1305  *   vm - Virtual Machine
1306  *
1307  * Output Args: None
1308  *
1309  * Return:
1310  *   Starting guest virtual address
1311  *
1312  * Allocates at least one system page worth of bytes within the virtual address
1313  * space of the vm.
1314  */
1315 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1316 {
1317 	return vm_vaddr_alloc_pages(vm, 1);
1318 }
1319 
1320 /*
1321  * Map a range of VM virtual address to the VM's physical address
1322  *
1323  * Input Args:
1324  *   vm - Virtual Machine
1325  *   vaddr - Virtuall address to map
1326  *   paddr - VM Physical Address
1327  *   npages - The number of pages to map
1328  *   pgd_memslot - Memory region slot for new virtual translation tables
1329  *
1330  * Output Args: None
1331  *
1332  * Return: None
1333  *
1334  * Within the VM given by @vm, creates a virtual translation for
1335  * @npages starting at @vaddr to the page range starting at @paddr.
1336  */
1337 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1338 	      unsigned int npages)
1339 {
1340 	size_t page_size = vm->page_size;
1341 	size_t size = npages * page_size;
1342 
1343 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1344 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1345 
1346 	while (npages--) {
1347 		virt_pg_map(vm, vaddr, paddr);
1348 		vaddr += page_size;
1349 		paddr += page_size;
1350 	}
1351 }
1352 
1353 /*
1354  * Address VM Physical to Host Virtual
1355  *
1356  * Input Args:
1357  *   vm - Virtual Machine
1358  *   gpa - VM physical address
1359  *
1360  * Output Args: None
1361  *
1362  * Return:
1363  *   Equivalent host virtual address
1364  *
1365  * Locates the memory region containing the VM physical address given
1366  * by gpa, within the VM given by vm.  When found, the host virtual
1367  * address providing the memory to the vm physical address is returned.
1368  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1369  */
1370 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1371 {
1372 	struct userspace_mem_region *region;
1373 
1374 	region = userspace_mem_region_find(vm, gpa, gpa);
1375 	if (!region) {
1376 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1377 		return NULL;
1378 	}
1379 
1380 	return (void *)((uintptr_t)region->host_mem
1381 		+ (gpa - region->region.guest_phys_addr));
1382 }
1383 
1384 /*
1385  * Address Host Virtual to VM Physical
1386  *
1387  * Input Args:
1388  *   vm - Virtual Machine
1389  *   hva - Host virtual address
1390  *
1391  * Output Args: None
1392  *
1393  * Return:
1394  *   Equivalent VM physical address
1395  *
1396  * Locates the memory region containing the host virtual address given
1397  * by hva, within the VM given by vm.  When found, the equivalent
1398  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1399  * region containing hva exists.
1400  */
1401 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1402 {
1403 	struct rb_node *node;
1404 
1405 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1406 		struct userspace_mem_region *region =
1407 			container_of(node, struct userspace_mem_region, hva_node);
1408 
1409 		if (hva >= region->host_mem) {
1410 			if (hva <= (region->host_mem
1411 				+ region->region.memory_size - 1))
1412 				return (vm_paddr_t)((uintptr_t)
1413 					region->region.guest_phys_addr
1414 					+ (hva - (uintptr_t)region->host_mem));
1415 
1416 			node = node->rb_right;
1417 		} else
1418 			node = node->rb_left;
1419 	}
1420 
1421 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1422 	return -1;
1423 }
1424 
1425 /*
1426  * Address VM physical to Host Virtual *alias*.
1427  *
1428  * Input Args:
1429  *   vm - Virtual Machine
1430  *   gpa - VM physical address
1431  *
1432  * Output Args: None
1433  *
1434  * Return:
1435  *   Equivalent address within the host virtual *alias* area, or NULL
1436  *   (without failing the test) if the guest memory is not shared (so
1437  *   no alias exists).
1438  *
1439  * When vm_create() and related functions are called with a shared memory
1440  * src_type, we also create a writable, shared alias mapping of the
1441  * underlying guest memory. This allows the host to manipulate guest memory
1442  * without mapping that memory in the guest's address space. And, for
1443  * userfaultfd-based demand paging, we can do so without triggering userfaults.
1444  */
1445 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1446 {
1447 	struct userspace_mem_region *region;
1448 	uintptr_t offset;
1449 
1450 	region = userspace_mem_region_find(vm, gpa, gpa);
1451 	if (!region)
1452 		return NULL;
1453 
1454 	if (!region->host_alias)
1455 		return NULL;
1456 
1457 	offset = gpa - region->region.guest_phys_addr;
1458 	return (void *) ((uintptr_t) region->host_alias + offset);
1459 }
1460 
1461 /*
1462  * VM Create IRQ Chip
1463  *
1464  * Input Args:
1465  *   vm - Virtual Machine
1466  *
1467  * Output Args: None
1468  *
1469  * Return: None
1470  *
1471  * Creates an interrupt controller chip for the VM specified by vm.
1472  */
1473 void vm_create_irqchip(struct kvm_vm *vm)
1474 {
1475 	int ret;
1476 
1477 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1478 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1479 		"rc: %i errno: %i", ret, errno);
1480 
1481 	vm->has_irqchip = true;
1482 }
1483 
1484 /*
1485  * VM VCPU State
1486  *
1487  * Input Args:
1488  *   vm - Virtual Machine
1489  *   vcpuid - VCPU ID
1490  *
1491  * Output Args: None
1492  *
1493  * Return:
1494  *   Pointer to structure that describes the state of the VCPU.
1495  *
1496  * Locates and returns a pointer to a structure that describes the
1497  * state of the VCPU with the given vcpuid.
1498  */
1499 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1500 {
1501 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1502 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1503 
1504 	return vcpu->state;
1505 }
1506 
1507 /*
1508  * VM VCPU Run
1509  *
1510  * Input Args:
1511  *   vm - Virtual Machine
1512  *   vcpuid - VCPU ID
1513  *
1514  * Output Args: None
1515  *
1516  * Return: None
1517  *
1518  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1519  * given by vm.
1520  */
1521 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1522 {
1523 	int ret = _vcpu_run(vm, vcpuid);
1524 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1525 		"rc: %i errno: %i", ret, errno);
1526 }
1527 
1528 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1529 {
1530 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1531 	int rc;
1532 
1533 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1534 	do {
1535 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1536 	} while (rc == -1 && errno == EINTR);
1537 
1538 	assert_on_unhandled_exception(vm, vcpuid);
1539 
1540 	return rc;
1541 }
1542 
1543 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1544 {
1545 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1546 
1547 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1548 
1549 	return vcpu->fd;
1550 }
1551 
1552 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1553 {
1554 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1555 	int ret;
1556 
1557 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1558 
1559 	vcpu->state->immediate_exit = 1;
1560 	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1561 	vcpu->state->immediate_exit = 0;
1562 
1563 	TEST_ASSERT(ret == -1 && errno == EINTR,
1564 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1565 		    ret, errno);
1566 }
1567 
1568 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1569 			  struct kvm_guest_debug *debug)
1570 {
1571 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1572 	int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1573 
1574 	TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1575 }
1576 
1577 /*
1578  * VM VCPU Set MP State
1579  *
1580  * Input Args:
1581  *   vm - Virtual Machine
1582  *   vcpuid - VCPU ID
1583  *   mp_state - mp_state to be set
1584  *
1585  * Output Args: None
1586  *
1587  * Return: None
1588  *
1589  * Sets the MP state of the VCPU given by vcpuid, to the state given
1590  * by mp_state.
1591  */
1592 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1593 		       struct kvm_mp_state *mp_state)
1594 {
1595 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1596 	int ret;
1597 
1598 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1599 
1600 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1601 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1602 		"rc: %i errno: %i", ret, errno);
1603 }
1604 
1605 /*
1606  * VM VCPU Get Reg List
1607  *
1608  * Input Args:
1609  *   vm - Virtual Machine
1610  *   vcpuid - VCPU ID
1611  *
1612  * Output Args:
1613  *   None
1614  *
1615  * Return:
1616  *   A pointer to an allocated struct kvm_reg_list
1617  *
1618  * Get the list of guest registers which are supported for
1619  * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1620  */
1621 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1622 {
1623 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1624 	int ret;
1625 
1626 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1627 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1628 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1629 	reg_list->n = reg_list_n.n;
1630 	vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1631 	return reg_list;
1632 }
1633 
1634 /*
1635  * VM VCPU Regs Get
1636  *
1637  * Input Args:
1638  *   vm - Virtual Machine
1639  *   vcpuid - VCPU ID
1640  *
1641  * Output Args:
1642  *   regs - current state of VCPU regs
1643  *
1644  * Return: None
1645  *
1646  * Obtains the current register state for the VCPU specified by vcpuid
1647  * and stores it at the location given by regs.
1648  */
1649 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1650 {
1651 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1652 	int ret;
1653 
1654 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1655 
1656 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1657 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1658 		ret, errno);
1659 }
1660 
1661 /*
1662  * VM VCPU Regs Set
1663  *
1664  * Input Args:
1665  *   vm - Virtual Machine
1666  *   vcpuid - VCPU ID
1667  *   regs - Values to set VCPU regs to
1668  *
1669  * Output Args: None
1670  *
1671  * Return: None
1672  *
1673  * Sets the regs of the VCPU specified by vcpuid to the values
1674  * given by regs.
1675  */
1676 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1677 {
1678 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1679 	int ret;
1680 
1681 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1682 
1683 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1684 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1685 		ret, errno);
1686 }
1687 
1688 #ifdef __KVM_HAVE_VCPU_EVENTS
1689 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1690 		     struct kvm_vcpu_events *events)
1691 {
1692 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1693 	int ret;
1694 
1695 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1696 
1697 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1698 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1699 		ret, errno);
1700 }
1701 
1702 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1703 		     struct kvm_vcpu_events *events)
1704 {
1705 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1706 	int ret;
1707 
1708 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1709 
1710 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1711 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1712 		ret, errno);
1713 }
1714 #endif
1715 
1716 #ifdef __x86_64__
1717 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1718 			   struct kvm_nested_state *state)
1719 {
1720 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1721 	int ret;
1722 
1723 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1724 
1725 	ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1726 	TEST_ASSERT(ret == 0,
1727 		"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1728 		ret, errno);
1729 }
1730 
1731 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1732 			  struct kvm_nested_state *state, bool ignore_error)
1733 {
1734 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1735 	int ret;
1736 
1737 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1738 
1739 	ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1740 	if (!ignore_error) {
1741 		TEST_ASSERT(ret == 0,
1742 			"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1743 			ret, errno);
1744 	}
1745 
1746 	return ret;
1747 }
1748 #endif
1749 
1750 /*
1751  * VM VCPU System Regs Get
1752  *
1753  * Input Args:
1754  *   vm - Virtual Machine
1755  *   vcpuid - VCPU ID
1756  *
1757  * Output Args:
1758  *   sregs - current state of VCPU system regs
1759  *
1760  * Return: None
1761  *
1762  * Obtains the current system register state for the VCPU specified by
1763  * vcpuid and stores it at the location given by sregs.
1764  */
1765 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1766 {
1767 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1768 	int ret;
1769 
1770 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1771 
1772 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1773 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1774 		ret, errno);
1775 }
1776 
1777 /*
1778  * VM VCPU System Regs Set
1779  *
1780  * Input Args:
1781  *   vm - Virtual Machine
1782  *   vcpuid - VCPU ID
1783  *   sregs - Values to set VCPU system regs to
1784  *
1785  * Output Args: None
1786  *
1787  * Return: None
1788  *
1789  * Sets the system regs of the VCPU specified by vcpuid to the values
1790  * given by sregs.
1791  */
1792 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1793 {
1794 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1795 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1796 		"rc: %i errno: %i", ret, errno);
1797 }
1798 
1799 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1800 {
1801 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1802 
1803 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1804 
1805 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1806 }
1807 
1808 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1809 {
1810 	int ret;
1811 
1812 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1813 	TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1814 		    ret, errno, strerror(errno));
1815 }
1816 
1817 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1818 {
1819 	int ret;
1820 
1821 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1822 	TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1823 		    ret, errno, strerror(errno));
1824 }
1825 
1826 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1827 {
1828 	int ret;
1829 
1830 	ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1831 	TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1832 		    ret, errno, strerror(errno));
1833 }
1834 
1835 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1836 {
1837 	int ret;
1838 
1839 	ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1840 	TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1841 		    ret, errno, strerror(errno));
1842 }
1843 
1844 /*
1845  * VCPU Ioctl
1846  *
1847  * Input Args:
1848  *   vm - Virtual Machine
1849  *   vcpuid - VCPU ID
1850  *   cmd - Ioctl number
1851  *   arg - Argument to pass to the ioctl
1852  *
1853  * Return: None
1854  *
1855  * Issues an arbitrary ioctl on a VCPU fd.
1856  */
1857 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1858 		unsigned long cmd, void *arg)
1859 {
1860 	int ret;
1861 
1862 	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1863 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1864 		cmd, ret, errno, strerror(errno));
1865 }
1866 
1867 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1868 		unsigned long cmd, void *arg)
1869 {
1870 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1871 	int ret;
1872 
1873 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1874 
1875 	ret = ioctl(vcpu->fd, cmd, arg);
1876 
1877 	return ret;
1878 }
1879 
1880 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1881 {
1882 	struct vcpu *vcpu;
1883 	uint32_t size = vm->dirty_ring_size;
1884 
1885 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1886 
1887 	vcpu = vcpu_find(vm, vcpuid);
1888 
1889 	TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1890 
1891 	if (!vcpu->dirty_gfns) {
1892 		void *addr;
1893 
1894 		addr = mmap(NULL, size, PROT_READ,
1895 			    MAP_PRIVATE, vcpu->fd,
1896 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1897 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1898 
1899 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1900 			    MAP_PRIVATE, vcpu->fd,
1901 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1902 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1903 
1904 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1905 			    MAP_SHARED, vcpu->fd,
1906 			    vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1907 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1908 
1909 		vcpu->dirty_gfns = addr;
1910 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1911 	}
1912 
1913 	return vcpu->dirty_gfns;
1914 }
1915 
1916 /*
1917  * VM Ioctl
1918  *
1919  * Input Args:
1920  *   vm - Virtual Machine
1921  *   cmd - Ioctl number
1922  *   arg - Argument to pass to the ioctl
1923  *
1924  * Return: None
1925  *
1926  * Issues an arbitrary ioctl on a VM fd.
1927  */
1928 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1929 {
1930 	int ret;
1931 
1932 	ret = _vm_ioctl(vm, cmd, arg);
1933 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1934 		cmd, ret, errno, strerror(errno));
1935 }
1936 
1937 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1938 {
1939 	return ioctl(vm->fd, cmd, arg);
1940 }
1941 
1942 /*
1943  * KVM system ioctl
1944  *
1945  * Input Args:
1946  *   vm - Virtual Machine
1947  *   cmd - Ioctl number
1948  *   arg - Argument to pass to the ioctl
1949  *
1950  * Return: None
1951  *
1952  * Issues an arbitrary ioctl on a KVM fd.
1953  */
1954 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1955 {
1956 	int ret;
1957 
1958 	ret = ioctl(vm->kvm_fd, cmd, arg);
1959 	TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
1960 		cmd, ret, errno, strerror(errno));
1961 }
1962 
1963 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1964 {
1965 	return ioctl(vm->kvm_fd, cmd, arg);
1966 }
1967 
1968 /*
1969  * Device Ioctl
1970  */
1971 
1972 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1973 {
1974 	struct kvm_device_attr attribute = {
1975 		.group = group,
1976 		.attr = attr,
1977 		.flags = 0,
1978 	};
1979 
1980 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1981 }
1982 
1983 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1984 {
1985 	int ret = _kvm_device_check_attr(dev_fd, group, attr);
1986 
1987 	TEST_ASSERT(ret >= 0, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
1988 	return ret;
1989 }
1990 
1991 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
1992 {
1993 	struct kvm_create_device create_dev;
1994 	int ret;
1995 
1996 	create_dev.type = type;
1997 	create_dev.fd = -1;
1998 	create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
1999 	ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2000 	*fd = create_dev.fd;
2001 	return ret;
2002 }
2003 
2004 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2005 {
2006 	int fd, ret;
2007 
2008 	ret = _kvm_create_device(vm, type, test, &fd);
2009 
2010 	if (!test) {
2011 		TEST_ASSERT(ret >= 0,
2012 			    "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2013 		return fd;
2014 	}
2015 	return ret;
2016 }
2017 
2018 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2019 		      void *val, bool write)
2020 {
2021 	struct kvm_device_attr kvmattr = {
2022 		.group = group,
2023 		.attr = attr,
2024 		.flags = 0,
2025 		.addr = (uintptr_t)val,
2026 	};
2027 	int ret;
2028 
2029 	ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2030 		    &kvmattr);
2031 	return ret;
2032 }
2033 
2034 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2035 		      void *val, bool write)
2036 {
2037 	int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2038 
2039 	TEST_ASSERT(ret >= 0, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2040 	return ret;
2041 }
2042 
2043 /*
2044  * VM Dump
2045  *
2046  * Input Args:
2047  *   vm - Virtual Machine
2048  *   indent - Left margin indent amount
2049  *
2050  * Output Args:
2051  *   stream - Output FILE stream
2052  *
2053  * Return: None
2054  *
2055  * Dumps the current state of the VM given by vm, to the FILE stream
2056  * given by stream.
2057  */
2058 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2059 {
2060 	int ctr;
2061 	struct userspace_mem_region *region;
2062 	struct vcpu *vcpu;
2063 
2064 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2065 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2066 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2067 	fprintf(stream, "%*sMem Regions:\n", indent, "");
2068 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2069 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2070 			"host_virt: %p\n", indent + 2, "",
2071 			(uint64_t) region->region.guest_phys_addr,
2072 			(uint64_t) region->region.memory_size,
2073 			region->host_mem);
2074 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2075 		sparsebit_dump(stream, region->unused_phy_pages, 0);
2076 	}
2077 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2078 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2079 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
2080 		vm->pgd_created);
2081 	if (vm->pgd_created) {
2082 		fprintf(stream, "%*sVirtual Translation Tables:\n",
2083 			indent + 2, "");
2084 		virt_dump(stream, vm, indent + 4);
2085 	}
2086 	fprintf(stream, "%*sVCPUs:\n", indent, "");
2087 	list_for_each_entry(vcpu, &vm->vcpus, list)
2088 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
2089 }
2090 
2091 /* Known KVM exit reasons */
2092 static struct exit_reason {
2093 	unsigned int reason;
2094 	const char *name;
2095 } exit_reasons_known[] = {
2096 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
2097 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
2098 	{KVM_EXIT_IO, "IO"},
2099 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
2100 	{KVM_EXIT_DEBUG, "DEBUG"},
2101 	{KVM_EXIT_HLT, "HLT"},
2102 	{KVM_EXIT_MMIO, "MMIO"},
2103 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2104 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2105 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2106 	{KVM_EXIT_INTR, "INTR"},
2107 	{KVM_EXIT_SET_TPR, "SET_TPR"},
2108 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2109 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2110 	{KVM_EXIT_S390_RESET, "S390_RESET"},
2111 	{KVM_EXIT_DCR, "DCR"},
2112 	{KVM_EXIT_NMI, "NMI"},
2113 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2114 	{KVM_EXIT_OSI, "OSI"},
2115 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2116 	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2117 	{KVM_EXIT_X86_RDMSR, "RDMSR"},
2118 	{KVM_EXIT_X86_WRMSR, "WRMSR"},
2119 	{KVM_EXIT_XEN, "XEN"},
2120 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2121 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2122 #endif
2123 };
2124 
2125 /*
2126  * Exit Reason String
2127  *
2128  * Input Args:
2129  *   exit_reason - Exit reason
2130  *
2131  * Output Args: None
2132  *
2133  * Return:
2134  *   Constant string pointer describing the exit reason.
2135  *
2136  * Locates and returns a constant string that describes the KVM exit
2137  * reason given by exit_reason.  If no such string is found, a constant
2138  * string of "Unknown" is returned.
2139  */
2140 const char *exit_reason_str(unsigned int exit_reason)
2141 {
2142 	unsigned int n1;
2143 
2144 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2145 		if (exit_reason == exit_reasons_known[n1].reason)
2146 			return exit_reasons_known[n1].name;
2147 	}
2148 
2149 	return "Unknown";
2150 }
2151 
2152 /*
2153  * Physical Contiguous Page Allocator
2154  *
2155  * Input Args:
2156  *   vm - Virtual Machine
2157  *   num - number of pages
2158  *   paddr_min - Physical address minimum
2159  *   memslot - Memory region to allocate page from
2160  *
2161  * Output Args: None
2162  *
2163  * Return:
2164  *   Starting physical address
2165  *
2166  * Within the VM specified by vm, locates a range of available physical
2167  * pages at or above paddr_min. If found, the pages are marked as in use
2168  * and their base address is returned. A TEST_ASSERT failure occurs if
2169  * not enough pages are available at or above paddr_min.
2170  */
2171 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2172 			      vm_paddr_t paddr_min, uint32_t memslot)
2173 {
2174 	struct userspace_mem_region *region;
2175 	sparsebit_idx_t pg, base;
2176 
2177 	TEST_ASSERT(num > 0, "Must allocate at least one page");
2178 
2179 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2180 		"not divisible by page size.\n"
2181 		"  paddr_min: 0x%lx page_size: 0x%x",
2182 		paddr_min, vm->page_size);
2183 
2184 	region = memslot2region(vm, memslot);
2185 	base = pg = paddr_min >> vm->page_shift;
2186 
2187 	do {
2188 		for (; pg < base + num; ++pg) {
2189 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2190 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2191 				break;
2192 			}
2193 		}
2194 	} while (pg && pg != base + num);
2195 
2196 	if (pg == 0) {
2197 		fprintf(stderr, "No guest physical page available, "
2198 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2199 			paddr_min, vm->page_size, memslot);
2200 		fputs("---- vm dump ----\n", stderr);
2201 		vm_dump(stderr, vm, 2);
2202 		abort();
2203 	}
2204 
2205 	for (pg = base; pg < base + num; ++pg)
2206 		sparsebit_clear(region->unused_phy_pages, pg);
2207 
2208 	return base * vm->page_size;
2209 }
2210 
2211 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2212 			     uint32_t memslot)
2213 {
2214 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2215 }
2216 
2217 /* Arbitrary minimum physical address used for virtual translation tables. */
2218 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2219 
2220 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2221 {
2222 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2223 }
2224 
2225 /*
2226  * Address Guest Virtual to Host Virtual
2227  *
2228  * Input Args:
2229  *   vm - Virtual Machine
2230  *   gva - VM virtual address
2231  *
2232  * Output Args: None
2233  *
2234  * Return:
2235  *   Equivalent host virtual address
2236  */
2237 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2238 {
2239 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2240 }
2241 
2242 /*
2243  * Is Unrestricted Guest
2244  *
2245  * Input Args:
2246  *   vm - Virtual Machine
2247  *
2248  * Output Args: None
2249  *
2250  * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2251  *
2252  * Check if the unrestricted guest flag is enabled.
2253  */
2254 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2255 {
2256 	char val = 'N';
2257 	size_t count;
2258 	FILE *f;
2259 
2260 	if (vm == NULL) {
2261 		/* Ensure that the KVM vendor-specific module is loaded. */
2262 		close(open_kvm_dev_path_or_exit());
2263 	}
2264 
2265 	f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2266 	if (f) {
2267 		count = fread(&val, sizeof(char), 1, f);
2268 		TEST_ASSERT(count == 1, "Unable to read from param file.");
2269 		fclose(f);
2270 	}
2271 
2272 	return val == 'Y';
2273 }
2274 
2275 unsigned int vm_get_page_size(struct kvm_vm *vm)
2276 {
2277 	return vm->page_size;
2278 }
2279 
2280 unsigned int vm_get_page_shift(struct kvm_vm *vm)
2281 {
2282 	return vm->page_shift;
2283 }
2284 
2285 uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2286 {
2287 	return vm->max_gfn;
2288 }
2289 
2290 int vm_get_fd(struct kvm_vm *vm)
2291 {
2292 	return vm->fd;
2293 }
2294 
2295 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2296 				      unsigned int page_shift,
2297 				      unsigned int new_page_shift,
2298 				      bool ceil)
2299 {
2300 	unsigned int n = 1 << (new_page_shift - page_shift);
2301 
2302 	if (page_shift >= new_page_shift)
2303 		return num_pages * (1 << (page_shift - new_page_shift));
2304 
2305 	return num_pages / n + !!(ceil && num_pages % n);
2306 }
2307 
2308 static inline int getpageshift(void)
2309 {
2310 	return __builtin_ffs(getpagesize()) - 1;
2311 }
2312 
2313 unsigned int
2314 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2315 {
2316 	return vm_calc_num_pages(num_guest_pages,
2317 				 vm_guest_mode_params[mode].page_shift,
2318 				 getpageshift(), true);
2319 }
2320 
2321 unsigned int
2322 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2323 {
2324 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2325 				 vm_guest_mode_params[mode].page_shift, false);
2326 }
2327 
2328 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2329 {
2330 	unsigned int n;
2331 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2332 	return vm_adjust_num_guest_pages(mode, n);
2333 }
2334 
2335 int vm_get_stats_fd(struct kvm_vm *vm)
2336 {
2337 	return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2338 }
2339 
2340 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2341 {
2342 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2343 
2344 	return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2345 }
2346