xref: /openbmc/linux/tools/testing/selftests/kvm/lib/kvm_util.c (revision ac73d4bf2cdaf2cb8a43df8ee4a5c066d2c5d7b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 
13 #include <assert.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <unistd.h>
18 #include <linux/kernel.h>
19 
20 #define KVM_UTIL_MIN_PFN	2
21 
22 static int vcpu_mmap_sz(void);
23 
24 int open_path_or_exit(const char *path, int flags)
25 {
26 	int fd;
27 
28 	fd = open(path, flags);
29 	__TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
30 
31 	return fd;
32 }
33 
34 /*
35  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
36  *
37  * Input Args:
38  *   flags - The flags to pass when opening KVM_DEV_PATH.
39  *
40  * Return:
41  *   The opened file descriptor of /dev/kvm.
42  */
43 static int _open_kvm_dev_path_or_exit(int flags)
44 {
45 	return open_path_or_exit(KVM_DEV_PATH, flags);
46 }
47 
48 int open_kvm_dev_path_or_exit(void)
49 {
50 	return _open_kvm_dev_path_or_exit(O_RDONLY);
51 }
52 
53 static bool get_module_param_bool(const char *module_name, const char *param)
54 {
55 	const int path_size = 128;
56 	char path[path_size];
57 	char value;
58 	ssize_t r;
59 	int fd;
60 
61 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
62 		     module_name, param);
63 	TEST_ASSERT(r < path_size,
64 		    "Failed to construct sysfs path in %d bytes.", path_size);
65 
66 	fd = open_path_or_exit(path, O_RDONLY);
67 
68 	r = read(fd, &value, 1);
69 	TEST_ASSERT(r == 1, "read(%s) failed", path);
70 
71 	r = close(fd);
72 	TEST_ASSERT(!r, "close(%s) failed", path);
73 
74 	if (value == 'Y')
75 		return true;
76 	else if (value == 'N')
77 		return false;
78 
79 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
80 }
81 
82 bool get_kvm_intel_param_bool(const char *param)
83 {
84 	return get_module_param_bool("kvm_intel", param);
85 }
86 
87 bool get_kvm_amd_param_bool(const char *param)
88 {
89 	return get_module_param_bool("kvm_amd", param);
90 }
91 
92 /*
93  * Capability
94  *
95  * Input Args:
96  *   cap - Capability
97  *
98  * Output Args: None
99  *
100  * Return:
101  *   On success, the Value corresponding to the capability (KVM_CAP_*)
102  *   specified by the value of cap.  On failure a TEST_ASSERT failure
103  *   is produced.
104  *
105  * Looks up and returns the value corresponding to the capability
106  * (KVM_CAP_*) given by cap.
107  */
108 unsigned int kvm_check_cap(long cap)
109 {
110 	int ret;
111 	int kvm_fd;
112 
113 	kvm_fd = open_kvm_dev_path_or_exit();
114 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
115 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
116 
117 	close(kvm_fd);
118 
119 	return (unsigned int)ret;
120 }
121 
122 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
123 {
124 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
125 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
126 	else
127 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
128 	vm->dirty_ring_size = ring_size;
129 }
130 
131 static void vm_open(struct kvm_vm *vm)
132 {
133 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
134 
135 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
136 
137 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
138 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
139 }
140 
141 const char *vm_guest_mode_string(uint32_t i)
142 {
143 	static const char * const strings[] = {
144 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
145 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
146 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
147 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
148 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
149 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
150 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
151 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
152 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
153 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
154 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
155 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
156 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
157 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
158 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
159 	};
160 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
161 		       "Missing new mode strings?");
162 
163 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
164 
165 	return strings[i];
166 }
167 
168 const struct vm_guest_mode_params vm_guest_mode_params[] = {
169 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
170 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
171 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
172 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
173 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
174 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
175 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
176 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
177 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
178 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
179 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
180 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
181 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
182 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
183 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
184 };
185 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
186 	       "Missing new mode params?");
187 
188 struct kvm_vm *____vm_create(enum vm_guest_mode mode, uint64_t nr_pages)
189 {
190 	struct kvm_vm *vm;
191 
192 	pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
193 		 vm_guest_mode_string(mode), nr_pages);
194 
195 	vm = calloc(1, sizeof(*vm));
196 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
197 
198 	INIT_LIST_HEAD(&vm->vcpus);
199 	vm->regions.gpa_tree = RB_ROOT;
200 	vm->regions.hva_tree = RB_ROOT;
201 	hash_init(vm->regions.slot_hash);
202 
203 	vm->mode = mode;
204 	vm->type = 0;
205 
206 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
207 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
208 	vm->page_size = vm_guest_mode_params[mode].page_size;
209 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
210 
211 	/* Setup mode specific traits. */
212 	switch (vm->mode) {
213 	case VM_MODE_P52V48_4K:
214 		vm->pgtable_levels = 4;
215 		break;
216 	case VM_MODE_P52V48_64K:
217 		vm->pgtable_levels = 3;
218 		break;
219 	case VM_MODE_P48V48_4K:
220 		vm->pgtable_levels = 4;
221 		break;
222 	case VM_MODE_P48V48_64K:
223 		vm->pgtable_levels = 3;
224 		break;
225 	case VM_MODE_P40V48_4K:
226 	case VM_MODE_P36V48_4K:
227 		vm->pgtable_levels = 4;
228 		break;
229 	case VM_MODE_P40V48_64K:
230 	case VM_MODE_P36V48_64K:
231 		vm->pgtable_levels = 3;
232 		break;
233 	case VM_MODE_P48V48_16K:
234 	case VM_MODE_P40V48_16K:
235 	case VM_MODE_P36V48_16K:
236 		vm->pgtable_levels = 4;
237 		break;
238 	case VM_MODE_P36V47_16K:
239 		vm->pgtable_levels = 3;
240 		break;
241 	case VM_MODE_PXXV48_4K:
242 #ifdef __x86_64__
243 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
244 		/*
245 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
246 		 * it doesn't take effect unless a CR4.LA57 is set, which it
247 		 * isn't for this VM_MODE.
248 		 */
249 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
250 			    "Linear address width (%d bits) not supported",
251 			    vm->va_bits);
252 		pr_debug("Guest physical address width detected: %d\n",
253 			 vm->pa_bits);
254 		vm->pgtable_levels = 4;
255 		vm->va_bits = 48;
256 #else
257 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
258 #endif
259 		break;
260 	case VM_MODE_P47V64_4K:
261 		vm->pgtable_levels = 5;
262 		break;
263 	case VM_MODE_P44V64_4K:
264 		vm->pgtable_levels = 5;
265 		break;
266 	default:
267 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
268 	}
269 
270 #ifdef __aarch64__
271 	if (vm->pa_bits != 40)
272 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
273 #endif
274 
275 	vm_open(vm);
276 
277 	/* Limit to VA-bit canonical virtual addresses. */
278 	vm->vpages_valid = sparsebit_alloc();
279 	sparsebit_set_num(vm->vpages_valid,
280 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
281 	sparsebit_set_num(vm->vpages_valid,
282 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
283 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
284 
285 	/* Limit physical addresses to PA-bits. */
286 	vm->max_gfn = vm_compute_max_gfn(vm);
287 
288 	/* Allocate and setup memory for guest. */
289 	vm->vpages_mapped = sparsebit_alloc();
290 	if (nr_pages != 0)
291 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
292 					    0, 0, nr_pages, 0);
293 
294 	return vm;
295 }
296 
297 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
298 				     uint32_t nr_runnable_vcpus,
299 				     uint64_t extra_mem_pages)
300 {
301 	uint64_t nr_pages;
302 
303 	TEST_ASSERT(nr_runnable_vcpus,
304 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
305 
306 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
307 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
308 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
309 
310 	/*
311 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
312 	 * test code and other per-VM assets that will be loaded into memslot0.
313 	 */
314 	nr_pages = 512;
315 
316 	/* Account for the per-vCPU stacks on behalf of the test. */
317 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
318 
319 	/*
320 	 * Account for the number of pages needed for the page tables.  The
321 	 * maximum page table size for a memory region will be when the
322 	 * smallest page size is used. Considering each page contains x page
323 	 * table descriptors, the total extra size for page tables (for extra
324 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
325 	 * than N/x*2.
326 	 */
327 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
328 
329 	return vm_adjust_num_guest_pages(mode, nr_pages);
330 }
331 
332 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
333 			   uint64_t nr_extra_pages)
334 {
335 	uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
336 						 nr_extra_pages);
337 	struct kvm_vm *vm;
338 
339 	vm = ____vm_create(mode, nr_pages);
340 
341 	kvm_vm_elf_load(vm, program_invocation_name);
342 
343 #ifdef __x86_64__
344 	vm_create_irqchip(vm);
345 #endif
346 	return vm;
347 }
348 
349 /*
350  * VM Create with customized parameters
351  *
352  * Input Args:
353  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
354  *   nr_vcpus - VCPU count
355  *   extra_mem_pages - Non-slot0 physical memory total size
356  *   guest_code - Guest entry point
357  *   vcpuids - VCPU IDs
358  *
359  * Output Args: None
360  *
361  * Return:
362  *   Pointer to opaque structure that describes the created VM.
363  *
364  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
365  * extra_mem_pages is only used to calculate the maximum page table size,
366  * no real memory allocation for non-slot0 memory in this function.
367  */
368 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
369 				      uint64_t extra_mem_pages,
370 				      void *guest_code, struct kvm_vcpu *vcpus[])
371 {
372 	struct kvm_vm *vm;
373 	int i;
374 
375 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
376 
377 	vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
378 
379 	for (i = 0; i < nr_vcpus; ++i)
380 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
381 
382 	return vm;
383 }
384 
385 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
386 					 uint64_t extra_mem_pages,
387 					 void *guest_code)
388 {
389 	struct kvm_vcpu *vcpus[1];
390 	struct kvm_vm *vm;
391 
392 	vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
393 				    guest_code, vcpus);
394 
395 	*vcpu = vcpus[0];
396 	return vm;
397 }
398 
399 /*
400  * VM Restart
401  *
402  * Input Args:
403  *   vm - VM that has been released before
404  *
405  * Output Args: None
406  *
407  * Reopens the file descriptors associated to the VM and reinstates the
408  * global state, such as the irqchip and the memory regions that are mapped
409  * into the guest.
410  */
411 void kvm_vm_restart(struct kvm_vm *vmp)
412 {
413 	int ctr;
414 	struct userspace_mem_region *region;
415 
416 	vm_open(vmp);
417 	if (vmp->has_irqchip)
418 		vm_create_irqchip(vmp);
419 
420 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
421 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
422 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
423 			    "  rc: %i errno: %i\n"
424 			    "  slot: %u flags: 0x%x\n"
425 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
426 			    ret, errno, region->region.slot,
427 			    region->region.flags,
428 			    region->region.guest_phys_addr,
429 			    region->region.memory_size);
430 	}
431 }
432 
433 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
434 					      uint32_t vcpu_id)
435 {
436 	return __vm_vcpu_add(vm, vcpu_id);
437 }
438 
439 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
440 {
441 	kvm_vm_restart(vm);
442 
443 	return vm_vcpu_recreate(vm, 0);
444 }
445 
446 /*
447  * Userspace Memory Region Find
448  *
449  * Input Args:
450  *   vm - Virtual Machine
451  *   start - Starting VM physical address
452  *   end - Ending VM physical address, inclusive.
453  *
454  * Output Args: None
455  *
456  * Return:
457  *   Pointer to overlapping region, NULL if no such region.
458  *
459  * Searches for a region with any physical memory that overlaps with
460  * any portion of the guest physical addresses from start to end
461  * inclusive.  If multiple overlapping regions exist, a pointer to any
462  * of the regions is returned.  Null is returned only when no overlapping
463  * region exists.
464  */
465 static struct userspace_mem_region *
466 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
467 {
468 	struct rb_node *node;
469 
470 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
471 		struct userspace_mem_region *region =
472 			container_of(node, struct userspace_mem_region, gpa_node);
473 		uint64_t existing_start = region->region.guest_phys_addr;
474 		uint64_t existing_end = region->region.guest_phys_addr
475 			+ region->region.memory_size - 1;
476 		if (start <= existing_end && end >= existing_start)
477 			return region;
478 
479 		if (start < existing_start)
480 			node = node->rb_left;
481 		else
482 			node = node->rb_right;
483 	}
484 
485 	return NULL;
486 }
487 
488 /*
489  * KVM Userspace Memory Region Find
490  *
491  * Input Args:
492  *   vm - Virtual Machine
493  *   start - Starting VM physical address
494  *   end - Ending VM physical address, inclusive.
495  *
496  * Output Args: None
497  *
498  * Return:
499  *   Pointer to overlapping region, NULL if no such region.
500  *
501  * Public interface to userspace_mem_region_find. Allows tests to look up
502  * the memslot datastructure for a given range of guest physical memory.
503  */
504 struct kvm_userspace_memory_region *
505 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
506 				 uint64_t end)
507 {
508 	struct userspace_mem_region *region;
509 
510 	region = userspace_mem_region_find(vm, start, end);
511 	if (!region)
512 		return NULL;
513 
514 	return &region->region;
515 }
516 
517 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
518 {
519 
520 }
521 
522 /*
523  * VM VCPU Remove
524  *
525  * Input Args:
526  *   vcpu - VCPU to remove
527  *
528  * Output Args: None
529  *
530  * Return: None, TEST_ASSERT failures for all error conditions
531  *
532  * Removes a vCPU from a VM and frees its resources.
533  */
534 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
535 {
536 	int ret;
537 
538 	if (vcpu->dirty_gfns) {
539 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
540 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
541 		vcpu->dirty_gfns = NULL;
542 	}
543 
544 	ret = munmap(vcpu->run, vcpu_mmap_sz());
545 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
546 
547 	ret = close(vcpu->fd);
548 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
549 
550 	list_del(&vcpu->list);
551 
552 	vcpu_arch_free(vcpu);
553 	free(vcpu);
554 }
555 
556 void kvm_vm_release(struct kvm_vm *vmp)
557 {
558 	struct kvm_vcpu *vcpu, *tmp;
559 	int ret;
560 
561 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
562 		vm_vcpu_rm(vmp, vcpu);
563 
564 	ret = close(vmp->fd);
565 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
566 
567 	ret = close(vmp->kvm_fd);
568 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
569 }
570 
571 static void __vm_mem_region_delete(struct kvm_vm *vm,
572 				   struct userspace_mem_region *region,
573 				   bool unlink)
574 {
575 	int ret;
576 
577 	if (unlink) {
578 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
579 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
580 		hash_del(&region->slot_node);
581 	}
582 
583 	region->region.memory_size = 0;
584 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
585 
586 	sparsebit_free(&region->unused_phy_pages);
587 	ret = munmap(region->mmap_start, region->mmap_size);
588 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
589 
590 	free(region);
591 }
592 
593 /*
594  * Destroys and frees the VM pointed to by vmp.
595  */
596 void kvm_vm_free(struct kvm_vm *vmp)
597 {
598 	int ctr;
599 	struct hlist_node *node;
600 	struct userspace_mem_region *region;
601 
602 	if (vmp == NULL)
603 		return;
604 
605 	/* Free cached stats metadata and close FD */
606 	if (vmp->stats_fd) {
607 		free(vmp->stats_desc);
608 		close(vmp->stats_fd);
609 	}
610 
611 	/* Free userspace_mem_regions. */
612 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
613 		__vm_mem_region_delete(vmp, region, false);
614 
615 	/* Free sparsebit arrays. */
616 	sparsebit_free(&vmp->vpages_valid);
617 	sparsebit_free(&vmp->vpages_mapped);
618 
619 	kvm_vm_release(vmp);
620 
621 	/* Free the structure describing the VM. */
622 	free(vmp);
623 }
624 
625 int kvm_memfd_alloc(size_t size, bool hugepages)
626 {
627 	int memfd_flags = MFD_CLOEXEC;
628 	int fd, r;
629 
630 	if (hugepages)
631 		memfd_flags |= MFD_HUGETLB;
632 
633 	fd = memfd_create("kvm_selftest", memfd_flags);
634 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
635 
636 	r = ftruncate(fd, size);
637 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
638 
639 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
640 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
641 
642 	return fd;
643 }
644 
645 /*
646  * Memory Compare, host virtual to guest virtual
647  *
648  * Input Args:
649  *   hva - Starting host virtual address
650  *   vm - Virtual Machine
651  *   gva - Starting guest virtual address
652  *   len - number of bytes to compare
653  *
654  * Output Args: None
655  *
656  * Input/Output Args: None
657  *
658  * Return:
659  *   Returns 0 if the bytes starting at hva for a length of len
660  *   are equal the guest virtual bytes starting at gva.  Returns
661  *   a value < 0, if bytes at hva are less than those at gva.
662  *   Otherwise a value > 0 is returned.
663  *
664  * Compares the bytes starting at the host virtual address hva, for
665  * a length of len, to the guest bytes starting at the guest virtual
666  * address given by gva.
667  */
668 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
669 {
670 	size_t amt;
671 
672 	/*
673 	 * Compare a batch of bytes until either a match is found
674 	 * or all the bytes have been compared.
675 	 */
676 	for (uintptr_t offset = 0; offset < len; offset += amt) {
677 		uintptr_t ptr1 = (uintptr_t)hva + offset;
678 
679 		/*
680 		 * Determine host address for guest virtual address
681 		 * at offset.
682 		 */
683 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
684 
685 		/*
686 		 * Determine amount to compare on this pass.
687 		 * Don't allow the comparsion to cross a page boundary.
688 		 */
689 		amt = len - offset;
690 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
691 			amt = vm->page_size - (ptr1 % vm->page_size);
692 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
693 			amt = vm->page_size - (ptr2 % vm->page_size);
694 
695 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
696 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
697 
698 		/*
699 		 * Perform the comparison.  If there is a difference
700 		 * return that result to the caller, otherwise need
701 		 * to continue on looking for a mismatch.
702 		 */
703 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
704 		if (ret != 0)
705 			return ret;
706 	}
707 
708 	/*
709 	 * No mismatch found.  Let the caller know the two memory
710 	 * areas are equal.
711 	 */
712 	return 0;
713 }
714 
715 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
716 					       struct userspace_mem_region *region)
717 {
718 	struct rb_node **cur, *parent;
719 
720 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
721 		struct userspace_mem_region *cregion;
722 
723 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
724 		parent = *cur;
725 		if (region->region.guest_phys_addr <
726 		    cregion->region.guest_phys_addr)
727 			cur = &(*cur)->rb_left;
728 		else {
729 			TEST_ASSERT(region->region.guest_phys_addr !=
730 				    cregion->region.guest_phys_addr,
731 				    "Duplicate GPA in region tree");
732 
733 			cur = &(*cur)->rb_right;
734 		}
735 	}
736 
737 	rb_link_node(&region->gpa_node, parent, cur);
738 	rb_insert_color(&region->gpa_node, gpa_tree);
739 }
740 
741 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
742 					       struct userspace_mem_region *region)
743 {
744 	struct rb_node **cur, *parent;
745 
746 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
747 		struct userspace_mem_region *cregion;
748 
749 		cregion = container_of(*cur, typeof(*cregion), hva_node);
750 		parent = *cur;
751 		if (region->host_mem < cregion->host_mem)
752 			cur = &(*cur)->rb_left;
753 		else {
754 			TEST_ASSERT(region->host_mem !=
755 				    cregion->host_mem,
756 				    "Duplicate HVA in region tree");
757 
758 			cur = &(*cur)->rb_right;
759 		}
760 	}
761 
762 	rb_link_node(&region->hva_node, parent, cur);
763 	rb_insert_color(&region->hva_node, hva_tree);
764 }
765 
766 
767 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
768 				uint64_t gpa, uint64_t size, void *hva)
769 {
770 	struct kvm_userspace_memory_region region = {
771 		.slot = slot,
772 		.flags = flags,
773 		.guest_phys_addr = gpa,
774 		.memory_size = size,
775 		.userspace_addr = (uintptr_t)hva,
776 	};
777 
778 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
779 }
780 
781 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
782 			       uint64_t gpa, uint64_t size, void *hva)
783 {
784 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
785 
786 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
787 		    errno, strerror(errno));
788 }
789 
790 /*
791  * VM Userspace Memory Region Add
792  *
793  * Input Args:
794  *   vm - Virtual Machine
795  *   src_type - Storage source for this region.
796  *              NULL to use anonymous memory.
797  *   guest_paddr - Starting guest physical address
798  *   slot - KVM region slot
799  *   npages - Number of physical pages
800  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
801  *
802  * Output Args: None
803  *
804  * Return: None
805  *
806  * Allocates a memory area of the number of pages specified by npages
807  * and maps it to the VM specified by vm, at a starting physical address
808  * given by guest_paddr.  The region is created with a KVM region slot
809  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
810  * region is created with the flags given by flags.
811  */
812 void vm_userspace_mem_region_add(struct kvm_vm *vm,
813 	enum vm_mem_backing_src_type src_type,
814 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
815 	uint32_t flags)
816 {
817 	int ret;
818 	struct userspace_mem_region *region;
819 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
820 	size_t alignment;
821 
822 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
823 		"Number of guest pages is not compatible with the host. "
824 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
825 
826 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
827 		"address not on a page boundary.\n"
828 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
829 		guest_paddr, vm->page_size);
830 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
831 		<= vm->max_gfn, "Physical range beyond maximum "
832 		"supported physical address,\n"
833 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
834 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
835 		guest_paddr, npages, vm->max_gfn, vm->page_size);
836 
837 	/*
838 	 * Confirm a mem region with an overlapping address doesn't
839 	 * already exist.
840 	 */
841 	region = (struct userspace_mem_region *) userspace_mem_region_find(
842 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
843 	if (region != NULL)
844 		TEST_FAIL("overlapping userspace_mem_region already "
845 			"exists\n"
846 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
847 			"page_size: 0x%x\n"
848 			"  existing guest_paddr: 0x%lx size: 0x%lx",
849 			guest_paddr, npages, vm->page_size,
850 			(uint64_t) region->region.guest_phys_addr,
851 			(uint64_t) region->region.memory_size);
852 
853 	/* Confirm no region with the requested slot already exists. */
854 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
855 			       slot) {
856 		if (region->region.slot != slot)
857 			continue;
858 
859 		TEST_FAIL("A mem region with the requested slot "
860 			"already exists.\n"
861 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
862 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
863 			slot, guest_paddr, npages,
864 			region->region.slot,
865 			(uint64_t) region->region.guest_phys_addr,
866 			(uint64_t) region->region.memory_size);
867 	}
868 
869 	/* Allocate and initialize new mem region structure. */
870 	region = calloc(1, sizeof(*region));
871 	TEST_ASSERT(region != NULL, "Insufficient Memory");
872 	region->mmap_size = npages * vm->page_size;
873 
874 #ifdef __s390x__
875 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
876 	alignment = 0x100000;
877 #else
878 	alignment = 1;
879 #endif
880 
881 	/*
882 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
883 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
884 	 * because mmap will always return an address aligned to the HugeTLB
885 	 * page size.
886 	 */
887 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
888 		alignment = max(backing_src_pagesz, alignment);
889 
890 	ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
891 
892 	/* Add enough memory to align up if necessary */
893 	if (alignment > 1)
894 		region->mmap_size += alignment;
895 
896 	region->fd = -1;
897 	if (backing_src_is_shared(src_type))
898 		region->fd = kvm_memfd_alloc(region->mmap_size,
899 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
900 
901 	region->mmap_start = mmap(NULL, region->mmap_size,
902 				  PROT_READ | PROT_WRITE,
903 				  vm_mem_backing_src_alias(src_type)->flag,
904 				  region->fd, 0);
905 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
906 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
907 
908 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
909 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
910 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
911 		    region->mmap_start, backing_src_pagesz);
912 
913 	/* Align host address */
914 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
915 
916 	/* As needed perform madvise */
917 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
918 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
919 		ret = madvise(region->host_mem, npages * vm->page_size,
920 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
921 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
922 			    region->host_mem, npages * vm->page_size,
923 			    vm_mem_backing_src_alias(src_type)->name);
924 	}
925 
926 	region->unused_phy_pages = sparsebit_alloc();
927 	sparsebit_set_num(region->unused_phy_pages,
928 		guest_paddr >> vm->page_shift, npages);
929 	region->region.slot = slot;
930 	region->region.flags = flags;
931 	region->region.guest_phys_addr = guest_paddr;
932 	region->region.memory_size = npages * vm->page_size;
933 	region->region.userspace_addr = (uintptr_t) region->host_mem;
934 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
935 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
936 		"  rc: %i errno: %i\n"
937 		"  slot: %u flags: 0x%x\n"
938 		"  guest_phys_addr: 0x%lx size: 0x%lx",
939 		ret, errno, slot, flags,
940 		guest_paddr, (uint64_t) region->region.memory_size);
941 
942 	/* Add to quick lookup data structures */
943 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
944 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
945 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
946 
947 	/* If shared memory, create an alias. */
948 	if (region->fd >= 0) {
949 		region->mmap_alias = mmap(NULL, region->mmap_size,
950 					  PROT_READ | PROT_WRITE,
951 					  vm_mem_backing_src_alias(src_type)->flag,
952 					  region->fd, 0);
953 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
954 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
955 
956 		/* Align host alias address */
957 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
958 	}
959 }
960 
961 /*
962  * Memslot to region
963  *
964  * Input Args:
965  *   vm - Virtual Machine
966  *   memslot - KVM memory slot ID
967  *
968  * Output Args: None
969  *
970  * Return:
971  *   Pointer to memory region structure that describe memory region
972  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
973  *   on error (e.g. currently no memory region using memslot as a KVM
974  *   memory slot ID).
975  */
976 struct userspace_mem_region *
977 memslot2region(struct kvm_vm *vm, uint32_t memslot)
978 {
979 	struct userspace_mem_region *region;
980 
981 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
982 			       memslot)
983 		if (region->region.slot == memslot)
984 			return region;
985 
986 	fprintf(stderr, "No mem region with the requested slot found,\n"
987 		"  requested slot: %u\n", memslot);
988 	fputs("---- vm dump ----\n", stderr);
989 	vm_dump(stderr, vm, 2);
990 	TEST_FAIL("Mem region not found");
991 	return NULL;
992 }
993 
994 /*
995  * VM Memory Region Flags Set
996  *
997  * Input Args:
998  *   vm - Virtual Machine
999  *   flags - Starting guest physical address
1000  *
1001  * Output Args: None
1002  *
1003  * Return: None
1004  *
1005  * Sets the flags of the memory region specified by the value of slot,
1006  * to the values given by flags.
1007  */
1008 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1009 {
1010 	int ret;
1011 	struct userspace_mem_region *region;
1012 
1013 	region = memslot2region(vm, slot);
1014 
1015 	region->region.flags = flags;
1016 
1017 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1018 
1019 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1020 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1021 		ret, errno, slot, flags);
1022 }
1023 
1024 /*
1025  * VM Memory Region Move
1026  *
1027  * Input Args:
1028  *   vm - Virtual Machine
1029  *   slot - Slot of the memory region to move
1030  *   new_gpa - Starting guest physical address
1031  *
1032  * Output Args: None
1033  *
1034  * Return: None
1035  *
1036  * Change the gpa of a memory region.
1037  */
1038 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1039 {
1040 	struct userspace_mem_region *region;
1041 	int ret;
1042 
1043 	region = memslot2region(vm, slot);
1044 
1045 	region->region.guest_phys_addr = new_gpa;
1046 
1047 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1048 
1049 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1050 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1051 		    ret, errno, slot, new_gpa);
1052 }
1053 
1054 /*
1055  * VM Memory Region Delete
1056  *
1057  * Input Args:
1058  *   vm - Virtual Machine
1059  *   slot - Slot of the memory region to delete
1060  *
1061  * Output Args: None
1062  *
1063  * Return: None
1064  *
1065  * Delete a memory region.
1066  */
1067 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1068 {
1069 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1070 }
1071 
1072 /* Returns the size of a vCPU's kvm_run structure. */
1073 static int vcpu_mmap_sz(void)
1074 {
1075 	int dev_fd, ret;
1076 
1077 	dev_fd = open_kvm_dev_path_or_exit();
1078 
1079 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1080 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1081 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1082 
1083 	close(dev_fd);
1084 
1085 	return ret;
1086 }
1087 
1088 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1089 {
1090 	struct kvm_vcpu *vcpu;
1091 
1092 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1093 		if (vcpu->id == vcpu_id)
1094 			return true;
1095 	}
1096 
1097 	return false;
1098 }
1099 
1100 /*
1101  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1102  * No additional vCPU setup is done.  Returns the vCPU.
1103  */
1104 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1105 {
1106 	struct kvm_vcpu *vcpu;
1107 
1108 	/* Confirm a vcpu with the specified id doesn't already exist. */
1109 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
1110 
1111 	/* Allocate and initialize new vcpu structure. */
1112 	vcpu = calloc(1, sizeof(*vcpu));
1113 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1114 
1115 	vcpu->vm = vm;
1116 	vcpu->id = vcpu_id;
1117 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1118 	TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
1119 
1120 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1121 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1122 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1123 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1124 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1125 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1126 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1127 
1128 	/* Add to linked-list of VCPUs. */
1129 	list_add(&vcpu->list, &vm->vcpus);
1130 
1131 	return vcpu;
1132 }
1133 
1134 /*
1135  * VM Virtual Address Unused Gap
1136  *
1137  * Input Args:
1138  *   vm - Virtual Machine
1139  *   sz - Size (bytes)
1140  *   vaddr_min - Minimum Virtual Address
1141  *
1142  * Output Args: None
1143  *
1144  * Return:
1145  *   Lowest virtual address at or below vaddr_min, with at least
1146  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1147  *   size sz is available.
1148  *
1149  * Within the VM specified by vm, locates the lowest starting virtual
1150  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1151  * TEST_ASSERT failure occurs for invalid input or no area of at least
1152  * sz unallocated bytes >= vaddr_min is available.
1153  */
1154 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1155 				      vm_vaddr_t vaddr_min)
1156 {
1157 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1158 
1159 	/* Determine lowest permitted virtual page index. */
1160 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1161 	if ((pgidx_start * vm->page_size) < vaddr_min)
1162 		goto no_va_found;
1163 
1164 	/* Loop over section with enough valid virtual page indexes. */
1165 	if (!sparsebit_is_set_num(vm->vpages_valid,
1166 		pgidx_start, pages))
1167 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1168 			pgidx_start, pages);
1169 	do {
1170 		/*
1171 		 * Are there enough unused virtual pages available at
1172 		 * the currently proposed starting virtual page index.
1173 		 * If not, adjust proposed starting index to next
1174 		 * possible.
1175 		 */
1176 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1177 			pgidx_start, pages))
1178 			goto va_found;
1179 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1180 			pgidx_start, pages);
1181 		if (pgidx_start == 0)
1182 			goto no_va_found;
1183 
1184 		/*
1185 		 * If needed, adjust proposed starting virtual address,
1186 		 * to next range of valid virtual addresses.
1187 		 */
1188 		if (!sparsebit_is_set_num(vm->vpages_valid,
1189 			pgidx_start, pages)) {
1190 			pgidx_start = sparsebit_next_set_num(
1191 				vm->vpages_valid, pgidx_start, pages);
1192 			if (pgidx_start == 0)
1193 				goto no_va_found;
1194 		}
1195 	} while (pgidx_start != 0);
1196 
1197 no_va_found:
1198 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1199 
1200 	/* NOT REACHED */
1201 	return -1;
1202 
1203 va_found:
1204 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1205 		pgidx_start, pages),
1206 		"Unexpected, invalid virtual page index range,\n"
1207 		"  pgidx_start: 0x%lx\n"
1208 		"  pages: 0x%lx",
1209 		pgidx_start, pages);
1210 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1211 		pgidx_start, pages),
1212 		"Unexpected, pages already mapped,\n"
1213 		"  pgidx_start: 0x%lx\n"
1214 		"  pages: 0x%lx",
1215 		pgidx_start, pages);
1216 
1217 	return pgidx_start * vm->page_size;
1218 }
1219 
1220 /*
1221  * VM Virtual Address Allocate
1222  *
1223  * Input Args:
1224  *   vm - Virtual Machine
1225  *   sz - Size in bytes
1226  *   vaddr_min - Minimum starting virtual address
1227  *
1228  * Output Args: None
1229  *
1230  * Return:
1231  *   Starting guest virtual address
1232  *
1233  * Allocates at least sz bytes within the virtual address space of the vm
1234  * given by vm.  The allocated bytes are mapped to a virtual address >=
1235  * the address given by vaddr_min.  Note that each allocation uses a
1236  * a unique set of pages, with the minimum real allocation being at least
1237  * a page.
1238  */
1239 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1240 {
1241 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1242 
1243 	virt_pgd_alloc(vm);
1244 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1245 					      KVM_UTIL_MIN_PFN * vm->page_size, 0);
1246 
1247 	/*
1248 	 * Find an unused range of virtual page addresses of at least
1249 	 * pages in length.
1250 	 */
1251 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1252 
1253 	/* Map the virtual pages. */
1254 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1255 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1256 
1257 		virt_pg_map(vm, vaddr, paddr);
1258 
1259 		sparsebit_set(vm->vpages_mapped,
1260 			vaddr >> vm->page_shift);
1261 	}
1262 
1263 	return vaddr_start;
1264 }
1265 
1266 /*
1267  * VM Virtual Address Allocate Pages
1268  *
1269  * Input Args:
1270  *   vm - Virtual Machine
1271  *
1272  * Output Args: None
1273  *
1274  * Return:
1275  *   Starting guest virtual address
1276  *
1277  * Allocates at least N system pages worth of bytes within the virtual address
1278  * space of the vm.
1279  */
1280 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1281 {
1282 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1283 }
1284 
1285 /*
1286  * VM Virtual Address Allocate Page
1287  *
1288  * Input Args:
1289  *   vm - Virtual Machine
1290  *
1291  * Output Args: None
1292  *
1293  * Return:
1294  *   Starting guest virtual address
1295  *
1296  * Allocates at least one system page worth of bytes within the virtual address
1297  * space of the vm.
1298  */
1299 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1300 {
1301 	return vm_vaddr_alloc_pages(vm, 1);
1302 }
1303 
1304 /*
1305  * Map a range of VM virtual address to the VM's physical address
1306  *
1307  * Input Args:
1308  *   vm - Virtual Machine
1309  *   vaddr - Virtuall address to map
1310  *   paddr - VM Physical Address
1311  *   npages - The number of pages to map
1312  *
1313  * Output Args: None
1314  *
1315  * Return: None
1316  *
1317  * Within the VM given by @vm, creates a virtual translation for
1318  * @npages starting at @vaddr to the page range starting at @paddr.
1319  */
1320 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1321 	      unsigned int npages)
1322 {
1323 	size_t page_size = vm->page_size;
1324 	size_t size = npages * page_size;
1325 
1326 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1327 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1328 
1329 	while (npages--) {
1330 		virt_pg_map(vm, vaddr, paddr);
1331 		vaddr += page_size;
1332 		paddr += page_size;
1333 	}
1334 }
1335 
1336 /*
1337  * Address VM Physical to Host Virtual
1338  *
1339  * Input Args:
1340  *   vm - Virtual Machine
1341  *   gpa - VM physical address
1342  *
1343  * Output Args: None
1344  *
1345  * Return:
1346  *   Equivalent host virtual address
1347  *
1348  * Locates the memory region containing the VM physical address given
1349  * by gpa, within the VM given by vm.  When found, the host virtual
1350  * address providing the memory to the vm physical address is returned.
1351  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1352  */
1353 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1354 {
1355 	struct userspace_mem_region *region;
1356 
1357 	region = userspace_mem_region_find(vm, gpa, gpa);
1358 	if (!region) {
1359 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1360 		return NULL;
1361 	}
1362 
1363 	return (void *)((uintptr_t)region->host_mem
1364 		+ (gpa - region->region.guest_phys_addr));
1365 }
1366 
1367 /*
1368  * Address Host Virtual to VM Physical
1369  *
1370  * Input Args:
1371  *   vm - Virtual Machine
1372  *   hva - Host virtual address
1373  *
1374  * Output Args: None
1375  *
1376  * Return:
1377  *   Equivalent VM physical address
1378  *
1379  * Locates the memory region containing the host virtual address given
1380  * by hva, within the VM given by vm.  When found, the equivalent
1381  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1382  * region containing hva exists.
1383  */
1384 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1385 {
1386 	struct rb_node *node;
1387 
1388 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1389 		struct userspace_mem_region *region =
1390 			container_of(node, struct userspace_mem_region, hva_node);
1391 
1392 		if (hva >= region->host_mem) {
1393 			if (hva <= (region->host_mem
1394 				+ region->region.memory_size - 1))
1395 				return (vm_paddr_t)((uintptr_t)
1396 					region->region.guest_phys_addr
1397 					+ (hva - (uintptr_t)region->host_mem));
1398 
1399 			node = node->rb_right;
1400 		} else
1401 			node = node->rb_left;
1402 	}
1403 
1404 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1405 	return -1;
1406 }
1407 
1408 /*
1409  * Address VM physical to Host Virtual *alias*.
1410  *
1411  * Input Args:
1412  *   vm - Virtual Machine
1413  *   gpa - VM physical address
1414  *
1415  * Output Args: None
1416  *
1417  * Return:
1418  *   Equivalent address within the host virtual *alias* area, or NULL
1419  *   (without failing the test) if the guest memory is not shared (so
1420  *   no alias exists).
1421  *
1422  * Create a writable, shared virtual=>physical alias for the specific GPA.
1423  * The primary use case is to allow the host selftest to manipulate guest
1424  * memory without mapping said memory in the guest's address space. And, for
1425  * userfaultfd-based demand paging, to do so without triggering userfaults.
1426  */
1427 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1428 {
1429 	struct userspace_mem_region *region;
1430 	uintptr_t offset;
1431 
1432 	region = userspace_mem_region_find(vm, gpa, gpa);
1433 	if (!region)
1434 		return NULL;
1435 
1436 	if (!region->host_alias)
1437 		return NULL;
1438 
1439 	offset = gpa - region->region.guest_phys_addr;
1440 	return (void *) ((uintptr_t) region->host_alias + offset);
1441 }
1442 
1443 /* Create an interrupt controller chip for the specified VM. */
1444 void vm_create_irqchip(struct kvm_vm *vm)
1445 {
1446 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1447 
1448 	vm->has_irqchip = true;
1449 }
1450 
1451 int _vcpu_run(struct kvm_vcpu *vcpu)
1452 {
1453 	int rc;
1454 
1455 	do {
1456 		rc = __vcpu_run(vcpu);
1457 	} while (rc == -1 && errno == EINTR);
1458 
1459 	assert_on_unhandled_exception(vcpu);
1460 
1461 	return rc;
1462 }
1463 
1464 /*
1465  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1466  * Assert if the KVM returns an error (other than -EINTR).
1467  */
1468 void vcpu_run(struct kvm_vcpu *vcpu)
1469 {
1470 	int ret = _vcpu_run(vcpu);
1471 
1472 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1473 }
1474 
1475 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1476 {
1477 	int ret;
1478 
1479 	vcpu->run->immediate_exit = 1;
1480 	ret = __vcpu_run(vcpu);
1481 	vcpu->run->immediate_exit = 0;
1482 
1483 	TEST_ASSERT(ret == -1 && errno == EINTR,
1484 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1485 		    ret, errno);
1486 }
1487 
1488 /*
1489  * Get the list of guest registers which are supported for
1490  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1491  * it is the caller's responsibility to free the list.
1492  */
1493 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1494 {
1495 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1496 	int ret;
1497 
1498 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1499 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1500 
1501 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1502 	reg_list->n = reg_list_n.n;
1503 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1504 	return reg_list;
1505 }
1506 
1507 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1508 {
1509 	uint32_t page_size = vcpu->vm->page_size;
1510 	uint32_t size = vcpu->vm->dirty_ring_size;
1511 
1512 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1513 
1514 	if (!vcpu->dirty_gfns) {
1515 		void *addr;
1516 
1517 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1518 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1519 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1520 
1521 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1522 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1523 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1524 
1525 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1526 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1527 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1528 
1529 		vcpu->dirty_gfns = addr;
1530 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1531 	}
1532 
1533 	return vcpu->dirty_gfns;
1534 }
1535 
1536 /*
1537  * Device Ioctl
1538  */
1539 
1540 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1541 {
1542 	struct kvm_device_attr attribute = {
1543 		.group = group,
1544 		.attr = attr,
1545 		.flags = 0,
1546 	};
1547 
1548 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1549 }
1550 
1551 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1552 {
1553 	struct kvm_create_device create_dev = {
1554 		.type = type,
1555 		.flags = KVM_CREATE_DEVICE_TEST,
1556 	};
1557 
1558 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1559 }
1560 
1561 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1562 {
1563 	struct kvm_create_device create_dev = {
1564 		.type = type,
1565 		.fd = -1,
1566 		.flags = 0,
1567 	};
1568 	int err;
1569 
1570 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1571 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1572 	return err ? : create_dev.fd;
1573 }
1574 
1575 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1576 {
1577 	struct kvm_device_attr kvmattr = {
1578 		.group = group,
1579 		.attr = attr,
1580 		.flags = 0,
1581 		.addr = (uintptr_t)val,
1582 	};
1583 
1584 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1585 }
1586 
1587 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1588 {
1589 	struct kvm_device_attr kvmattr = {
1590 		.group = group,
1591 		.attr = attr,
1592 		.flags = 0,
1593 		.addr = (uintptr_t)val,
1594 	};
1595 
1596 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1597 }
1598 
1599 /*
1600  * IRQ related functions.
1601  */
1602 
1603 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1604 {
1605 	struct kvm_irq_level irq_level = {
1606 		.irq    = irq,
1607 		.level  = level,
1608 	};
1609 
1610 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1611 }
1612 
1613 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1614 {
1615 	int ret = _kvm_irq_line(vm, irq, level);
1616 
1617 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1618 }
1619 
1620 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1621 {
1622 	struct kvm_irq_routing *routing;
1623 	size_t size;
1624 
1625 	size = sizeof(struct kvm_irq_routing);
1626 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1627 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1628 	routing = calloc(1, size);
1629 	assert(routing);
1630 
1631 	return routing;
1632 }
1633 
1634 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1635 		uint32_t gsi, uint32_t pin)
1636 {
1637 	int i;
1638 
1639 	assert(routing);
1640 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1641 
1642 	i = routing->nr;
1643 	routing->entries[i].gsi = gsi;
1644 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1645 	routing->entries[i].flags = 0;
1646 	routing->entries[i].u.irqchip.irqchip = 0;
1647 	routing->entries[i].u.irqchip.pin = pin;
1648 	routing->nr++;
1649 }
1650 
1651 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1652 {
1653 	int ret;
1654 
1655 	assert(routing);
1656 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1657 	free(routing);
1658 
1659 	return ret;
1660 }
1661 
1662 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1663 {
1664 	int ret;
1665 
1666 	ret = _kvm_gsi_routing_write(vm, routing);
1667 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1668 }
1669 
1670 /*
1671  * VM Dump
1672  *
1673  * Input Args:
1674  *   vm - Virtual Machine
1675  *   indent - Left margin indent amount
1676  *
1677  * Output Args:
1678  *   stream - Output FILE stream
1679  *
1680  * Return: None
1681  *
1682  * Dumps the current state of the VM given by vm, to the FILE stream
1683  * given by stream.
1684  */
1685 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1686 {
1687 	int ctr;
1688 	struct userspace_mem_region *region;
1689 	struct kvm_vcpu *vcpu;
1690 
1691 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1692 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1693 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1694 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1695 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1696 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1697 			"host_virt: %p\n", indent + 2, "",
1698 			(uint64_t) region->region.guest_phys_addr,
1699 			(uint64_t) region->region.memory_size,
1700 			region->host_mem);
1701 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1702 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1703 	}
1704 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1705 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1706 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1707 		vm->pgd_created);
1708 	if (vm->pgd_created) {
1709 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1710 			indent + 2, "");
1711 		virt_dump(stream, vm, indent + 4);
1712 	}
1713 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1714 
1715 	list_for_each_entry(vcpu, &vm->vcpus, list)
1716 		vcpu_dump(stream, vcpu, indent + 2);
1717 }
1718 
1719 /* Known KVM exit reasons */
1720 static struct exit_reason {
1721 	unsigned int reason;
1722 	const char *name;
1723 } exit_reasons_known[] = {
1724 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1725 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1726 	{KVM_EXIT_IO, "IO"},
1727 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1728 	{KVM_EXIT_DEBUG, "DEBUG"},
1729 	{KVM_EXIT_HLT, "HLT"},
1730 	{KVM_EXIT_MMIO, "MMIO"},
1731 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1732 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1733 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1734 	{KVM_EXIT_INTR, "INTR"},
1735 	{KVM_EXIT_SET_TPR, "SET_TPR"},
1736 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1737 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1738 	{KVM_EXIT_S390_RESET, "S390_RESET"},
1739 	{KVM_EXIT_DCR, "DCR"},
1740 	{KVM_EXIT_NMI, "NMI"},
1741 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1742 	{KVM_EXIT_OSI, "OSI"},
1743 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1744 	{KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
1745 	{KVM_EXIT_X86_RDMSR, "RDMSR"},
1746 	{KVM_EXIT_X86_WRMSR, "WRMSR"},
1747 	{KVM_EXIT_XEN, "XEN"},
1748 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1749 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1750 #endif
1751 };
1752 
1753 /*
1754  * Exit Reason String
1755  *
1756  * Input Args:
1757  *   exit_reason - Exit reason
1758  *
1759  * Output Args: None
1760  *
1761  * Return:
1762  *   Constant string pointer describing the exit reason.
1763  *
1764  * Locates and returns a constant string that describes the KVM exit
1765  * reason given by exit_reason.  If no such string is found, a constant
1766  * string of "Unknown" is returned.
1767  */
1768 const char *exit_reason_str(unsigned int exit_reason)
1769 {
1770 	unsigned int n1;
1771 
1772 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1773 		if (exit_reason == exit_reasons_known[n1].reason)
1774 			return exit_reasons_known[n1].name;
1775 	}
1776 
1777 	return "Unknown";
1778 }
1779 
1780 /*
1781  * Physical Contiguous Page Allocator
1782  *
1783  * Input Args:
1784  *   vm - Virtual Machine
1785  *   num - number of pages
1786  *   paddr_min - Physical address minimum
1787  *   memslot - Memory region to allocate page from
1788  *
1789  * Output Args: None
1790  *
1791  * Return:
1792  *   Starting physical address
1793  *
1794  * Within the VM specified by vm, locates a range of available physical
1795  * pages at or above paddr_min. If found, the pages are marked as in use
1796  * and their base address is returned. A TEST_ASSERT failure occurs if
1797  * not enough pages are available at or above paddr_min.
1798  */
1799 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1800 			      vm_paddr_t paddr_min, uint32_t memslot)
1801 {
1802 	struct userspace_mem_region *region;
1803 	sparsebit_idx_t pg, base;
1804 
1805 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1806 
1807 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1808 		"not divisible by page size.\n"
1809 		"  paddr_min: 0x%lx page_size: 0x%x",
1810 		paddr_min, vm->page_size);
1811 
1812 	region = memslot2region(vm, memslot);
1813 	base = pg = paddr_min >> vm->page_shift;
1814 
1815 	do {
1816 		for (; pg < base + num; ++pg) {
1817 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1818 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1819 				break;
1820 			}
1821 		}
1822 	} while (pg && pg != base + num);
1823 
1824 	if (pg == 0) {
1825 		fprintf(stderr, "No guest physical page available, "
1826 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1827 			paddr_min, vm->page_size, memslot);
1828 		fputs("---- vm dump ----\n", stderr);
1829 		vm_dump(stderr, vm, 2);
1830 		abort();
1831 	}
1832 
1833 	for (pg = base; pg < base + num; ++pg)
1834 		sparsebit_clear(region->unused_phy_pages, pg);
1835 
1836 	return base * vm->page_size;
1837 }
1838 
1839 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1840 			     uint32_t memslot)
1841 {
1842 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1843 }
1844 
1845 /* Arbitrary minimum physical address used for virtual translation tables. */
1846 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
1847 
1848 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
1849 {
1850 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
1851 }
1852 
1853 /*
1854  * Address Guest Virtual to Host Virtual
1855  *
1856  * Input Args:
1857  *   vm - Virtual Machine
1858  *   gva - VM virtual address
1859  *
1860  * Output Args: None
1861  *
1862  * Return:
1863  *   Equivalent host virtual address
1864  */
1865 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1866 {
1867 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1868 }
1869 
1870 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
1871 {
1872 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
1873 }
1874 
1875 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1876 				      unsigned int page_shift,
1877 				      unsigned int new_page_shift,
1878 				      bool ceil)
1879 {
1880 	unsigned int n = 1 << (new_page_shift - page_shift);
1881 
1882 	if (page_shift >= new_page_shift)
1883 		return num_pages * (1 << (page_shift - new_page_shift));
1884 
1885 	return num_pages / n + !!(ceil && num_pages % n);
1886 }
1887 
1888 static inline int getpageshift(void)
1889 {
1890 	return __builtin_ffs(getpagesize()) - 1;
1891 }
1892 
1893 unsigned int
1894 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1895 {
1896 	return vm_calc_num_pages(num_guest_pages,
1897 				 vm_guest_mode_params[mode].page_shift,
1898 				 getpageshift(), true);
1899 }
1900 
1901 unsigned int
1902 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
1903 {
1904 	return vm_calc_num_pages(num_host_pages, getpageshift(),
1905 				 vm_guest_mode_params[mode].page_shift, false);
1906 }
1907 
1908 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
1909 {
1910 	unsigned int n;
1911 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
1912 	return vm_adjust_num_guest_pages(mode, n);
1913 }
1914 
1915 /*
1916  * Read binary stats descriptors
1917  *
1918  * Input Args:
1919  *   stats_fd - the file descriptor for the binary stats file from which to read
1920  *   header - the binary stats metadata header corresponding to the given FD
1921  *
1922  * Output Args: None
1923  *
1924  * Return:
1925  *   A pointer to a newly allocated series of stat descriptors.
1926  *   Caller is responsible for freeing the returned kvm_stats_desc.
1927  *
1928  * Read the stats descriptors from the binary stats interface.
1929  */
1930 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
1931 					      struct kvm_stats_header *header)
1932 {
1933 	struct kvm_stats_desc *stats_desc;
1934 	ssize_t desc_size, total_size, ret;
1935 
1936 	desc_size = get_stats_descriptor_size(header);
1937 	total_size = header->num_desc * desc_size;
1938 
1939 	stats_desc = calloc(header->num_desc, desc_size);
1940 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
1941 
1942 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
1943 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
1944 
1945 	return stats_desc;
1946 }
1947 
1948 /*
1949  * Read stat data for a particular stat
1950  *
1951  * Input Args:
1952  *   stats_fd - the file descriptor for the binary stats file from which to read
1953  *   header - the binary stats metadata header corresponding to the given FD
1954  *   desc - the binary stat metadata for the particular stat to be read
1955  *   max_elements - the maximum number of 8-byte values to read into data
1956  *
1957  * Output Args:
1958  *   data - the buffer into which stat data should be read
1959  *
1960  * Read the data values of a specified stat from the binary stats interface.
1961  */
1962 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
1963 		    struct kvm_stats_desc *desc, uint64_t *data,
1964 		    size_t max_elements)
1965 {
1966 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
1967 	size_t size = nr_elements * sizeof(*data);
1968 	ssize_t ret;
1969 
1970 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
1971 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
1972 
1973 	ret = pread(stats_fd, data, size,
1974 		    header->data_offset + desc->offset);
1975 
1976 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
1977 		    desc->name, errno, strerror(errno));
1978 	TEST_ASSERT(ret == size,
1979 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
1980 		    desc->name, size, ret);
1981 }
1982 
1983 /*
1984  * Read the data of the named stat
1985  *
1986  * Input Args:
1987  *   vm - the VM for which the stat should be read
1988  *   stat_name - the name of the stat to read
1989  *   max_elements - the maximum number of 8-byte values to read into data
1990  *
1991  * Output Args:
1992  *   data - the buffer into which stat data should be read
1993  *
1994  * Read the data values of a specified stat from the binary stats interface.
1995  */
1996 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
1997 		   size_t max_elements)
1998 {
1999 	struct kvm_stats_desc *desc;
2000 	size_t size_desc;
2001 	int i;
2002 
2003 	if (!vm->stats_fd) {
2004 		vm->stats_fd = vm_get_stats_fd(vm);
2005 		read_stats_header(vm->stats_fd, &vm->stats_header);
2006 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2007 							&vm->stats_header);
2008 	}
2009 
2010 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2011 
2012 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2013 		desc = (void *)vm->stats_desc + (i * size_desc);
2014 
2015 		if (strcmp(desc->name, stat_name))
2016 			continue;
2017 
2018 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2019 			       data, max_elements);
2020 
2021 		break;
2022 	}
2023 }
2024