1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "processor.h"
12 
13 #include <assert.h>
14 #include <sched.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20 
21 #define KVM_UTIL_MIN_PFN	2
22 
23 static int vcpu_mmap_sz(void);
24 
25 int open_path_or_exit(const char *path, int flags)
26 {
27 	int fd;
28 
29 	fd = open(path, flags);
30 	__TEST_REQUIRE(fd >= 0, "%s not available (errno: %d)", path, errno);
31 
32 	return fd;
33 }
34 
35 /*
36  * Open KVM_DEV_PATH if available, otherwise exit the entire program.
37  *
38  * Input Args:
39  *   flags - The flags to pass when opening KVM_DEV_PATH.
40  *
41  * Return:
42  *   The opened file descriptor of /dev/kvm.
43  */
44 static int _open_kvm_dev_path_or_exit(int flags)
45 {
46 	return open_path_or_exit(KVM_DEV_PATH, flags);
47 }
48 
49 int open_kvm_dev_path_or_exit(void)
50 {
51 	return _open_kvm_dev_path_or_exit(O_RDONLY);
52 }
53 
54 static bool get_module_param_bool(const char *module_name, const char *param)
55 {
56 	const int path_size = 128;
57 	char path[path_size];
58 	char value;
59 	ssize_t r;
60 	int fd;
61 
62 	r = snprintf(path, path_size, "/sys/module/%s/parameters/%s",
63 		     module_name, param);
64 	TEST_ASSERT(r < path_size,
65 		    "Failed to construct sysfs path in %d bytes.", path_size);
66 
67 	fd = open_path_or_exit(path, O_RDONLY);
68 
69 	r = read(fd, &value, 1);
70 	TEST_ASSERT(r == 1, "read(%s) failed", path);
71 
72 	r = close(fd);
73 	TEST_ASSERT(!r, "close(%s) failed", path);
74 
75 	if (value == 'Y')
76 		return true;
77 	else if (value == 'N')
78 		return false;
79 
80 	TEST_FAIL("Unrecognized value '%c' for boolean module param", value);
81 }
82 
83 bool get_kvm_param_bool(const char *param)
84 {
85 	return get_module_param_bool("kvm", param);
86 }
87 
88 bool get_kvm_intel_param_bool(const char *param)
89 {
90 	return get_module_param_bool("kvm_intel", param);
91 }
92 
93 bool get_kvm_amd_param_bool(const char *param)
94 {
95 	return get_module_param_bool("kvm_amd", param);
96 }
97 
98 /*
99  * Capability
100  *
101  * Input Args:
102  *   cap - Capability
103  *
104  * Output Args: None
105  *
106  * Return:
107  *   On success, the Value corresponding to the capability (KVM_CAP_*)
108  *   specified by the value of cap.  On failure a TEST_ASSERT failure
109  *   is produced.
110  *
111  * Looks up and returns the value corresponding to the capability
112  * (KVM_CAP_*) given by cap.
113  */
114 unsigned int kvm_check_cap(long cap)
115 {
116 	int ret;
117 	int kvm_fd;
118 
119 	kvm_fd = open_kvm_dev_path_or_exit();
120 	ret = __kvm_ioctl(kvm_fd, KVM_CHECK_EXTENSION, (void *)cap);
121 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_CHECK_EXTENSION, ret));
122 
123 	close(kvm_fd);
124 
125 	return (unsigned int)ret;
126 }
127 
128 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
129 {
130 	if (vm_check_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL))
131 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING_ACQ_REL, ring_size);
132 	else
133 		vm_enable_cap(vm, KVM_CAP_DIRTY_LOG_RING, ring_size);
134 	vm->dirty_ring_size = ring_size;
135 }
136 
137 static void vm_open(struct kvm_vm *vm)
138 {
139 	vm->kvm_fd = _open_kvm_dev_path_or_exit(O_RDWR);
140 
141 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_IMMEDIATE_EXIT));
142 
143 	vm->fd = __kvm_ioctl(vm->kvm_fd, KVM_CREATE_VM, (void *)vm->type);
144 	TEST_ASSERT(vm->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm->fd));
145 }
146 
147 const char *vm_guest_mode_string(uint32_t i)
148 {
149 	static const char * const strings[] = {
150 		[VM_MODE_P52V48_4K]	= "PA-bits:52,  VA-bits:48,  4K pages",
151 		[VM_MODE_P52V48_64K]	= "PA-bits:52,  VA-bits:48, 64K pages",
152 		[VM_MODE_P48V48_4K]	= "PA-bits:48,  VA-bits:48,  4K pages",
153 		[VM_MODE_P48V48_16K]	= "PA-bits:48,  VA-bits:48, 16K pages",
154 		[VM_MODE_P48V48_64K]	= "PA-bits:48,  VA-bits:48, 64K pages",
155 		[VM_MODE_P40V48_4K]	= "PA-bits:40,  VA-bits:48,  4K pages",
156 		[VM_MODE_P40V48_16K]	= "PA-bits:40,  VA-bits:48, 16K pages",
157 		[VM_MODE_P40V48_64K]	= "PA-bits:40,  VA-bits:48, 64K pages",
158 		[VM_MODE_PXXV48_4K]	= "PA-bits:ANY, VA-bits:48,  4K pages",
159 		[VM_MODE_P47V64_4K]	= "PA-bits:47,  VA-bits:64,  4K pages",
160 		[VM_MODE_P44V64_4K]	= "PA-bits:44,  VA-bits:64,  4K pages",
161 		[VM_MODE_P36V48_4K]	= "PA-bits:36,  VA-bits:48,  4K pages",
162 		[VM_MODE_P36V48_16K]	= "PA-bits:36,  VA-bits:48, 16K pages",
163 		[VM_MODE_P36V48_64K]	= "PA-bits:36,  VA-bits:48, 64K pages",
164 		[VM_MODE_P36V47_16K]	= "PA-bits:36,  VA-bits:47, 16K pages",
165 	};
166 	_Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
167 		       "Missing new mode strings?");
168 
169 	TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
170 
171 	return strings[i];
172 }
173 
174 const struct vm_guest_mode_params vm_guest_mode_params[] = {
175 	[VM_MODE_P52V48_4K]	= { 52, 48,  0x1000, 12 },
176 	[VM_MODE_P52V48_64K]	= { 52, 48, 0x10000, 16 },
177 	[VM_MODE_P48V48_4K]	= { 48, 48,  0x1000, 12 },
178 	[VM_MODE_P48V48_16K]	= { 48, 48,  0x4000, 14 },
179 	[VM_MODE_P48V48_64K]	= { 48, 48, 0x10000, 16 },
180 	[VM_MODE_P40V48_4K]	= { 40, 48,  0x1000, 12 },
181 	[VM_MODE_P40V48_16K]	= { 40, 48,  0x4000, 14 },
182 	[VM_MODE_P40V48_64K]	= { 40, 48, 0x10000, 16 },
183 	[VM_MODE_PXXV48_4K]	= {  0,  0,  0x1000, 12 },
184 	[VM_MODE_P47V64_4K]	= { 47, 64,  0x1000, 12 },
185 	[VM_MODE_P44V64_4K]	= { 44, 64,  0x1000, 12 },
186 	[VM_MODE_P36V48_4K]	= { 36, 48,  0x1000, 12 },
187 	[VM_MODE_P36V48_16K]	= { 36, 48,  0x4000, 14 },
188 	[VM_MODE_P36V48_64K]	= { 36, 48, 0x10000, 16 },
189 	[VM_MODE_P36V47_16K]	= { 36, 47,  0x4000, 14 },
190 };
191 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
192 	       "Missing new mode params?");
193 
194 /*
195  * Initializes vm->vpages_valid to match the canonical VA space of the
196  * architecture.
197  *
198  * The default implementation is valid for architectures which split the
199  * range addressed by a single page table into a low and high region
200  * based on the MSB of the VA. On architectures with this behavior
201  * the VA region spans [0, 2^(va_bits - 1)), [-(2^(va_bits - 1), -1].
202  */
203 __weak void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
204 {
205 	sparsebit_set_num(vm->vpages_valid,
206 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
207 	sparsebit_set_num(vm->vpages_valid,
208 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
209 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
210 }
211 
212 struct kvm_vm *____vm_create(enum vm_guest_mode mode)
213 {
214 	struct kvm_vm *vm;
215 
216 	vm = calloc(1, sizeof(*vm));
217 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
218 
219 	INIT_LIST_HEAD(&vm->vcpus);
220 	vm->regions.gpa_tree = RB_ROOT;
221 	vm->regions.hva_tree = RB_ROOT;
222 	hash_init(vm->regions.slot_hash);
223 
224 	vm->mode = mode;
225 	vm->type = 0;
226 
227 	vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
228 	vm->va_bits = vm_guest_mode_params[mode].va_bits;
229 	vm->page_size = vm_guest_mode_params[mode].page_size;
230 	vm->page_shift = vm_guest_mode_params[mode].page_shift;
231 
232 	/* Setup mode specific traits. */
233 	switch (vm->mode) {
234 	case VM_MODE_P52V48_4K:
235 		vm->pgtable_levels = 4;
236 		break;
237 	case VM_MODE_P52V48_64K:
238 		vm->pgtable_levels = 3;
239 		break;
240 	case VM_MODE_P48V48_4K:
241 		vm->pgtable_levels = 4;
242 		break;
243 	case VM_MODE_P48V48_64K:
244 		vm->pgtable_levels = 3;
245 		break;
246 	case VM_MODE_P40V48_4K:
247 	case VM_MODE_P36V48_4K:
248 		vm->pgtable_levels = 4;
249 		break;
250 	case VM_MODE_P40V48_64K:
251 	case VM_MODE_P36V48_64K:
252 		vm->pgtable_levels = 3;
253 		break;
254 	case VM_MODE_P48V48_16K:
255 	case VM_MODE_P40V48_16K:
256 	case VM_MODE_P36V48_16K:
257 		vm->pgtable_levels = 4;
258 		break;
259 	case VM_MODE_P36V47_16K:
260 		vm->pgtable_levels = 3;
261 		break;
262 	case VM_MODE_PXXV48_4K:
263 #ifdef __x86_64__
264 		kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
265 		/*
266 		 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
267 		 * it doesn't take effect unless a CR4.LA57 is set, which it
268 		 * isn't for this VM_MODE.
269 		 */
270 		TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
271 			    "Linear address width (%d bits) not supported",
272 			    vm->va_bits);
273 		pr_debug("Guest physical address width detected: %d\n",
274 			 vm->pa_bits);
275 		vm->pgtable_levels = 4;
276 		vm->va_bits = 48;
277 #else
278 		TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
279 #endif
280 		break;
281 	case VM_MODE_P47V64_4K:
282 		vm->pgtable_levels = 5;
283 		break;
284 	case VM_MODE_P44V64_4K:
285 		vm->pgtable_levels = 5;
286 		break;
287 	default:
288 		TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
289 	}
290 
291 #ifdef __aarch64__
292 	if (vm->pa_bits != 40)
293 		vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
294 #endif
295 
296 	vm_open(vm);
297 
298 	/* Limit to VA-bit canonical virtual addresses. */
299 	vm->vpages_valid = sparsebit_alloc();
300 	vm_vaddr_populate_bitmap(vm);
301 
302 	/* Limit physical addresses to PA-bits. */
303 	vm->max_gfn = vm_compute_max_gfn(vm);
304 
305 	/* Allocate and setup memory for guest. */
306 	vm->vpages_mapped = sparsebit_alloc();
307 
308 	return vm;
309 }
310 
311 static uint64_t vm_nr_pages_required(enum vm_guest_mode mode,
312 				     uint32_t nr_runnable_vcpus,
313 				     uint64_t extra_mem_pages)
314 {
315 	uint64_t nr_pages;
316 
317 	TEST_ASSERT(nr_runnable_vcpus,
318 		    "Use vm_create_barebones() for VMs that _never_ have vCPUs\n");
319 
320 	TEST_ASSERT(nr_runnable_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
321 		    "nr_vcpus = %d too large for host, max-vcpus = %d",
322 		    nr_runnable_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
323 
324 	/*
325 	 * Arbitrarily allocate 512 pages (2mb when page size is 4kb) for the
326 	 * test code and other per-VM assets that will be loaded into memslot0.
327 	 */
328 	nr_pages = 512;
329 
330 	/* Account for the per-vCPU stacks on behalf of the test. */
331 	nr_pages += nr_runnable_vcpus * DEFAULT_STACK_PGS;
332 
333 	/*
334 	 * Account for the number of pages needed for the page tables.  The
335 	 * maximum page table size for a memory region will be when the
336 	 * smallest page size is used. Considering each page contains x page
337 	 * table descriptors, the total extra size for page tables (for extra
338 	 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
339 	 * than N/x*2.
340 	 */
341 	nr_pages += (nr_pages + extra_mem_pages) / PTES_PER_MIN_PAGE * 2;
342 
343 	return vm_adjust_num_guest_pages(mode, nr_pages);
344 }
345 
346 struct kvm_vm *__vm_create(enum vm_guest_mode mode, uint32_t nr_runnable_vcpus,
347 			   uint64_t nr_extra_pages)
348 {
349 	uint64_t nr_pages = vm_nr_pages_required(mode, nr_runnable_vcpus,
350 						 nr_extra_pages);
351 	struct userspace_mem_region *slot0;
352 	struct kvm_vm *vm;
353 	int i;
354 
355 	pr_debug("%s: mode='%s' pages='%ld'\n", __func__,
356 		 vm_guest_mode_string(mode), nr_pages);
357 
358 	vm = ____vm_create(mode);
359 
360 	vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 0, 0, nr_pages, 0);
361 	for (i = 0; i < NR_MEM_REGIONS; i++)
362 		vm->memslots[i] = 0;
363 
364 	kvm_vm_elf_load(vm, program_invocation_name);
365 
366 	/*
367 	 * TODO: Add proper defines to protect the library's memslots, and then
368 	 * carve out memslot1 for the ucall MMIO address.  KVM treats writes to
369 	 * read-only memslots as MMIO, and creating a read-only memslot for the
370 	 * MMIO region would prevent silently clobbering the MMIO region.
371 	 */
372 	slot0 = memslot2region(vm, 0);
373 	ucall_init(vm, slot0->region.guest_phys_addr + slot0->region.memory_size);
374 
375 	kvm_arch_vm_post_create(vm);
376 
377 	return vm;
378 }
379 
380 /*
381  * VM Create with customized parameters
382  *
383  * Input Args:
384  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
385  *   nr_vcpus - VCPU count
386  *   extra_mem_pages - Non-slot0 physical memory total size
387  *   guest_code - Guest entry point
388  *   vcpuids - VCPU IDs
389  *
390  * Output Args: None
391  *
392  * Return:
393  *   Pointer to opaque structure that describes the created VM.
394  *
395  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
396  * extra_mem_pages is only used to calculate the maximum page table size,
397  * no real memory allocation for non-slot0 memory in this function.
398  */
399 struct kvm_vm *__vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
400 				      uint64_t extra_mem_pages,
401 				      void *guest_code, struct kvm_vcpu *vcpus[])
402 {
403 	struct kvm_vm *vm;
404 	int i;
405 
406 	TEST_ASSERT(!nr_vcpus || vcpus, "Must provide vCPU array");
407 
408 	vm = __vm_create(mode, nr_vcpus, extra_mem_pages);
409 
410 	for (i = 0; i < nr_vcpus; ++i)
411 		vcpus[i] = vm_vcpu_add(vm, i, guest_code);
412 
413 	return vm;
414 }
415 
416 struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
417 					 uint64_t extra_mem_pages,
418 					 void *guest_code)
419 {
420 	struct kvm_vcpu *vcpus[1];
421 	struct kvm_vm *vm;
422 
423 	vm = __vm_create_with_vcpus(VM_MODE_DEFAULT, 1, extra_mem_pages,
424 				    guest_code, vcpus);
425 
426 	*vcpu = vcpus[0];
427 	return vm;
428 }
429 
430 /*
431  * VM Restart
432  *
433  * Input Args:
434  *   vm - VM that has been released before
435  *
436  * Output Args: None
437  *
438  * Reopens the file descriptors associated to the VM and reinstates the
439  * global state, such as the irqchip and the memory regions that are mapped
440  * into the guest.
441  */
442 void kvm_vm_restart(struct kvm_vm *vmp)
443 {
444 	int ctr;
445 	struct userspace_mem_region *region;
446 
447 	vm_open(vmp);
448 	if (vmp->has_irqchip)
449 		vm_create_irqchip(vmp);
450 
451 	hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
452 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
453 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
454 			    "  rc: %i errno: %i\n"
455 			    "  slot: %u flags: 0x%x\n"
456 			    "  guest_phys_addr: 0x%llx size: 0x%llx",
457 			    ret, errno, region->region.slot,
458 			    region->region.flags,
459 			    region->region.guest_phys_addr,
460 			    region->region.memory_size);
461 	}
462 }
463 
464 __weak struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm,
465 					      uint32_t vcpu_id)
466 {
467 	return __vm_vcpu_add(vm, vcpu_id);
468 }
469 
470 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm)
471 {
472 	kvm_vm_restart(vm);
473 
474 	return vm_vcpu_recreate(vm, 0);
475 }
476 
477 void kvm_pin_this_task_to_pcpu(uint32_t pcpu)
478 {
479 	cpu_set_t mask;
480 	int r;
481 
482 	CPU_ZERO(&mask);
483 	CPU_SET(pcpu, &mask);
484 	r = sched_setaffinity(0, sizeof(mask), &mask);
485 	TEST_ASSERT(!r, "sched_setaffinity() failed for pCPU '%u'.\n", pcpu);
486 }
487 
488 static uint32_t parse_pcpu(const char *cpu_str, const cpu_set_t *allowed_mask)
489 {
490 	uint32_t pcpu = atoi_non_negative("CPU number", cpu_str);
491 
492 	TEST_ASSERT(CPU_ISSET(pcpu, allowed_mask),
493 		    "Not allowed to run on pCPU '%d', check cgroups?\n", pcpu);
494 	return pcpu;
495 }
496 
497 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
498 			    int nr_vcpus)
499 {
500 	cpu_set_t allowed_mask;
501 	char *cpu, *cpu_list;
502 	char delim[2] = ",";
503 	int i, r;
504 
505 	cpu_list = strdup(pcpus_string);
506 	TEST_ASSERT(cpu_list, "strdup() allocation failed.\n");
507 
508 	r = sched_getaffinity(0, sizeof(allowed_mask), &allowed_mask);
509 	TEST_ASSERT(!r, "sched_getaffinity() failed");
510 
511 	cpu = strtok(cpu_list, delim);
512 
513 	/* 1. Get all pcpus for vcpus. */
514 	for (i = 0; i < nr_vcpus; i++) {
515 		TEST_ASSERT(cpu, "pCPU not provided for vCPU '%d'\n", i);
516 		vcpu_to_pcpu[i] = parse_pcpu(cpu, &allowed_mask);
517 		cpu = strtok(NULL, delim);
518 	}
519 
520 	/* 2. Check if the main worker needs to be pinned. */
521 	if (cpu) {
522 		kvm_pin_this_task_to_pcpu(parse_pcpu(cpu, &allowed_mask));
523 		cpu = strtok(NULL, delim);
524 	}
525 
526 	TEST_ASSERT(!cpu, "pCPU list contains trailing garbage characters '%s'", cpu);
527 	free(cpu_list);
528 }
529 
530 /*
531  * Userspace Memory Region Find
532  *
533  * Input Args:
534  *   vm - Virtual Machine
535  *   start - Starting VM physical address
536  *   end - Ending VM physical address, inclusive.
537  *
538  * Output Args: None
539  *
540  * Return:
541  *   Pointer to overlapping region, NULL if no such region.
542  *
543  * Searches for a region with any physical memory that overlaps with
544  * any portion of the guest physical addresses from start to end
545  * inclusive.  If multiple overlapping regions exist, a pointer to any
546  * of the regions is returned.  Null is returned only when no overlapping
547  * region exists.
548  */
549 static struct userspace_mem_region *
550 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
551 {
552 	struct rb_node *node;
553 
554 	for (node = vm->regions.gpa_tree.rb_node; node; ) {
555 		struct userspace_mem_region *region =
556 			container_of(node, struct userspace_mem_region, gpa_node);
557 		uint64_t existing_start = region->region.guest_phys_addr;
558 		uint64_t existing_end = region->region.guest_phys_addr
559 			+ region->region.memory_size - 1;
560 		if (start <= existing_end && end >= existing_start)
561 			return region;
562 
563 		if (start < existing_start)
564 			node = node->rb_left;
565 		else
566 			node = node->rb_right;
567 	}
568 
569 	return NULL;
570 }
571 
572 /*
573  * KVM Userspace Memory Region Find
574  *
575  * Input Args:
576  *   vm - Virtual Machine
577  *   start - Starting VM physical address
578  *   end - Ending VM physical address, inclusive.
579  *
580  * Output Args: None
581  *
582  * Return:
583  *   Pointer to overlapping region, NULL if no such region.
584  *
585  * Public interface to userspace_mem_region_find. Allows tests to look up
586  * the memslot datastructure for a given range of guest physical memory.
587  */
588 struct kvm_userspace_memory_region *
589 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
590 				 uint64_t end)
591 {
592 	struct userspace_mem_region *region;
593 
594 	region = userspace_mem_region_find(vm, start, end);
595 	if (!region)
596 		return NULL;
597 
598 	return &region->region;
599 }
600 
601 __weak void vcpu_arch_free(struct kvm_vcpu *vcpu)
602 {
603 
604 }
605 
606 /*
607  * VM VCPU Remove
608  *
609  * Input Args:
610  *   vcpu - VCPU to remove
611  *
612  * Output Args: None
613  *
614  * Return: None, TEST_ASSERT failures for all error conditions
615  *
616  * Removes a vCPU from a VM and frees its resources.
617  */
618 static void vm_vcpu_rm(struct kvm_vm *vm, struct kvm_vcpu *vcpu)
619 {
620 	int ret;
621 
622 	if (vcpu->dirty_gfns) {
623 		ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
624 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
625 		vcpu->dirty_gfns = NULL;
626 	}
627 
628 	ret = munmap(vcpu->run, vcpu_mmap_sz());
629 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
630 
631 	ret = close(vcpu->fd);
632 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
633 
634 	list_del(&vcpu->list);
635 
636 	vcpu_arch_free(vcpu);
637 	free(vcpu);
638 }
639 
640 void kvm_vm_release(struct kvm_vm *vmp)
641 {
642 	struct kvm_vcpu *vcpu, *tmp;
643 	int ret;
644 
645 	list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
646 		vm_vcpu_rm(vmp, vcpu);
647 
648 	ret = close(vmp->fd);
649 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
650 
651 	ret = close(vmp->kvm_fd);
652 	TEST_ASSERT(!ret,  __KVM_SYSCALL_ERROR("close()", ret));
653 }
654 
655 static void __vm_mem_region_delete(struct kvm_vm *vm,
656 				   struct userspace_mem_region *region,
657 				   bool unlink)
658 {
659 	int ret;
660 
661 	if (unlink) {
662 		rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
663 		rb_erase(&region->hva_node, &vm->regions.hva_tree);
664 		hash_del(&region->slot_node);
665 	}
666 
667 	region->region.memory_size = 0;
668 	vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
669 
670 	sparsebit_free(&region->unused_phy_pages);
671 	ret = munmap(region->mmap_start, region->mmap_size);
672 	TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
673 	if (region->fd >= 0) {
674 		/* There's an extra map when using shared memory. */
675 		ret = munmap(region->mmap_alias, region->mmap_size);
676 		TEST_ASSERT(!ret, __KVM_SYSCALL_ERROR("munmap()", ret));
677 		close(region->fd);
678 	}
679 
680 	free(region);
681 }
682 
683 /*
684  * Destroys and frees the VM pointed to by vmp.
685  */
686 void kvm_vm_free(struct kvm_vm *vmp)
687 {
688 	int ctr;
689 	struct hlist_node *node;
690 	struct userspace_mem_region *region;
691 
692 	if (vmp == NULL)
693 		return;
694 
695 	/* Free cached stats metadata and close FD */
696 	if (vmp->stats_fd) {
697 		free(vmp->stats_desc);
698 		close(vmp->stats_fd);
699 	}
700 
701 	/* Free userspace_mem_regions. */
702 	hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
703 		__vm_mem_region_delete(vmp, region, false);
704 
705 	/* Free sparsebit arrays. */
706 	sparsebit_free(&vmp->vpages_valid);
707 	sparsebit_free(&vmp->vpages_mapped);
708 
709 	kvm_vm_release(vmp);
710 
711 	/* Free the structure describing the VM. */
712 	free(vmp);
713 }
714 
715 int kvm_memfd_alloc(size_t size, bool hugepages)
716 {
717 	int memfd_flags = MFD_CLOEXEC;
718 	int fd, r;
719 
720 	if (hugepages)
721 		memfd_flags |= MFD_HUGETLB;
722 
723 	fd = memfd_create("kvm_selftest", memfd_flags);
724 	TEST_ASSERT(fd != -1, __KVM_SYSCALL_ERROR("memfd_create()", fd));
725 
726 	r = ftruncate(fd, size);
727 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("ftruncate()", r));
728 
729 	r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
730 	TEST_ASSERT(!r, __KVM_SYSCALL_ERROR("fallocate()", r));
731 
732 	return fd;
733 }
734 
735 /*
736  * Memory Compare, host virtual to guest virtual
737  *
738  * Input Args:
739  *   hva - Starting host virtual address
740  *   vm - Virtual Machine
741  *   gva - Starting guest virtual address
742  *   len - number of bytes to compare
743  *
744  * Output Args: None
745  *
746  * Input/Output Args: None
747  *
748  * Return:
749  *   Returns 0 if the bytes starting at hva for a length of len
750  *   are equal the guest virtual bytes starting at gva.  Returns
751  *   a value < 0, if bytes at hva are less than those at gva.
752  *   Otherwise a value > 0 is returned.
753  *
754  * Compares the bytes starting at the host virtual address hva, for
755  * a length of len, to the guest bytes starting at the guest virtual
756  * address given by gva.
757  */
758 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
759 {
760 	size_t amt;
761 
762 	/*
763 	 * Compare a batch of bytes until either a match is found
764 	 * or all the bytes have been compared.
765 	 */
766 	for (uintptr_t offset = 0; offset < len; offset += amt) {
767 		uintptr_t ptr1 = (uintptr_t)hva + offset;
768 
769 		/*
770 		 * Determine host address for guest virtual address
771 		 * at offset.
772 		 */
773 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
774 
775 		/*
776 		 * Determine amount to compare on this pass.
777 		 * Don't allow the comparsion to cross a page boundary.
778 		 */
779 		amt = len - offset;
780 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
781 			amt = vm->page_size - (ptr1 % vm->page_size);
782 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
783 			amt = vm->page_size - (ptr2 % vm->page_size);
784 
785 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
786 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
787 
788 		/*
789 		 * Perform the comparison.  If there is a difference
790 		 * return that result to the caller, otherwise need
791 		 * to continue on looking for a mismatch.
792 		 */
793 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
794 		if (ret != 0)
795 			return ret;
796 	}
797 
798 	/*
799 	 * No mismatch found.  Let the caller know the two memory
800 	 * areas are equal.
801 	 */
802 	return 0;
803 }
804 
805 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
806 					       struct userspace_mem_region *region)
807 {
808 	struct rb_node **cur, *parent;
809 
810 	for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
811 		struct userspace_mem_region *cregion;
812 
813 		cregion = container_of(*cur, typeof(*cregion), gpa_node);
814 		parent = *cur;
815 		if (region->region.guest_phys_addr <
816 		    cregion->region.guest_phys_addr)
817 			cur = &(*cur)->rb_left;
818 		else {
819 			TEST_ASSERT(region->region.guest_phys_addr !=
820 				    cregion->region.guest_phys_addr,
821 				    "Duplicate GPA in region tree");
822 
823 			cur = &(*cur)->rb_right;
824 		}
825 	}
826 
827 	rb_link_node(&region->gpa_node, parent, cur);
828 	rb_insert_color(&region->gpa_node, gpa_tree);
829 }
830 
831 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
832 					       struct userspace_mem_region *region)
833 {
834 	struct rb_node **cur, *parent;
835 
836 	for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
837 		struct userspace_mem_region *cregion;
838 
839 		cregion = container_of(*cur, typeof(*cregion), hva_node);
840 		parent = *cur;
841 		if (region->host_mem < cregion->host_mem)
842 			cur = &(*cur)->rb_left;
843 		else {
844 			TEST_ASSERT(region->host_mem !=
845 				    cregion->host_mem,
846 				    "Duplicate HVA in region tree");
847 
848 			cur = &(*cur)->rb_right;
849 		}
850 	}
851 
852 	rb_link_node(&region->hva_node, parent, cur);
853 	rb_insert_color(&region->hva_node, hva_tree);
854 }
855 
856 
857 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
858 				uint64_t gpa, uint64_t size, void *hva)
859 {
860 	struct kvm_userspace_memory_region region = {
861 		.slot = slot,
862 		.flags = flags,
863 		.guest_phys_addr = gpa,
864 		.memory_size = size,
865 		.userspace_addr = (uintptr_t)hva,
866 	};
867 
868 	return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region);
869 }
870 
871 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
872 			       uint64_t gpa, uint64_t size, void *hva)
873 {
874 	int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
875 
876 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
877 		    errno, strerror(errno));
878 }
879 
880 /*
881  * VM Userspace Memory Region Add
882  *
883  * Input Args:
884  *   vm - Virtual Machine
885  *   src_type - Storage source for this region.
886  *              NULL to use anonymous memory.
887  *   guest_paddr - Starting guest physical address
888  *   slot - KVM region slot
889  *   npages - Number of physical pages
890  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
891  *
892  * Output Args: None
893  *
894  * Return: None
895  *
896  * Allocates a memory area of the number of pages specified by npages
897  * and maps it to the VM specified by vm, at a starting physical address
898  * given by guest_paddr.  The region is created with a KVM region slot
899  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
900  * region is created with the flags given by flags.
901  */
902 void vm_userspace_mem_region_add(struct kvm_vm *vm,
903 	enum vm_mem_backing_src_type src_type,
904 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
905 	uint32_t flags)
906 {
907 	int ret;
908 	struct userspace_mem_region *region;
909 	size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
910 	size_t alignment;
911 
912 	TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
913 		"Number of guest pages is not compatible with the host. "
914 		"Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
915 
916 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
917 		"address not on a page boundary.\n"
918 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
919 		guest_paddr, vm->page_size);
920 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
921 		<= vm->max_gfn, "Physical range beyond maximum "
922 		"supported physical address,\n"
923 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
924 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
925 		guest_paddr, npages, vm->max_gfn, vm->page_size);
926 
927 	/*
928 	 * Confirm a mem region with an overlapping address doesn't
929 	 * already exist.
930 	 */
931 	region = (struct userspace_mem_region *) userspace_mem_region_find(
932 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
933 	if (region != NULL)
934 		TEST_FAIL("overlapping userspace_mem_region already "
935 			"exists\n"
936 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
937 			"page_size: 0x%x\n"
938 			"  existing guest_paddr: 0x%lx size: 0x%lx",
939 			guest_paddr, npages, vm->page_size,
940 			(uint64_t) region->region.guest_phys_addr,
941 			(uint64_t) region->region.memory_size);
942 
943 	/* Confirm no region with the requested slot already exists. */
944 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
945 			       slot) {
946 		if (region->region.slot != slot)
947 			continue;
948 
949 		TEST_FAIL("A mem region with the requested slot "
950 			"already exists.\n"
951 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
952 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
953 			slot, guest_paddr, npages,
954 			region->region.slot,
955 			(uint64_t) region->region.guest_phys_addr,
956 			(uint64_t) region->region.memory_size);
957 	}
958 
959 	/* Allocate and initialize new mem region structure. */
960 	region = calloc(1, sizeof(*region));
961 	TEST_ASSERT(region != NULL, "Insufficient Memory");
962 	region->mmap_size = npages * vm->page_size;
963 
964 #ifdef __s390x__
965 	/* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
966 	alignment = 0x100000;
967 #else
968 	alignment = 1;
969 #endif
970 
971 	/*
972 	 * When using THP mmap is not guaranteed to returned a hugepage aligned
973 	 * address so we have to pad the mmap. Padding is not needed for HugeTLB
974 	 * because mmap will always return an address aligned to the HugeTLB
975 	 * page size.
976 	 */
977 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
978 		alignment = max(backing_src_pagesz, alignment);
979 
980 	ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
981 
982 	/* Add enough memory to align up if necessary */
983 	if (alignment > 1)
984 		region->mmap_size += alignment;
985 
986 	region->fd = -1;
987 	if (backing_src_is_shared(src_type))
988 		region->fd = kvm_memfd_alloc(region->mmap_size,
989 					     src_type == VM_MEM_SRC_SHARED_HUGETLB);
990 
991 	region->mmap_start = mmap(NULL, region->mmap_size,
992 				  PROT_READ | PROT_WRITE,
993 				  vm_mem_backing_src_alias(src_type)->flag,
994 				  region->fd, 0);
995 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
996 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
997 
998 	TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
999 		    region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1000 		    "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1001 		    region->mmap_start, backing_src_pagesz);
1002 
1003 	/* Align host address */
1004 	region->host_mem = align_ptr_up(region->mmap_start, alignment);
1005 
1006 	/* As needed perform madvise */
1007 	if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1008 	     src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1009 		ret = madvise(region->host_mem, npages * vm->page_size,
1010 			      src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1011 		TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1012 			    region->host_mem, npages * vm->page_size,
1013 			    vm_mem_backing_src_alias(src_type)->name);
1014 	}
1015 
1016 	region->backing_src_type = src_type;
1017 	region->unused_phy_pages = sparsebit_alloc();
1018 	sparsebit_set_num(region->unused_phy_pages,
1019 		guest_paddr >> vm->page_shift, npages);
1020 	region->region.slot = slot;
1021 	region->region.flags = flags;
1022 	region->region.guest_phys_addr = guest_paddr;
1023 	region->region.memory_size = npages * vm->page_size;
1024 	region->region.userspace_addr = (uintptr_t) region->host_mem;
1025 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1026 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1027 		"  rc: %i errno: %i\n"
1028 		"  slot: %u flags: 0x%x\n"
1029 		"  guest_phys_addr: 0x%lx size: 0x%lx",
1030 		ret, errno, slot, flags,
1031 		guest_paddr, (uint64_t) region->region.memory_size);
1032 
1033 	/* Add to quick lookup data structures */
1034 	vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1035 	vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1036 	hash_add(vm->regions.slot_hash, &region->slot_node, slot);
1037 
1038 	/* If shared memory, create an alias. */
1039 	if (region->fd >= 0) {
1040 		region->mmap_alias = mmap(NULL, region->mmap_size,
1041 					  PROT_READ | PROT_WRITE,
1042 					  vm_mem_backing_src_alias(src_type)->flag,
1043 					  region->fd, 0);
1044 		TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1045 			    __KVM_SYSCALL_ERROR("mmap()",  (int)(unsigned long)MAP_FAILED));
1046 
1047 		/* Align host alias address */
1048 		region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1049 	}
1050 }
1051 
1052 /*
1053  * Memslot to region
1054  *
1055  * Input Args:
1056  *   vm - Virtual Machine
1057  *   memslot - KVM memory slot ID
1058  *
1059  * Output Args: None
1060  *
1061  * Return:
1062  *   Pointer to memory region structure that describe memory region
1063  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
1064  *   on error (e.g. currently no memory region using memslot as a KVM
1065  *   memory slot ID).
1066  */
1067 struct userspace_mem_region *
1068 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1069 {
1070 	struct userspace_mem_region *region;
1071 
1072 	hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1073 			       memslot)
1074 		if (region->region.slot == memslot)
1075 			return region;
1076 
1077 	fprintf(stderr, "No mem region with the requested slot found,\n"
1078 		"  requested slot: %u\n", memslot);
1079 	fputs("---- vm dump ----\n", stderr);
1080 	vm_dump(stderr, vm, 2);
1081 	TEST_FAIL("Mem region not found");
1082 	return NULL;
1083 }
1084 
1085 /*
1086  * VM Memory Region Flags Set
1087  *
1088  * Input Args:
1089  *   vm - Virtual Machine
1090  *   flags - Starting guest physical address
1091  *
1092  * Output Args: None
1093  *
1094  * Return: None
1095  *
1096  * Sets the flags of the memory region specified by the value of slot,
1097  * to the values given by flags.
1098  */
1099 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1100 {
1101 	int ret;
1102 	struct userspace_mem_region *region;
1103 
1104 	region = memslot2region(vm, slot);
1105 
1106 	region->region.flags = flags;
1107 
1108 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1109 
1110 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1111 		"  rc: %i errno: %i slot: %u flags: 0x%x",
1112 		ret, errno, slot, flags);
1113 }
1114 
1115 /*
1116  * VM Memory Region Move
1117  *
1118  * Input Args:
1119  *   vm - Virtual Machine
1120  *   slot - Slot of the memory region to move
1121  *   new_gpa - Starting guest physical address
1122  *
1123  * Output Args: None
1124  *
1125  * Return: None
1126  *
1127  * Change the gpa of a memory region.
1128  */
1129 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1130 {
1131 	struct userspace_mem_region *region;
1132 	int ret;
1133 
1134 	region = memslot2region(vm, slot);
1135 
1136 	region->region.guest_phys_addr = new_gpa;
1137 
1138 	ret = __vm_ioctl(vm, KVM_SET_USER_MEMORY_REGION, &region->region);
1139 
1140 	TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1141 		    "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1142 		    ret, errno, slot, new_gpa);
1143 }
1144 
1145 /*
1146  * VM Memory Region Delete
1147  *
1148  * Input Args:
1149  *   vm - Virtual Machine
1150  *   slot - Slot of the memory region to delete
1151  *
1152  * Output Args: None
1153  *
1154  * Return: None
1155  *
1156  * Delete a memory region.
1157  */
1158 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1159 {
1160 	__vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1161 }
1162 
1163 /* Returns the size of a vCPU's kvm_run structure. */
1164 static int vcpu_mmap_sz(void)
1165 {
1166 	int dev_fd, ret;
1167 
1168 	dev_fd = open_kvm_dev_path_or_exit();
1169 
1170 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1171 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
1172 		    KVM_IOCTL_ERROR(KVM_GET_VCPU_MMAP_SIZE, ret));
1173 
1174 	close(dev_fd);
1175 
1176 	return ret;
1177 }
1178 
1179 static bool vcpu_exists(struct kvm_vm *vm, uint32_t vcpu_id)
1180 {
1181 	struct kvm_vcpu *vcpu;
1182 
1183 	list_for_each_entry(vcpu, &vm->vcpus, list) {
1184 		if (vcpu->id == vcpu_id)
1185 			return true;
1186 	}
1187 
1188 	return false;
1189 }
1190 
1191 /*
1192  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpu_id.
1193  * No additional vCPU setup is done.  Returns the vCPU.
1194  */
1195 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
1196 {
1197 	struct kvm_vcpu *vcpu;
1198 
1199 	/* Confirm a vcpu with the specified id doesn't already exist. */
1200 	TEST_ASSERT(!vcpu_exists(vm, vcpu_id), "vCPU%d already exists\n", vcpu_id);
1201 
1202 	/* Allocate and initialize new vcpu structure. */
1203 	vcpu = calloc(1, sizeof(*vcpu));
1204 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1205 
1206 	vcpu->vm = vm;
1207 	vcpu->id = vcpu_id;
1208 	vcpu->fd = __vm_ioctl(vm, KVM_CREATE_VCPU, (void *)(unsigned long)vcpu_id);
1209 	TEST_ASSERT(vcpu->fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu->fd));
1210 
1211 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->run), "vcpu mmap size "
1212 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1213 		vcpu_mmap_sz(), sizeof(*vcpu->run));
1214 	vcpu->run = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1215 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1216 	TEST_ASSERT(vcpu->run != MAP_FAILED,
1217 		    __KVM_SYSCALL_ERROR("mmap()", (int)(unsigned long)MAP_FAILED));
1218 
1219 	/* Add to linked-list of VCPUs. */
1220 	list_add(&vcpu->list, &vm->vcpus);
1221 
1222 	return vcpu;
1223 }
1224 
1225 /*
1226  * VM Virtual Address Unused Gap
1227  *
1228  * Input Args:
1229  *   vm - Virtual Machine
1230  *   sz - Size (bytes)
1231  *   vaddr_min - Minimum Virtual Address
1232  *
1233  * Output Args: None
1234  *
1235  * Return:
1236  *   Lowest virtual address at or below vaddr_min, with at least
1237  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
1238  *   size sz is available.
1239  *
1240  * Within the VM specified by vm, locates the lowest starting virtual
1241  * address >= vaddr_min, that has at least sz unallocated bytes.  A
1242  * TEST_ASSERT failure occurs for invalid input or no area of at least
1243  * sz unallocated bytes >= vaddr_min is available.
1244  */
1245 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1246 			       vm_vaddr_t vaddr_min)
1247 {
1248 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1249 
1250 	/* Determine lowest permitted virtual page index. */
1251 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1252 	if ((pgidx_start * vm->page_size) < vaddr_min)
1253 		goto no_va_found;
1254 
1255 	/* Loop over section with enough valid virtual page indexes. */
1256 	if (!sparsebit_is_set_num(vm->vpages_valid,
1257 		pgidx_start, pages))
1258 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1259 			pgidx_start, pages);
1260 	do {
1261 		/*
1262 		 * Are there enough unused virtual pages available at
1263 		 * the currently proposed starting virtual page index.
1264 		 * If not, adjust proposed starting index to next
1265 		 * possible.
1266 		 */
1267 		if (sparsebit_is_clear_num(vm->vpages_mapped,
1268 			pgidx_start, pages))
1269 			goto va_found;
1270 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1271 			pgidx_start, pages);
1272 		if (pgidx_start == 0)
1273 			goto no_va_found;
1274 
1275 		/*
1276 		 * If needed, adjust proposed starting virtual address,
1277 		 * to next range of valid virtual addresses.
1278 		 */
1279 		if (!sparsebit_is_set_num(vm->vpages_valid,
1280 			pgidx_start, pages)) {
1281 			pgidx_start = sparsebit_next_set_num(
1282 				vm->vpages_valid, pgidx_start, pages);
1283 			if (pgidx_start == 0)
1284 				goto no_va_found;
1285 		}
1286 	} while (pgidx_start != 0);
1287 
1288 no_va_found:
1289 	TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1290 
1291 	/* NOT REACHED */
1292 	return -1;
1293 
1294 va_found:
1295 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1296 		pgidx_start, pages),
1297 		"Unexpected, invalid virtual page index range,\n"
1298 		"  pgidx_start: 0x%lx\n"
1299 		"  pages: 0x%lx",
1300 		pgidx_start, pages);
1301 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1302 		pgidx_start, pages),
1303 		"Unexpected, pages already mapped,\n"
1304 		"  pgidx_start: 0x%lx\n"
1305 		"  pages: 0x%lx",
1306 		pgidx_start, pages);
1307 
1308 	return pgidx_start * vm->page_size;
1309 }
1310 
1311 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
1312 			    enum kvm_mem_region_type type)
1313 {
1314 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1315 
1316 	virt_pgd_alloc(vm);
1317 	vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1318 					      KVM_UTIL_MIN_PFN * vm->page_size,
1319 					      vm->memslots[type]);
1320 
1321 	/*
1322 	 * Find an unused range of virtual page addresses of at least
1323 	 * pages in length.
1324 	 */
1325 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1326 
1327 	/* Map the virtual pages. */
1328 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1329 		pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1330 
1331 		virt_pg_map(vm, vaddr, paddr);
1332 
1333 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1334 	}
1335 
1336 	return vaddr_start;
1337 }
1338 
1339 /*
1340  * VM Virtual Address Allocate
1341  *
1342  * Input Args:
1343  *   vm - Virtual Machine
1344  *   sz - Size in bytes
1345  *   vaddr_min - Minimum starting virtual address
1346  *
1347  * Output Args: None
1348  *
1349  * Return:
1350  *   Starting guest virtual address
1351  *
1352  * Allocates at least sz bytes within the virtual address space of the vm
1353  * given by vm.  The allocated bytes are mapped to a virtual address >=
1354  * the address given by vaddr_min.  Note that each allocation uses a
1355  * a unique set of pages, with the minimum real allocation being at least
1356  * a page. The allocated physical space comes from the TEST_DATA memory region.
1357  */
1358 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1359 {
1360 	return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
1361 }
1362 
1363 /*
1364  * VM Virtual Address Allocate Pages
1365  *
1366  * Input Args:
1367  *   vm - Virtual Machine
1368  *
1369  * Output Args: None
1370  *
1371  * Return:
1372  *   Starting guest virtual address
1373  *
1374  * Allocates at least N system pages worth of bytes within the virtual address
1375  * space of the vm.
1376  */
1377 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1378 {
1379 	return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1380 }
1381 
1382 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm, enum kvm_mem_region_type type)
1383 {
1384 	return __vm_vaddr_alloc(vm, getpagesize(), KVM_UTIL_MIN_VADDR, type);
1385 }
1386 
1387 /*
1388  * VM Virtual Address Allocate Page
1389  *
1390  * Input Args:
1391  *   vm - Virtual Machine
1392  *
1393  * Output Args: None
1394  *
1395  * Return:
1396  *   Starting guest virtual address
1397  *
1398  * Allocates at least one system page worth of bytes within the virtual address
1399  * space of the vm.
1400  */
1401 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1402 {
1403 	return vm_vaddr_alloc_pages(vm, 1);
1404 }
1405 
1406 /*
1407  * Map a range of VM virtual address to the VM's physical address
1408  *
1409  * Input Args:
1410  *   vm - Virtual Machine
1411  *   vaddr - Virtuall address to map
1412  *   paddr - VM Physical Address
1413  *   npages - The number of pages to map
1414  *
1415  * Output Args: None
1416  *
1417  * Return: None
1418  *
1419  * Within the VM given by @vm, creates a virtual translation for
1420  * @npages starting at @vaddr to the page range starting at @paddr.
1421  */
1422 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1423 	      unsigned int npages)
1424 {
1425 	size_t page_size = vm->page_size;
1426 	size_t size = npages * page_size;
1427 
1428 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1429 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1430 
1431 	while (npages--) {
1432 		virt_pg_map(vm, vaddr, paddr);
1433 		sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
1434 
1435 		vaddr += page_size;
1436 		paddr += page_size;
1437 	}
1438 }
1439 
1440 /*
1441  * Address VM Physical to Host Virtual
1442  *
1443  * Input Args:
1444  *   vm - Virtual Machine
1445  *   gpa - VM physical address
1446  *
1447  * Output Args: None
1448  *
1449  * Return:
1450  *   Equivalent host virtual address
1451  *
1452  * Locates the memory region containing the VM physical address given
1453  * by gpa, within the VM given by vm.  When found, the host virtual
1454  * address providing the memory to the vm physical address is returned.
1455  * A TEST_ASSERT failure occurs if no region containing gpa exists.
1456  */
1457 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1458 {
1459 	struct userspace_mem_region *region;
1460 
1461 	region = userspace_mem_region_find(vm, gpa, gpa);
1462 	if (!region) {
1463 		TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1464 		return NULL;
1465 	}
1466 
1467 	return (void *)((uintptr_t)region->host_mem
1468 		+ (gpa - region->region.guest_phys_addr));
1469 }
1470 
1471 /*
1472  * Address Host Virtual to VM Physical
1473  *
1474  * Input Args:
1475  *   vm - Virtual Machine
1476  *   hva - Host virtual address
1477  *
1478  * Output Args: None
1479  *
1480  * Return:
1481  *   Equivalent VM physical address
1482  *
1483  * Locates the memory region containing the host virtual address given
1484  * by hva, within the VM given by vm.  When found, the equivalent
1485  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1486  * region containing hva exists.
1487  */
1488 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1489 {
1490 	struct rb_node *node;
1491 
1492 	for (node = vm->regions.hva_tree.rb_node; node; ) {
1493 		struct userspace_mem_region *region =
1494 			container_of(node, struct userspace_mem_region, hva_node);
1495 
1496 		if (hva >= region->host_mem) {
1497 			if (hva <= (region->host_mem
1498 				+ region->region.memory_size - 1))
1499 				return (vm_paddr_t)((uintptr_t)
1500 					region->region.guest_phys_addr
1501 					+ (hva - (uintptr_t)region->host_mem));
1502 
1503 			node = node->rb_right;
1504 		} else
1505 			node = node->rb_left;
1506 	}
1507 
1508 	TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1509 	return -1;
1510 }
1511 
1512 /*
1513  * Address VM physical to Host Virtual *alias*.
1514  *
1515  * Input Args:
1516  *   vm - Virtual Machine
1517  *   gpa - VM physical address
1518  *
1519  * Output Args: None
1520  *
1521  * Return:
1522  *   Equivalent address within the host virtual *alias* area, or NULL
1523  *   (without failing the test) if the guest memory is not shared (so
1524  *   no alias exists).
1525  *
1526  * Create a writable, shared virtual=>physical alias for the specific GPA.
1527  * The primary use case is to allow the host selftest to manipulate guest
1528  * memory without mapping said memory in the guest's address space. And, for
1529  * userfaultfd-based demand paging, to do so without triggering userfaults.
1530  */
1531 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1532 {
1533 	struct userspace_mem_region *region;
1534 	uintptr_t offset;
1535 
1536 	region = userspace_mem_region_find(vm, gpa, gpa);
1537 	if (!region)
1538 		return NULL;
1539 
1540 	if (!region->host_alias)
1541 		return NULL;
1542 
1543 	offset = gpa - region->region.guest_phys_addr;
1544 	return (void *) ((uintptr_t) region->host_alias + offset);
1545 }
1546 
1547 /* Create an interrupt controller chip for the specified VM. */
1548 void vm_create_irqchip(struct kvm_vm *vm)
1549 {
1550 	vm_ioctl(vm, KVM_CREATE_IRQCHIP, NULL);
1551 
1552 	vm->has_irqchip = true;
1553 }
1554 
1555 int _vcpu_run(struct kvm_vcpu *vcpu)
1556 {
1557 	int rc;
1558 
1559 	do {
1560 		rc = __vcpu_run(vcpu);
1561 	} while (rc == -1 && errno == EINTR);
1562 
1563 	assert_on_unhandled_exception(vcpu);
1564 
1565 	return rc;
1566 }
1567 
1568 /*
1569  * Invoke KVM_RUN on a vCPU until KVM returns something other than -EINTR.
1570  * Assert if the KVM returns an error (other than -EINTR).
1571  */
1572 void vcpu_run(struct kvm_vcpu *vcpu)
1573 {
1574 	int ret = _vcpu_run(vcpu);
1575 
1576 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_RUN, ret));
1577 }
1578 
1579 void vcpu_run_complete_io(struct kvm_vcpu *vcpu)
1580 {
1581 	int ret;
1582 
1583 	vcpu->run->immediate_exit = 1;
1584 	ret = __vcpu_run(vcpu);
1585 	vcpu->run->immediate_exit = 0;
1586 
1587 	TEST_ASSERT(ret == -1 && errno == EINTR,
1588 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1589 		    ret, errno);
1590 }
1591 
1592 /*
1593  * Get the list of guest registers which are supported for
1594  * KVM_GET_ONE_REG/KVM_SET_ONE_REG ioctls.  Returns a kvm_reg_list pointer,
1595  * it is the caller's responsibility to free the list.
1596  */
1597 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu)
1598 {
1599 	struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1600 	int ret;
1601 
1602 	ret = __vcpu_ioctl(vcpu, KVM_GET_REG_LIST, &reg_list_n);
1603 	TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1604 
1605 	reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1606 	reg_list->n = reg_list_n.n;
1607 	vcpu_ioctl(vcpu, KVM_GET_REG_LIST, reg_list);
1608 	return reg_list;
1609 }
1610 
1611 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu)
1612 {
1613 	uint32_t page_size = getpagesize();
1614 	uint32_t size = vcpu->vm->dirty_ring_size;
1615 
1616 	TEST_ASSERT(size > 0, "Should enable dirty ring first");
1617 
1618 	if (!vcpu->dirty_gfns) {
1619 		void *addr;
1620 
1621 		addr = mmap(NULL, size, PROT_READ, MAP_PRIVATE, vcpu->fd,
1622 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1623 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1624 
1625 		addr = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_PRIVATE, vcpu->fd,
1626 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1627 		TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1628 
1629 		addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd,
1630 			    page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1631 		TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1632 
1633 		vcpu->dirty_gfns = addr;
1634 		vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1635 	}
1636 
1637 	return vcpu->dirty_gfns;
1638 }
1639 
1640 /*
1641  * Device Ioctl
1642  */
1643 
1644 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
1645 {
1646 	struct kvm_device_attr attribute = {
1647 		.group = group,
1648 		.attr = attr,
1649 		.flags = 0,
1650 	};
1651 
1652 	return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1653 }
1654 
1655 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type)
1656 {
1657 	struct kvm_create_device create_dev = {
1658 		.type = type,
1659 		.flags = KVM_CREATE_DEVICE_TEST,
1660 	};
1661 
1662 	return __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1663 }
1664 
1665 int __kvm_create_device(struct kvm_vm *vm, uint64_t type)
1666 {
1667 	struct kvm_create_device create_dev = {
1668 		.type = type,
1669 		.fd = -1,
1670 		.flags = 0,
1671 	};
1672 	int err;
1673 
1674 	err = __vm_ioctl(vm, KVM_CREATE_DEVICE, &create_dev);
1675 	TEST_ASSERT(err <= 0, "KVM_CREATE_DEVICE shouldn't return a positive value");
1676 	return err ? : create_dev.fd;
1677 }
1678 
1679 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val)
1680 {
1681 	struct kvm_device_attr kvmattr = {
1682 		.group = group,
1683 		.attr = attr,
1684 		.flags = 0,
1685 		.addr = (uintptr_t)val,
1686 	};
1687 
1688 	return __kvm_ioctl(dev_fd, KVM_GET_DEVICE_ATTR, &kvmattr);
1689 }
1690 
1691 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val)
1692 {
1693 	struct kvm_device_attr kvmattr = {
1694 		.group = group,
1695 		.attr = attr,
1696 		.flags = 0,
1697 		.addr = (uintptr_t)val,
1698 	};
1699 
1700 	return __kvm_ioctl(dev_fd, KVM_SET_DEVICE_ATTR, &kvmattr);
1701 }
1702 
1703 /*
1704  * IRQ related functions.
1705  */
1706 
1707 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1708 {
1709 	struct kvm_irq_level irq_level = {
1710 		.irq    = irq,
1711 		.level  = level,
1712 	};
1713 
1714 	return __vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
1715 }
1716 
1717 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
1718 {
1719 	int ret = _kvm_irq_line(vm, irq, level);
1720 
1721 	TEST_ASSERT(ret >= 0, KVM_IOCTL_ERROR(KVM_IRQ_LINE, ret));
1722 }
1723 
1724 struct kvm_irq_routing *kvm_gsi_routing_create(void)
1725 {
1726 	struct kvm_irq_routing *routing;
1727 	size_t size;
1728 
1729 	size = sizeof(struct kvm_irq_routing);
1730 	/* Allocate space for the max number of entries: this wastes 196 KBs. */
1731 	size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
1732 	routing = calloc(1, size);
1733 	assert(routing);
1734 
1735 	return routing;
1736 }
1737 
1738 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
1739 		uint32_t gsi, uint32_t pin)
1740 {
1741 	int i;
1742 
1743 	assert(routing);
1744 	assert(routing->nr < KVM_MAX_IRQ_ROUTES);
1745 
1746 	i = routing->nr;
1747 	routing->entries[i].gsi = gsi;
1748 	routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
1749 	routing->entries[i].flags = 0;
1750 	routing->entries[i].u.irqchip.irqchip = 0;
1751 	routing->entries[i].u.irqchip.pin = pin;
1752 	routing->nr++;
1753 }
1754 
1755 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1756 {
1757 	int ret;
1758 
1759 	assert(routing);
1760 	ret = __vm_ioctl(vm, KVM_SET_GSI_ROUTING, routing);
1761 	free(routing);
1762 
1763 	return ret;
1764 }
1765 
1766 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
1767 {
1768 	int ret;
1769 
1770 	ret = _kvm_gsi_routing_write(vm, routing);
1771 	TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_GSI_ROUTING, ret));
1772 }
1773 
1774 /*
1775  * VM Dump
1776  *
1777  * Input Args:
1778  *   vm - Virtual Machine
1779  *   indent - Left margin indent amount
1780  *
1781  * Output Args:
1782  *   stream - Output FILE stream
1783  *
1784  * Return: None
1785  *
1786  * Dumps the current state of the VM given by vm, to the FILE stream
1787  * given by stream.
1788  */
1789 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1790 {
1791 	int ctr;
1792 	struct userspace_mem_region *region;
1793 	struct kvm_vcpu *vcpu;
1794 
1795 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1796 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1797 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1798 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1799 	hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
1800 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1801 			"host_virt: %p\n", indent + 2, "",
1802 			(uint64_t) region->region.guest_phys_addr,
1803 			(uint64_t) region->region.memory_size,
1804 			region->host_mem);
1805 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1806 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1807 	}
1808 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1809 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1810 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1811 		vm->pgd_created);
1812 	if (vm->pgd_created) {
1813 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1814 			indent + 2, "");
1815 		virt_dump(stream, vm, indent + 4);
1816 	}
1817 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1818 
1819 	list_for_each_entry(vcpu, &vm->vcpus, list)
1820 		vcpu_dump(stream, vcpu, indent + 2);
1821 }
1822 
1823 #define KVM_EXIT_STRING(x) {KVM_EXIT_##x, #x}
1824 
1825 /* Known KVM exit reasons */
1826 static struct exit_reason {
1827 	unsigned int reason;
1828 	const char *name;
1829 } exit_reasons_known[] = {
1830 	KVM_EXIT_STRING(UNKNOWN),
1831 	KVM_EXIT_STRING(EXCEPTION),
1832 	KVM_EXIT_STRING(IO),
1833 	KVM_EXIT_STRING(HYPERCALL),
1834 	KVM_EXIT_STRING(DEBUG),
1835 	KVM_EXIT_STRING(HLT),
1836 	KVM_EXIT_STRING(MMIO),
1837 	KVM_EXIT_STRING(IRQ_WINDOW_OPEN),
1838 	KVM_EXIT_STRING(SHUTDOWN),
1839 	KVM_EXIT_STRING(FAIL_ENTRY),
1840 	KVM_EXIT_STRING(INTR),
1841 	KVM_EXIT_STRING(SET_TPR),
1842 	KVM_EXIT_STRING(TPR_ACCESS),
1843 	KVM_EXIT_STRING(S390_SIEIC),
1844 	KVM_EXIT_STRING(S390_RESET),
1845 	KVM_EXIT_STRING(DCR),
1846 	KVM_EXIT_STRING(NMI),
1847 	KVM_EXIT_STRING(INTERNAL_ERROR),
1848 	KVM_EXIT_STRING(OSI),
1849 	KVM_EXIT_STRING(PAPR_HCALL),
1850 	KVM_EXIT_STRING(S390_UCONTROL),
1851 	KVM_EXIT_STRING(WATCHDOG),
1852 	KVM_EXIT_STRING(S390_TSCH),
1853 	KVM_EXIT_STRING(EPR),
1854 	KVM_EXIT_STRING(SYSTEM_EVENT),
1855 	KVM_EXIT_STRING(S390_STSI),
1856 	KVM_EXIT_STRING(IOAPIC_EOI),
1857 	KVM_EXIT_STRING(HYPERV),
1858 	KVM_EXIT_STRING(ARM_NISV),
1859 	KVM_EXIT_STRING(X86_RDMSR),
1860 	KVM_EXIT_STRING(X86_WRMSR),
1861 	KVM_EXIT_STRING(DIRTY_RING_FULL),
1862 	KVM_EXIT_STRING(AP_RESET_HOLD),
1863 	KVM_EXIT_STRING(X86_BUS_LOCK),
1864 	KVM_EXIT_STRING(XEN),
1865 	KVM_EXIT_STRING(RISCV_SBI),
1866 	KVM_EXIT_STRING(RISCV_CSR),
1867 	KVM_EXIT_STRING(NOTIFY),
1868 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1869 	KVM_EXIT_STRING(MEMORY_NOT_PRESENT),
1870 #endif
1871 };
1872 
1873 /*
1874  * Exit Reason String
1875  *
1876  * Input Args:
1877  *   exit_reason - Exit reason
1878  *
1879  * Output Args: None
1880  *
1881  * Return:
1882  *   Constant string pointer describing the exit reason.
1883  *
1884  * Locates and returns a constant string that describes the KVM exit
1885  * reason given by exit_reason.  If no such string is found, a constant
1886  * string of "Unknown" is returned.
1887  */
1888 const char *exit_reason_str(unsigned int exit_reason)
1889 {
1890 	unsigned int n1;
1891 
1892 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1893 		if (exit_reason == exit_reasons_known[n1].reason)
1894 			return exit_reasons_known[n1].name;
1895 	}
1896 
1897 	return "Unknown";
1898 }
1899 
1900 /*
1901  * Physical Contiguous Page Allocator
1902  *
1903  * Input Args:
1904  *   vm - Virtual Machine
1905  *   num - number of pages
1906  *   paddr_min - Physical address minimum
1907  *   memslot - Memory region to allocate page from
1908  *
1909  * Output Args: None
1910  *
1911  * Return:
1912  *   Starting physical address
1913  *
1914  * Within the VM specified by vm, locates a range of available physical
1915  * pages at or above paddr_min. If found, the pages are marked as in use
1916  * and their base address is returned. A TEST_ASSERT failure occurs if
1917  * not enough pages are available at or above paddr_min.
1918  */
1919 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1920 			      vm_paddr_t paddr_min, uint32_t memslot)
1921 {
1922 	struct userspace_mem_region *region;
1923 	sparsebit_idx_t pg, base;
1924 
1925 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1926 
1927 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1928 		"not divisible by page size.\n"
1929 		"  paddr_min: 0x%lx page_size: 0x%x",
1930 		paddr_min, vm->page_size);
1931 
1932 	region = memslot2region(vm, memslot);
1933 	base = pg = paddr_min >> vm->page_shift;
1934 
1935 	do {
1936 		for (; pg < base + num; ++pg) {
1937 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1938 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1939 				break;
1940 			}
1941 		}
1942 	} while (pg && pg != base + num);
1943 
1944 	if (pg == 0) {
1945 		fprintf(stderr, "No guest physical page available, "
1946 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1947 			paddr_min, vm->page_size, memslot);
1948 		fputs("---- vm dump ----\n", stderr);
1949 		vm_dump(stderr, vm, 2);
1950 		abort();
1951 	}
1952 
1953 	for (pg = base; pg < base + num; ++pg)
1954 		sparsebit_clear(region->unused_phy_pages, pg);
1955 
1956 	return base * vm->page_size;
1957 }
1958 
1959 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1960 			     uint32_t memslot)
1961 {
1962 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1963 }
1964 
1965 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
1966 {
1967 	return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR,
1968 				 vm->memslots[MEM_REGION_PT]);
1969 }
1970 
1971 /*
1972  * Address Guest Virtual to Host Virtual
1973  *
1974  * Input Args:
1975  *   vm - Virtual Machine
1976  *   gva - VM virtual address
1977  *
1978  * Output Args: None
1979  *
1980  * Return:
1981  *   Equivalent host virtual address
1982  */
1983 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1984 {
1985 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1986 }
1987 
1988 unsigned long __weak vm_compute_max_gfn(struct kvm_vm *vm)
1989 {
1990 	return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
1991 }
1992 
1993 static unsigned int vm_calc_num_pages(unsigned int num_pages,
1994 				      unsigned int page_shift,
1995 				      unsigned int new_page_shift,
1996 				      bool ceil)
1997 {
1998 	unsigned int n = 1 << (new_page_shift - page_shift);
1999 
2000 	if (page_shift >= new_page_shift)
2001 		return num_pages * (1 << (page_shift - new_page_shift));
2002 
2003 	return num_pages / n + !!(ceil && num_pages % n);
2004 }
2005 
2006 static inline int getpageshift(void)
2007 {
2008 	return __builtin_ffs(getpagesize()) - 1;
2009 }
2010 
2011 unsigned int
2012 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2013 {
2014 	return vm_calc_num_pages(num_guest_pages,
2015 				 vm_guest_mode_params[mode].page_shift,
2016 				 getpageshift(), true);
2017 }
2018 
2019 unsigned int
2020 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2021 {
2022 	return vm_calc_num_pages(num_host_pages, getpageshift(),
2023 				 vm_guest_mode_params[mode].page_shift, false);
2024 }
2025 
2026 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2027 {
2028 	unsigned int n;
2029 	n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2030 	return vm_adjust_num_guest_pages(mode, n);
2031 }
2032 
2033 /*
2034  * Read binary stats descriptors
2035  *
2036  * Input Args:
2037  *   stats_fd - the file descriptor for the binary stats file from which to read
2038  *   header - the binary stats metadata header corresponding to the given FD
2039  *
2040  * Output Args: None
2041  *
2042  * Return:
2043  *   A pointer to a newly allocated series of stat descriptors.
2044  *   Caller is responsible for freeing the returned kvm_stats_desc.
2045  *
2046  * Read the stats descriptors from the binary stats interface.
2047  */
2048 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
2049 					      struct kvm_stats_header *header)
2050 {
2051 	struct kvm_stats_desc *stats_desc;
2052 	ssize_t desc_size, total_size, ret;
2053 
2054 	desc_size = get_stats_descriptor_size(header);
2055 	total_size = header->num_desc * desc_size;
2056 
2057 	stats_desc = calloc(header->num_desc, desc_size);
2058 	TEST_ASSERT(stats_desc, "Allocate memory for stats descriptors");
2059 
2060 	ret = pread(stats_fd, stats_desc, total_size, header->desc_offset);
2061 	TEST_ASSERT(ret == total_size, "Read KVM stats descriptors");
2062 
2063 	return stats_desc;
2064 }
2065 
2066 /*
2067  * Read stat data for a particular stat
2068  *
2069  * Input Args:
2070  *   stats_fd - the file descriptor for the binary stats file from which to read
2071  *   header - the binary stats metadata header corresponding to the given FD
2072  *   desc - the binary stat metadata for the particular stat to be read
2073  *   max_elements - the maximum number of 8-byte values to read into data
2074  *
2075  * Output Args:
2076  *   data - the buffer into which stat data should be read
2077  *
2078  * Read the data values of a specified stat from the binary stats interface.
2079  */
2080 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
2081 		    struct kvm_stats_desc *desc, uint64_t *data,
2082 		    size_t max_elements)
2083 {
2084 	size_t nr_elements = min_t(ssize_t, desc->size, max_elements);
2085 	size_t size = nr_elements * sizeof(*data);
2086 	ssize_t ret;
2087 
2088 	TEST_ASSERT(desc->size, "No elements in stat '%s'", desc->name);
2089 	TEST_ASSERT(max_elements, "Zero elements requested for stat '%s'", desc->name);
2090 
2091 	ret = pread(stats_fd, data, size,
2092 		    header->data_offset + desc->offset);
2093 
2094 	TEST_ASSERT(ret >= 0, "pread() failed on stat '%s', errno: %i (%s)",
2095 		    desc->name, errno, strerror(errno));
2096 	TEST_ASSERT(ret == size,
2097 		    "pread() on stat '%s' read %ld bytes, wanted %lu bytes",
2098 		    desc->name, size, ret);
2099 }
2100 
2101 /*
2102  * Read the data of the named stat
2103  *
2104  * Input Args:
2105  *   vm - the VM for which the stat should be read
2106  *   stat_name - the name of the stat to read
2107  *   max_elements - the maximum number of 8-byte values to read into data
2108  *
2109  * Output Args:
2110  *   data - the buffer into which stat data should be read
2111  *
2112  * Read the data values of a specified stat from the binary stats interface.
2113  */
2114 void __vm_get_stat(struct kvm_vm *vm, const char *stat_name, uint64_t *data,
2115 		   size_t max_elements)
2116 {
2117 	struct kvm_stats_desc *desc;
2118 	size_t size_desc;
2119 	int i;
2120 
2121 	if (!vm->stats_fd) {
2122 		vm->stats_fd = vm_get_stats_fd(vm);
2123 		read_stats_header(vm->stats_fd, &vm->stats_header);
2124 		vm->stats_desc = read_stats_descriptors(vm->stats_fd,
2125 							&vm->stats_header);
2126 	}
2127 
2128 	size_desc = get_stats_descriptor_size(&vm->stats_header);
2129 
2130 	for (i = 0; i < vm->stats_header.num_desc; ++i) {
2131 		desc = (void *)vm->stats_desc + (i * size_desc);
2132 
2133 		if (strcmp(desc->name, stat_name))
2134 			continue;
2135 
2136 		read_stat_data(vm->stats_fd, &vm->stats_header, desc,
2137 			       data, max_elements);
2138 
2139 		break;
2140 	}
2141 }
2142 
2143 __weak void kvm_arch_vm_post_create(struct kvm_vm *vm)
2144 {
2145 }
2146 
2147 __weak void kvm_selftest_arch_init(void)
2148 {
2149 }
2150 
2151 void __attribute((constructor)) kvm_selftest_init(void)
2152 {
2153 	/* Tell stdout not to buffer its content. */
2154 	setbuf(stdout, NULL);
2155 
2156 	kvm_selftest_arch_init();
2157 }
2158