1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "kvm_util_internal.h" 12 #include "processor.h" 13 14 #include <assert.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 int open_path_or_exit(const char *path, int flags) 26 { 27 int fd; 28 29 fd = open(path, flags); 30 if (fd < 0) { 31 print_skip("%s not available (errno: %d)", path, errno); 32 exit(KSFT_SKIP); 33 } 34 35 return fd; 36 } 37 38 /* 39 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 40 * 41 * Input Args: 42 * flags - The flags to pass when opening KVM_DEV_PATH. 43 * 44 * Return: 45 * The opened file descriptor of /dev/kvm. 46 */ 47 static int _open_kvm_dev_path_or_exit(int flags) 48 { 49 return open_path_or_exit(KVM_DEV_PATH, flags); 50 } 51 52 int open_kvm_dev_path_or_exit(void) 53 { 54 return _open_kvm_dev_path_or_exit(O_RDONLY); 55 } 56 57 /* 58 * Capability 59 * 60 * Input Args: 61 * cap - Capability 62 * 63 * Output Args: None 64 * 65 * Return: 66 * On success, the Value corresponding to the capability (KVM_CAP_*) 67 * specified by the value of cap. On failure a TEST_ASSERT failure 68 * is produced. 69 * 70 * Looks up and returns the value corresponding to the capability 71 * (KVM_CAP_*) given by cap. 72 */ 73 int kvm_check_cap(long cap) 74 { 75 int ret; 76 int kvm_fd; 77 78 kvm_fd = open_kvm_dev_path_or_exit(); 79 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); 80 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n" 81 " rc: %i errno: %i", ret, errno); 82 83 close(kvm_fd); 84 85 return ret; 86 } 87 88 /* VM Check Capability 89 * 90 * Input Args: 91 * vm - Virtual Machine 92 * cap - Capability 93 * 94 * Output Args: None 95 * 96 * Return: 97 * On success, the Value corresponding to the capability (KVM_CAP_*) 98 * specified by the value of cap. On failure a TEST_ASSERT failure 99 * is produced. 100 * 101 * Looks up and returns the value corresponding to the capability 102 * (KVM_CAP_*) given by cap. 103 */ 104 int vm_check_cap(struct kvm_vm *vm, long cap) 105 { 106 int ret; 107 108 ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap); 109 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n" 110 " rc: %i errno: %i", ret, errno); 111 112 return ret; 113 } 114 115 /* VM Enable Capability 116 * 117 * Input Args: 118 * vm - Virtual Machine 119 * cap - Capability 120 * 121 * Output Args: None 122 * 123 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 124 * 125 * Enables a capability (KVM_CAP_*) on the VM. 126 */ 127 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap) 128 { 129 int ret; 130 131 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap); 132 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n" 133 " rc: %i errno: %i", ret, errno); 134 135 return ret; 136 } 137 138 /* VCPU Enable Capability 139 * 140 * Input Args: 141 * vm - Virtual Machine 142 * vcpu_id - VCPU 143 * cap - Capability 144 * 145 * Output Args: None 146 * 147 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 148 * 149 * Enables a capability (KVM_CAP_*) on the VCPU. 150 */ 151 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id, 152 struct kvm_enable_cap *cap) 153 { 154 struct vcpu *vcpu = vcpu_find(vm, vcpu_id); 155 int r; 156 157 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id); 158 159 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap); 160 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n" 161 " rc: %i, errno: %i", r, errno); 162 163 return r; 164 } 165 166 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 167 { 168 struct kvm_enable_cap cap = { 0 }; 169 170 cap.cap = KVM_CAP_DIRTY_LOG_RING; 171 cap.args[0] = ring_size; 172 vm_enable_cap(vm, &cap); 173 vm->dirty_ring_size = ring_size; 174 } 175 176 static void vm_open(struct kvm_vm *vm, int perm) 177 { 178 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm); 179 180 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) { 181 print_skip("immediate_exit not available"); 182 exit(KSFT_SKIP); 183 } 184 185 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type); 186 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " 187 "rc: %i errno: %i", vm->fd, errno); 188 } 189 190 const char *vm_guest_mode_string(uint32_t i) 191 { 192 static const char * const strings[] = { 193 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 194 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 195 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 196 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages", 197 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 198 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 199 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages", 200 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 201 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 202 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages", 203 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages", 204 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages", 205 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages", 206 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages", 207 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages", 208 }; 209 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 210 "Missing new mode strings?"); 211 212 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 213 214 return strings[i]; 215 } 216 217 const struct vm_guest_mode_params vm_guest_mode_params[] = { 218 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 }, 219 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 }, 220 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 }, 221 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 }, 222 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 }, 223 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 }, 224 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 }, 225 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 }, 226 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 }, 227 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 }, 228 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 }, 229 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 }, 230 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 }, 231 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 }, 232 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 }, 233 }; 234 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 235 "Missing new mode params?"); 236 237 /* 238 * VM Create 239 * 240 * Input Args: 241 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 242 * phy_pages - Physical memory pages 243 * perm - permission 244 * 245 * Output Args: None 246 * 247 * Return: 248 * Pointer to opaque structure that describes the created VM. 249 * 250 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 251 * When phy_pages is non-zero, a memory region of phy_pages physical pages 252 * is created and mapped starting at guest physical address 0. The file 253 * descriptor to control the created VM is created with the permissions 254 * given by perm (e.g. O_RDWR). 255 */ 256 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) 257 { 258 struct kvm_vm *vm; 259 260 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__, 261 vm_guest_mode_string(mode), phy_pages, perm); 262 263 vm = calloc(1, sizeof(*vm)); 264 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 265 266 INIT_LIST_HEAD(&vm->vcpus); 267 vm->regions.gpa_tree = RB_ROOT; 268 vm->regions.hva_tree = RB_ROOT; 269 hash_init(vm->regions.slot_hash); 270 271 vm->mode = mode; 272 vm->type = 0; 273 274 vm->pa_bits = vm_guest_mode_params[mode].pa_bits; 275 vm->va_bits = vm_guest_mode_params[mode].va_bits; 276 vm->page_size = vm_guest_mode_params[mode].page_size; 277 vm->page_shift = vm_guest_mode_params[mode].page_shift; 278 279 /* Setup mode specific traits. */ 280 switch (vm->mode) { 281 case VM_MODE_P52V48_4K: 282 vm->pgtable_levels = 4; 283 break; 284 case VM_MODE_P52V48_64K: 285 vm->pgtable_levels = 3; 286 break; 287 case VM_MODE_P48V48_4K: 288 vm->pgtable_levels = 4; 289 break; 290 case VM_MODE_P48V48_64K: 291 vm->pgtable_levels = 3; 292 break; 293 case VM_MODE_P40V48_4K: 294 case VM_MODE_P36V48_4K: 295 vm->pgtable_levels = 4; 296 break; 297 case VM_MODE_P40V48_64K: 298 case VM_MODE_P36V48_64K: 299 vm->pgtable_levels = 3; 300 break; 301 case VM_MODE_P48V48_16K: 302 case VM_MODE_P40V48_16K: 303 case VM_MODE_P36V48_16K: 304 vm->pgtable_levels = 4; 305 break; 306 case VM_MODE_P36V47_16K: 307 vm->pgtable_levels = 3; 308 break; 309 case VM_MODE_PXXV48_4K: 310 #ifdef __x86_64__ 311 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 312 /* 313 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 314 * it doesn't take effect unless a CR4.LA57 is set, which it 315 * isn't for this VM_MODE. 316 */ 317 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 318 "Linear address width (%d bits) not supported", 319 vm->va_bits); 320 pr_debug("Guest physical address width detected: %d\n", 321 vm->pa_bits); 322 vm->pgtable_levels = 4; 323 vm->va_bits = 48; 324 #else 325 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 326 #endif 327 break; 328 case VM_MODE_P47V64_4K: 329 vm->pgtable_levels = 5; 330 break; 331 case VM_MODE_P44V64_4K: 332 vm->pgtable_levels = 5; 333 break; 334 default: 335 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode); 336 } 337 338 #ifdef __aarch64__ 339 if (vm->pa_bits != 40) 340 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 341 #endif 342 343 vm_open(vm, perm); 344 345 /* Limit to VA-bit canonical virtual addresses. */ 346 vm->vpages_valid = sparsebit_alloc(); 347 sparsebit_set_num(vm->vpages_valid, 348 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 349 sparsebit_set_num(vm->vpages_valid, 350 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 351 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 352 353 /* Limit physical addresses to PA-bits. */ 354 vm->max_gfn = vm_compute_max_gfn(vm); 355 356 /* Allocate and setup memory for guest. */ 357 vm->vpages_mapped = sparsebit_alloc(); 358 if (phy_pages != 0) 359 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 360 0, 0, phy_pages, 0); 361 362 return vm; 363 } 364 365 /* 366 * VM Create with customized parameters 367 * 368 * Input Args: 369 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 370 * nr_vcpus - VCPU count 371 * slot0_mem_pages - Slot0 physical memory size 372 * extra_mem_pages - Non-slot0 physical memory total size 373 * num_percpu_pages - Per-cpu physical memory pages 374 * guest_code - Guest entry point 375 * vcpuids - VCPU IDs 376 * 377 * Output Args: None 378 * 379 * Return: 380 * Pointer to opaque structure that describes the created VM. 381 * 382 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K), 383 * with customized slot0 memory size, at least 512 pages currently. 384 * extra_mem_pages is only used to calculate the maximum page table size, 385 * no real memory allocation for non-slot0 memory in this function. 386 */ 387 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, 388 uint64_t slot0_mem_pages, uint64_t extra_mem_pages, 389 uint32_t num_percpu_pages, void *guest_code, 390 uint32_t vcpuids[]) 391 { 392 uint64_t vcpu_pages, extra_pg_pages, pages; 393 struct kvm_vm *vm; 394 int i; 395 396 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */ 397 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES) 398 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES; 399 400 /* The maximum page table size for a memory region will be when the 401 * smallest pages are used. Considering each page contains x page 402 * table descriptors, the total extra size for page tables (for extra 403 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 404 * than N/x*2. 405 */ 406 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus; 407 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2; 408 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages; 409 410 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 411 "nr_vcpus = %d too large for host, max-vcpus = %d", 412 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 413 414 pages = vm_adjust_num_guest_pages(mode, pages); 415 vm = vm_create(mode, pages, O_RDWR); 416 417 kvm_vm_elf_load(vm, program_invocation_name); 418 419 #ifdef __x86_64__ 420 vm_create_irqchip(vm); 421 #endif 422 423 for (i = 0; i < nr_vcpus; ++i) { 424 uint32_t vcpuid = vcpuids ? vcpuids[i] : i; 425 426 vm_vcpu_add_default(vm, vcpuid, guest_code); 427 } 428 429 return vm; 430 } 431 432 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages, 433 uint32_t num_percpu_pages, void *guest_code, 434 uint32_t vcpuids[]) 435 { 436 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES, 437 extra_mem_pages, num_percpu_pages, guest_code, vcpuids); 438 } 439 440 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, 441 void *guest_code) 442 { 443 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code, 444 (uint32_t []){ vcpuid }); 445 } 446 447 /* 448 * VM Restart 449 * 450 * Input Args: 451 * vm - VM that has been released before 452 * perm - permission 453 * 454 * Output Args: None 455 * 456 * Reopens the file descriptors associated to the VM and reinstates the 457 * global state, such as the irqchip and the memory regions that are mapped 458 * into the guest. 459 */ 460 void kvm_vm_restart(struct kvm_vm *vmp, int perm) 461 { 462 int ctr; 463 struct userspace_mem_region *region; 464 465 vm_open(vmp, perm); 466 if (vmp->has_irqchip) 467 vm_create_irqchip(vmp); 468 469 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 470 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 471 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 472 " rc: %i errno: %i\n" 473 " slot: %u flags: 0x%x\n" 474 " guest_phys_addr: 0x%llx size: 0x%llx", 475 ret, errno, region->region.slot, 476 region->region.flags, 477 region->region.guest_phys_addr, 478 region->region.memory_size); 479 } 480 } 481 482 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 483 { 484 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 485 int ret; 486 487 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args); 488 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s", 489 __func__, strerror(-ret)); 490 } 491 492 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 493 uint64_t first_page, uint32_t num_pages) 494 { 495 struct kvm_clear_dirty_log args = { 496 .dirty_bitmap = log, .slot = slot, 497 .first_page = first_page, 498 .num_pages = num_pages 499 }; 500 int ret; 501 502 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args); 503 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s", 504 __func__, strerror(-ret)); 505 } 506 507 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 508 { 509 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS); 510 } 511 512 /* 513 * Userspace Memory Region Find 514 * 515 * Input Args: 516 * vm - Virtual Machine 517 * start - Starting VM physical address 518 * end - Ending VM physical address, inclusive. 519 * 520 * Output Args: None 521 * 522 * Return: 523 * Pointer to overlapping region, NULL if no such region. 524 * 525 * Searches for a region with any physical memory that overlaps with 526 * any portion of the guest physical addresses from start to end 527 * inclusive. If multiple overlapping regions exist, a pointer to any 528 * of the regions is returned. Null is returned only when no overlapping 529 * region exists. 530 */ 531 static struct userspace_mem_region * 532 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 533 { 534 struct rb_node *node; 535 536 for (node = vm->regions.gpa_tree.rb_node; node; ) { 537 struct userspace_mem_region *region = 538 container_of(node, struct userspace_mem_region, gpa_node); 539 uint64_t existing_start = region->region.guest_phys_addr; 540 uint64_t existing_end = region->region.guest_phys_addr 541 + region->region.memory_size - 1; 542 if (start <= existing_end && end >= existing_start) 543 return region; 544 545 if (start < existing_start) 546 node = node->rb_left; 547 else 548 node = node->rb_right; 549 } 550 551 return NULL; 552 } 553 554 /* 555 * KVM Userspace Memory Region Find 556 * 557 * Input Args: 558 * vm - Virtual Machine 559 * start - Starting VM physical address 560 * end - Ending VM physical address, inclusive. 561 * 562 * Output Args: None 563 * 564 * Return: 565 * Pointer to overlapping region, NULL if no such region. 566 * 567 * Public interface to userspace_mem_region_find. Allows tests to look up 568 * the memslot datastructure for a given range of guest physical memory. 569 */ 570 struct kvm_userspace_memory_region * 571 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, 572 uint64_t end) 573 { 574 struct userspace_mem_region *region; 575 576 region = userspace_mem_region_find(vm, start, end); 577 if (!region) 578 return NULL; 579 580 return ®ion->region; 581 } 582 583 /* 584 * VCPU Find 585 * 586 * Input Args: 587 * vm - Virtual Machine 588 * vcpuid - VCPU ID 589 * 590 * Output Args: None 591 * 592 * Return: 593 * Pointer to VCPU structure 594 * 595 * Locates a vcpu structure that describes the VCPU specified by vcpuid and 596 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU 597 * for the specified vcpuid. 598 */ 599 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid) 600 { 601 struct vcpu *vcpu; 602 603 list_for_each_entry(vcpu, &vm->vcpus, list) { 604 if (vcpu->id == vcpuid) 605 return vcpu; 606 } 607 608 return NULL; 609 } 610 611 /* 612 * VM VCPU Remove 613 * 614 * Input Args: 615 * vcpu - VCPU to remove 616 * 617 * Output Args: None 618 * 619 * Return: None, TEST_ASSERT failures for all error conditions 620 * 621 * Removes a vCPU from a VM and frees its resources. 622 */ 623 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu) 624 { 625 int ret; 626 627 if (vcpu->dirty_gfns) { 628 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 629 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, " 630 "rc: %i errno: %i", ret, errno); 631 vcpu->dirty_gfns = NULL; 632 } 633 634 ret = munmap(vcpu->state, vcpu_mmap_sz()); 635 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i " 636 "errno: %i", ret, errno); 637 ret = close(vcpu->fd); 638 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " 639 "errno: %i", ret, errno); 640 641 list_del(&vcpu->list); 642 free(vcpu); 643 } 644 645 void kvm_vm_release(struct kvm_vm *vmp) 646 { 647 struct vcpu *vcpu, *tmp; 648 int ret; 649 650 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 651 vm_vcpu_rm(vmp, vcpu); 652 653 ret = close(vmp->fd); 654 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" 655 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); 656 657 ret = close(vmp->kvm_fd); 658 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n" 659 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno); 660 } 661 662 static void __vm_mem_region_delete(struct kvm_vm *vm, 663 struct userspace_mem_region *region, 664 bool unlink) 665 { 666 int ret; 667 668 if (unlink) { 669 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 670 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 671 hash_del(®ion->slot_node); 672 } 673 674 region->region.memory_size = 0; 675 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 676 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " 677 "rc: %i errno: %i", ret, errno); 678 679 sparsebit_free(®ion->unused_phy_pages); 680 ret = munmap(region->mmap_start, region->mmap_size); 681 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno); 682 683 free(region); 684 } 685 686 /* 687 * Destroys and frees the VM pointed to by vmp. 688 */ 689 void kvm_vm_free(struct kvm_vm *vmp) 690 { 691 int ctr; 692 struct hlist_node *node; 693 struct userspace_mem_region *region; 694 695 if (vmp == NULL) 696 return; 697 698 /* Free userspace_mem_regions. */ 699 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 700 __vm_mem_region_delete(vmp, region, false); 701 702 /* Free sparsebit arrays. */ 703 sparsebit_free(&vmp->vpages_valid); 704 sparsebit_free(&vmp->vpages_mapped); 705 706 kvm_vm_release(vmp); 707 708 /* Free the structure describing the VM. */ 709 free(vmp); 710 } 711 712 /* 713 * Memory Compare, host virtual to guest virtual 714 * 715 * Input Args: 716 * hva - Starting host virtual address 717 * vm - Virtual Machine 718 * gva - Starting guest virtual address 719 * len - number of bytes to compare 720 * 721 * Output Args: None 722 * 723 * Input/Output Args: None 724 * 725 * Return: 726 * Returns 0 if the bytes starting at hva for a length of len 727 * are equal the guest virtual bytes starting at gva. Returns 728 * a value < 0, if bytes at hva are less than those at gva. 729 * Otherwise a value > 0 is returned. 730 * 731 * Compares the bytes starting at the host virtual address hva, for 732 * a length of len, to the guest bytes starting at the guest virtual 733 * address given by gva. 734 */ 735 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 736 { 737 size_t amt; 738 739 /* 740 * Compare a batch of bytes until either a match is found 741 * or all the bytes have been compared. 742 */ 743 for (uintptr_t offset = 0; offset < len; offset += amt) { 744 uintptr_t ptr1 = (uintptr_t)hva + offset; 745 746 /* 747 * Determine host address for guest virtual address 748 * at offset. 749 */ 750 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 751 752 /* 753 * Determine amount to compare on this pass. 754 * Don't allow the comparsion to cross a page boundary. 755 */ 756 amt = len - offset; 757 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 758 amt = vm->page_size - (ptr1 % vm->page_size); 759 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 760 amt = vm->page_size - (ptr2 % vm->page_size); 761 762 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 763 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 764 765 /* 766 * Perform the comparison. If there is a difference 767 * return that result to the caller, otherwise need 768 * to continue on looking for a mismatch. 769 */ 770 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 771 if (ret != 0) 772 return ret; 773 } 774 775 /* 776 * No mismatch found. Let the caller know the two memory 777 * areas are equal. 778 */ 779 return 0; 780 } 781 782 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 783 struct userspace_mem_region *region) 784 { 785 struct rb_node **cur, *parent; 786 787 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 788 struct userspace_mem_region *cregion; 789 790 cregion = container_of(*cur, typeof(*cregion), gpa_node); 791 parent = *cur; 792 if (region->region.guest_phys_addr < 793 cregion->region.guest_phys_addr) 794 cur = &(*cur)->rb_left; 795 else { 796 TEST_ASSERT(region->region.guest_phys_addr != 797 cregion->region.guest_phys_addr, 798 "Duplicate GPA in region tree"); 799 800 cur = &(*cur)->rb_right; 801 } 802 } 803 804 rb_link_node(®ion->gpa_node, parent, cur); 805 rb_insert_color(®ion->gpa_node, gpa_tree); 806 } 807 808 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 809 struct userspace_mem_region *region) 810 { 811 struct rb_node **cur, *parent; 812 813 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 814 struct userspace_mem_region *cregion; 815 816 cregion = container_of(*cur, typeof(*cregion), hva_node); 817 parent = *cur; 818 if (region->host_mem < cregion->host_mem) 819 cur = &(*cur)->rb_left; 820 else { 821 TEST_ASSERT(region->host_mem != 822 cregion->host_mem, 823 "Duplicate HVA in region tree"); 824 825 cur = &(*cur)->rb_right; 826 } 827 } 828 829 rb_link_node(®ion->hva_node, parent, cur); 830 rb_insert_color(®ion->hva_node, hva_tree); 831 } 832 833 /* 834 * VM Userspace Memory Region Add 835 * 836 * Input Args: 837 * vm - Virtual Machine 838 * src_type - Storage source for this region. 839 * NULL to use anonymous memory. 840 * guest_paddr - Starting guest physical address 841 * slot - KVM region slot 842 * npages - Number of physical pages 843 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) 844 * 845 * Output Args: None 846 * 847 * Return: None 848 * 849 * Allocates a memory area of the number of pages specified by npages 850 * and maps it to the VM specified by vm, at a starting physical address 851 * given by guest_paddr. The region is created with a KVM region slot 852 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The 853 * region is created with the flags given by flags. 854 */ 855 void vm_userspace_mem_region_add(struct kvm_vm *vm, 856 enum vm_mem_backing_src_type src_type, 857 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 858 uint32_t flags) 859 { 860 int ret; 861 struct userspace_mem_region *region; 862 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 863 size_t alignment; 864 865 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 866 "Number of guest pages is not compatible with the host. " 867 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 868 869 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 870 "address not on a page boundary.\n" 871 " guest_paddr: 0x%lx vm->page_size: 0x%x", 872 guest_paddr, vm->page_size); 873 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 874 <= vm->max_gfn, "Physical range beyond maximum " 875 "supported physical address,\n" 876 " guest_paddr: 0x%lx npages: 0x%lx\n" 877 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 878 guest_paddr, npages, vm->max_gfn, vm->page_size); 879 880 /* 881 * Confirm a mem region with an overlapping address doesn't 882 * already exist. 883 */ 884 region = (struct userspace_mem_region *) userspace_mem_region_find( 885 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 886 if (region != NULL) 887 TEST_FAIL("overlapping userspace_mem_region already " 888 "exists\n" 889 " requested guest_paddr: 0x%lx npages: 0x%lx " 890 "page_size: 0x%x\n" 891 " existing guest_paddr: 0x%lx size: 0x%lx", 892 guest_paddr, npages, vm->page_size, 893 (uint64_t) region->region.guest_phys_addr, 894 (uint64_t) region->region.memory_size); 895 896 /* Confirm no region with the requested slot already exists. */ 897 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 898 slot) { 899 if (region->region.slot != slot) 900 continue; 901 902 TEST_FAIL("A mem region with the requested slot " 903 "already exists.\n" 904 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 905 " existing slot: %u paddr: 0x%lx size: 0x%lx", 906 slot, guest_paddr, npages, 907 region->region.slot, 908 (uint64_t) region->region.guest_phys_addr, 909 (uint64_t) region->region.memory_size); 910 } 911 912 /* Allocate and initialize new mem region structure. */ 913 region = calloc(1, sizeof(*region)); 914 TEST_ASSERT(region != NULL, "Insufficient Memory"); 915 region->mmap_size = npages * vm->page_size; 916 917 #ifdef __s390x__ 918 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 919 alignment = 0x100000; 920 #else 921 alignment = 1; 922 #endif 923 924 /* 925 * When using THP mmap is not guaranteed to returned a hugepage aligned 926 * address so we have to pad the mmap. Padding is not needed for HugeTLB 927 * because mmap will always return an address aligned to the HugeTLB 928 * page size. 929 */ 930 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 931 alignment = max(backing_src_pagesz, alignment); 932 933 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz)); 934 935 /* Add enough memory to align up if necessary */ 936 if (alignment > 1) 937 region->mmap_size += alignment; 938 939 region->fd = -1; 940 if (backing_src_is_shared(src_type)) { 941 int memfd_flags = MFD_CLOEXEC; 942 943 if (src_type == VM_MEM_SRC_SHARED_HUGETLB) 944 memfd_flags |= MFD_HUGETLB; 945 946 region->fd = memfd_create("kvm_selftest", memfd_flags); 947 TEST_ASSERT(region->fd != -1, 948 "memfd_create failed, errno: %i", errno); 949 950 ret = ftruncate(region->fd, region->mmap_size); 951 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno); 952 953 ret = fallocate(region->fd, 954 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, 955 region->mmap_size); 956 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno); 957 } 958 959 region->mmap_start = mmap(NULL, region->mmap_size, 960 PROT_READ | PROT_WRITE, 961 vm_mem_backing_src_alias(src_type)->flag, 962 region->fd, 0); 963 TEST_ASSERT(region->mmap_start != MAP_FAILED, 964 "test_malloc failed, mmap_start: %p errno: %i", 965 region->mmap_start, errno); 966 967 TEST_ASSERT(!is_backing_src_hugetlb(src_type) || 968 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz), 969 "mmap_start %p is not aligned to HugeTLB page size 0x%lx", 970 region->mmap_start, backing_src_pagesz); 971 972 /* Align host address */ 973 region->host_mem = align_ptr_up(region->mmap_start, alignment); 974 975 /* As needed perform madvise */ 976 if ((src_type == VM_MEM_SRC_ANONYMOUS || 977 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 978 ret = madvise(region->host_mem, npages * vm->page_size, 979 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 980 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 981 region->host_mem, npages * vm->page_size, 982 vm_mem_backing_src_alias(src_type)->name); 983 } 984 985 region->unused_phy_pages = sparsebit_alloc(); 986 sparsebit_set_num(region->unused_phy_pages, 987 guest_paddr >> vm->page_shift, npages); 988 region->region.slot = slot; 989 region->region.flags = flags; 990 region->region.guest_phys_addr = guest_paddr; 991 region->region.memory_size = npages * vm->page_size; 992 region->region.userspace_addr = (uintptr_t) region->host_mem; 993 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 994 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 995 " rc: %i errno: %i\n" 996 " slot: %u flags: 0x%x\n" 997 " guest_phys_addr: 0x%lx size: 0x%lx", 998 ret, errno, slot, flags, 999 guest_paddr, (uint64_t) region->region.memory_size); 1000 1001 /* Add to quick lookup data structures */ 1002 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 1003 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 1004 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 1005 1006 /* If shared memory, create an alias. */ 1007 if (region->fd >= 0) { 1008 region->mmap_alias = mmap(NULL, region->mmap_size, 1009 PROT_READ | PROT_WRITE, 1010 vm_mem_backing_src_alias(src_type)->flag, 1011 region->fd, 0); 1012 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 1013 "mmap of alias failed, errno: %i", errno); 1014 1015 /* Align host alias address */ 1016 region->host_alias = align_ptr_up(region->mmap_alias, alignment); 1017 } 1018 } 1019 1020 /* 1021 * Memslot to region 1022 * 1023 * Input Args: 1024 * vm - Virtual Machine 1025 * memslot - KVM memory slot ID 1026 * 1027 * Output Args: None 1028 * 1029 * Return: 1030 * Pointer to memory region structure that describe memory region 1031 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 1032 * on error (e.g. currently no memory region using memslot as a KVM 1033 * memory slot ID). 1034 */ 1035 struct userspace_mem_region * 1036 memslot2region(struct kvm_vm *vm, uint32_t memslot) 1037 { 1038 struct userspace_mem_region *region; 1039 1040 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 1041 memslot) 1042 if (region->region.slot == memslot) 1043 return region; 1044 1045 fprintf(stderr, "No mem region with the requested slot found,\n" 1046 " requested slot: %u\n", memslot); 1047 fputs("---- vm dump ----\n", stderr); 1048 vm_dump(stderr, vm, 2); 1049 TEST_FAIL("Mem region not found"); 1050 return NULL; 1051 } 1052 1053 /* 1054 * VM Memory Region Flags Set 1055 * 1056 * Input Args: 1057 * vm - Virtual Machine 1058 * flags - Starting guest physical address 1059 * 1060 * Output Args: None 1061 * 1062 * Return: None 1063 * 1064 * Sets the flags of the memory region specified by the value of slot, 1065 * to the values given by flags. 1066 */ 1067 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 1068 { 1069 int ret; 1070 struct userspace_mem_region *region; 1071 1072 region = memslot2region(vm, slot); 1073 1074 region->region.flags = flags; 1075 1076 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1077 1078 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 1079 " rc: %i errno: %i slot: %u flags: 0x%x", 1080 ret, errno, slot, flags); 1081 } 1082 1083 /* 1084 * VM Memory Region Move 1085 * 1086 * Input Args: 1087 * vm - Virtual Machine 1088 * slot - Slot of the memory region to move 1089 * new_gpa - Starting guest physical address 1090 * 1091 * Output Args: None 1092 * 1093 * Return: None 1094 * 1095 * Change the gpa of a memory region. 1096 */ 1097 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1098 { 1099 struct userspace_mem_region *region; 1100 int ret; 1101 1102 region = memslot2region(vm, slot); 1103 1104 region->region.guest_phys_addr = new_gpa; 1105 1106 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1107 1108 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n" 1109 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1110 ret, errno, slot, new_gpa); 1111 } 1112 1113 /* 1114 * VM Memory Region Delete 1115 * 1116 * Input Args: 1117 * vm - Virtual Machine 1118 * slot - Slot of the memory region to delete 1119 * 1120 * Output Args: None 1121 * 1122 * Return: None 1123 * 1124 * Delete a memory region. 1125 */ 1126 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1127 { 1128 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1129 } 1130 1131 /* 1132 * VCPU mmap Size 1133 * 1134 * Input Args: None 1135 * 1136 * Output Args: None 1137 * 1138 * Return: 1139 * Size of VCPU state 1140 * 1141 * Returns the size of the structure pointed to by the return value 1142 * of vcpu_state(). 1143 */ 1144 static int vcpu_mmap_sz(void) 1145 { 1146 int dev_fd, ret; 1147 1148 dev_fd = open_kvm_dev_path_or_exit(); 1149 1150 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1151 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1152 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", 1153 __func__, ret, errno); 1154 1155 close(dev_fd); 1156 1157 return ret; 1158 } 1159 1160 /* 1161 * VM VCPU Add 1162 * 1163 * Input Args: 1164 * vm - Virtual Machine 1165 * vcpuid - VCPU ID 1166 * 1167 * Output Args: None 1168 * 1169 * Return: None 1170 * 1171 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid. 1172 * No additional VCPU setup is done. 1173 */ 1174 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid) 1175 { 1176 struct vcpu *vcpu; 1177 1178 /* Confirm a vcpu with the specified id doesn't already exist. */ 1179 vcpu = vcpu_find(vm, vcpuid); 1180 if (vcpu != NULL) 1181 TEST_FAIL("vcpu with the specified id " 1182 "already exists,\n" 1183 " requested vcpuid: %u\n" 1184 " existing vcpuid: %u state: %p", 1185 vcpuid, vcpu->id, vcpu->state); 1186 1187 /* Allocate and initialize new vcpu structure. */ 1188 vcpu = calloc(1, sizeof(*vcpu)); 1189 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1190 vcpu->id = vcpuid; 1191 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); 1192 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", 1193 vcpu->fd, errno); 1194 1195 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " 1196 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1197 vcpu_mmap_sz(), sizeof(*vcpu->state)); 1198 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1199 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1200 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " 1201 "vcpu id: %u errno: %i", vcpuid, errno); 1202 1203 /* Add to linked-list of VCPUs. */ 1204 list_add(&vcpu->list, &vm->vcpus); 1205 } 1206 1207 /* 1208 * VM Virtual Address Unused Gap 1209 * 1210 * Input Args: 1211 * vm - Virtual Machine 1212 * sz - Size (bytes) 1213 * vaddr_min - Minimum Virtual Address 1214 * 1215 * Output Args: None 1216 * 1217 * Return: 1218 * Lowest virtual address at or below vaddr_min, with at least 1219 * sz unused bytes. TEST_ASSERT failure if no area of at least 1220 * size sz is available. 1221 * 1222 * Within the VM specified by vm, locates the lowest starting virtual 1223 * address >= vaddr_min, that has at least sz unallocated bytes. A 1224 * TEST_ASSERT failure occurs for invalid input or no area of at least 1225 * sz unallocated bytes >= vaddr_min is available. 1226 */ 1227 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1228 vm_vaddr_t vaddr_min) 1229 { 1230 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1231 1232 /* Determine lowest permitted virtual page index. */ 1233 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1234 if ((pgidx_start * vm->page_size) < vaddr_min) 1235 goto no_va_found; 1236 1237 /* Loop over section with enough valid virtual page indexes. */ 1238 if (!sparsebit_is_set_num(vm->vpages_valid, 1239 pgidx_start, pages)) 1240 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1241 pgidx_start, pages); 1242 do { 1243 /* 1244 * Are there enough unused virtual pages available at 1245 * the currently proposed starting virtual page index. 1246 * If not, adjust proposed starting index to next 1247 * possible. 1248 */ 1249 if (sparsebit_is_clear_num(vm->vpages_mapped, 1250 pgidx_start, pages)) 1251 goto va_found; 1252 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1253 pgidx_start, pages); 1254 if (pgidx_start == 0) 1255 goto no_va_found; 1256 1257 /* 1258 * If needed, adjust proposed starting virtual address, 1259 * to next range of valid virtual addresses. 1260 */ 1261 if (!sparsebit_is_set_num(vm->vpages_valid, 1262 pgidx_start, pages)) { 1263 pgidx_start = sparsebit_next_set_num( 1264 vm->vpages_valid, pgidx_start, pages); 1265 if (pgidx_start == 0) 1266 goto no_va_found; 1267 } 1268 } while (pgidx_start != 0); 1269 1270 no_va_found: 1271 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1272 1273 /* NOT REACHED */ 1274 return -1; 1275 1276 va_found: 1277 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1278 pgidx_start, pages), 1279 "Unexpected, invalid virtual page index range,\n" 1280 " pgidx_start: 0x%lx\n" 1281 " pages: 0x%lx", 1282 pgidx_start, pages); 1283 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1284 pgidx_start, pages), 1285 "Unexpected, pages already mapped,\n" 1286 " pgidx_start: 0x%lx\n" 1287 " pages: 0x%lx", 1288 pgidx_start, pages); 1289 1290 return pgidx_start * vm->page_size; 1291 } 1292 1293 /* 1294 * VM Virtual Address Allocate 1295 * 1296 * Input Args: 1297 * vm - Virtual Machine 1298 * sz - Size in bytes 1299 * vaddr_min - Minimum starting virtual address 1300 * data_memslot - Memory region slot for data pages 1301 * pgd_memslot - Memory region slot for new virtual translation tables 1302 * 1303 * Output Args: None 1304 * 1305 * Return: 1306 * Starting guest virtual address 1307 * 1308 * Allocates at least sz bytes within the virtual address space of the vm 1309 * given by vm. The allocated bytes are mapped to a virtual address >= 1310 * the address given by vaddr_min. Note that each allocation uses a 1311 * a unique set of pages, with the minimum real allocation being at least 1312 * a page. 1313 */ 1314 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min) 1315 { 1316 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1317 1318 virt_pgd_alloc(vm); 1319 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, 1320 KVM_UTIL_MIN_PFN * vm->page_size, 0); 1321 1322 /* 1323 * Find an unused range of virtual page addresses of at least 1324 * pages in length. 1325 */ 1326 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1327 1328 /* Map the virtual pages. */ 1329 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1330 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1331 1332 virt_pg_map(vm, vaddr, paddr); 1333 1334 sparsebit_set(vm->vpages_mapped, 1335 vaddr >> vm->page_shift); 1336 } 1337 1338 return vaddr_start; 1339 } 1340 1341 /* 1342 * VM Virtual Address Allocate Pages 1343 * 1344 * Input Args: 1345 * vm - Virtual Machine 1346 * 1347 * Output Args: None 1348 * 1349 * Return: 1350 * Starting guest virtual address 1351 * 1352 * Allocates at least N system pages worth of bytes within the virtual address 1353 * space of the vm. 1354 */ 1355 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages) 1356 { 1357 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR); 1358 } 1359 1360 /* 1361 * VM Virtual Address Allocate Page 1362 * 1363 * Input Args: 1364 * vm - Virtual Machine 1365 * 1366 * Output Args: None 1367 * 1368 * Return: 1369 * Starting guest virtual address 1370 * 1371 * Allocates at least one system page worth of bytes within the virtual address 1372 * space of the vm. 1373 */ 1374 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm) 1375 { 1376 return vm_vaddr_alloc_pages(vm, 1); 1377 } 1378 1379 /* 1380 * Map a range of VM virtual address to the VM's physical address 1381 * 1382 * Input Args: 1383 * vm - Virtual Machine 1384 * vaddr - Virtuall address to map 1385 * paddr - VM Physical Address 1386 * npages - The number of pages to map 1387 * pgd_memslot - Memory region slot for new virtual translation tables 1388 * 1389 * Output Args: None 1390 * 1391 * Return: None 1392 * 1393 * Within the VM given by @vm, creates a virtual translation for 1394 * @npages starting at @vaddr to the page range starting at @paddr. 1395 */ 1396 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1397 unsigned int npages) 1398 { 1399 size_t page_size = vm->page_size; 1400 size_t size = npages * page_size; 1401 1402 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1403 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1404 1405 while (npages--) { 1406 virt_pg_map(vm, vaddr, paddr); 1407 vaddr += page_size; 1408 paddr += page_size; 1409 } 1410 } 1411 1412 /* 1413 * Address VM Physical to Host Virtual 1414 * 1415 * Input Args: 1416 * vm - Virtual Machine 1417 * gpa - VM physical address 1418 * 1419 * Output Args: None 1420 * 1421 * Return: 1422 * Equivalent host virtual address 1423 * 1424 * Locates the memory region containing the VM physical address given 1425 * by gpa, within the VM given by vm. When found, the host virtual 1426 * address providing the memory to the vm physical address is returned. 1427 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1428 */ 1429 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1430 { 1431 struct userspace_mem_region *region; 1432 1433 region = userspace_mem_region_find(vm, gpa, gpa); 1434 if (!region) { 1435 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1436 return NULL; 1437 } 1438 1439 return (void *)((uintptr_t)region->host_mem 1440 + (gpa - region->region.guest_phys_addr)); 1441 } 1442 1443 /* 1444 * Address Host Virtual to VM Physical 1445 * 1446 * Input Args: 1447 * vm - Virtual Machine 1448 * hva - Host virtual address 1449 * 1450 * Output Args: None 1451 * 1452 * Return: 1453 * Equivalent VM physical address 1454 * 1455 * Locates the memory region containing the host virtual address given 1456 * by hva, within the VM given by vm. When found, the equivalent 1457 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1458 * region containing hva exists. 1459 */ 1460 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1461 { 1462 struct rb_node *node; 1463 1464 for (node = vm->regions.hva_tree.rb_node; node; ) { 1465 struct userspace_mem_region *region = 1466 container_of(node, struct userspace_mem_region, hva_node); 1467 1468 if (hva >= region->host_mem) { 1469 if (hva <= (region->host_mem 1470 + region->region.memory_size - 1)) 1471 return (vm_paddr_t)((uintptr_t) 1472 region->region.guest_phys_addr 1473 + (hva - (uintptr_t)region->host_mem)); 1474 1475 node = node->rb_right; 1476 } else 1477 node = node->rb_left; 1478 } 1479 1480 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1481 return -1; 1482 } 1483 1484 /* 1485 * Address VM physical to Host Virtual *alias*. 1486 * 1487 * Input Args: 1488 * vm - Virtual Machine 1489 * gpa - VM physical address 1490 * 1491 * Output Args: None 1492 * 1493 * Return: 1494 * Equivalent address within the host virtual *alias* area, or NULL 1495 * (without failing the test) if the guest memory is not shared (so 1496 * no alias exists). 1497 * 1498 * When vm_create() and related functions are called with a shared memory 1499 * src_type, we also create a writable, shared alias mapping of the 1500 * underlying guest memory. This allows the host to manipulate guest memory 1501 * without mapping that memory in the guest's address space. And, for 1502 * userfaultfd-based demand paging, we can do so without triggering userfaults. 1503 */ 1504 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1505 { 1506 struct userspace_mem_region *region; 1507 uintptr_t offset; 1508 1509 region = userspace_mem_region_find(vm, gpa, gpa); 1510 if (!region) 1511 return NULL; 1512 1513 if (!region->host_alias) 1514 return NULL; 1515 1516 offset = gpa - region->region.guest_phys_addr; 1517 return (void *) ((uintptr_t) region->host_alias + offset); 1518 } 1519 1520 /* 1521 * VM Create IRQ Chip 1522 * 1523 * Input Args: 1524 * vm - Virtual Machine 1525 * 1526 * Output Args: None 1527 * 1528 * Return: None 1529 * 1530 * Creates an interrupt controller chip for the VM specified by vm. 1531 */ 1532 void vm_create_irqchip(struct kvm_vm *vm) 1533 { 1534 int ret; 1535 1536 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); 1537 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " 1538 "rc: %i errno: %i", ret, errno); 1539 1540 vm->has_irqchip = true; 1541 } 1542 1543 /* 1544 * VM VCPU State 1545 * 1546 * Input Args: 1547 * vm - Virtual Machine 1548 * vcpuid - VCPU ID 1549 * 1550 * Output Args: None 1551 * 1552 * Return: 1553 * Pointer to structure that describes the state of the VCPU. 1554 * 1555 * Locates and returns a pointer to a structure that describes the 1556 * state of the VCPU with the given vcpuid. 1557 */ 1558 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) 1559 { 1560 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1561 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1562 1563 return vcpu->state; 1564 } 1565 1566 /* 1567 * VM VCPU Run 1568 * 1569 * Input Args: 1570 * vm - Virtual Machine 1571 * vcpuid - VCPU ID 1572 * 1573 * Output Args: None 1574 * 1575 * Return: None 1576 * 1577 * Switch to executing the code for the VCPU given by vcpuid, within the VM 1578 * given by vm. 1579 */ 1580 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1581 { 1582 int ret = _vcpu_run(vm, vcpuid); 1583 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " 1584 "rc: %i errno: %i", ret, errno); 1585 } 1586 1587 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1588 { 1589 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1590 int rc; 1591 1592 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1593 do { 1594 rc = ioctl(vcpu->fd, KVM_RUN, NULL); 1595 } while (rc == -1 && errno == EINTR); 1596 1597 assert_on_unhandled_exception(vm, vcpuid); 1598 1599 return rc; 1600 } 1601 1602 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid) 1603 { 1604 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1605 1606 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1607 1608 return vcpu->fd; 1609 } 1610 1611 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid) 1612 { 1613 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1614 int ret; 1615 1616 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1617 1618 vcpu->state->immediate_exit = 1; 1619 ret = ioctl(vcpu->fd, KVM_RUN, NULL); 1620 vcpu->state->immediate_exit = 0; 1621 1622 TEST_ASSERT(ret == -1 && errno == EINTR, 1623 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1624 ret, errno); 1625 } 1626 1627 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid, 1628 struct kvm_guest_debug *debug) 1629 { 1630 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1631 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug); 1632 1633 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret); 1634 } 1635 1636 /* 1637 * VM VCPU Set MP State 1638 * 1639 * Input Args: 1640 * vm - Virtual Machine 1641 * vcpuid - VCPU ID 1642 * mp_state - mp_state to be set 1643 * 1644 * Output Args: None 1645 * 1646 * Return: None 1647 * 1648 * Sets the MP state of the VCPU given by vcpuid, to the state given 1649 * by mp_state. 1650 */ 1651 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, 1652 struct kvm_mp_state *mp_state) 1653 { 1654 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1655 int ret; 1656 1657 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1658 1659 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); 1660 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " 1661 "rc: %i errno: %i", ret, errno); 1662 } 1663 1664 /* 1665 * VM VCPU Get Reg List 1666 * 1667 * Input Args: 1668 * vm - Virtual Machine 1669 * vcpuid - VCPU ID 1670 * 1671 * Output Args: 1672 * None 1673 * 1674 * Return: 1675 * A pointer to an allocated struct kvm_reg_list 1676 * 1677 * Get the list of guest registers which are supported for 1678 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls 1679 */ 1680 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid) 1681 { 1682 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1683 int ret; 1684 1685 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n); 1686 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1687 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1688 reg_list->n = reg_list_n.n; 1689 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list); 1690 return reg_list; 1691 } 1692 1693 /* 1694 * VM VCPU Regs Get 1695 * 1696 * Input Args: 1697 * vm - Virtual Machine 1698 * vcpuid - VCPU ID 1699 * 1700 * Output Args: 1701 * regs - current state of VCPU regs 1702 * 1703 * Return: None 1704 * 1705 * Obtains the current register state for the VCPU specified by vcpuid 1706 * and stores it at the location given by regs. 1707 */ 1708 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1709 { 1710 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1711 int ret; 1712 1713 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1714 1715 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); 1716 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", 1717 ret, errno); 1718 } 1719 1720 /* 1721 * VM VCPU Regs Set 1722 * 1723 * Input Args: 1724 * vm - Virtual Machine 1725 * vcpuid - VCPU ID 1726 * regs - Values to set VCPU regs to 1727 * 1728 * Output Args: None 1729 * 1730 * Return: None 1731 * 1732 * Sets the regs of the VCPU specified by vcpuid to the values 1733 * given by regs. 1734 */ 1735 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1736 { 1737 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1738 int ret; 1739 1740 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1741 1742 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); 1743 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", 1744 ret, errno); 1745 } 1746 1747 #ifdef __KVM_HAVE_VCPU_EVENTS 1748 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, 1749 struct kvm_vcpu_events *events) 1750 { 1751 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1752 int ret; 1753 1754 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1755 1756 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); 1757 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", 1758 ret, errno); 1759 } 1760 1761 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, 1762 struct kvm_vcpu_events *events) 1763 { 1764 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1765 int ret; 1766 1767 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1768 1769 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); 1770 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", 1771 ret, errno); 1772 } 1773 #endif 1774 1775 #ifdef __x86_64__ 1776 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid, 1777 struct kvm_nested_state *state) 1778 { 1779 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1780 int ret; 1781 1782 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1783 1784 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state); 1785 TEST_ASSERT(ret == 0, 1786 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1787 ret, errno); 1788 } 1789 1790 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid, 1791 struct kvm_nested_state *state, bool ignore_error) 1792 { 1793 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1794 int ret; 1795 1796 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1797 1798 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state); 1799 if (!ignore_error) { 1800 TEST_ASSERT(ret == 0, 1801 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1802 ret, errno); 1803 } 1804 1805 return ret; 1806 } 1807 #endif 1808 1809 /* 1810 * VM VCPU System Regs Get 1811 * 1812 * Input Args: 1813 * vm - Virtual Machine 1814 * vcpuid - VCPU ID 1815 * 1816 * Output Args: 1817 * sregs - current state of VCPU system regs 1818 * 1819 * Return: None 1820 * 1821 * Obtains the current system register state for the VCPU specified by 1822 * vcpuid and stores it at the location given by sregs. 1823 */ 1824 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1825 { 1826 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1827 int ret; 1828 1829 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1830 1831 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); 1832 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", 1833 ret, errno); 1834 } 1835 1836 /* 1837 * VM VCPU System Regs Set 1838 * 1839 * Input Args: 1840 * vm - Virtual Machine 1841 * vcpuid - VCPU ID 1842 * sregs - Values to set VCPU system regs to 1843 * 1844 * Output Args: None 1845 * 1846 * Return: None 1847 * 1848 * Sets the system regs of the VCPU specified by vcpuid to the values 1849 * given by sregs. 1850 */ 1851 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1852 { 1853 int ret = _vcpu_sregs_set(vm, vcpuid, sregs); 1854 TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, " 1855 "rc: %i errno: %i", ret, errno); 1856 } 1857 1858 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1859 { 1860 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1861 1862 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1863 1864 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); 1865 } 1866 1867 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1868 { 1869 int ret; 1870 1871 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu); 1872 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)", 1873 ret, errno, strerror(errno)); 1874 } 1875 1876 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1877 { 1878 int ret; 1879 1880 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu); 1881 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)", 1882 ret, errno, strerror(errno)); 1883 } 1884 1885 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1886 { 1887 int ret; 1888 1889 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg); 1890 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)", 1891 ret, errno, strerror(errno)); 1892 } 1893 1894 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1895 { 1896 int ret; 1897 1898 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg); 1899 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)", 1900 ret, errno, strerror(errno)); 1901 } 1902 1903 /* 1904 * VCPU Ioctl 1905 * 1906 * Input Args: 1907 * vm - Virtual Machine 1908 * vcpuid - VCPU ID 1909 * cmd - Ioctl number 1910 * arg - Argument to pass to the ioctl 1911 * 1912 * Return: None 1913 * 1914 * Issues an arbitrary ioctl on a VCPU fd. 1915 */ 1916 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1917 unsigned long cmd, void *arg) 1918 { 1919 int ret; 1920 1921 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg); 1922 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", 1923 cmd, ret, errno, strerror(errno)); 1924 } 1925 1926 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1927 unsigned long cmd, void *arg) 1928 { 1929 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1930 int ret; 1931 1932 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1933 1934 ret = ioctl(vcpu->fd, cmd, arg); 1935 1936 return ret; 1937 } 1938 1939 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid) 1940 { 1941 struct vcpu *vcpu; 1942 uint32_t size = vm->dirty_ring_size; 1943 1944 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1945 1946 vcpu = vcpu_find(vm, vcpuid); 1947 1948 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid); 1949 1950 if (!vcpu->dirty_gfns) { 1951 void *addr; 1952 1953 addr = mmap(NULL, size, PROT_READ, 1954 MAP_PRIVATE, vcpu->fd, 1955 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1956 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1957 1958 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, 1959 MAP_PRIVATE, vcpu->fd, 1960 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1961 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1962 1963 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, 1964 MAP_SHARED, vcpu->fd, 1965 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1966 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1967 1968 vcpu->dirty_gfns = addr; 1969 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1970 } 1971 1972 return vcpu->dirty_gfns; 1973 } 1974 1975 /* 1976 * VM Ioctl 1977 * 1978 * Input Args: 1979 * vm - Virtual Machine 1980 * cmd - Ioctl number 1981 * arg - Argument to pass to the ioctl 1982 * 1983 * Return: None 1984 * 1985 * Issues an arbitrary ioctl on a VM fd. 1986 */ 1987 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1988 { 1989 int ret; 1990 1991 ret = _vm_ioctl(vm, cmd, arg); 1992 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", 1993 cmd, ret, errno, strerror(errno)); 1994 } 1995 1996 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1997 { 1998 return ioctl(vm->fd, cmd, arg); 1999 } 2000 2001 /* 2002 * KVM system ioctl 2003 * 2004 * Input Args: 2005 * vm - Virtual Machine 2006 * cmd - Ioctl number 2007 * arg - Argument to pass to the ioctl 2008 * 2009 * Return: None 2010 * 2011 * Issues an arbitrary ioctl on a KVM fd. 2012 */ 2013 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 2014 { 2015 int ret; 2016 2017 ret = ioctl(vm->kvm_fd, cmd, arg); 2018 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)", 2019 cmd, ret, errno, strerror(errno)); 2020 } 2021 2022 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 2023 { 2024 return ioctl(vm->kvm_fd, cmd, arg); 2025 } 2026 2027 /* 2028 * Device Ioctl 2029 */ 2030 2031 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2032 { 2033 struct kvm_device_attr attribute = { 2034 .group = group, 2035 .attr = attr, 2036 .flags = 0, 2037 }; 2038 2039 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 2040 } 2041 2042 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 2043 { 2044 int ret = _kvm_device_check_attr(dev_fd, group, attr); 2045 2046 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 2047 return ret; 2048 } 2049 2050 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd) 2051 { 2052 struct kvm_create_device create_dev; 2053 int ret; 2054 2055 create_dev.type = type; 2056 create_dev.fd = -1; 2057 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 2058 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev); 2059 *fd = create_dev.fd; 2060 return ret; 2061 } 2062 2063 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test) 2064 { 2065 int fd, ret; 2066 2067 ret = _kvm_create_device(vm, type, test, &fd); 2068 2069 if (!test) { 2070 TEST_ASSERT(!ret, 2071 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno); 2072 return fd; 2073 } 2074 return ret; 2075 } 2076 2077 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2078 void *val, bool write) 2079 { 2080 struct kvm_device_attr kvmattr = { 2081 .group = group, 2082 .attr = attr, 2083 .flags = 0, 2084 .addr = (uintptr_t)val, 2085 }; 2086 int ret; 2087 2088 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 2089 &kvmattr); 2090 return ret; 2091 } 2092 2093 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 2094 void *val, bool write) 2095 { 2096 int ret = _kvm_device_access(dev_fd, group, attr, val, write); 2097 2098 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2099 return ret; 2100 } 2101 2102 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2103 uint64_t attr) 2104 { 2105 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2106 2107 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2108 2109 return _kvm_device_check_attr(vcpu->fd, group, attr); 2110 } 2111 2112 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2113 uint64_t attr) 2114 { 2115 int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr); 2116 2117 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2118 return ret; 2119 } 2120 2121 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2122 uint64_t attr, void *val, bool write) 2123 { 2124 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2125 2126 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid); 2127 2128 return _kvm_device_access(vcpu->fd, group, attr, val, write); 2129 } 2130 2131 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group, 2132 uint64_t attr, void *val, bool write) 2133 { 2134 int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write); 2135 2136 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 2137 return ret; 2138 } 2139 2140 /* 2141 * IRQ related functions. 2142 */ 2143 2144 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 2145 { 2146 struct kvm_irq_level irq_level = { 2147 .irq = irq, 2148 .level = level, 2149 }; 2150 2151 return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level); 2152 } 2153 2154 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level) 2155 { 2156 int ret = _kvm_irq_line(vm, irq, level); 2157 2158 TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno); 2159 } 2160 2161 struct kvm_irq_routing *kvm_gsi_routing_create(void) 2162 { 2163 struct kvm_irq_routing *routing; 2164 size_t size; 2165 2166 size = sizeof(struct kvm_irq_routing); 2167 /* Allocate space for the max number of entries: this wastes 196 KBs. */ 2168 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry); 2169 routing = calloc(1, size); 2170 assert(routing); 2171 2172 return routing; 2173 } 2174 2175 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing, 2176 uint32_t gsi, uint32_t pin) 2177 { 2178 int i; 2179 2180 assert(routing); 2181 assert(routing->nr < KVM_MAX_IRQ_ROUTES); 2182 2183 i = routing->nr; 2184 routing->entries[i].gsi = gsi; 2185 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP; 2186 routing->entries[i].flags = 0; 2187 routing->entries[i].u.irqchip.irqchip = 0; 2188 routing->entries[i].u.irqchip.pin = pin; 2189 routing->nr++; 2190 } 2191 2192 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 2193 { 2194 int ret; 2195 2196 assert(routing); 2197 ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing); 2198 free(routing); 2199 2200 return ret; 2201 } 2202 2203 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing) 2204 { 2205 int ret; 2206 2207 ret = _kvm_gsi_routing_write(vm, routing); 2208 TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i", 2209 ret, errno); 2210 } 2211 2212 /* 2213 * VM Dump 2214 * 2215 * Input Args: 2216 * vm - Virtual Machine 2217 * indent - Left margin indent amount 2218 * 2219 * Output Args: 2220 * stream - Output FILE stream 2221 * 2222 * Return: None 2223 * 2224 * Dumps the current state of the VM given by vm, to the FILE stream 2225 * given by stream. 2226 */ 2227 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 2228 { 2229 int ctr; 2230 struct userspace_mem_region *region; 2231 struct vcpu *vcpu; 2232 2233 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 2234 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 2235 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 2236 fprintf(stream, "%*sMem Regions:\n", indent, ""); 2237 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 2238 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 2239 "host_virt: %p\n", indent + 2, "", 2240 (uint64_t) region->region.guest_phys_addr, 2241 (uint64_t) region->region.memory_size, 2242 region->host_mem); 2243 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 2244 sparsebit_dump(stream, region->unused_phy_pages, 0); 2245 } 2246 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 2247 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 2248 fprintf(stream, "%*spgd_created: %u\n", indent, "", 2249 vm->pgd_created); 2250 if (vm->pgd_created) { 2251 fprintf(stream, "%*sVirtual Translation Tables:\n", 2252 indent + 2, ""); 2253 virt_dump(stream, vm, indent + 4); 2254 } 2255 fprintf(stream, "%*sVCPUs:\n", indent, ""); 2256 list_for_each_entry(vcpu, &vm->vcpus, list) 2257 vcpu_dump(stream, vm, vcpu->id, indent + 2); 2258 } 2259 2260 /* Known KVM exit reasons */ 2261 static struct exit_reason { 2262 unsigned int reason; 2263 const char *name; 2264 } exit_reasons_known[] = { 2265 {KVM_EXIT_UNKNOWN, "UNKNOWN"}, 2266 {KVM_EXIT_EXCEPTION, "EXCEPTION"}, 2267 {KVM_EXIT_IO, "IO"}, 2268 {KVM_EXIT_HYPERCALL, "HYPERCALL"}, 2269 {KVM_EXIT_DEBUG, "DEBUG"}, 2270 {KVM_EXIT_HLT, "HLT"}, 2271 {KVM_EXIT_MMIO, "MMIO"}, 2272 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, 2273 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, 2274 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, 2275 {KVM_EXIT_INTR, "INTR"}, 2276 {KVM_EXIT_SET_TPR, "SET_TPR"}, 2277 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, 2278 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, 2279 {KVM_EXIT_S390_RESET, "S390_RESET"}, 2280 {KVM_EXIT_DCR, "DCR"}, 2281 {KVM_EXIT_NMI, "NMI"}, 2282 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, 2283 {KVM_EXIT_OSI, "OSI"}, 2284 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, 2285 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"}, 2286 {KVM_EXIT_X86_RDMSR, "RDMSR"}, 2287 {KVM_EXIT_X86_WRMSR, "WRMSR"}, 2288 {KVM_EXIT_XEN, "XEN"}, 2289 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 2290 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, 2291 #endif 2292 }; 2293 2294 /* 2295 * Exit Reason String 2296 * 2297 * Input Args: 2298 * exit_reason - Exit reason 2299 * 2300 * Output Args: None 2301 * 2302 * Return: 2303 * Constant string pointer describing the exit reason. 2304 * 2305 * Locates and returns a constant string that describes the KVM exit 2306 * reason given by exit_reason. If no such string is found, a constant 2307 * string of "Unknown" is returned. 2308 */ 2309 const char *exit_reason_str(unsigned int exit_reason) 2310 { 2311 unsigned int n1; 2312 2313 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2314 if (exit_reason == exit_reasons_known[n1].reason) 2315 return exit_reasons_known[n1].name; 2316 } 2317 2318 return "Unknown"; 2319 } 2320 2321 /* 2322 * Physical Contiguous Page Allocator 2323 * 2324 * Input Args: 2325 * vm - Virtual Machine 2326 * num - number of pages 2327 * paddr_min - Physical address minimum 2328 * memslot - Memory region to allocate page from 2329 * 2330 * Output Args: None 2331 * 2332 * Return: 2333 * Starting physical address 2334 * 2335 * Within the VM specified by vm, locates a range of available physical 2336 * pages at or above paddr_min. If found, the pages are marked as in use 2337 * and their base address is returned. A TEST_ASSERT failure occurs if 2338 * not enough pages are available at or above paddr_min. 2339 */ 2340 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2341 vm_paddr_t paddr_min, uint32_t memslot) 2342 { 2343 struct userspace_mem_region *region; 2344 sparsebit_idx_t pg, base; 2345 2346 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2347 2348 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2349 "not divisible by page size.\n" 2350 " paddr_min: 0x%lx page_size: 0x%x", 2351 paddr_min, vm->page_size); 2352 2353 region = memslot2region(vm, memslot); 2354 base = pg = paddr_min >> vm->page_shift; 2355 2356 do { 2357 for (; pg < base + num; ++pg) { 2358 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2359 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2360 break; 2361 } 2362 } 2363 } while (pg && pg != base + num); 2364 2365 if (pg == 0) { 2366 fprintf(stderr, "No guest physical page available, " 2367 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2368 paddr_min, vm->page_size, memslot); 2369 fputs("---- vm dump ----\n", stderr); 2370 vm_dump(stderr, vm, 2); 2371 abort(); 2372 } 2373 2374 for (pg = base; pg < base + num; ++pg) 2375 sparsebit_clear(region->unused_phy_pages, pg); 2376 2377 return base * vm->page_size; 2378 } 2379 2380 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2381 uint32_t memslot) 2382 { 2383 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2384 } 2385 2386 /* Arbitrary minimum physical address used for virtual translation tables. */ 2387 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000 2388 2389 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm) 2390 { 2391 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0); 2392 } 2393 2394 /* 2395 * Address Guest Virtual to Host Virtual 2396 * 2397 * Input Args: 2398 * vm - Virtual Machine 2399 * gva - VM virtual address 2400 * 2401 * Output Args: None 2402 * 2403 * Return: 2404 * Equivalent host virtual address 2405 */ 2406 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2407 { 2408 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2409 } 2410 2411 /* 2412 * Is Unrestricted Guest 2413 * 2414 * Input Args: 2415 * vm - Virtual Machine 2416 * 2417 * Output Args: None 2418 * 2419 * Return: True if the unrestricted guest is set to 'Y', otherwise return false. 2420 * 2421 * Check if the unrestricted guest flag is enabled. 2422 */ 2423 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 2424 { 2425 char val = 'N'; 2426 size_t count; 2427 FILE *f; 2428 2429 if (vm == NULL) { 2430 /* Ensure that the KVM vendor-specific module is loaded. */ 2431 close(open_kvm_dev_path_or_exit()); 2432 } 2433 2434 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r"); 2435 if (f) { 2436 count = fread(&val, sizeof(char), 1, f); 2437 TEST_ASSERT(count == 1, "Unable to read from param file."); 2438 fclose(f); 2439 } 2440 2441 return val == 'Y'; 2442 } 2443 2444 unsigned int vm_get_page_size(struct kvm_vm *vm) 2445 { 2446 return vm->page_size; 2447 } 2448 2449 unsigned int vm_get_page_shift(struct kvm_vm *vm) 2450 { 2451 return vm->page_shift; 2452 } 2453 2454 unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm) 2455 { 2456 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 2457 } 2458 2459 uint64_t vm_get_max_gfn(struct kvm_vm *vm) 2460 { 2461 return vm->max_gfn; 2462 } 2463 2464 int vm_get_fd(struct kvm_vm *vm) 2465 { 2466 return vm->fd; 2467 } 2468 2469 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2470 unsigned int page_shift, 2471 unsigned int new_page_shift, 2472 bool ceil) 2473 { 2474 unsigned int n = 1 << (new_page_shift - page_shift); 2475 2476 if (page_shift >= new_page_shift) 2477 return num_pages * (1 << (page_shift - new_page_shift)); 2478 2479 return num_pages / n + !!(ceil && num_pages % n); 2480 } 2481 2482 static inline int getpageshift(void) 2483 { 2484 return __builtin_ffs(getpagesize()) - 1; 2485 } 2486 2487 unsigned int 2488 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2489 { 2490 return vm_calc_num_pages(num_guest_pages, 2491 vm_guest_mode_params[mode].page_shift, 2492 getpageshift(), true); 2493 } 2494 2495 unsigned int 2496 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2497 { 2498 return vm_calc_num_pages(num_host_pages, getpageshift(), 2499 vm_guest_mode_params[mode].page_shift, false); 2500 } 2501 2502 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2503 { 2504 unsigned int n; 2505 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2506 return vm_adjust_num_guest_pages(mode, n); 2507 } 2508 2509 int vm_get_stats_fd(struct kvm_vm *vm) 2510 { 2511 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL); 2512 } 2513 2514 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid) 2515 { 2516 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 2517 2518 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL); 2519 } 2520