1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * tools/testing/selftests/kvm/lib/kvm_util.c
4  *
5  * Copyright (C) 2018, Google LLC.
6  */
7 
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "kvm_util_internal.h"
11 
12 #include <assert.h>
13 #include <sys/mman.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <linux/kernel.h>
17 
18 #define KVM_UTIL_PGS_PER_HUGEPG 512
19 #define KVM_UTIL_MIN_PFN	2
20 
21 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
22 static void *align(void *x, size_t size)
23 {
24 	size_t mask = size - 1;
25 	TEST_ASSERT(size != 0 && !(size & (size - 1)),
26 		    "size not a power of 2: %lu", size);
27 	return (void *) (((size_t) x + mask) & ~mask);
28 }
29 
30 /*
31  * Capability
32  *
33  * Input Args:
34  *   cap - Capability
35  *
36  * Output Args: None
37  *
38  * Return:
39  *   On success, the Value corresponding to the capability (KVM_CAP_*)
40  *   specified by the value of cap.  On failure a TEST_ASSERT failure
41  *   is produced.
42  *
43  * Looks up and returns the value corresponding to the capability
44  * (KVM_CAP_*) given by cap.
45  */
46 int kvm_check_cap(long cap)
47 {
48 	int ret;
49 	int kvm_fd;
50 
51 	kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
52 	if (kvm_fd < 0)
53 		exit(KSFT_SKIP);
54 
55 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
56 	TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
57 		"  rc: %i errno: %i", ret, errno);
58 
59 	close(kvm_fd);
60 
61 	return ret;
62 }
63 
64 /* VM Enable Capability
65  *
66  * Input Args:
67  *   vm - Virtual Machine
68  *   cap - Capability
69  *
70  * Output Args: None
71  *
72  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
73  *
74  * Enables a capability (KVM_CAP_*) on the VM.
75  */
76 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
77 {
78 	int ret;
79 
80 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
81 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
82 		"  rc: %i errno: %i", ret, errno);
83 
84 	return ret;
85 }
86 
87 static void vm_open(struct kvm_vm *vm, int perm, unsigned long type)
88 {
89 	vm->kvm_fd = open(KVM_DEV_PATH, perm);
90 	if (vm->kvm_fd < 0)
91 		exit(KSFT_SKIP);
92 
93 	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
94 		fprintf(stderr, "immediate_exit not available, skipping test\n");
95 		exit(KSFT_SKIP);
96 	}
97 
98 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, type);
99 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
100 		"rc: %i errno: %i", vm->fd, errno);
101 }
102 
103 const char * const vm_guest_mode_string[] = {
104 	"PA-bits:52, VA-bits:48, 4K pages",
105 	"PA-bits:52, VA-bits:48, 64K pages",
106 	"PA-bits:48, VA-bits:48, 4K pages",
107 	"PA-bits:48, VA-bits:48, 64K pages",
108 	"PA-bits:40, VA-bits:48, 4K pages",
109 	"PA-bits:40, VA-bits:48, 64K pages",
110 };
111 _Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
112 	       "Missing new mode strings?");
113 
114 /*
115  * VM Create
116  *
117  * Input Args:
118  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
119  *   phy_pages - Physical memory pages
120  *   perm - permission
121  *
122  * Output Args: None
123  *
124  * Return:
125  *   Pointer to opaque structure that describes the created VM.
126  *
127  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
128  * When phy_pages is non-zero, a memory region of phy_pages physical pages
129  * is created and mapped starting at guest physical address 0.  The file
130  * descriptor to control the created VM is created with the permissions
131  * given by perm (e.g. O_RDWR).
132  */
133 struct kvm_vm *_vm_create(enum vm_guest_mode mode, uint64_t phy_pages,
134 			  int perm, unsigned long type)
135 {
136 	struct kvm_vm *vm;
137 
138 	vm = calloc(1, sizeof(*vm));
139 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
140 
141 	vm->mode = mode;
142 	vm->type = type;
143 	vm_open(vm, perm, type);
144 
145 	/* Setup mode specific traits. */
146 	switch (vm->mode) {
147 	case VM_MODE_P52V48_4K:
148 		vm->pgtable_levels = 4;
149 		vm->pa_bits = 52;
150 		vm->va_bits = 48;
151 		vm->page_size = 0x1000;
152 		vm->page_shift = 12;
153 		break;
154 	case VM_MODE_P52V48_64K:
155 		vm->pgtable_levels = 3;
156 		vm->pa_bits = 52;
157 		vm->va_bits = 48;
158 		vm->page_size = 0x10000;
159 		vm->page_shift = 16;
160 		break;
161 	case VM_MODE_P48V48_4K:
162 		vm->pgtable_levels = 4;
163 		vm->pa_bits = 48;
164 		vm->va_bits = 48;
165 		vm->page_size = 0x1000;
166 		vm->page_shift = 12;
167 		break;
168 	case VM_MODE_P48V48_64K:
169 		vm->pgtable_levels = 3;
170 		vm->pa_bits = 48;
171 		vm->va_bits = 48;
172 		vm->page_size = 0x10000;
173 		vm->page_shift = 16;
174 		break;
175 	case VM_MODE_P40V48_4K:
176 		vm->pgtable_levels = 4;
177 		vm->pa_bits = 40;
178 		vm->va_bits = 48;
179 		vm->page_size = 0x1000;
180 		vm->page_shift = 12;
181 		break;
182 	case VM_MODE_P40V48_64K:
183 		vm->pgtable_levels = 3;
184 		vm->pa_bits = 40;
185 		vm->va_bits = 48;
186 		vm->page_size = 0x10000;
187 		vm->page_shift = 16;
188 		break;
189 	default:
190 		TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
191 	}
192 
193 	/* Limit to VA-bit canonical virtual addresses. */
194 	vm->vpages_valid = sparsebit_alloc();
195 	sparsebit_set_num(vm->vpages_valid,
196 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
197 	sparsebit_set_num(vm->vpages_valid,
198 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
199 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
200 
201 	/* Limit physical addresses to PA-bits. */
202 	vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
203 
204 	/* Allocate and setup memory for guest. */
205 	vm->vpages_mapped = sparsebit_alloc();
206 	if (phy_pages != 0)
207 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
208 					    0, 0, phy_pages, 0);
209 
210 	return vm;
211 }
212 
213 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
214 {
215 	return _vm_create(mode, phy_pages, perm, 0);
216 }
217 
218 /*
219  * VM Restart
220  *
221  * Input Args:
222  *   vm - VM that has been released before
223  *   perm - permission
224  *
225  * Output Args: None
226  *
227  * Reopens the file descriptors associated to the VM and reinstates the
228  * global state, such as the irqchip and the memory regions that are mapped
229  * into the guest.
230  */
231 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
232 {
233 	struct userspace_mem_region *region;
234 
235 	vm_open(vmp, perm, vmp->type);
236 	if (vmp->has_irqchip)
237 		vm_create_irqchip(vmp);
238 
239 	for (region = vmp->userspace_mem_region_head; region;
240 		region = region->next) {
241 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
242 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
243 			    "  rc: %i errno: %i\n"
244 			    "  slot: %u flags: 0x%x\n"
245 			    "  guest_phys_addr: 0x%lx size: 0x%lx",
246 			    ret, errno, region->region.slot,
247 			    region->region.flags,
248 			    region->region.guest_phys_addr,
249 			    region->region.memory_size);
250 	}
251 }
252 
253 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
254 {
255 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
256 	int ret;
257 
258 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
259 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
260 		    strerror(-ret));
261 }
262 
263 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
264 			    uint64_t first_page, uint32_t num_pages)
265 {
266 	struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
267 		                            .first_page = first_page,
268 	                                    .num_pages = num_pages };
269 	int ret;
270 
271 	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
272 	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
273 		    strerror(-ret));
274 }
275 
276 /*
277  * Userspace Memory Region Find
278  *
279  * Input Args:
280  *   vm - Virtual Machine
281  *   start - Starting VM physical address
282  *   end - Ending VM physical address, inclusive.
283  *
284  * Output Args: None
285  *
286  * Return:
287  *   Pointer to overlapping region, NULL if no such region.
288  *
289  * Searches for a region with any physical memory that overlaps with
290  * any portion of the guest physical addresses from start to end
291  * inclusive.  If multiple overlapping regions exist, a pointer to any
292  * of the regions is returned.  Null is returned only when no overlapping
293  * region exists.
294  */
295 static struct userspace_mem_region *
296 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
297 {
298 	struct userspace_mem_region *region;
299 
300 	for (region = vm->userspace_mem_region_head; region;
301 		region = region->next) {
302 		uint64_t existing_start = region->region.guest_phys_addr;
303 		uint64_t existing_end = region->region.guest_phys_addr
304 			+ region->region.memory_size - 1;
305 		if (start <= existing_end && end >= existing_start)
306 			return region;
307 	}
308 
309 	return NULL;
310 }
311 
312 /*
313  * KVM Userspace Memory Region Find
314  *
315  * Input Args:
316  *   vm - Virtual Machine
317  *   start - Starting VM physical address
318  *   end - Ending VM physical address, inclusive.
319  *
320  * Output Args: None
321  *
322  * Return:
323  *   Pointer to overlapping region, NULL if no such region.
324  *
325  * Public interface to userspace_mem_region_find. Allows tests to look up
326  * the memslot datastructure for a given range of guest physical memory.
327  */
328 struct kvm_userspace_memory_region *
329 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
330 				 uint64_t end)
331 {
332 	struct userspace_mem_region *region;
333 
334 	region = userspace_mem_region_find(vm, start, end);
335 	if (!region)
336 		return NULL;
337 
338 	return &region->region;
339 }
340 
341 /*
342  * VCPU Find
343  *
344  * Input Args:
345  *   vm - Virtual Machine
346  *   vcpuid - VCPU ID
347  *
348  * Output Args: None
349  *
350  * Return:
351  *   Pointer to VCPU structure
352  *
353  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
354  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
355  * for the specified vcpuid.
356  */
357 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
358 {
359 	struct vcpu *vcpup;
360 
361 	for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
362 		if (vcpup->id == vcpuid)
363 			return vcpup;
364 	}
365 
366 	return NULL;
367 }
368 
369 /*
370  * VM VCPU Remove
371  *
372  * Input Args:
373  *   vm - Virtual Machine
374  *   vcpuid - VCPU ID
375  *
376  * Output Args: None
377  *
378  * Return: None, TEST_ASSERT failures for all error conditions
379  *
380  * Within the VM specified by vm, removes the VCPU given by vcpuid.
381  */
382 static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
383 {
384 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
385 	int ret;
386 
387 	ret = munmap(vcpu->state, sizeof(*vcpu->state));
388 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
389 		"errno: %i", ret, errno);
390 	close(vcpu->fd);
391 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
392 		"errno: %i", ret, errno);
393 
394 	if (vcpu->next)
395 		vcpu->next->prev = vcpu->prev;
396 	if (vcpu->prev)
397 		vcpu->prev->next = vcpu->next;
398 	else
399 		vm->vcpu_head = vcpu->next;
400 	free(vcpu);
401 }
402 
403 void kvm_vm_release(struct kvm_vm *vmp)
404 {
405 	int ret;
406 
407 	while (vmp->vcpu_head)
408 		vm_vcpu_rm(vmp, vmp->vcpu_head->id);
409 
410 	ret = close(vmp->fd);
411 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
412 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
413 
414 	close(vmp->kvm_fd);
415 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
416 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
417 }
418 
419 /*
420  * Destroys and frees the VM pointed to by vmp.
421  */
422 void kvm_vm_free(struct kvm_vm *vmp)
423 {
424 	int ret;
425 
426 	if (vmp == NULL)
427 		return;
428 
429 	/* Free userspace_mem_regions. */
430 	while (vmp->userspace_mem_region_head) {
431 		struct userspace_mem_region *region
432 			= vmp->userspace_mem_region_head;
433 
434 		region->region.memory_size = 0;
435 		ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
436 			&region->region);
437 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
438 			"rc: %i errno: %i", ret, errno);
439 
440 		vmp->userspace_mem_region_head = region->next;
441 		sparsebit_free(&region->unused_phy_pages);
442 		ret = munmap(region->mmap_start, region->mmap_size);
443 		TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
444 			    ret, errno);
445 
446 		free(region);
447 	}
448 
449 	/* Free sparsebit arrays. */
450 	sparsebit_free(&vmp->vpages_valid);
451 	sparsebit_free(&vmp->vpages_mapped);
452 
453 	kvm_vm_release(vmp);
454 
455 	/* Free the structure describing the VM. */
456 	free(vmp);
457 }
458 
459 /*
460  * Memory Compare, host virtual to guest virtual
461  *
462  * Input Args:
463  *   hva - Starting host virtual address
464  *   vm - Virtual Machine
465  *   gva - Starting guest virtual address
466  *   len - number of bytes to compare
467  *
468  * Output Args: None
469  *
470  * Input/Output Args: None
471  *
472  * Return:
473  *   Returns 0 if the bytes starting at hva for a length of len
474  *   are equal the guest virtual bytes starting at gva.  Returns
475  *   a value < 0, if bytes at hva are less than those at gva.
476  *   Otherwise a value > 0 is returned.
477  *
478  * Compares the bytes starting at the host virtual address hva, for
479  * a length of len, to the guest bytes starting at the guest virtual
480  * address given by gva.
481  */
482 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
483 {
484 	size_t amt;
485 
486 	/*
487 	 * Compare a batch of bytes until either a match is found
488 	 * or all the bytes have been compared.
489 	 */
490 	for (uintptr_t offset = 0; offset < len; offset += amt) {
491 		uintptr_t ptr1 = (uintptr_t)hva + offset;
492 
493 		/*
494 		 * Determine host address for guest virtual address
495 		 * at offset.
496 		 */
497 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
498 
499 		/*
500 		 * Determine amount to compare on this pass.
501 		 * Don't allow the comparsion to cross a page boundary.
502 		 */
503 		amt = len - offset;
504 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
505 			amt = vm->page_size - (ptr1 % vm->page_size);
506 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
507 			amt = vm->page_size - (ptr2 % vm->page_size);
508 
509 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
510 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
511 
512 		/*
513 		 * Perform the comparison.  If there is a difference
514 		 * return that result to the caller, otherwise need
515 		 * to continue on looking for a mismatch.
516 		 */
517 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
518 		if (ret != 0)
519 			return ret;
520 	}
521 
522 	/*
523 	 * No mismatch found.  Let the caller know the two memory
524 	 * areas are equal.
525 	 */
526 	return 0;
527 }
528 
529 /*
530  * VM Userspace Memory Region Add
531  *
532  * Input Args:
533  *   vm - Virtual Machine
534  *   backing_src - Storage source for this region.
535  *                 NULL to use anonymous memory.
536  *   guest_paddr - Starting guest physical address
537  *   slot - KVM region slot
538  *   npages - Number of physical pages
539  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
540  *
541  * Output Args: None
542  *
543  * Return: None
544  *
545  * Allocates a memory area of the number of pages specified by npages
546  * and maps it to the VM specified by vm, at a starting physical address
547  * given by guest_paddr.  The region is created with a KVM region slot
548  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
549  * region is created with the flags given by flags.
550  */
551 void vm_userspace_mem_region_add(struct kvm_vm *vm,
552 	enum vm_mem_backing_src_type src_type,
553 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
554 	uint32_t flags)
555 {
556 	int ret;
557 	struct userspace_mem_region *region;
558 	size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
559 
560 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
561 		"address not on a page boundary.\n"
562 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
563 		guest_paddr, vm->page_size);
564 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
565 		<= vm->max_gfn, "Physical range beyond maximum "
566 		"supported physical address,\n"
567 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
568 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
569 		guest_paddr, npages, vm->max_gfn, vm->page_size);
570 
571 	/*
572 	 * Confirm a mem region with an overlapping address doesn't
573 	 * already exist.
574 	 */
575 	region = (struct userspace_mem_region *) userspace_mem_region_find(
576 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
577 	if (region != NULL)
578 		TEST_ASSERT(false, "overlapping userspace_mem_region already "
579 			"exists\n"
580 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
581 			"page_size: 0x%x\n"
582 			"  existing guest_paddr: 0x%lx size: 0x%lx",
583 			guest_paddr, npages, vm->page_size,
584 			(uint64_t) region->region.guest_phys_addr,
585 			(uint64_t) region->region.memory_size);
586 
587 	/* Confirm no region with the requested slot already exists. */
588 	for (region = vm->userspace_mem_region_head; region;
589 		region = region->next) {
590 		if (region->region.slot == slot)
591 			break;
592 	}
593 	if (region != NULL)
594 		TEST_ASSERT(false, "A mem region with the requested slot "
595 			"already exists.\n"
596 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
597 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
598 			slot, guest_paddr, npages,
599 			region->region.slot,
600 			(uint64_t) region->region.guest_phys_addr,
601 			(uint64_t) region->region.memory_size);
602 
603 	/* Allocate and initialize new mem region structure. */
604 	region = calloc(1, sizeof(*region));
605 	TEST_ASSERT(region != NULL, "Insufficient Memory");
606 	region->mmap_size = npages * vm->page_size;
607 
608 	/* Enough memory to align up to a huge page. */
609 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
610 		region->mmap_size += huge_page_size;
611 	region->mmap_start = mmap(NULL, region->mmap_size,
612 				  PROT_READ | PROT_WRITE,
613 				  MAP_PRIVATE | MAP_ANONYMOUS
614 				  | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
615 				  -1, 0);
616 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
617 		    "test_malloc failed, mmap_start: %p errno: %i",
618 		    region->mmap_start, errno);
619 
620 	/* Align THP allocation up to start of a huge page. */
621 	region->host_mem = align(region->mmap_start,
622 				 src_type == VM_MEM_SRC_ANONYMOUS_THP ?  huge_page_size : 1);
623 
624 	/* As needed perform madvise */
625 	if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
626 		ret = madvise(region->host_mem, npages * vm->page_size,
627 			     src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
628 		TEST_ASSERT(ret == 0, "madvise failed,\n"
629 			    "  addr: %p\n"
630 			    "  length: 0x%lx\n"
631 			    "  src_type: %x",
632 			    region->host_mem, npages * vm->page_size, src_type);
633 	}
634 
635 	region->unused_phy_pages = sparsebit_alloc();
636 	sparsebit_set_num(region->unused_phy_pages,
637 		guest_paddr >> vm->page_shift, npages);
638 	region->region.slot = slot;
639 	region->region.flags = flags;
640 	region->region.guest_phys_addr = guest_paddr;
641 	region->region.memory_size = npages * vm->page_size;
642 	region->region.userspace_addr = (uintptr_t) region->host_mem;
643 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
644 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
645 		"  rc: %i errno: %i\n"
646 		"  slot: %u flags: 0x%x\n"
647 		"  guest_phys_addr: 0x%lx size: 0x%lx",
648 		ret, errno, slot, flags,
649 		guest_paddr, (uint64_t) region->region.memory_size);
650 
651 	/* Add to linked-list of memory regions. */
652 	if (vm->userspace_mem_region_head)
653 		vm->userspace_mem_region_head->prev = region;
654 	region->next = vm->userspace_mem_region_head;
655 	vm->userspace_mem_region_head = region;
656 }
657 
658 /*
659  * Memslot to region
660  *
661  * Input Args:
662  *   vm - Virtual Machine
663  *   memslot - KVM memory slot ID
664  *
665  * Output Args: None
666  *
667  * Return:
668  *   Pointer to memory region structure that describe memory region
669  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
670  *   on error (e.g. currently no memory region using memslot as a KVM
671  *   memory slot ID).
672  */
673 static struct userspace_mem_region *
674 memslot2region(struct kvm_vm *vm, uint32_t memslot)
675 {
676 	struct userspace_mem_region *region;
677 
678 	for (region = vm->userspace_mem_region_head; region;
679 		region = region->next) {
680 		if (region->region.slot == memslot)
681 			break;
682 	}
683 	if (region == NULL) {
684 		fprintf(stderr, "No mem region with the requested slot found,\n"
685 			"  requested slot: %u\n", memslot);
686 		fputs("---- vm dump ----\n", stderr);
687 		vm_dump(stderr, vm, 2);
688 		TEST_ASSERT(false, "Mem region not found");
689 	}
690 
691 	return region;
692 }
693 
694 /*
695  * VM Memory Region Flags Set
696  *
697  * Input Args:
698  *   vm - Virtual Machine
699  *   flags - Starting guest physical address
700  *
701  * Output Args: None
702  *
703  * Return: None
704  *
705  * Sets the flags of the memory region specified by the value of slot,
706  * to the values given by flags.
707  */
708 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
709 {
710 	int ret;
711 	struct userspace_mem_region *region;
712 
713 	region = memslot2region(vm, slot);
714 
715 	region->region.flags = flags;
716 
717 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
718 
719 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
720 		"  rc: %i errno: %i slot: %u flags: 0x%x",
721 		ret, errno, slot, flags);
722 }
723 
724 /*
725  * VCPU mmap Size
726  *
727  * Input Args: None
728  *
729  * Output Args: None
730  *
731  * Return:
732  *   Size of VCPU state
733  *
734  * Returns the size of the structure pointed to by the return value
735  * of vcpu_state().
736  */
737 static int vcpu_mmap_sz(void)
738 {
739 	int dev_fd, ret;
740 
741 	dev_fd = open(KVM_DEV_PATH, O_RDONLY);
742 	if (dev_fd < 0)
743 		exit(KSFT_SKIP);
744 
745 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
746 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
747 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
748 		__func__, ret, errno);
749 
750 	close(dev_fd);
751 
752 	return ret;
753 }
754 
755 /*
756  * VM VCPU Add
757  *
758  * Input Args:
759  *   vm - Virtual Machine
760  *   vcpuid - VCPU ID
761  *
762  * Output Args: None
763  *
764  * Return: None
765  *
766  * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
767  * No additional VCPU setup is done.
768  */
769 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
770 {
771 	struct vcpu *vcpu;
772 
773 	/* Confirm a vcpu with the specified id doesn't already exist. */
774 	vcpu = vcpu_find(vm, vcpuid);
775 	if (vcpu != NULL)
776 		TEST_ASSERT(false, "vcpu with the specified id "
777 			"already exists,\n"
778 			"  requested vcpuid: %u\n"
779 			"  existing vcpuid: %u state: %p",
780 			vcpuid, vcpu->id, vcpu->state);
781 
782 	/* Allocate and initialize new vcpu structure. */
783 	vcpu = calloc(1, sizeof(*vcpu));
784 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
785 	vcpu->id = vcpuid;
786 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
787 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
788 		vcpu->fd, errno);
789 
790 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
791 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
792 		vcpu_mmap_sz(), sizeof(*vcpu->state));
793 	vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
794 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
795 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
796 		"vcpu id: %u errno: %i", vcpuid, errno);
797 
798 	/* Add to linked-list of VCPUs. */
799 	if (vm->vcpu_head)
800 		vm->vcpu_head->prev = vcpu;
801 	vcpu->next = vm->vcpu_head;
802 	vm->vcpu_head = vcpu;
803 }
804 
805 /*
806  * VM Virtual Address Unused Gap
807  *
808  * Input Args:
809  *   vm - Virtual Machine
810  *   sz - Size (bytes)
811  *   vaddr_min - Minimum Virtual Address
812  *
813  * Output Args: None
814  *
815  * Return:
816  *   Lowest virtual address at or below vaddr_min, with at least
817  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
818  *   size sz is available.
819  *
820  * Within the VM specified by vm, locates the lowest starting virtual
821  * address >= vaddr_min, that has at least sz unallocated bytes.  A
822  * TEST_ASSERT failure occurs for invalid input or no area of at least
823  * sz unallocated bytes >= vaddr_min is available.
824  */
825 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
826 				      vm_vaddr_t vaddr_min)
827 {
828 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
829 
830 	/* Determine lowest permitted virtual page index. */
831 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
832 	if ((pgidx_start * vm->page_size) < vaddr_min)
833 		goto no_va_found;
834 
835 	/* Loop over section with enough valid virtual page indexes. */
836 	if (!sparsebit_is_set_num(vm->vpages_valid,
837 		pgidx_start, pages))
838 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
839 			pgidx_start, pages);
840 	do {
841 		/*
842 		 * Are there enough unused virtual pages available at
843 		 * the currently proposed starting virtual page index.
844 		 * If not, adjust proposed starting index to next
845 		 * possible.
846 		 */
847 		if (sparsebit_is_clear_num(vm->vpages_mapped,
848 			pgidx_start, pages))
849 			goto va_found;
850 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
851 			pgidx_start, pages);
852 		if (pgidx_start == 0)
853 			goto no_va_found;
854 
855 		/*
856 		 * If needed, adjust proposed starting virtual address,
857 		 * to next range of valid virtual addresses.
858 		 */
859 		if (!sparsebit_is_set_num(vm->vpages_valid,
860 			pgidx_start, pages)) {
861 			pgidx_start = sparsebit_next_set_num(
862 				vm->vpages_valid, pgidx_start, pages);
863 			if (pgidx_start == 0)
864 				goto no_va_found;
865 		}
866 	} while (pgidx_start != 0);
867 
868 no_va_found:
869 	TEST_ASSERT(false, "No vaddr of specified pages available, "
870 		"pages: 0x%lx", pages);
871 
872 	/* NOT REACHED */
873 	return -1;
874 
875 va_found:
876 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
877 		pgidx_start, pages),
878 		"Unexpected, invalid virtual page index range,\n"
879 		"  pgidx_start: 0x%lx\n"
880 		"  pages: 0x%lx",
881 		pgidx_start, pages);
882 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
883 		pgidx_start, pages),
884 		"Unexpected, pages already mapped,\n"
885 		"  pgidx_start: 0x%lx\n"
886 		"  pages: 0x%lx",
887 		pgidx_start, pages);
888 
889 	return pgidx_start * vm->page_size;
890 }
891 
892 /*
893  * VM Virtual Address Allocate
894  *
895  * Input Args:
896  *   vm - Virtual Machine
897  *   sz - Size in bytes
898  *   vaddr_min - Minimum starting virtual address
899  *   data_memslot - Memory region slot for data pages
900  *   pgd_memslot - Memory region slot for new virtual translation tables
901  *
902  * Output Args: None
903  *
904  * Return:
905  *   Starting guest virtual address
906  *
907  * Allocates at least sz bytes within the virtual address space of the vm
908  * given by vm.  The allocated bytes are mapped to a virtual address >=
909  * the address given by vaddr_min.  Note that each allocation uses a
910  * a unique set of pages, with the minimum real allocation being at least
911  * a page.
912  */
913 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
914 			  uint32_t data_memslot, uint32_t pgd_memslot)
915 {
916 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
917 
918 	virt_pgd_alloc(vm, pgd_memslot);
919 
920 	/*
921 	 * Find an unused range of virtual page addresses of at least
922 	 * pages in length.
923 	 */
924 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
925 
926 	/* Map the virtual pages. */
927 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
928 		pages--, vaddr += vm->page_size) {
929 		vm_paddr_t paddr;
930 
931 		paddr = vm_phy_page_alloc(vm,
932 				KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
933 
934 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
935 
936 		sparsebit_set(vm->vpages_mapped,
937 			vaddr >> vm->page_shift);
938 	}
939 
940 	return vaddr_start;
941 }
942 
943 /*
944  * Map a range of VM virtual address to the VM's physical address
945  *
946  * Input Args:
947  *   vm - Virtual Machine
948  *   vaddr - Virtuall address to map
949  *   paddr - VM Physical Address
950  *   size - The size of the range to map
951  *   pgd_memslot - Memory region slot for new virtual translation tables
952  *
953  * Output Args: None
954  *
955  * Return: None
956  *
957  * Within the VM given by vm, creates a virtual translation for the
958  * page range starting at vaddr to the page range starting at paddr.
959  */
960 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
961 	      size_t size, uint32_t pgd_memslot)
962 {
963 	size_t page_size = vm->page_size;
964 	size_t npages = size / page_size;
965 
966 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
967 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
968 
969 	while (npages--) {
970 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
971 		vaddr += page_size;
972 		paddr += page_size;
973 	}
974 }
975 
976 /*
977  * Address VM Physical to Host Virtual
978  *
979  * Input Args:
980  *   vm - Virtual Machine
981  *   gpa - VM physical address
982  *
983  * Output Args: None
984  *
985  * Return:
986  *   Equivalent host virtual address
987  *
988  * Locates the memory region containing the VM physical address given
989  * by gpa, within the VM given by vm.  When found, the host virtual
990  * address providing the memory to the vm physical address is returned.
991  * A TEST_ASSERT failure occurs if no region containing gpa exists.
992  */
993 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
994 {
995 	struct userspace_mem_region *region;
996 	for (region = vm->userspace_mem_region_head; region;
997 	     region = region->next) {
998 		if ((gpa >= region->region.guest_phys_addr)
999 			&& (gpa <= (region->region.guest_phys_addr
1000 				+ region->region.memory_size - 1)))
1001 			return (void *) ((uintptr_t) region->host_mem
1002 				+ (gpa - region->region.guest_phys_addr));
1003 	}
1004 
1005 	TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
1006 	return NULL;
1007 }
1008 
1009 /*
1010  * Address Host Virtual to VM Physical
1011  *
1012  * Input Args:
1013  *   vm - Virtual Machine
1014  *   hva - Host virtual address
1015  *
1016  * Output Args: None
1017  *
1018  * Return:
1019  *   Equivalent VM physical address
1020  *
1021  * Locates the memory region containing the host virtual address given
1022  * by hva, within the VM given by vm.  When found, the equivalent
1023  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1024  * region containing hva exists.
1025  */
1026 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1027 {
1028 	struct userspace_mem_region *region;
1029 	for (region = vm->userspace_mem_region_head; region;
1030 	     region = region->next) {
1031 		if ((hva >= region->host_mem)
1032 			&& (hva <= (region->host_mem
1033 				+ region->region.memory_size - 1)))
1034 			return (vm_paddr_t) ((uintptr_t)
1035 				region->region.guest_phys_addr
1036 				+ (hva - (uintptr_t) region->host_mem));
1037 	}
1038 
1039 	TEST_ASSERT(false, "No mapping to a guest physical address, "
1040 		"hva: %p", hva);
1041 	return -1;
1042 }
1043 
1044 /*
1045  * VM Create IRQ Chip
1046  *
1047  * Input Args:
1048  *   vm - Virtual Machine
1049  *
1050  * Output Args: None
1051  *
1052  * Return: None
1053  *
1054  * Creates an interrupt controller chip for the VM specified by vm.
1055  */
1056 void vm_create_irqchip(struct kvm_vm *vm)
1057 {
1058 	int ret;
1059 
1060 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1061 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1062 		"rc: %i errno: %i", ret, errno);
1063 
1064 	vm->has_irqchip = true;
1065 }
1066 
1067 /*
1068  * VM VCPU State
1069  *
1070  * Input Args:
1071  *   vm - Virtual Machine
1072  *   vcpuid - VCPU ID
1073  *
1074  * Output Args: None
1075  *
1076  * Return:
1077  *   Pointer to structure that describes the state of the VCPU.
1078  *
1079  * Locates and returns a pointer to a structure that describes the
1080  * state of the VCPU with the given vcpuid.
1081  */
1082 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1083 {
1084 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1085 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1086 
1087 	return vcpu->state;
1088 }
1089 
1090 /*
1091  * VM VCPU Run
1092  *
1093  * Input Args:
1094  *   vm - Virtual Machine
1095  *   vcpuid - VCPU ID
1096  *
1097  * Output Args: None
1098  *
1099  * Return: None
1100  *
1101  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1102  * given by vm.
1103  */
1104 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1105 {
1106 	int ret = _vcpu_run(vm, vcpuid);
1107 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1108 		"rc: %i errno: %i", ret, errno);
1109 }
1110 
1111 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1112 {
1113 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1114 	int rc;
1115 
1116 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1117 	do {
1118 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1119 	} while (rc == -1 && errno == EINTR);
1120 	return rc;
1121 }
1122 
1123 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1124 {
1125 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1126 	int ret;
1127 
1128 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1129 
1130 	vcpu->state->immediate_exit = 1;
1131 	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1132 	vcpu->state->immediate_exit = 0;
1133 
1134 	TEST_ASSERT(ret == -1 && errno == EINTR,
1135 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1136 		    ret, errno);
1137 }
1138 
1139 /*
1140  * VM VCPU Set MP State
1141  *
1142  * Input Args:
1143  *   vm - Virtual Machine
1144  *   vcpuid - VCPU ID
1145  *   mp_state - mp_state to be set
1146  *
1147  * Output Args: None
1148  *
1149  * Return: None
1150  *
1151  * Sets the MP state of the VCPU given by vcpuid, to the state given
1152  * by mp_state.
1153  */
1154 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1155 		       struct kvm_mp_state *mp_state)
1156 {
1157 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1158 	int ret;
1159 
1160 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1161 
1162 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1163 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1164 		"rc: %i errno: %i", ret, errno);
1165 }
1166 
1167 /*
1168  * VM VCPU Regs Get
1169  *
1170  * Input Args:
1171  *   vm - Virtual Machine
1172  *   vcpuid - VCPU ID
1173  *
1174  * Output Args:
1175  *   regs - current state of VCPU regs
1176  *
1177  * Return: None
1178  *
1179  * Obtains the current register state for the VCPU specified by vcpuid
1180  * and stores it at the location given by regs.
1181  */
1182 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1183 {
1184 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1185 	int ret;
1186 
1187 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1188 
1189 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1190 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1191 		ret, errno);
1192 }
1193 
1194 /*
1195  * VM VCPU Regs Set
1196  *
1197  * Input Args:
1198  *   vm - Virtual Machine
1199  *   vcpuid - VCPU ID
1200  *   regs - Values to set VCPU regs to
1201  *
1202  * Output Args: None
1203  *
1204  * Return: None
1205  *
1206  * Sets the regs of the VCPU specified by vcpuid to the values
1207  * given by regs.
1208  */
1209 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1210 {
1211 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1212 	int ret;
1213 
1214 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1215 
1216 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1217 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1218 		ret, errno);
1219 }
1220 
1221 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1222 		     struct kvm_vcpu_events *events)
1223 {
1224 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1225 	int ret;
1226 
1227 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1228 
1229 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1230 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1231 		ret, errno);
1232 }
1233 
1234 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1235 		     struct kvm_vcpu_events *events)
1236 {
1237 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1238 	int ret;
1239 
1240 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1241 
1242 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1243 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1244 		ret, errno);
1245 }
1246 
1247 #ifdef __x86_64__
1248 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1249 			   struct kvm_nested_state *state)
1250 {
1251 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1252 	int ret;
1253 
1254 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1255 
1256 	ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1257 	TEST_ASSERT(ret == 0,
1258 		"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1259 		ret, errno);
1260 }
1261 
1262 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1263 			  struct kvm_nested_state *state, bool ignore_error)
1264 {
1265 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1266 	int ret;
1267 
1268 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1269 
1270 	ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1271 	if (!ignore_error) {
1272 		TEST_ASSERT(ret == 0,
1273 			"KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1274 			ret, errno);
1275 	}
1276 
1277 	return ret;
1278 }
1279 #endif
1280 
1281 /*
1282  * VM VCPU System Regs Get
1283  *
1284  * Input Args:
1285  *   vm - Virtual Machine
1286  *   vcpuid - VCPU ID
1287  *
1288  * Output Args:
1289  *   sregs - current state of VCPU system regs
1290  *
1291  * Return: None
1292  *
1293  * Obtains the current system register state for the VCPU specified by
1294  * vcpuid and stores it at the location given by sregs.
1295  */
1296 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1297 {
1298 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1299 	int ret;
1300 
1301 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1302 
1303 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1304 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1305 		ret, errno);
1306 }
1307 
1308 /*
1309  * VM VCPU System Regs Set
1310  *
1311  * Input Args:
1312  *   vm - Virtual Machine
1313  *   vcpuid - VCPU ID
1314  *   sregs - Values to set VCPU system regs to
1315  *
1316  * Output Args: None
1317  *
1318  * Return: None
1319  *
1320  * Sets the system regs of the VCPU specified by vcpuid to the values
1321  * given by sregs.
1322  */
1323 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1324 {
1325 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1326 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1327 		"rc: %i errno: %i", ret, errno);
1328 }
1329 
1330 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1331 {
1332 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1333 
1334 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1335 
1336 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1337 }
1338 
1339 /*
1340  * VCPU Ioctl
1341  *
1342  * Input Args:
1343  *   vm - Virtual Machine
1344  *   vcpuid - VCPU ID
1345  *   cmd - Ioctl number
1346  *   arg - Argument to pass to the ioctl
1347  *
1348  * Return: None
1349  *
1350  * Issues an arbitrary ioctl on a VCPU fd.
1351  */
1352 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1353 		unsigned long cmd, void *arg)
1354 {
1355 	int ret;
1356 
1357 	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1358 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1359 		cmd, ret, errno, strerror(errno));
1360 }
1361 
1362 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1363 		unsigned long cmd, void *arg)
1364 {
1365 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1366 	int ret;
1367 
1368 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1369 
1370 	ret = ioctl(vcpu->fd, cmd, arg);
1371 
1372 	return ret;
1373 }
1374 
1375 /*
1376  * VM Ioctl
1377  *
1378  * Input Args:
1379  *   vm - Virtual Machine
1380  *   cmd - Ioctl number
1381  *   arg - Argument to pass to the ioctl
1382  *
1383  * Return: None
1384  *
1385  * Issues an arbitrary ioctl on a VM fd.
1386  */
1387 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1388 {
1389 	int ret;
1390 
1391 	ret = ioctl(vm->fd, cmd, arg);
1392 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1393 		cmd, ret, errno, strerror(errno));
1394 }
1395 
1396 /*
1397  * VM Dump
1398  *
1399  * Input Args:
1400  *   vm - Virtual Machine
1401  *   indent - Left margin indent amount
1402  *
1403  * Output Args:
1404  *   stream - Output FILE stream
1405  *
1406  * Return: None
1407  *
1408  * Dumps the current state of the VM given by vm, to the FILE stream
1409  * given by stream.
1410  */
1411 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1412 {
1413 	struct userspace_mem_region *region;
1414 	struct vcpu *vcpu;
1415 
1416 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1417 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1418 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1419 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1420 	for (region = vm->userspace_mem_region_head; region;
1421 		region = region->next) {
1422 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1423 			"host_virt: %p\n", indent + 2, "",
1424 			(uint64_t) region->region.guest_phys_addr,
1425 			(uint64_t) region->region.memory_size,
1426 			region->host_mem);
1427 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1428 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1429 	}
1430 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1431 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1432 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1433 		vm->pgd_created);
1434 	if (vm->pgd_created) {
1435 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1436 			indent + 2, "");
1437 		virt_dump(stream, vm, indent + 4);
1438 	}
1439 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1440 	for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1441 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
1442 }
1443 
1444 /* Known KVM exit reasons */
1445 static struct exit_reason {
1446 	unsigned int reason;
1447 	const char *name;
1448 } exit_reasons_known[] = {
1449 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1450 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1451 	{KVM_EXIT_IO, "IO"},
1452 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1453 	{KVM_EXIT_DEBUG, "DEBUG"},
1454 	{KVM_EXIT_HLT, "HLT"},
1455 	{KVM_EXIT_MMIO, "MMIO"},
1456 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1457 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1458 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1459 	{KVM_EXIT_INTR, "INTR"},
1460 	{KVM_EXIT_SET_TPR, "SET_TPR"},
1461 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1462 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1463 	{KVM_EXIT_S390_RESET, "S390_RESET"},
1464 	{KVM_EXIT_DCR, "DCR"},
1465 	{KVM_EXIT_NMI, "NMI"},
1466 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1467 	{KVM_EXIT_OSI, "OSI"},
1468 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1469 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1470 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1471 #endif
1472 };
1473 
1474 /*
1475  * Exit Reason String
1476  *
1477  * Input Args:
1478  *   exit_reason - Exit reason
1479  *
1480  * Output Args: None
1481  *
1482  * Return:
1483  *   Constant string pointer describing the exit reason.
1484  *
1485  * Locates and returns a constant string that describes the KVM exit
1486  * reason given by exit_reason.  If no such string is found, a constant
1487  * string of "Unknown" is returned.
1488  */
1489 const char *exit_reason_str(unsigned int exit_reason)
1490 {
1491 	unsigned int n1;
1492 
1493 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1494 		if (exit_reason == exit_reasons_known[n1].reason)
1495 			return exit_reasons_known[n1].name;
1496 	}
1497 
1498 	return "Unknown";
1499 }
1500 
1501 /*
1502  * Physical Contiguous Page Allocator
1503  *
1504  * Input Args:
1505  *   vm - Virtual Machine
1506  *   num - number of pages
1507  *   paddr_min - Physical address minimum
1508  *   memslot - Memory region to allocate page from
1509  *
1510  * Output Args: None
1511  *
1512  * Return:
1513  *   Starting physical address
1514  *
1515  * Within the VM specified by vm, locates a range of available physical
1516  * pages at or above paddr_min. If found, the pages are marked as in use
1517  * and their base address is returned. A TEST_ASSERT failure occurs if
1518  * not enough pages are available at or above paddr_min.
1519  */
1520 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1521 			      vm_paddr_t paddr_min, uint32_t memslot)
1522 {
1523 	struct userspace_mem_region *region;
1524 	sparsebit_idx_t pg, base;
1525 
1526 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1527 
1528 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1529 		"not divisible by page size.\n"
1530 		"  paddr_min: 0x%lx page_size: 0x%x",
1531 		paddr_min, vm->page_size);
1532 
1533 	region = memslot2region(vm, memslot);
1534 	base = pg = paddr_min >> vm->page_shift;
1535 
1536 	do {
1537 		for (; pg < base + num; ++pg) {
1538 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1539 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1540 				break;
1541 			}
1542 		}
1543 	} while (pg && pg != base + num);
1544 
1545 	if (pg == 0) {
1546 		fprintf(stderr, "No guest physical page available, "
1547 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1548 			paddr_min, vm->page_size, memslot);
1549 		fputs("---- vm dump ----\n", stderr);
1550 		vm_dump(stderr, vm, 2);
1551 		abort();
1552 	}
1553 
1554 	for (pg = base; pg < base + num; ++pg)
1555 		sparsebit_clear(region->unused_phy_pages, pg);
1556 
1557 	return base * vm->page_size;
1558 }
1559 
1560 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1561 			     uint32_t memslot)
1562 {
1563 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1564 }
1565 
1566 /*
1567  * Address Guest Virtual to Host Virtual
1568  *
1569  * Input Args:
1570  *   vm - Virtual Machine
1571  *   gva - VM virtual address
1572  *
1573  * Output Args: None
1574  *
1575  * Return:
1576  *   Equivalent host virtual address
1577  */
1578 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1579 {
1580 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1581 }
1582 
1583 /*
1584  * Is Unrestricted Guest
1585  *
1586  * Input Args:
1587  *   vm - Virtual Machine
1588  *
1589  * Output Args: None
1590  *
1591  * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
1592  *
1593  * Check if the unrestricted guest flag is enabled.
1594  */
1595 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
1596 {
1597 	char val = 'N';
1598 	size_t count;
1599 	FILE *f;
1600 
1601 	if (vm == NULL) {
1602 		/* Ensure that the KVM vendor-specific module is loaded. */
1603 		f = fopen(KVM_DEV_PATH, "r");
1604 		TEST_ASSERT(f != NULL, "Error in opening KVM dev file: %d",
1605 			    errno);
1606 		fclose(f);
1607 	}
1608 
1609 	f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
1610 	if (f) {
1611 		count = fread(&val, sizeof(char), 1, f);
1612 		TEST_ASSERT(count == 1, "Unable to read from param file.");
1613 		fclose(f);
1614 	}
1615 
1616 	return val == 'Y';
1617 }
1618