1 /*
2  * tools/testing/selftests/kvm/lib/kvm_util.c
3  *
4  * Copyright (C) 2018, Google LLC.
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2.
7  */
8 
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 
13 #include <assert.h>
14 #include <sys/mman.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <linux/kernel.h>
18 
19 #define KVM_UTIL_PGS_PER_HUGEPG 512
20 #define KVM_UTIL_MIN_PFN	2
21 
22 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
23 static void *align(void *x, size_t size)
24 {
25 	size_t mask = size - 1;
26 	TEST_ASSERT(size != 0 && !(size & (size - 1)),
27 		    "size not a power of 2: %lu", size);
28 	return (void *) (((size_t) x + mask) & ~mask);
29 }
30 
31 /*
32  * Capability
33  *
34  * Input Args:
35  *   cap - Capability
36  *
37  * Output Args: None
38  *
39  * Return:
40  *   On success, the Value corresponding to the capability (KVM_CAP_*)
41  *   specified by the value of cap.  On failure a TEST_ASSERT failure
42  *   is produced.
43  *
44  * Looks up and returns the value corresponding to the capability
45  * (KVM_CAP_*) given by cap.
46  */
47 int kvm_check_cap(long cap)
48 {
49 	int ret;
50 	int kvm_fd;
51 
52 	kvm_fd = open(KVM_DEV_PATH, O_RDONLY);
53 	if (kvm_fd < 0)
54 		exit(KSFT_SKIP);
55 
56 	ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
57 	TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n"
58 		"  rc: %i errno: %i", ret, errno);
59 
60 	close(kvm_fd);
61 
62 	return ret;
63 }
64 
65 /* VM Enable Capability
66  *
67  * Input Args:
68  *   vm - Virtual Machine
69  *   cap - Capability
70  *
71  * Output Args: None
72  *
73  * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
74  *
75  * Enables a capability (KVM_CAP_*) on the VM.
76  */
77 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
78 {
79 	int ret;
80 
81 	ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
82 	TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
83 		"  rc: %i errno: %i", ret, errno);
84 
85 	return ret;
86 }
87 
88 static void vm_open(struct kvm_vm *vm, int perm, unsigned long type)
89 {
90 	vm->kvm_fd = open(KVM_DEV_PATH, perm);
91 	if (vm->kvm_fd < 0)
92 		exit(KSFT_SKIP);
93 
94 	if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
95 		fprintf(stderr, "immediate_exit not available, skipping test\n");
96 		exit(KSFT_SKIP);
97 	}
98 
99 	vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, type);
100 	TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
101 		"rc: %i errno: %i", vm->fd, errno);
102 }
103 
104 const char * const vm_guest_mode_string[] = {
105 	"PA-bits:52, VA-bits:48, 4K pages",
106 	"PA-bits:52, VA-bits:48, 64K pages",
107 	"PA-bits:48, VA-bits:48, 4K pages",
108 	"PA-bits:48, VA-bits:48, 64K pages",
109 	"PA-bits:40, VA-bits:48, 4K pages",
110 	"PA-bits:40, VA-bits:48, 64K pages",
111 };
112 _Static_assert(sizeof(vm_guest_mode_string)/sizeof(char *) == NUM_VM_MODES,
113 	       "Missing new mode strings?");
114 
115 /*
116  * VM Create
117  *
118  * Input Args:
119  *   mode - VM Mode (e.g. VM_MODE_P52V48_4K)
120  *   phy_pages - Physical memory pages
121  *   perm - permission
122  *
123  * Output Args: None
124  *
125  * Return:
126  *   Pointer to opaque structure that describes the created VM.
127  *
128  * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
129  * When phy_pages is non-zero, a memory region of phy_pages physical pages
130  * is created and mapped starting at guest physical address 0.  The file
131  * descriptor to control the created VM is created with the permissions
132  * given by perm (e.g. O_RDWR).
133  */
134 struct kvm_vm *_vm_create(enum vm_guest_mode mode, uint64_t phy_pages,
135 			  int perm, unsigned long type)
136 {
137 	struct kvm_vm *vm;
138 	int kvm_fd;
139 
140 	vm = calloc(1, sizeof(*vm));
141 	TEST_ASSERT(vm != NULL, "Insufficient Memory");
142 
143 	vm->mode = mode;
144 	vm->type = type;
145 	vm_open(vm, perm, type);
146 
147 	/* Setup mode specific traits. */
148 	switch (vm->mode) {
149 	case VM_MODE_P52V48_4K:
150 		vm->pgtable_levels = 4;
151 		vm->pa_bits = 52;
152 		vm->va_bits = 48;
153 		vm->page_size = 0x1000;
154 		vm->page_shift = 12;
155 		break;
156 	case VM_MODE_P52V48_64K:
157 		vm->pgtable_levels = 3;
158 		vm->pa_bits = 52;
159 		vm->va_bits = 48;
160 		vm->page_size = 0x10000;
161 		vm->page_shift = 16;
162 		break;
163 	case VM_MODE_P48V48_4K:
164 		vm->pgtable_levels = 4;
165 		vm->pa_bits = 48;
166 		vm->va_bits = 48;
167 		vm->page_size = 0x1000;
168 		vm->page_shift = 12;
169 		break;
170 	case VM_MODE_P48V48_64K:
171 		vm->pgtable_levels = 3;
172 		vm->pa_bits = 48;
173 		vm->va_bits = 48;
174 		vm->page_size = 0x10000;
175 		vm->page_shift = 16;
176 		break;
177 	case VM_MODE_P40V48_4K:
178 		vm->pgtable_levels = 4;
179 		vm->pa_bits = 40;
180 		vm->va_bits = 48;
181 		vm->page_size = 0x1000;
182 		vm->page_shift = 12;
183 		break;
184 	case VM_MODE_P40V48_64K:
185 		vm->pgtable_levels = 3;
186 		vm->pa_bits = 40;
187 		vm->va_bits = 48;
188 		vm->page_size = 0x10000;
189 		vm->page_shift = 16;
190 		break;
191 	default:
192 		TEST_ASSERT(false, "Unknown guest mode, mode: 0x%x", mode);
193 	}
194 
195 	/* Limit to VA-bit canonical virtual addresses. */
196 	vm->vpages_valid = sparsebit_alloc();
197 	sparsebit_set_num(vm->vpages_valid,
198 		0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
199 	sparsebit_set_num(vm->vpages_valid,
200 		(~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
201 		(1ULL << (vm->va_bits - 1)) >> vm->page_shift);
202 
203 	/* Limit physical addresses to PA-bits. */
204 	vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
205 
206 	/* Allocate and setup memory for guest. */
207 	vm->vpages_mapped = sparsebit_alloc();
208 	if (phy_pages != 0)
209 		vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
210 					    0, 0, phy_pages, 0);
211 
212 	return vm;
213 }
214 
215 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
216 {
217 	return _vm_create(mode, phy_pages, perm, 0);
218 }
219 
220 /*
221  * VM Restart
222  *
223  * Input Args:
224  *   vm - VM that has been released before
225  *   perm - permission
226  *
227  * Output Args: None
228  *
229  * Reopens the file descriptors associated to the VM and reinstates the
230  * global state, such as the irqchip and the memory regions that are mapped
231  * into the guest.
232  */
233 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
234 {
235 	struct userspace_mem_region *region;
236 
237 	vm_open(vmp, perm, vmp->type);
238 	if (vmp->has_irqchip)
239 		vm_create_irqchip(vmp);
240 
241 	for (region = vmp->userspace_mem_region_head; region;
242 		region = region->next) {
243 		int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
244 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
245 			    "  rc: %i errno: %i\n"
246 			    "  slot: %u flags: 0x%x\n"
247 			    "  guest_phys_addr: 0x%lx size: 0x%lx",
248 			    ret, errno, region->region.slot,
249 			    region->region.flags,
250 			    region->region.guest_phys_addr,
251 			    region->region.memory_size);
252 	}
253 }
254 
255 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
256 {
257 	struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
258 	int ret;
259 
260 	ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
261 	TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
262 		    strerror(-ret));
263 }
264 
265 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
266 			    uint64_t first_page, uint32_t num_pages)
267 {
268 	struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
269 		                            .first_page = first_page,
270 	                                    .num_pages = num_pages };
271 	int ret;
272 
273 	ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
274 	TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
275 		    strerror(-ret));
276 }
277 
278 /*
279  * Userspace Memory Region Find
280  *
281  * Input Args:
282  *   vm - Virtual Machine
283  *   start - Starting VM physical address
284  *   end - Ending VM physical address, inclusive.
285  *
286  * Output Args: None
287  *
288  * Return:
289  *   Pointer to overlapping region, NULL if no such region.
290  *
291  * Searches for a region with any physical memory that overlaps with
292  * any portion of the guest physical addresses from start to end
293  * inclusive.  If multiple overlapping regions exist, a pointer to any
294  * of the regions is returned.  Null is returned only when no overlapping
295  * region exists.
296  */
297 static struct userspace_mem_region *
298 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
299 {
300 	struct userspace_mem_region *region;
301 
302 	for (region = vm->userspace_mem_region_head; region;
303 		region = region->next) {
304 		uint64_t existing_start = region->region.guest_phys_addr;
305 		uint64_t existing_end = region->region.guest_phys_addr
306 			+ region->region.memory_size - 1;
307 		if (start <= existing_end && end >= existing_start)
308 			return region;
309 	}
310 
311 	return NULL;
312 }
313 
314 /*
315  * KVM Userspace Memory Region Find
316  *
317  * Input Args:
318  *   vm - Virtual Machine
319  *   start - Starting VM physical address
320  *   end - Ending VM physical address, inclusive.
321  *
322  * Output Args: None
323  *
324  * Return:
325  *   Pointer to overlapping region, NULL if no such region.
326  *
327  * Public interface to userspace_mem_region_find. Allows tests to look up
328  * the memslot datastructure for a given range of guest physical memory.
329  */
330 struct kvm_userspace_memory_region *
331 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
332 				 uint64_t end)
333 {
334 	struct userspace_mem_region *region;
335 
336 	region = userspace_mem_region_find(vm, start, end);
337 	if (!region)
338 		return NULL;
339 
340 	return &region->region;
341 }
342 
343 /*
344  * VCPU Find
345  *
346  * Input Args:
347  *   vm - Virtual Machine
348  *   vcpuid - VCPU ID
349  *
350  * Output Args: None
351  *
352  * Return:
353  *   Pointer to VCPU structure
354  *
355  * Locates a vcpu structure that describes the VCPU specified by vcpuid and
356  * returns a pointer to it.  Returns NULL if the VM doesn't contain a VCPU
357  * for the specified vcpuid.
358  */
359 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
360 {
361 	struct vcpu *vcpup;
362 
363 	for (vcpup = vm->vcpu_head; vcpup; vcpup = vcpup->next) {
364 		if (vcpup->id == vcpuid)
365 			return vcpup;
366 	}
367 
368 	return NULL;
369 }
370 
371 /*
372  * VM VCPU Remove
373  *
374  * Input Args:
375  *   vm - Virtual Machine
376  *   vcpuid - VCPU ID
377  *
378  * Output Args: None
379  *
380  * Return: None, TEST_ASSERT failures for all error conditions
381  *
382  * Within the VM specified by vm, removes the VCPU given by vcpuid.
383  */
384 static void vm_vcpu_rm(struct kvm_vm *vm, uint32_t vcpuid)
385 {
386 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
387 	int ret;
388 
389 	ret = munmap(vcpu->state, sizeof(*vcpu->state));
390 	TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
391 		"errno: %i", ret, errno);
392 	close(vcpu->fd);
393 	TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
394 		"errno: %i", ret, errno);
395 
396 	if (vcpu->next)
397 		vcpu->next->prev = vcpu->prev;
398 	if (vcpu->prev)
399 		vcpu->prev->next = vcpu->next;
400 	else
401 		vm->vcpu_head = vcpu->next;
402 	free(vcpu);
403 }
404 
405 void kvm_vm_release(struct kvm_vm *vmp)
406 {
407 	int ret;
408 
409 	while (vmp->vcpu_head)
410 		vm_vcpu_rm(vmp, vmp->vcpu_head->id);
411 
412 	ret = close(vmp->fd);
413 	TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
414 		"  vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
415 
416 	close(vmp->kvm_fd);
417 	TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
418 		"  vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
419 }
420 
421 /*
422  * Destroys and frees the VM pointed to by vmp.
423  */
424 void kvm_vm_free(struct kvm_vm *vmp)
425 {
426 	int ret;
427 
428 	if (vmp == NULL)
429 		return;
430 
431 	/* Free userspace_mem_regions. */
432 	while (vmp->userspace_mem_region_head) {
433 		struct userspace_mem_region *region
434 			= vmp->userspace_mem_region_head;
435 
436 		region->region.memory_size = 0;
437 		ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION,
438 			&region->region);
439 		TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
440 			"rc: %i errno: %i", ret, errno);
441 
442 		vmp->userspace_mem_region_head = region->next;
443 		sparsebit_free(&region->unused_phy_pages);
444 		ret = munmap(region->mmap_start, region->mmap_size);
445 		TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i",
446 			    ret, errno);
447 
448 		free(region);
449 	}
450 
451 	/* Free sparsebit arrays. */
452 	sparsebit_free(&vmp->vpages_valid);
453 	sparsebit_free(&vmp->vpages_mapped);
454 
455 	kvm_vm_release(vmp);
456 
457 	/* Free the structure describing the VM. */
458 	free(vmp);
459 }
460 
461 /*
462  * Memory Compare, host virtual to guest virtual
463  *
464  * Input Args:
465  *   hva - Starting host virtual address
466  *   vm - Virtual Machine
467  *   gva - Starting guest virtual address
468  *   len - number of bytes to compare
469  *
470  * Output Args: None
471  *
472  * Input/Output Args: None
473  *
474  * Return:
475  *   Returns 0 if the bytes starting at hva for a length of len
476  *   are equal the guest virtual bytes starting at gva.  Returns
477  *   a value < 0, if bytes at hva are less than those at gva.
478  *   Otherwise a value > 0 is returned.
479  *
480  * Compares the bytes starting at the host virtual address hva, for
481  * a length of len, to the guest bytes starting at the guest virtual
482  * address given by gva.
483  */
484 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
485 {
486 	size_t amt;
487 
488 	/*
489 	 * Compare a batch of bytes until either a match is found
490 	 * or all the bytes have been compared.
491 	 */
492 	for (uintptr_t offset = 0; offset < len; offset += amt) {
493 		uintptr_t ptr1 = (uintptr_t)hva + offset;
494 
495 		/*
496 		 * Determine host address for guest virtual address
497 		 * at offset.
498 		 */
499 		uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
500 
501 		/*
502 		 * Determine amount to compare on this pass.
503 		 * Don't allow the comparsion to cross a page boundary.
504 		 */
505 		amt = len - offset;
506 		if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
507 			amt = vm->page_size - (ptr1 % vm->page_size);
508 		if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
509 			amt = vm->page_size - (ptr2 % vm->page_size);
510 
511 		assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
512 		assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
513 
514 		/*
515 		 * Perform the comparison.  If there is a difference
516 		 * return that result to the caller, otherwise need
517 		 * to continue on looking for a mismatch.
518 		 */
519 		int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
520 		if (ret != 0)
521 			return ret;
522 	}
523 
524 	/*
525 	 * No mismatch found.  Let the caller know the two memory
526 	 * areas are equal.
527 	 */
528 	return 0;
529 }
530 
531 /*
532  * VM Userspace Memory Region Add
533  *
534  * Input Args:
535  *   vm - Virtual Machine
536  *   backing_src - Storage source for this region.
537  *                 NULL to use anonymous memory.
538  *   guest_paddr - Starting guest physical address
539  *   slot - KVM region slot
540  *   npages - Number of physical pages
541  *   flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
542  *
543  * Output Args: None
544  *
545  * Return: None
546  *
547  * Allocates a memory area of the number of pages specified by npages
548  * and maps it to the VM specified by vm, at a starting physical address
549  * given by guest_paddr.  The region is created with a KVM region slot
550  * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM.  The
551  * region is created with the flags given by flags.
552  */
553 void vm_userspace_mem_region_add(struct kvm_vm *vm,
554 	enum vm_mem_backing_src_type src_type,
555 	uint64_t guest_paddr, uint32_t slot, uint64_t npages,
556 	uint32_t flags)
557 {
558 	int ret;
559 	unsigned long pmem_size = 0;
560 	struct userspace_mem_region *region;
561 	size_t huge_page_size = KVM_UTIL_PGS_PER_HUGEPG * vm->page_size;
562 
563 	TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
564 		"address not on a page boundary.\n"
565 		"  guest_paddr: 0x%lx vm->page_size: 0x%x",
566 		guest_paddr, vm->page_size);
567 	TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
568 		<= vm->max_gfn, "Physical range beyond maximum "
569 		"supported physical address,\n"
570 		"  guest_paddr: 0x%lx npages: 0x%lx\n"
571 		"  vm->max_gfn: 0x%lx vm->page_size: 0x%x",
572 		guest_paddr, npages, vm->max_gfn, vm->page_size);
573 
574 	/*
575 	 * Confirm a mem region with an overlapping address doesn't
576 	 * already exist.
577 	 */
578 	region = (struct userspace_mem_region *) userspace_mem_region_find(
579 		vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
580 	if (region != NULL)
581 		TEST_ASSERT(false, "overlapping userspace_mem_region already "
582 			"exists\n"
583 			"  requested guest_paddr: 0x%lx npages: 0x%lx "
584 			"page_size: 0x%x\n"
585 			"  existing guest_paddr: 0x%lx size: 0x%lx",
586 			guest_paddr, npages, vm->page_size,
587 			(uint64_t) region->region.guest_phys_addr,
588 			(uint64_t) region->region.memory_size);
589 
590 	/* Confirm no region with the requested slot already exists. */
591 	for (region = vm->userspace_mem_region_head; region;
592 		region = region->next) {
593 		if (region->region.slot == slot)
594 			break;
595 	}
596 	if (region != NULL)
597 		TEST_ASSERT(false, "A mem region with the requested slot "
598 			"already exists.\n"
599 			"  requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
600 			"  existing slot: %u paddr: 0x%lx size: 0x%lx",
601 			slot, guest_paddr, npages,
602 			region->region.slot,
603 			(uint64_t) region->region.guest_phys_addr,
604 			(uint64_t) region->region.memory_size);
605 
606 	/* Allocate and initialize new mem region structure. */
607 	region = calloc(1, sizeof(*region));
608 	TEST_ASSERT(region != NULL, "Insufficient Memory");
609 	region->mmap_size = npages * vm->page_size;
610 
611 	/* Enough memory to align up to a huge page. */
612 	if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
613 		region->mmap_size += huge_page_size;
614 	region->mmap_start = mmap(NULL, region->mmap_size,
615 				  PROT_READ | PROT_WRITE,
616 				  MAP_PRIVATE | MAP_ANONYMOUS
617 				  | (src_type == VM_MEM_SRC_ANONYMOUS_HUGETLB ? MAP_HUGETLB : 0),
618 				  -1, 0);
619 	TEST_ASSERT(region->mmap_start != MAP_FAILED,
620 		    "test_malloc failed, mmap_start: %p errno: %i",
621 		    region->mmap_start, errno);
622 
623 	/* Align THP allocation up to start of a huge page. */
624 	region->host_mem = align(region->mmap_start,
625 				 src_type == VM_MEM_SRC_ANONYMOUS_THP ?  huge_page_size : 1);
626 
627 	/* As needed perform madvise */
628 	if (src_type == VM_MEM_SRC_ANONYMOUS || src_type == VM_MEM_SRC_ANONYMOUS_THP) {
629 		ret = madvise(region->host_mem, npages * vm->page_size,
630 			     src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
631 		TEST_ASSERT(ret == 0, "madvise failed,\n"
632 			    "  addr: %p\n"
633 			    "  length: 0x%lx\n"
634 			    "  src_type: %x",
635 			    region->host_mem, npages * vm->page_size, src_type);
636 	}
637 
638 	region->unused_phy_pages = sparsebit_alloc();
639 	sparsebit_set_num(region->unused_phy_pages,
640 		guest_paddr >> vm->page_shift, npages);
641 	region->region.slot = slot;
642 	region->region.flags = flags;
643 	region->region.guest_phys_addr = guest_paddr;
644 	region->region.memory_size = npages * vm->page_size;
645 	region->region.userspace_addr = (uintptr_t) region->host_mem;
646 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
647 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
648 		"  rc: %i errno: %i\n"
649 		"  slot: %u flags: 0x%x\n"
650 		"  guest_phys_addr: 0x%lx size: 0x%lx",
651 		ret, errno, slot, flags,
652 		guest_paddr, (uint64_t) region->region.memory_size);
653 
654 	/* Add to linked-list of memory regions. */
655 	if (vm->userspace_mem_region_head)
656 		vm->userspace_mem_region_head->prev = region;
657 	region->next = vm->userspace_mem_region_head;
658 	vm->userspace_mem_region_head = region;
659 }
660 
661 /*
662  * Memslot to region
663  *
664  * Input Args:
665  *   vm - Virtual Machine
666  *   memslot - KVM memory slot ID
667  *
668  * Output Args: None
669  *
670  * Return:
671  *   Pointer to memory region structure that describe memory region
672  *   using kvm memory slot ID given by memslot.  TEST_ASSERT failure
673  *   on error (e.g. currently no memory region using memslot as a KVM
674  *   memory slot ID).
675  */
676 static struct userspace_mem_region *
677 memslot2region(struct kvm_vm *vm, uint32_t memslot)
678 {
679 	struct userspace_mem_region *region;
680 
681 	for (region = vm->userspace_mem_region_head; region;
682 		region = region->next) {
683 		if (region->region.slot == memslot)
684 			break;
685 	}
686 	if (region == NULL) {
687 		fprintf(stderr, "No mem region with the requested slot found,\n"
688 			"  requested slot: %u\n", memslot);
689 		fputs("---- vm dump ----\n", stderr);
690 		vm_dump(stderr, vm, 2);
691 		TEST_ASSERT(false, "Mem region not found");
692 	}
693 
694 	return region;
695 }
696 
697 /*
698  * VM Memory Region Flags Set
699  *
700  * Input Args:
701  *   vm - Virtual Machine
702  *   flags - Starting guest physical address
703  *
704  * Output Args: None
705  *
706  * Return: None
707  *
708  * Sets the flags of the memory region specified by the value of slot,
709  * to the values given by flags.
710  */
711 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
712 {
713 	int ret;
714 	struct userspace_mem_region *region;
715 
716 	region = memslot2region(vm, slot);
717 
718 	region->region.flags = flags;
719 
720 	ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
721 
722 	TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
723 		"  rc: %i errno: %i slot: %u flags: 0x%x",
724 		ret, errno, slot, flags);
725 }
726 
727 /*
728  * VCPU mmap Size
729  *
730  * Input Args: None
731  *
732  * Output Args: None
733  *
734  * Return:
735  *   Size of VCPU state
736  *
737  * Returns the size of the structure pointed to by the return value
738  * of vcpu_state().
739  */
740 static int vcpu_mmap_sz(void)
741 {
742 	int dev_fd, ret;
743 
744 	dev_fd = open(KVM_DEV_PATH, O_RDONLY);
745 	if (dev_fd < 0)
746 		exit(KSFT_SKIP);
747 
748 	ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
749 	TEST_ASSERT(ret >= sizeof(struct kvm_run),
750 		"%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
751 		__func__, ret, errno);
752 
753 	close(dev_fd);
754 
755 	return ret;
756 }
757 
758 /*
759  * VM VCPU Add
760  *
761  * Input Args:
762  *   vm - Virtual Machine
763  *   vcpuid - VCPU ID
764  *
765  * Output Args: None
766  *
767  * Return: None
768  *
769  * Creates and adds to the VM specified by vm and virtual CPU with
770  * the ID given by vcpuid.
771  */
772 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid, int pgd_memslot,
773 		 int gdt_memslot)
774 {
775 	struct vcpu *vcpu;
776 
777 	/* Confirm a vcpu with the specified id doesn't already exist. */
778 	vcpu = vcpu_find(vm, vcpuid);
779 	if (vcpu != NULL)
780 		TEST_ASSERT(false, "vcpu with the specified id "
781 			"already exists,\n"
782 			"  requested vcpuid: %u\n"
783 			"  existing vcpuid: %u state: %p",
784 			vcpuid, vcpu->id, vcpu->state);
785 
786 	/* Allocate and initialize new vcpu structure. */
787 	vcpu = calloc(1, sizeof(*vcpu));
788 	TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
789 	vcpu->id = vcpuid;
790 	vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
791 	TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
792 		vcpu->fd, errno);
793 
794 	TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
795 		"smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
796 		vcpu_mmap_sz(), sizeof(*vcpu->state));
797 	vcpu->state = (struct kvm_run *) mmap(NULL, sizeof(*vcpu->state),
798 		PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
799 	TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
800 		"vcpu id: %u errno: %i", vcpuid, errno);
801 
802 	/* Add to linked-list of VCPUs. */
803 	if (vm->vcpu_head)
804 		vm->vcpu_head->prev = vcpu;
805 	vcpu->next = vm->vcpu_head;
806 	vm->vcpu_head = vcpu;
807 
808 	vcpu_setup(vm, vcpuid, pgd_memslot, gdt_memslot);
809 }
810 
811 /*
812  * VM Virtual Address Unused Gap
813  *
814  * Input Args:
815  *   vm - Virtual Machine
816  *   sz - Size (bytes)
817  *   vaddr_min - Minimum Virtual Address
818  *
819  * Output Args: None
820  *
821  * Return:
822  *   Lowest virtual address at or below vaddr_min, with at least
823  *   sz unused bytes.  TEST_ASSERT failure if no area of at least
824  *   size sz is available.
825  *
826  * Within the VM specified by vm, locates the lowest starting virtual
827  * address >= vaddr_min, that has at least sz unallocated bytes.  A
828  * TEST_ASSERT failure occurs for invalid input or no area of at least
829  * sz unallocated bytes >= vaddr_min is available.
830  */
831 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
832 				      vm_vaddr_t vaddr_min)
833 {
834 	uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
835 
836 	/* Determine lowest permitted virtual page index. */
837 	uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
838 	if ((pgidx_start * vm->page_size) < vaddr_min)
839 		goto no_va_found;
840 
841 	/* Loop over section with enough valid virtual page indexes. */
842 	if (!sparsebit_is_set_num(vm->vpages_valid,
843 		pgidx_start, pages))
844 		pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
845 			pgidx_start, pages);
846 	do {
847 		/*
848 		 * Are there enough unused virtual pages available at
849 		 * the currently proposed starting virtual page index.
850 		 * If not, adjust proposed starting index to next
851 		 * possible.
852 		 */
853 		if (sparsebit_is_clear_num(vm->vpages_mapped,
854 			pgidx_start, pages))
855 			goto va_found;
856 		pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
857 			pgidx_start, pages);
858 		if (pgidx_start == 0)
859 			goto no_va_found;
860 
861 		/*
862 		 * If needed, adjust proposed starting virtual address,
863 		 * to next range of valid virtual addresses.
864 		 */
865 		if (!sparsebit_is_set_num(vm->vpages_valid,
866 			pgidx_start, pages)) {
867 			pgidx_start = sparsebit_next_set_num(
868 				vm->vpages_valid, pgidx_start, pages);
869 			if (pgidx_start == 0)
870 				goto no_va_found;
871 		}
872 	} while (pgidx_start != 0);
873 
874 no_va_found:
875 	TEST_ASSERT(false, "No vaddr of specified pages available, "
876 		"pages: 0x%lx", pages);
877 
878 	/* NOT REACHED */
879 	return -1;
880 
881 va_found:
882 	TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
883 		pgidx_start, pages),
884 		"Unexpected, invalid virtual page index range,\n"
885 		"  pgidx_start: 0x%lx\n"
886 		"  pages: 0x%lx",
887 		pgidx_start, pages);
888 	TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
889 		pgidx_start, pages),
890 		"Unexpected, pages already mapped,\n"
891 		"  pgidx_start: 0x%lx\n"
892 		"  pages: 0x%lx",
893 		pgidx_start, pages);
894 
895 	return pgidx_start * vm->page_size;
896 }
897 
898 /*
899  * VM Virtual Address Allocate
900  *
901  * Input Args:
902  *   vm - Virtual Machine
903  *   sz - Size in bytes
904  *   vaddr_min - Minimum starting virtual address
905  *   data_memslot - Memory region slot for data pages
906  *   pgd_memslot - Memory region slot for new virtual translation tables
907  *
908  * Output Args: None
909  *
910  * Return:
911  *   Starting guest virtual address
912  *
913  * Allocates at least sz bytes within the virtual address space of the vm
914  * given by vm.  The allocated bytes are mapped to a virtual address >=
915  * the address given by vaddr_min.  Note that each allocation uses a
916  * a unique set of pages, with the minimum real allocation being at least
917  * a page.
918  */
919 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
920 			  uint32_t data_memslot, uint32_t pgd_memslot)
921 {
922 	uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
923 
924 	virt_pgd_alloc(vm, pgd_memslot);
925 
926 	/*
927 	 * Find an unused range of virtual page addresses of at least
928 	 * pages in length.
929 	 */
930 	vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
931 
932 	/* Map the virtual pages. */
933 	for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
934 		pages--, vaddr += vm->page_size) {
935 		vm_paddr_t paddr;
936 
937 		paddr = vm_phy_page_alloc(vm,
938 				KVM_UTIL_MIN_PFN * vm->page_size, data_memslot);
939 
940 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
941 
942 		sparsebit_set(vm->vpages_mapped,
943 			vaddr >> vm->page_shift);
944 	}
945 
946 	return vaddr_start;
947 }
948 
949 /*
950  * Map a range of VM virtual address to the VM's physical address
951  *
952  * Input Args:
953  *   vm - Virtual Machine
954  *   vaddr - Virtuall address to map
955  *   paddr - VM Physical Address
956  *   size - The size of the range to map
957  *   pgd_memslot - Memory region slot for new virtual translation tables
958  *
959  * Output Args: None
960  *
961  * Return: None
962  *
963  * Within the VM given by vm, creates a virtual translation for the
964  * page range starting at vaddr to the page range starting at paddr.
965  */
966 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
967 	      size_t size, uint32_t pgd_memslot)
968 {
969 	size_t page_size = vm->page_size;
970 	size_t npages = size / page_size;
971 
972 	TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
973 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
974 
975 	while (npages--) {
976 		virt_pg_map(vm, vaddr, paddr, pgd_memslot);
977 		vaddr += page_size;
978 		paddr += page_size;
979 	}
980 }
981 
982 /*
983  * Address VM Physical to Host Virtual
984  *
985  * Input Args:
986  *   vm - Virtual Machine
987  *   gpa - VM physical address
988  *
989  * Output Args: None
990  *
991  * Return:
992  *   Equivalent host virtual address
993  *
994  * Locates the memory region containing the VM physical address given
995  * by gpa, within the VM given by vm.  When found, the host virtual
996  * address providing the memory to the vm physical address is returned.
997  * A TEST_ASSERT failure occurs if no region containing gpa exists.
998  */
999 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1000 {
1001 	struct userspace_mem_region *region;
1002 	for (region = vm->userspace_mem_region_head; region;
1003 	     region = region->next) {
1004 		if ((gpa >= region->region.guest_phys_addr)
1005 			&& (gpa <= (region->region.guest_phys_addr
1006 				+ region->region.memory_size - 1)))
1007 			return (void *) ((uintptr_t) region->host_mem
1008 				+ (gpa - region->region.guest_phys_addr));
1009 	}
1010 
1011 	TEST_ASSERT(false, "No vm physical memory at 0x%lx", gpa);
1012 	return NULL;
1013 }
1014 
1015 /*
1016  * Address Host Virtual to VM Physical
1017  *
1018  * Input Args:
1019  *   vm - Virtual Machine
1020  *   hva - Host virtual address
1021  *
1022  * Output Args: None
1023  *
1024  * Return:
1025  *   Equivalent VM physical address
1026  *
1027  * Locates the memory region containing the host virtual address given
1028  * by hva, within the VM given by vm.  When found, the equivalent
1029  * VM physical address is returned. A TEST_ASSERT failure occurs if no
1030  * region containing hva exists.
1031  */
1032 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1033 {
1034 	struct userspace_mem_region *region;
1035 	for (region = vm->userspace_mem_region_head; region;
1036 	     region = region->next) {
1037 		if ((hva >= region->host_mem)
1038 			&& (hva <= (region->host_mem
1039 				+ region->region.memory_size - 1)))
1040 			return (vm_paddr_t) ((uintptr_t)
1041 				region->region.guest_phys_addr
1042 				+ (hva - (uintptr_t) region->host_mem));
1043 	}
1044 
1045 	TEST_ASSERT(false, "No mapping to a guest physical address, "
1046 		"hva: %p", hva);
1047 	return -1;
1048 }
1049 
1050 /*
1051  * VM Create IRQ Chip
1052  *
1053  * Input Args:
1054  *   vm - Virtual Machine
1055  *
1056  * Output Args: None
1057  *
1058  * Return: None
1059  *
1060  * Creates an interrupt controller chip for the VM specified by vm.
1061  */
1062 void vm_create_irqchip(struct kvm_vm *vm)
1063 {
1064 	int ret;
1065 
1066 	ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1067 	TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1068 		"rc: %i errno: %i", ret, errno);
1069 
1070 	vm->has_irqchip = true;
1071 }
1072 
1073 /*
1074  * VM VCPU State
1075  *
1076  * Input Args:
1077  *   vm - Virtual Machine
1078  *   vcpuid - VCPU ID
1079  *
1080  * Output Args: None
1081  *
1082  * Return:
1083  *   Pointer to structure that describes the state of the VCPU.
1084  *
1085  * Locates and returns a pointer to a structure that describes the
1086  * state of the VCPU with the given vcpuid.
1087  */
1088 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1089 {
1090 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1091 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1092 
1093 	return vcpu->state;
1094 }
1095 
1096 /*
1097  * VM VCPU Run
1098  *
1099  * Input Args:
1100  *   vm - Virtual Machine
1101  *   vcpuid - VCPU ID
1102  *
1103  * Output Args: None
1104  *
1105  * Return: None
1106  *
1107  * Switch to executing the code for the VCPU given by vcpuid, within the VM
1108  * given by vm.
1109  */
1110 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1111 {
1112 	int ret = _vcpu_run(vm, vcpuid);
1113 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1114 		"rc: %i errno: %i", ret, errno);
1115 }
1116 
1117 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1118 {
1119 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1120 	int rc;
1121 
1122 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1123 	do {
1124 		rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1125 	} while (rc == -1 && errno == EINTR);
1126 	return rc;
1127 }
1128 
1129 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1130 {
1131 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1132 	int ret;
1133 
1134 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1135 
1136 	vcpu->state->immediate_exit = 1;
1137 	ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1138 	vcpu->state->immediate_exit = 0;
1139 
1140 	TEST_ASSERT(ret == -1 && errno == EINTR,
1141 		    "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1142 		    ret, errno);
1143 }
1144 
1145 /*
1146  * VM VCPU Set MP State
1147  *
1148  * Input Args:
1149  *   vm - Virtual Machine
1150  *   vcpuid - VCPU ID
1151  *   mp_state - mp_state to be set
1152  *
1153  * Output Args: None
1154  *
1155  * Return: None
1156  *
1157  * Sets the MP state of the VCPU given by vcpuid, to the state given
1158  * by mp_state.
1159  */
1160 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1161 		       struct kvm_mp_state *mp_state)
1162 {
1163 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1164 	int ret;
1165 
1166 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1167 
1168 	ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1169 	TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1170 		"rc: %i errno: %i", ret, errno);
1171 }
1172 
1173 /*
1174  * VM VCPU Regs Get
1175  *
1176  * Input Args:
1177  *   vm - Virtual Machine
1178  *   vcpuid - VCPU ID
1179  *
1180  * Output Args:
1181  *   regs - current state of VCPU regs
1182  *
1183  * Return: None
1184  *
1185  * Obtains the current register state for the VCPU specified by vcpuid
1186  * and stores it at the location given by regs.
1187  */
1188 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1189 {
1190 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1191 	int ret;
1192 
1193 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1194 
1195 	ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1196 	TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1197 		ret, errno);
1198 }
1199 
1200 /*
1201  * VM VCPU Regs Set
1202  *
1203  * Input Args:
1204  *   vm - Virtual Machine
1205  *   vcpuid - VCPU ID
1206  *   regs - Values to set VCPU regs to
1207  *
1208  * Output Args: None
1209  *
1210  * Return: None
1211  *
1212  * Sets the regs of the VCPU specified by vcpuid to the values
1213  * given by regs.
1214  */
1215 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1216 {
1217 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1218 	int ret;
1219 
1220 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1221 
1222 	ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1223 	TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1224 		ret, errno);
1225 }
1226 
1227 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1228 		     struct kvm_vcpu_events *events)
1229 {
1230 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1231 	int ret;
1232 
1233 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1234 
1235 	ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1236 	TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1237 		ret, errno);
1238 }
1239 
1240 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1241 		     struct kvm_vcpu_events *events)
1242 {
1243 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1244 	int ret;
1245 
1246 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1247 
1248 	ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1249 	TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1250 		ret, errno);
1251 }
1252 
1253 /*
1254  * VM VCPU System Regs Get
1255  *
1256  * Input Args:
1257  *   vm - Virtual Machine
1258  *   vcpuid - VCPU ID
1259  *
1260  * Output Args:
1261  *   sregs - current state of VCPU system regs
1262  *
1263  * Return: None
1264  *
1265  * Obtains the current system register state for the VCPU specified by
1266  * vcpuid and stores it at the location given by sregs.
1267  */
1268 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1269 {
1270 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1271 	int ret;
1272 
1273 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1274 
1275 	ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1276 	TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1277 		ret, errno);
1278 }
1279 
1280 /*
1281  * VM VCPU System Regs Set
1282  *
1283  * Input Args:
1284  *   vm - Virtual Machine
1285  *   vcpuid - VCPU ID
1286  *   sregs - Values to set VCPU system regs to
1287  *
1288  * Output Args: None
1289  *
1290  * Return: None
1291  *
1292  * Sets the system regs of the VCPU specified by vcpuid to the values
1293  * given by sregs.
1294  */
1295 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1296 {
1297 	int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1298 	TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1299 		"rc: %i errno: %i", ret, errno);
1300 }
1301 
1302 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1303 {
1304 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1305 	int ret;
1306 
1307 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1308 
1309 	return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1310 }
1311 
1312 /*
1313  * VCPU Ioctl
1314  *
1315  * Input Args:
1316  *   vm - Virtual Machine
1317  *   vcpuid - VCPU ID
1318  *   cmd - Ioctl number
1319  *   arg - Argument to pass to the ioctl
1320  *
1321  * Return: None
1322  *
1323  * Issues an arbitrary ioctl on a VCPU fd.
1324  */
1325 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1326 		unsigned long cmd, void *arg)
1327 {
1328 	int ret;
1329 
1330 	ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1331 	TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1332 		cmd, ret, errno, strerror(errno));
1333 }
1334 
1335 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1336 		unsigned long cmd, void *arg)
1337 {
1338 	struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1339 	int ret;
1340 
1341 	TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1342 
1343 	ret = ioctl(vcpu->fd, cmd, arg);
1344 
1345 	return ret;
1346 }
1347 
1348 /*
1349  * VM Ioctl
1350  *
1351  * Input Args:
1352  *   vm - Virtual Machine
1353  *   cmd - Ioctl number
1354  *   arg - Argument to pass to the ioctl
1355  *
1356  * Return: None
1357  *
1358  * Issues an arbitrary ioctl on a VM fd.
1359  */
1360 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1361 {
1362 	int ret;
1363 
1364 	ret = ioctl(vm->fd, cmd, arg);
1365 	TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1366 		cmd, ret, errno, strerror(errno));
1367 }
1368 
1369 /*
1370  * VM Dump
1371  *
1372  * Input Args:
1373  *   vm - Virtual Machine
1374  *   indent - Left margin indent amount
1375  *
1376  * Output Args:
1377  *   stream - Output FILE stream
1378  *
1379  * Return: None
1380  *
1381  * Dumps the current state of the VM given by vm, to the FILE stream
1382  * given by stream.
1383  */
1384 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1385 {
1386 	struct userspace_mem_region *region;
1387 	struct vcpu *vcpu;
1388 
1389 	fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
1390 	fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
1391 	fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
1392 	fprintf(stream, "%*sMem Regions:\n", indent, "");
1393 	for (region = vm->userspace_mem_region_head; region;
1394 		region = region->next) {
1395 		fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
1396 			"host_virt: %p\n", indent + 2, "",
1397 			(uint64_t) region->region.guest_phys_addr,
1398 			(uint64_t) region->region.memory_size,
1399 			region->host_mem);
1400 		fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
1401 		sparsebit_dump(stream, region->unused_phy_pages, 0);
1402 	}
1403 	fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
1404 	sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
1405 	fprintf(stream, "%*spgd_created: %u\n", indent, "",
1406 		vm->pgd_created);
1407 	if (vm->pgd_created) {
1408 		fprintf(stream, "%*sVirtual Translation Tables:\n",
1409 			indent + 2, "");
1410 		virt_dump(stream, vm, indent + 4);
1411 	}
1412 	fprintf(stream, "%*sVCPUs:\n", indent, "");
1413 	for (vcpu = vm->vcpu_head; vcpu; vcpu = vcpu->next)
1414 		vcpu_dump(stream, vm, vcpu->id, indent + 2);
1415 }
1416 
1417 /* Known KVM exit reasons */
1418 static struct exit_reason {
1419 	unsigned int reason;
1420 	const char *name;
1421 } exit_reasons_known[] = {
1422 	{KVM_EXIT_UNKNOWN, "UNKNOWN"},
1423 	{KVM_EXIT_EXCEPTION, "EXCEPTION"},
1424 	{KVM_EXIT_IO, "IO"},
1425 	{KVM_EXIT_HYPERCALL, "HYPERCALL"},
1426 	{KVM_EXIT_DEBUG, "DEBUG"},
1427 	{KVM_EXIT_HLT, "HLT"},
1428 	{KVM_EXIT_MMIO, "MMIO"},
1429 	{KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
1430 	{KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
1431 	{KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
1432 	{KVM_EXIT_INTR, "INTR"},
1433 	{KVM_EXIT_SET_TPR, "SET_TPR"},
1434 	{KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
1435 	{KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
1436 	{KVM_EXIT_S390_RESET, "S390_RESET"},
1437 	{KVM_EXIT_DCR, "DCR"},
1438 	{KVM_EXIT_NMI, "NMI"},
1439 	{KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
1440 	{KVM_EXIT_OSI, "OSI"},
1441 	{KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
1442 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
1443 	{KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
1444 #endif
1445 };
1446 
1447 /*
1448  * Exit Reason String
1449  *
1450  * Input Args:
1451  *   exit_reason - Exit reason
1452  *
1453  * Output Args: None
1454  *
1455  * Return:
1456  *   Constant string pointer describing the exit reason.
1457  *
1458  * Locates and returns a constant string that describes the KVM exit
1459  * reason given by exit_reason.  If no such string is found, a constant
1460  * string of "Unknown" is returned.
1461  */
1462 const char *exit_reason_str(unsigned int exit_reason)
1463 {
1464 	unsigned int n1;
1465 
1466 	for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
1467 		if (exit_reason == exit_reasons_known[n1].reason)
1468 			return exit_reasons_known[n1].name;
1469 	}
1470 
1471 	return "Unknown";
1472 }
1473 
1474 /*
1475  * Physical Contiguous Page Allocator
1476  *
1477  * Input Args:
1478  *   vm - Virtual Machine
1479  *   num - number of pages
1480  *   paddr_min - Physical address minimum
1481  *   memslot - Memory region to allocate page from
1482  *
1483  * Output Args: None
1484  *
1485  * Return:
1486  *   Starting physical address
1487  *
1488  * Within the VM specified by vm, locates a range of available physical
1489  * pages at or above paddr_min. If found, the pages are marked as in use
1490  * and their base address is returned. A TEST_ASSERT failure occurs if
1491  * not enough pages are available at or above paddr_min.
1492  */
1493 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
1494 			      vm_paddr_t paddr_min, uint32_t memslot)
1495 {
1496 	struct userspace_mem_region *region;
1497 	sparsebit_idx_t pg, base;
1498 
1499 	TEST_ASSERT(num > 0, "Must allocate at least one page");
1500 
1501 	TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
1502 		"not divisible by page size.\n"
1503 		"  paddr_min: 0x%lx page_size: 0x%x",
1504 		paddr_min, vm->page_size);
1505 
1506 	region = memslot2region(vm, memslot);
1507 	base = pg = paddr_min >> vm->page_shift;
1508 
1509 	do {
1510 		for (; pg < base + num; ++pg) {
1511 			if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
1512 				base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
1513 				break;
1514 			}
1515 		}
1516 	} while (pg && pg != base + num);
1517 
1518 	if (pg == 0) {
1519 		fprintf(stderr, "No guest physical page available, "
1520 			"paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
1521 			paddr_min, vm->page_size, memslot);
1522 		fputs("---- vm dump ----\n", stderr);
1523 		vm_dump(stderr, vm, 2);
1524 		abort();
1525 	}
1526 
1527 	for (pg = base; pg < base + num; ++pg)
1528 		sparsebit_clear(region->unused_phy_pages, pg);
1529 
1530 	return base * vm->page_size;
1531 }
1532 
1533 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
1534 			     uint32_t memslot)
1535 {
1536 	return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
1537 }
1538 
1539 /*
1540  * Address Guest Virtual to Host Virtual
1541  *
1542  * Input Args:
1543  *   vm - Virtual Machine
1544  *   gva - VM virtual address
1545  *
1546  * Output Args: None
1547  *
1548  * Return:
1549  *   Equivalent host virtual address
1550  */
1551 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
1552 {
1553 	return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
1554 }
1555