1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * tools/testing/selftests/kvm/lib/kvm_util.c 4 * 5 * Copyright (C) 2018, Google LLC. 6 */ 7 8 #define _GNU_SOURCE /* for program_invocation_name */ 9 #include "test_util.h" 10 #include "kvm_util.h" 11 #include "kvm_util_internal.h" 12 #include "processor.h" 13 14 #include <assert.h> 15 #include <sys/mman.h> 16 #include <sys/types.h> 17 #include <sys/stat.h> 18 #include <unistd.h> 19 #include <linux/kernel.h> 20 21 #define KVM_UTIL_MIN_PFN 2 22 23 static int vcpu_mmap_sz(void); 24 25 /* Aligns x up to the next multiple of size. Size must be a power of 2. */ 26 static void *align(void *x, size_t size) 27 { 28 size_t mask = size - 1; 29 TEST_ASSERT(size != 0 && !(size & (size - 1)), 30 "size not a power of 2: %lu", size); 31 return (void *) (((size_t) x + mask) & ~mask); 32 } 33 34 /* 35 * Open KVM_DEV_PATH if available, otherwise exit the entire program. 36 * 37 * Input Args: 38 * flags - The flags to pass when opening KVM_DEV_PATH. 39 * 40 * Return: 41 * The opened file descriptor of /dev/kvm. 42 */ 43 static int _open_kvm_dev_path_or_exit(int flags) 44 { 45 int fd; 46 47 fd = open(KVM_DEV_PATH, flags); 48 if (fd < 0) { 49 print_skip("%s not available, is KVM loaded? (errno: %d)", 50 KVM_DEV_PATH, errno); 51 exit(KSFT_SKIP); 52 } 53 54 return fd; 55 } 56 57 int open_kvm_dev_path_or_exit(void) 58 { 59 return _open_kvm_dev_path_or_exit(O_RDONLY); 60 } 61 62 /* 63 * Capability 64 * 65 * Input Args: 66 * cap - Capability 67 * 68 * Output Args: None 69 * 70 * Return: 71 * On success, the Value corresponding to the capability (KVM_CAP_*) 72 * specified by the value of cap. On failure a TEST_ASSERT failure 73 * is produced. 74 * 75 * Looks up and returns the value corresponding to the capability 76 * (KVM_CAP_*) given by cap. 77 */ 78 int kvm_check_cap(long cap) 79 { 80 int ret; 81 int kvm_fd; 82 83 kvm_fd = open_kvm_dev_path_or_exit(); 84 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap); 85 TEST_ASSERT(ret != -1, "KVM_CHECK_EXTENSION IOCTL failed,\n" 86 " rc: %i errno: %i", ret, errno); 87 88 close(kvm_fd); 89 90 return ret; 91 } 92 93 /* VM Enable Capability 94 * 95 * Input Args: 96 * vm - Virtual Machine 97 * cap - Capability 98 * 99 * Output Args: None 100 * 101 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 102 * 103 * Enables a capability (KVM_CAP_*) on the VM. 104 */ 105 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap) 106 { 107 int ret; 108 109 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap); 110 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n" 111 " rc: %i errno: %i", ret, errno); 112 113 return ret; 114 } 115 116 /* VCPU Enable Capability 117 * 118 * Input Args: 119 * vm - Virtual Machine 120 * vcpu_id - VCPU 121 * cap - Capability 122 * 123 * Output Args: None 124 * 125 * Return: On success, 0. On failure a TEST_ASSERT failure is produced. 126 * 127 * Enables a capability (KVM_CAP_*) on the VCPU. 128 */ 129 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id, 130 struct kvm_enable_cap *cap) 131 { 132 struct vcpu *vcpu = vcpu_find(vm, vcpu_id); 133 int r; 134 135 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id); 136 137 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap); 138 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n" 139 " rc: %i, errno: %i", r, errno); 140 141 return r; 142 } 143 144 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size) 145 { 146 struct kvm_enable_cap cap = { 0 }; 147 148 cap.cap = KVM_CAP_DIRTY_LOG_RING; 149 cap.args[0] = ring_size; 150 vm_enable_cap(vm, &cap); 151 vm->dirty_ring_size = ring_size; 152 } 153 154 static void vm_open(struct kvm_vm *vm, int perm) 155 { 156 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm); 157 158 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) { 159 print_skip("immediate_exit not available"); 160 exit(KSFT_SKIP); 161 } 162 163 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type); 164 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, " 165 "rc: %i errno: %i", vm->fd, errno); 166 } 167 168 const char *vm_guest_mode_string(uint32_t i) 169 { 170 static const char * const strings[] = { 171 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages", 172 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages", 173 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages", 174 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages", 175 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages", 176 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages", 177 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages", 178 }; 179 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES, 180 "Missing new mode strings?"); 181 182 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i); 183 184 return strings[i]; 185 } 186 187 const struct vm_guest_mode_params vm_guest_mode_params[] = { 188 { 52, 48, 0x1000, 12 }, 189 { 52, 48, 0x10000, 16 }, 190 { 48, 48, 0x1000, 12 }, 191 { 48, 48, 0x10000, 16 }, 192 { 40, 48, 0x1000, 12 }, 193 { 40, 48, 0x10000, 16 }, 194 { 0, 0, 0x1000, 12 }, 195 }; 196 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES, 197 "Missing new mode params?"); 198 199 /* 200 * VM Create 201 * 202 * Input Args: 203 * mode - VM Mode (e.g. VM_MODE_P52V48_4K) 204 * phy_pages - Physical memory pages 205 * perm - permission 206 * 207 * Output Args: None 208 * 209 * Return: 210 * Pointer to opaque structure that describes the created VM. 211 * 212 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K). 213 * When phy_pages is non-zero, a memory region of phy_pages physical pages 214 * is created and mapped starting at guest physical address 0. The file 215 * descriptor to control the created VM is created with the permissions 216 * given by perm (e.g. O_RDWR). 217 */ 218 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm) 219 { 220 struct kvm_vm *vm; 221 222 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__, 223 vm_guest_mode_string(mode), phy_pages, perm); 224 225 vm = calloc(1, sizeof(*vm)); 226 TEST_ASSERT(vm != NULL, "Insufficient Memory"); 227 228 INIT_LIST_HEAD(&vm->vcpus); 229 vm->regions.gpa_tree = RB_ROOT; 230 vm->regions.hva_tree = RB_ROOT; 231 hash_init(vm->regions.slot_hash); 232 233 vm->mode = mode; 234 vm->type = 0; 235 236 vm->pa_bits = vm_guest_mode_params[mode].pa_bits; 237 vm->va_bits = vm_guest_mode_params[mode].va_bits; 238 vm->page_size = vm_guest_mode_params[mode].page_size; 239 vm->page_shift = vm_guest_mode_params[mode].page_shift; 240 241 /* Setup mode specific traits. */ 242 switch (vm->mode) { 243 case VM_MODE_P52V48_4K: 244 vm->pgtable_levels = 4; 245 break; 246 case VM_MODE_P52V48_64K: 247 vm->pgtable_levels = 3; 248 break; 249 case VM_MODE_P48V48_4K: 250 vm->pgtable_levels = 4; 251 break; 252 case VM_MODE_P48V48_64K: 253 vm->pgtable_levels = 3; 254 break; 255 case VM_MODE_P40V48_4K: 256 vm->pgtable_levels = 4; 257 break; 258 case VM_MODE_P40V48_64K: 259 vm->pgtable_levels = 3; 260 break; 261 case VM_MODE_PXXV48_4K: 262 #ifdef __x86_64__ 263 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits); 264 /* 265 * Ignore KVM support for 5-level paging (vm->va_bits == 57), 266 * it doesn't take effect unless a CR4.LA57 is set, which it 267 * isn't for this VM_MODE. 268 */ 269 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57, 270 "Linear address width (%d bits) not supported", 271 vm->va_bits); 272 pr_debug("Guest physical address width detected: %d\n", 273 vm->pa_bits); 274 vm->pgtable_levels = 4; 275 vm->va_bits = 48; 276 #else 277 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms"); 278 #endif 279 break; 280 default: 281 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode); 282 } 283 284 #ifdef __aarch64__ 285 if (vm->pa_bits != 40) 286 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits); 287 #endif 288 289 vm_open(vm, perm); 290 291 /* Limit to VA-bit canonical virtual addresses. */ 292 vm->vpages_valid = sparsebit_alloc(); 293 sparsebit_set_num(vm->vpages_valid, 294 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 295 sparsebit_set_num(vm->vpages_valid, 296 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift, 297 (1ULL << (vm->va_bits - 1)) >> vm->page_shift); 298 299 /* Limit physical addresses to PA-bits. */ 300 vm->max_gfn = ((1ULL << vm->pa_bits) >> vm->page_shift) - 1; 301 302 /* Allocate and setup memory for guest. */ 303 vm->vpages_mapped = sparsebit_alloc(); 304 if (phy_pages != 0) 305 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS, 306 0, 0, phy_pages, 0); 307 308 return vm; 309 } 310 311 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus, 312 uint64_t extra_mem_pages, uint32_t num_percpu_pages, 313 void *guest_code, uint32_t vcpuids[]) 314 { 315 /* The maximum page table size for a memory region will be when the 316 * smallest pages are used. Considering each page contains x page 317 * table descriptors, the total extra size for page tables (for extra 318 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller 319 * than N/x*2. 320 */ 321 uint64_t vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus; 322 uint64_t extra_pg_pages = (extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2; 323 uint64_t pages = DEFAULT_GUEST_PHY_PAGES + extra_mem_pages + vcpu_pages + extra_pg_pages; 324 struct kvm_vm *vm; 325 int i; 326 327 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS), 328 "nr_vcpus = %d too large for host, max-vcpus = %d", 329 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS)); 330 331 pages = vm_adjust_num_guest_pages(mode, pages); 332 vm = vm_create(mode, pages, O_RDWR); 333 334 kvm_vm_elf_load(vm, program_invocation_name, 0, 0); 335 336 #ifdef __x86_64__ 337 vm_create_irqchip(vm); 338 #endif 339 340 for (i = 0; i < nr_vcpus; ++i) { 341 uint32_t vcpuid = vcpuids ? vcpuids[i] : i; 342 343 vm_vcpu_add_default(vm, vcpuid, guest_code); 344 345 #ifdef __x86_64__ 346 vcpu_set_cpuid(vm, vcpuid, kvm_get_supported_cpuid()); 347 #endif 348 } 349 350 return vm; 351 } 352 353 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages, 354 uint32_t num_percpu_pages, void *guest_code, 355 uint32_t vcpuids[]) 356 { 357 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, extra_mem_pages, 358 num_percpu_pages, guest_code, vcpuids); 359 } 360 361 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages, 362 void *guest_code) 363 { 364 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code, 365 (uint32_t []){ vcpuid }); 366 } 367 368 /* 369 * VM Restart 370 * 371 * Input Args: 372 * vm - VM that has been released before 373 * perm - permission 374 * 375 * Output Args: None 376 * 377 * Reopens the file descriptors associated to the VM and reinstates the 378 * global state, such as the irqchip and the memory regions that are mapped 379 * into the guest. 380 */ 381 void kvm_vm_restart(struct kvm_vm *vmp, int perm) 382 { 383 int ctr; 384 struct userspace_mem_region *region; 385 386 vm_open(vmp, perm); 387 if (vmp->has_irqchip) 388 vm_create_irqchip(vmp); 389 390 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) { 391 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 392 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 393 " rc: %i errno: %i\n" 394 " slot: %u flags: 0x%x\n" 395 " guest_phys_addr: 0x%llx size: 0x%llx", 396 ret, errno, region->region.slot, 397 region->region.flags, 398 region->region.guest_phys_addr, 399 region->region.memory_size); 400 } 401 } 402 403 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log) 404 { 405 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot }; 406 int ret; 407 408 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args); 409 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s", 410 __func__, strerror(-ret)); 411 } 412 413 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log, 414 uint64_t first_page, uint32_t num_pages) 415 { 416 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot, 417 .first_page = first_page, 418 .num_pages = num_pages }; 419 int ret; 420 421 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args); 422 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s", 423 __func__, strerror(-ret)); 424 } 425 426 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm) 427 { 428 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS); 429 } 430 431 /* 432 * Userspace Memory Region Find 433 * 434 * Input Args: 435 * vm - Virtual Machine 436 * start - Starting VM physical address 437 * end - Ending VM physical address, inclusive. 438 * 439 * Output Args: None 440 * 441 * Return: 442 * Pointer to overlapping region, NULL if no such region. 443 * 444 * Searches for a region with any physical memory that overlaps with 445 * any portion of the guest physical addresses from start to end 446 * inclusive. If multiple overlapping regions exist, a pointer to any 447 * of the regions is returned. Null is returned only when no overlapping 448 * region exists. 449 */ 450 static struct userspace_mem_region * 451 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end) 452 { 453 struct rb_node *node; 454 455 for (node = vm->regions.gpa_tree.rb_node; node; ) { 456 struct userspace_mem_region *region = 457 container_of(node, struct userspace_mem_region, gpa_node); 458 uint64_t existing_start = region->region.guest_phys_addr; 459 uint64_t existing_end = region->region.guest_phys_addr 460 + region->region.memory_size - 1; 461 if (start <= existing_end && end >= existing_start) 462 return region; 463 464 if (start < existing_start) 465 node = node->rb_left; 466 else 467 node = node->rb_right; 468 } 469 470 return NULL; 471 } 472 473 /* 474 * KVM Userspace Memory Region Find 475 * 476 * Input Args: 477 * vm - Virtual Machine 478 * start - Starting VM physical address 479 * end - Ending VM physical address, inclusive. 480 * 481 * Output Args: None 482 * 483 * Return: 484 * Pointer to overlapping region, NULL if no such region. 485 * 486 * Public interface to userspace_mem_region_find. Allows tests to look up 487 * the memslot datastructure for a given range of guest physical memory. 488 */ 489 struct kvm_userspace_memory_region * 490 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start, 491 uint64_t end) 492 { 493 struct userspace_mem_region *region; 494 495 region = userspace_mem_region_find(vm, start, end); 496 if (!region) 497 return NULL; 498 499 return ®ion->region; 500 } 501 502 /* 503 * VCPU Find 504 * 505 * Input Args: 506 * vm - Virtual Machine 507 * vcpuid - VCPU ID 508 * 509 * Output Args: None 510 * 511 * Return: 512 * Pointer to VCPU structure 513 * 514 * Locates a vcpu structure that describes the VCPU specified by vcpuid and 515 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU 516 * for the specified vcpuid. 517 */ 518 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid) 519 { 520 struct vcpu *vcpu; 521 522 list_for_each_entry(vcpu, &vm->vcpus, list) { 523 if (vcpu->id == vcpuid) 524 return vcpu; 525 } 526 527 return NULL; 528 } 529 530 /* 531 * VM VCPU Remove 532 * 533 * Input Args: 534 * vcpu - VCPU to remove 535 * 536 * Output Args: None 537 * 538 * Return: None, TEST_ASSERT failures for all error conditions 539 * 540 * Removes a vCPU from a VM and frees its resources. 541 */ 542 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu) 543 { 544 int ret; 545 546 if (vcpu->dirty_gfns) { 547 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size); 548 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, " 549 "rc: %i errno: %i", ret, errno); 550 vcpu->dirty_gfns = NULL; 551 } 552 553 ret = munmap(vcpu->state, vcpu_mmap_sz()); 554 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i " 555 "errno: %i", ret, errno); 556 ret = close(vcpu->fd); 557 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i " 558 "errno: %i", ret, errno); 559 560 list_del(&vcpu->list); 561 free(vcpu); 562 } 563 564 void kvm_vm_release(struct kvm_vm *vmp) 565 { 566 struct vcpu *vcpu, *tmp; 567 int ret; 568 569 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list) 570 vm_vcpu_rm(vmp, vcpu); 571 572 ret = close(vmp->fd); 573 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n" 574 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno); 575 576 ret = close(vmp->kvm_fd); 577 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n" 578 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno); 579 } 580 581 static void __vm_mem_region_delete(struct kvm_vm *vm, 582 struct userspace_mem_region *region, 583 bool unlink) 584 { 585 int ret; 586 587 if (unlink) { 588 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree); 589 rb_erase(®ion->hva_node, &vm->regions.hva_tree); 590 hash_del(®ion->slot_node); 591 } 592 593 region->region.memory_size = 0; 594 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 595 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, " 596 "rc: %i errno: %i", ret, errno); 597 598 sparsebit_free(®ion->unused_phy_pages); 599 ret = munmap(region->mmap_start, region->mmap_size); 600 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno); 601 602 free(region); 603 } 604 605 /* 606 * Destroys and frees the VM pointed to by vmp. 607 */ 608 void kvm_vm_free(struct kvm_vm *vmp) 609 { 610 int ctr; 611 struct hlist_node *node; 612 struct userspace_mem_region *region; 613 614 if (vmp == NULL) 615 return; 616 617 /* Free userspace_mem_regions. */ 618 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node) 619 __vm_mem_region_delete(vmp, region, false); 620 621 /* Free sparsebit arrays. */ 622 sparsebit_free(&vmp->vpages_valid); 623 sparsebit_free(&vmp->vpages_mapped); 624 625 kvm_vm_release(vmp); 626 627 /* Free the structure describing the VM. */ 628 free(vmp); 629 } 630 631 /* 632 * Memory Compare, host virtual to guest virtual 633 * 634 * Input Args: 635 * hva - Starting host virtual address 636 * vm - Virtual Machine 637 * gva - Starting guest virtual address 638 * len - number of bytes to compare 639 * 640 * Output Args: None 641 * 642 * Input/Output Args: None 643 * 644 * Return: 645 * Returns 0 if the bytes starting at hva for a length of len 646 * are equal the guest virtual bytes starting at gva. Returns 647 * a value < 0, if bytes at hva are less than those at gva. 648 * Otherwise a value > 0 is returned. 649 * 650 * Compares the bytes starting at the host virtual address hva, for 651 * a length of len, to the guest bytes starting at the guest virtual 652 * address given by gva. 653 */ 654 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len) 655 { 656 size_t amt; 657 658 /* 659 * Compare a batch of bytes until either a match is found 660 * or all the bytes have been compared. 661 */ 662 for (uintptr_t offset = 0; offset < len; offset += amt) { 663 uintptr_t ptr1 = (uintptr_t)hva + offset; 664 665 /* 666 * Determine host address for guest virtual address 667 * at offset. 668 */ 669 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset); 670 671 /* 672 * Determine amount to compare on this pass. 673 * Don't allow the comparsion to cross a page boundary. 674 */ 675 amt = len - offset; 676 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift)) 677 amt = vm->page_size - (ptr1 % vm->page_size); 678 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift)) 679 amt = vm->page_size - (ptr2 % vm->page_size); 680 681 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift)); 682 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift)); 683 684 /* 685 * Perform the comparison. If there is a difference 686 * return that result to the caller, otherwise need 687 * to continue on looking for a mismatch. 688 */ 689 int ret = memcmp((void *)ptr1, (void *)ptr2, amt); 690 if (ret != 0) 691 return ret; 692 } 693 694 /* 695 * No mismatch found. Let the caller know the two memory 696 * areas are equal. 697 */ 698 return 0; 699 } 700 701 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree, 702 struct userspace_mem_region *region) 703 { 704 struct rb_node **cur, *parent; 705 706 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) { 707 struct userspace_mem_region *cregion; 708 709 cregion = container_of(*cur, typeof(*cregion), gpa_node); 710 parent = *cur; 711 if (region->region.guest_phys_addr < 712 cregion->region.guest_phys_addr) 713 cur = &(*cur)->rb_left; 714 else { 715 TEST_ASSERT(region->region.guest_phys_addr != 716 cregion->region.guest_phys_addr, 717 "Duplicate GPA in region tree"); 718 719 cur = &(*cur)->rb_right; 720 } 721 } 722 723 rb_link_node(®ion->gpa_node, parent, cur); 724 rb_insert_color(®ion->gpa_node, gpa_tree); 725 } 726 727 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree, 728 struct userspace_mem_region *region) 729 { 730 struct rb_node **cur, *parent; 731 732 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) { 733 struct userspace_mem_region *cregion; 734 735 cregion = container_of(*cur, typeof(*cregion), hva_node); 736 parent = *cur; 737 if (region->host_mem < cregion->host_mem) 738 cur = &(*cur)->rb_left; 739 else { 740 TEST_ASSERT(region->host_mem != 741 cregion->host_mem, 742 "Duplicate HVA in region tree"); 743 744 cur = &(*cur)->rb_right; 745 } 746 } 747 748 rb_link_node(®ion->hva_node, parent, cur); 749 rb_insert_color(®ion->hva_node, hva_tree); 750 } 751 752 /* 753 * VM Userspace Memory Region Add 754 * 755 * Input Args: 756 * vm - Virtual Machine 757 * src_type - Storage source for this region. 758 * NULL to use anonymous memory. 759 * guest_paddr - Starting guest physical address 760 * slot - KVM region slot 761 * npages - Number of physical pages 762 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES) 763 * 764 * Output Args: None 765 * 766 * Return: None 767 * 768 * Allocates a memory area of the number of pages specified by npages 769 * and maps it to the VM specified by vm, at a starting physical address 770 * given by guest_paddr. The region is created with a KVM region slot 771 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The 772 * region is created with the flags given by flags. 773 */ 774 void vm_userspace_mem_region_add(struct kvm_vm *vm, 775 enum vm_mem_backing_src_type src_type, 776 uint64_t guest_paddr, uint32_t slot, uint64_t npages, 777 uint32_t flags) 778 { 779 int ret; 780 struct userspace_mem_region *region; 781 size_t backing_src_pagesz = get_backing_src_pagesz(src_type); 782 size_t alignment; 783 784 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages, 785 "Number of guest pages is not compatible with the host. " 786 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages)); 787 788 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical " 789 "address not on a page boundary.\n" 790 " guest_paddr: 0x%lx vm->page_size: 0x%x", 791 guest_paddr, vm->page_size); 792 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1) 793 <= vm->max_gfn, "Physical range beyond maximum " 794 "supported physical address,\n" 795 " guest_paddr: 0x%lx npages: 0x%lx\n" 796 " vm->max_gfn: 0x%lx vm->page_size: 0x%x", 797 guest_paddr, npages, vm->max_gfn, vm->page_size); 798 799 /* 800 * Confirm a mem region with an overlapping address doesn't 801 * already exist. 802 */ 803 region = (struct userspace_mem_region *) userspace_mem_region_find( 804 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1); 805 if (region != NULL) 806 TEST_FAIL("overlapping userspace_mem_region already " 807 "exists\n" 808 " requested guest_paddr: 0x%lx npages: 0x%lx " 809 "page_size: 0x%x\n" 810 " existing guest_paddr: 0x%lx size: 0x%lx", 811 guest_paddr, npages, vm->page_size, 812 (uint64_t) region->region.guest_phys_addr, 813 (uint64_t) region->region.memory_size); 814 815 /* Confirm no region with the requested slot already exists. */ 816 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 817 slot) { 818 if (region->region.slot != slot) 819 continue; 820 821 TEST_FAIL("A mem region with the requested slot " 822 "already exists.\n" 823 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n" 824 " existing slot: %u paddr: 0x%lx size: 0x%lx", 825 slot, guest_paddr, npages, 826 region->region.slot, 827 (uint64_t) region->region.guest_phys_addr, 828 (uint64_t) region->region.memory_size); 829 } 830 831 /* Allocate and initialize new mem region structure. */ 832 region = calloc(1, sizeof(*region)); 833 TEST_ASSERT(region != NULL, "Insufficient Memory"); 834 region->mmap_size = npages * vm->page_size; 835 836 #ifdef __s390x__ 837 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ 838 alignment = 0x100000; 839 #else 840 alignment = 1; 841 #endif 842 843 if (src_type == VM_MEM_SRC_ANONYMOUS_THP) 844 alignment = max(backing_src_pagesz, alignment); 845 846 /* Add enough memory to align up if necessary */ 847 if (alignment > 1) 848 region->mmap_size += alignment; 849 850 region->fd = -1; 851 if (backing_src_is_shared(src_type)) { 852 int memfd_flags = MFD_CLOEXEC; 853 854 if (src_type == VM_MEM_SRC_SHARED_HUGETLB) 855 memfd_flags |= MFD_HUGETLB; 856 857 region->fd = memfd_create("kvm_selftest", memfd_flags); 858 TEST_ASSERT(region->fd != -1, 859 "memfd_create failed, errno: %i", errno); 860 861 ret = ftruncate(region->fd, region->mmap_size); 862 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno); 863 864 ret = fallocate(region->fd, 865 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, 866 region->mmap_size); 867 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno); 868 } 869 870 region->mmap_start = mmap(NULL, region->mmap_size, 871 PROT_READ | PROT_WRITE, 872 vm_mem_backing_src_alias(src_type)->flag, 873 region->fd, 0); 874 TEST_ASSERT(region->mmap_start != MAP_FAILED, 875 "test_malloc failed, mmap_start: %p errno: %i", 876 region->mmap_start, errno); 877 878 /* Align host address */ 879 region->host_mem = align(region->mmap_start, alignment); 880 881 /* As needed perform madvise */ 882 if ((src_type == VM_MEM_SRC_ANONYMOUS || 883 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) { 884 ret = madvise(region->host_mem, npages * vm->page_size, 885 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE); 886 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s", 887 region->host_mem, npages * vm->page_size, 888 vm_mem_backing_src_alias(src_type)->name); 889 } 890 891 region->unused_phy_pages = sparsebit_alloc(); 892 sparsebit_set_num(region->unused_phy_pages, 893 guest_paddr >> vm->page_shift, npages); 894 region->region.slot = slot; 895 region->region.flags = flags; 896 region->region.guest_phys_addr = guest_paddr; 897 region->region.memory_size = npages * vm->page_size; 898 region->region.userspace_addr = (uintptr_t) region->host_mem; 899 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 900 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 901 " rc: %i errno: %i\n" 902 " slot: %u flags: 0x%x\n" 903 " guest_phys_addr: 0x%lx size: 0x%lx", 904 ret, errno, slot, flags, 905 guest_paddr, (uint64_t) region->region.memory_size); 906 907 /* Add to quick lookup data structures */ 908 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region); 909 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region); 910 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot); 911 912 /* If shared memory, create an alias. */ 913 if (region->fd >= 0) { 914 region->mmap_alias = mmap(NULL, region->mmap_size, 915 PROT_READ | PROT_WRITE, 916 vm_mem_backing_src_alias(src_type)->flag, 917 region->fd, 0); 918 TEST_ASSERT(region->mmap_alias != MAP_FAILED, 919 "mmap of alias failed, errno: %i", errno); 920 921 /* Align host alias address */ 922 region->host_alias = align(region->mmap_alias, alignment); 923 } 924 } 925 926 /* 927 * Memslot to region 928 * 929 * Input Args: 930 * vm - Virtual Machine 931 * memslot - KVM memory slot ID 932 * 933 * Output Args: None 934 * 935 * Return: 936 * Pointer to memory region structure that describe memory region 937 * using kvm memory slot ID given by memslot. TEST_ASSERT failure 938 * on error (e.g. currently no memory region using memslot as a KVM 939 * memory slot ID). 940 */ 941 struct userspace_mem_region * 942 memslot2region(struct kvm_vm *vm, uint32_t memslot) 943 { 944 struct userspace_mem_region *region; 945 946 hash_for_each_possible(vm->regions.slot_hash, region, slot_node, 947 memslot) 948 if (region->region.slot == memslot) 949 return region; 950 951 fprintf(stderr, "No mem region with the requested slot found,\n" 952 " requested slot: %u\n", memslot); 953 fputs("---- vm dump ----\n", stderr); 954 vm_dump(stderr, vm, 2); 955 TEST_FAIL("Mem region not found"); 956 return NULL; 957 } 958 959 /* 960 * VM Memory Region Flags Set 961 * 962 * Input Args: 963 * vm - Virtual Machine 964 * flags - Starting guest physical address 965 * 966 * Output Args: None 967 * 968 * Return: None 969 * 970 * Sets the flags of the memory region specified by the value of slot, 971 * to the values given by flags. 972 */ 973 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags) 974 { 975 int ret; 976 struct userspace_mem_region *region; 977 978 region = memslot2region(vm, slot); 979 980 region->region.flags = flags; 981 982 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 983 984 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n" 985 " rc: %i errno: %i slot: %u flags: 0x%x", 986 ret, errno, slot, flags); 987 } 988 989 /* 990 * VM Memory Region Move 991 * 992 * Input Args: 993 * vm - Virtual Machine 994 * slot - Slot of the memory region to move 995 * new_gpa - Starting guest physical address 996 * 997 * Output Args: None 998 * 999 * Return: None 1000 * 1001 * Change the gpa of a memory region. 1002 */ 1003 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa) 1004 { 1005 struct userspace_mem_region *region; 1006 int ret; 1007 1008 region = memslot2region(vm, slot); 1009 1010 region->region.guest_phys_addr = new_gpa; 1011 1012 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region); 1013 1014 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n" 1015 "ret: %i errno: %i slot: %u new_gpa: 0x%lx", 1016 ret, errno, slot, new_gpa); 1017 } 1018 1019 /* 1020 * VM Memory Region Delete 1021 * 1022 * Input Args: 1023 * vm - Virtual Machine 1024 * slot - Slot of the memory region to delete 1025 * 1026 * Output Args: None 1027 * 1028 * Return: None 1029 * 1030 * Delete a memory region. 1031 */ 1032 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot) 1033 { 1034 __vm_mem_region_delete(vm, memslot2region(vm, slot), true); 1035 } 1036 1037 /* 1038 * VCPU mmap Size 1039 * 1040 * Input Args: None 1041 * 1042 * Output Args: None 1043 * 1044 * Return: 1045 * Size of VCPU state 1046 * 1047 * Returns the size of the structure pointed to by the return value 1048 * of vcpu_state(). 1049 */ 1050 static int vcpu_mmap_sz(void) 1051 { 1052 int dev_fd, ret; 1053 1054 dev_fd = open_kvm_dev_path_or_exit(); 1055 1056 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL); 1057 TEST_ASSERT(ret >= sizeof(struct kvm_run), 1058 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i", 1059 __func__, ret, errno); 1060 1061 close(dev_fd); 1062 1063 return ret; 1064 } 1065 1066 /* 1067 * VM VCPU Add 1068 * 1069 * Input Args: 1070 * vm - Virtual Machine 1071 * vcpuid - VCPU ID 1072 * 1073 * Output Args: None 1074 * 1075 * Return: None 1076 * 1077 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid. 1078 * No additional VCPU setup is done. 1079 */ 1080 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid) 1081 { 1082 struct vcpu *vcpu; 1083 1084 /* Confirm a vcpu with the specified id doesn't already exist. */ 1085 vcpu = vcpu_find(vm, vcpuid); 1086 if (vcpu != NULL) 1087 TEST_FAIL("vcpu with the specified id " 1088 "already exists,\n" 1089 " requested vcpuid: %u\n" 1090 " existing vcpuid: %u state: %p", 1091 vcpuid, vcpu->id, vcpu->state); 1092 1093 /* Allocate and initialize new vcpu structure. */ 1094 vcpu = calloc(1, sizeof(*vcpu)); 1095 TEST_ASSERT(vcpu != NULL, "Insufficient Memory"); 1096 vcpu->id = vcpuid; 1097 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid); 1098 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i", 1099 vcpu->fd, errno); 1100 1101 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size " 1102 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi", 1103 vcpu_mmap_sz(), sizeof(*vcpu->state)); 1104 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(), 1105 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0); 1106 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, " 1107 "vcpu id: %u errno: %i", vcpuid, errno); 1108 1109 /* Add to linked-list of VCPUs. */ 1110 list_add(&vcpu->list, &vm->vcpus); 1111 } 1112 1113 /* 1114 * VM Virtual Address Unused Gap 1115 * 1116 * Input Args: 1117 * vm - Virtual Machine 1118 * sz - Size (bytes) 1119 * vaddr_min - Minimum Virtual Address 1120 * 1121 * Output Args: None 1122 * 1123 * Return: 1124 * Lowest virtual address at or below vaddr_min, with at least 1125 * sz unused bytes. TEST_ASSERT failure if no area of at least 1126 * size sz is available. 1127 * 1128 * Within the VM specified by vm, locates the lowest starting virtual 1129 * address >= vaddr_min, that has at least sz unallocated bytes. A 1130 * TEST_ASSERT failure occurs for invalid input or no area of at least 1131 * sz unallocated bytes >= vaddr_min is available. 1132 */ 1133 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, 1134 vm_vaddr_t vaddr_min) 1135 { 1136 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift; 1137 1138 /* Determine lowest permitted virtual page index. */ 1139 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift; 1140 if ((pgidx_start * vm->page_size) < vaddr_min) 1141 goto no_va_found; 1142 1143 /* Loop over section with enough valid virtual page indexes. */ 1144 if (!sparsebit_is_set_num(vm->vpages_valid, 1145 pgidx_start, pages)) 1146 pgidx_start = sparsebit_next_set_num(vm->vpages_valid, 1147 pgidx_start, pages); 1148 do { 1149 /* 1150 * Are there enough unused virtual pages available at 1151 * the currently proposed starting virtual page index. 1152 * If not, adjust proposed starting index to next 1153 * possible. 1154 */ 1155 if (sparsebit_is_clear_num(vm->vpages_mapped, 1156 pgidx_start, pages)) 1157 goto va_found; 1158 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped, 1159 pgidx_start, pages); 1160 if (pgidx_start == 0) 1161 goto no_va_found; 1162 1163 /* 1164 * If needed, adjust proposed starting virtual address, 1165 * to next range of valid virtual addresses. 1166 */ 1167 if (!sparsebit_is_set_num(vm->vpages_valid, 1168 pgidx_start, pages)) { 1169 pgidx_start = sparsebit_next_set_num( 1170 vm->vpages_valid, pgidx_start, pages); 1171 if (pgidx_start == 0) 1172 goto no_va_found; 1173 } 1174 } while (pgidx_start != 0); 1175 1176 no_va_found: 1177 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages); 1178 1179 /* NOT REACHED */ 1180 return -1; 1181 1182 va_found: 1183 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid, 1184 pgidx_start, pages), 1185 "Unexpected, invalid virtual page index range,\n" 1186 " pgidx_start: 0x%lx\n" 1187 " pages: 0x%lx", 1188 pgidx_start, pages); 1189 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped, 1190 pgidx_start, pages), 1191 "Unexpected, pages already mapped,\n" 1192 " pgidx_start: 0x%lx\n" 1193 " pages: 0x%lx", 1194 pgidx_start, pages); 1195 1196 return pgidx_start * vm->page_size; 1197 } 1198 1199 /* 1200 * VM Virtual Address Allocate 1201 * 1202 * Input Args: 1203 * vm - Virtual Machine 1204 * sz - Size in bytes 1205 * vaddr_min - Minimum starting virtual address 1206 * data_memslot - Memory region slot for data pages 1207 * pgd_memslot - Memory region slot for new virtual translation tables 1208 * 1209 * Output Args: None 1210 * 1211 * Return: 1212 * Starting guest virtual address 1213 * 1214 * Allocates at least sz bytes within the virtual address space of the vm 1215 * given by vm. The allocated bytes are mapped to a virtual address >= 1216 * the address given by vaddr_min. Note that each allocation uses a 1217 * a unique set of pages, with the minimum real allocation being at least 1218 * a page. 1219 */ 1220 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min, 1221 uint32_t data_memslot, uint32_t pgd_memslot) 1222 { 1223 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0); 1224 1225 virt_pgd_alloc(vm, pgd_memslot); 1226 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages, 1227 KVM_UTIL_MIN_PFN * vm->page_size, 1228 data_memslot); 1229 1230 /* 1231 * Find an unused range of virtual page addresses of at least 1232 * pages in length. 1233 */ 1234 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min); 1235 1236 /* Map the virtual pages. */ 1237 for (vm_vaddr_t vaddr = vaddr_start; pages > 0; 1238 pages--, vaddr += vm->page_size, paddr += vm->page_size) { 1239 1240 virt_pg_map(vm, vaddr, paddr, pgd_memslot); 1241 1242 sparsebit_set(vm->vpages_mapped, 1243 vaddr >> vm->page_shift); 1244 } 1245 1246 return vaddr_start; 1247 } 1248 1249 /* 1250 * Map a range of VM virtual address to the VM's physical address 1251 * 1252 * Input Args: 1253 * vm - Virtual Machine 1254 * vaddr - Virtuall address to map 1255 * paddr - VM Physical Address 1256 * npages - The number of pages to map 1257 * pgd_memslot - Memory region slot for new virtual translation tables 1258 * 1259 * Output Args: None 1260 * 1261 * Return: None 1262 * 1263 * Within the VM given by @vm, creates a virtual translation for 1264 * @npages starting at @vaddr to the page range starting at @paddr. 1265 */ 1266 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, 1267 unsigned int npages, uint32_t pgd_memslot) 1268 { 1269 size_t page_size = vm->page_size; 1270 size_t size = npages * page_size; 1271 1272 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow"); 1273 TEST_ASSERT(paddr + size > paddr, "Paddr overflow"); 1274 1275 while (npages--) { 1276 virt_pg_map(vm, vaddr, paddr, pgd_memslot); 1277 vaddr += page_size; 1278 paddr += page_size; 1279 } 1280 } 1281 1282 /* 1283 * Address VM Physical to Host Virtual 1284 * 1285 * Input Args: 1286 * vm - Virtual Machine 1287 * gpa - VM physical address 1288 * 1289 * Output Args: None 1290 * 1291 * Return: 1292 * Equivalent host virtual address 1293 * 1294 * Locates the memory region containing the VM physical address given 1295 * by gpa, within the VM given by vm. When found, the host virtual 1296 * address providing the memory to the vm physical address is returned. 1297 * A TEST_ASSERT failure occurs if no region containing gpa exists. 1298 */ 1299 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa) 1300 { 1301 struct userspace_mem_region *region; 1302 1303 region = userspace_mem_region_find(vm, gpa, gpa); 1304 if (!region) { 1305 TEST_FAIL("No vm physical memory at 0x%lx", gpa); 1306 return NULL; 1307 } 1308 1309 return (void *)((uintptr_t)region->host_mem 1310 + (gpa - region->region.guest_phys_addr)); 1311 } 1312 1313 /* 1314 * Address Host Virtual to VM Physical 1315 * 1316 * Input Args: 1317 * vm - Virtual Machine 1318 * hva - Host virtual address 1319 * 1320 * Output Args: None 1321 * 1322 * Return: 1323 * Equivalent VM physical address 1324 * 1325 * Locates the memory region containing the host virtual address given 1326 * by hva, within the VM given by vm. When found, the equivalent 1327 * VM physical address is returned. A TEST_ASSERT failure occurs if no 1328 * region containing hva exists. 1329 */ 1330 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva) 1331 { 1332 struct rb_node *node; 1333 1334 for (node = vm->regions.hva_tree.rb_node; node; ) { 1335 struct userspace_mem_region *region = 1336 container_of(node, struct userspace_mem_region, hva_node); 1337 1338 if (hva >= region->host_mem) { 1339 if (hva <= (region->host_mem 1340 + region->region.memory_size - 1)) 1341 return (vm_paddr_t)((uintptr_t) 1342 region->region.guest_phys_addr 1343 + (hva - (uintptr_t)region->host_mem)); 1344 1345 node = node->rb_right; 1346 } else 1347 node = node->rb_left; 1348 } 1349 1350 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva); 1351 return -1; 1352 } 1353 1354 /* 1355 * Address VM physical to Host Virtual *alias*. 1356 * 1357 * Input Args: 1358 * vm - Virtual Machine 1359 * gpa - VM physical address 1360 * 1361 * Output Args: None 1362 * 1363 * Return: 1364 * Equivalent address within the host virtual *alias* area, or NULL 1365 * (without failing the test) if the guest memory is not shared (so 1366 * no alias exists). 1367 * 1368 * When vm_create() and related functions are called with a shared memory 1369 * src_type, we also create a writable, shared alias mapping of the 1370 * underlying guest memory. This allows the host to manipulate guest memory 1371 * without mapping that memory in the guest's address space. And, for 1372 * userfaultfd-based demand paging, we can do so without triggering userfaults. 1373 */ 1374 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa) 1375 { 1376 struct userspace_mem_region *region; 1377 uintptr_t offset; 1378 1379 region = userspace_mem_region_find(vm, gpa, gpa); 1380 if (!region) 1381 return NULL; 1382 1383 if (!region->host_alias) 1384 return NULL; 1385 1386 offset = gpa - region->region.guest_phys_addr; 1387 return (void *) ((uintptr_t) region->host_alias + offset); 1388 } 1389 1390 /* 1391 * VM Create IRQ Chip 1392 * 1393 * Input Args: 1394 * vm - Virtual Machine 1395 * 1396 * Output Args: None 1397 * 1398 * Return: None 1399 * 1400 * Creates an interrupt controller chip for the VM specified by vm. 1401 */ 1402 void vm_create_irqchip(struct kvm_vm *vm) 1403 { 1404 int ret; 1405 1406 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0); 1407 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, " 1408 "rc: %i errno: %i", ret, errno); 1409 1410 vm->has_irqchip = true; 1411 } 1412 1413 /* 1414 * VM VCPU State 1415 * 1416 * Input Args: 1417 * vm - Virtual Machine 1418 * vcpuid - VCPU ID 1419 * 1420 * Output Args: None 1421 * 1422 * Return: 1423 * Pointer to structure that describes the state of the VCPU. 1424 * 1425 * Locates and returns a pointer to a structure that describes the 1426 * state of the VCPU with the given vcpuid. 1427 */ 1428 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid) 1429 { 1430 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1431 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1432 1433 return vcpu->state; 1434 } 1435 1436 /* 1437 * VM VCPU Run 1438 * 1439 * Input Args: 1440 * vm - Virtual Machine 1441 * vcpuid - VCPU ID 1442 * 1443 * Output Args: None 1444 * 1445 * Return: None 1446 * 1447 * Switch to executing the code for the VCPU given by vcpuid, within the VM 1448 * given by vm. 1449 */ 1450 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1451 { 1452 int ret = _vcpu_run(vm, vcpuid); 1453 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " 1454 "rc: %i errno: %i", ret, errno); 1455 } 1456 1457 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid) 1458 { 1459 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1460 int rc; 1461 1462 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1463 do { 1464 rc = ioctl(vcpu->fd, KVM_RUN, NULL); 1465 } while (rc == -1 && errno == EINTR); 1466 1467 assert_on_unhandled_exception(vm, vcpuid); 1468 1469 return rc; 1470 } 1471 1472 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid) 1473 { 1474 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1475 1476 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1477 1478 return vcpu->fd; 1479 } 1480 1481 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid) 1482 { 1483 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1484 int ret; 1485 1486 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1487 1488 vcpu->state->immediate_exit = 1; 1489 ret = ioctl(vcpu->fd, KVM_RUN, NULL); 1490 vcpu->state->immediate_exit = 0; 1491 1492 TEST_ASSERT(ret == -1 && errno == EINTR, 1493 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i", 1494 ret, errno); 1495 } 1496 1497 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid, 1498 struct kvm_guest_debug *debug) 1499 { 1500 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1501 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug); 1502 1503 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret); 1504 } 1505 1506 /* 1507 * VM VCPU Set MP State 1508 * 1509 * Input Args: 1510 * vm - Virtual Machine 1511 * vcpuid - VCPU ID 1512 * mp_state - mp_state to be set 1513 * 1514 * Output Args: None 1515 * 1516 * Return: None 1517 * 1518 * Sets the MP state of the VCPU given by vcpuid, to the state given 1519 * by mp_state. 1520 */ 1521 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid, 1522 struct kvm_mp_state *mp_state) 1523 { 1524 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1525 int ret; 1526 1527 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1528 1529 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state); 1530 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, " 1531 "rc: %i errno: %i", ret, errno); 1532 } 1533 1534 /* 1535 * VM VCPU Get Reg List 1536 * 1537 * Input Args: 1538 * vm - Virtual Machine 1539 * vcpuid - VCPU ID 1540 * 1541 * Output Args: 1542 * None 1543 * 1544 * Return: 1545 * A pointer to an allocated struct kvm_reg_list 1546 * 1547 * Get the list of guest registers which are supported for 1548 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls 1549 */ 1550 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid) 1551 { 1552 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list; 1553 int ret; 1554 1555 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n); 1556 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0"); 1557 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64)); 1558 reg_list->n = reg_list_n.n; 1559 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list); 1560 return reg_list; 1561 } 1562 1563 /* 1564 * VM VCPU Regs Get 1565 * 1566 * Input Args: 1567 * vm - Virtual Machine 1568 * vcpuid - VCPU ID 1569 * 1570 * Output Args: 1571 * regs - current state of VCPU regs 1572 * 1573 * Return: None 1574 * 1575 * Obtains the current register state for the VCPU specified by vcpuid 1576 * and stores it at the location given by regs. 1577 */ 1578 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1579 { 1580 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1581 int ret; 1582 1583 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1584 1585 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs); 1586 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i", 1587 ret, errno); 1588 } 1589 1590 /* 1591 * VM VCPU Regs Set 1592 * 1593 * Input Args: 1594 * vm - Virtual Machine 1595 * vcpuid - VCPU ID 1596 * regs - Values to set VCPU regs to 1597 * 1598 * Output Args: None 1599 * 1600 * Return: None 1601 * 1602 * Sets the regs of the VCPU specified by vcpuid to the values 1603 * given by regs. 1604 */ 1605 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs) 1606 { 1607 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1608 int ret; 1609 1610 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1611 1612 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs); 1613 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i", 1614 ret, errno); 1615 } 1616 1617 #ifdef __KVM_HAVE_VCPU_EVENTS 1618 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid, 1619 struct kvm_vcpu_events *events) 1620 { 1621 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1622 int ret; 1623 1624 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1625 1626 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events); 1627 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i", 1628 ret, errno); 1629 } 1630 1631 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid, 1632 struct kvm_vcpu_events *events) 1633 { 1634 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1635 int ret; 1636 1637 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1638 1639 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events); 1640 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i", 1641 ret, errno); 1642 } 1643 #endif 1644 1645 #ifdef __x86_64__ 1646 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid, 1647 struct kvm_nested_state *state) 1648 { 1649 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1650 int ret; 1651 1652 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1653 1654 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state); 1655 TEST_ASSERT(ret == 0, 1656 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1657 ret, errno); 1658 } 1659 1660 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid, 1661 struct kvm_nested_state *state, bool ignore_error) 1662 { 1663 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1664 int ret; 1665 1666 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1667 1668 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state); 1669 if (!ignore_error) { 1670 TEST_ASSERT(ret == 0, 1671 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i", 1672 ret, errno); 1673 } 1674 1675 return ret; 1676 } 1677 #endif 1678 1679 /* 1680 * VM VCPU System Regs Get 1681 * 1682 * Input Args: 1683 * vm - Virtual Machine 1684 * vcpuid - VCPU ID 1685 * 1686 * Output Args: 1687 * sregs - current state of VCPU system regs 1688 * 1689 * Return: None 1690 * 1691 * Obtains the current system register state for the VCPU specified by 1692 * vcpuid and stores it at the location given by sregs. 1693 */ 1694 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1695 { 1696 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1697 int ret; 1698 1699 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1700 1701 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs); 1702 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i", 1703 ret, errno); 1704 } 1705 1706 /* 1707 * VM VCPU System Regs Set 1708 * 1709 * Input Args: 1710 * vm - Virtual Machine 1711 * vcpuid - VCPU ID 1712 * sregs - Values to set VCPU system regs to 1713 * 1714 * Output Args: None 1715 * 1716 * Return: None 1717 * 1718 * Sets the system regs of the VCPU specified by vcpuid to the values 1719 * given by sregs. 1720 */ 1721 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1722 { 1723 int ret = _vcpu_sregs_set(vm, vcpuid, sregs); 1724 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, " 1725 "rc: %i errno: %i", ret, errno); 1726 } 1727 1728 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs) 1729 { 1730 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1731 1732 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1733 1734 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs); 1735 } 1736 1737 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1738 { 1739 int ret; 1740 1741 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu); 1742 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)", 1743 ret, errno, strerror(errno)); 1744 } 1745 1746 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu) 1747 { 1748 int ret; 1749 1750 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu); 1751 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)", 1752 ret, errno, strerror(errno)); 1753 } 1754 1755 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1756 { 1757 int ret; 1758 1759 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg); 1760 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)", 1761 ret, errno, strerror(errno)); 1762 } 1763 1764 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg) 1765 { 1766 int ret; 1767 1768 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg); 1769 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)", 1770 ret, errno, strerror(errno)); 1771 } 1772 1773 /* 1774 * VCPU Ioctl 1775 * 1776 * Input Args: 1777 * vm - Virtual Machine 1778 * vcpuid - VCPU ID 1779 * cmd - Ioctl number 1780 * arg - Argument to pass to the ioctl 1781 * 1782 * Return: None 1783 * 1784 * Issues an arbitrary ioctl on a VCPU fd. 1785 */ 1786 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1787 unsigned long cmd, void *arg) 1788 { 1789 int ret; 1790 1791 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg); 1792 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)", 1793 cmd, ret, errno, strerror(errno)); 1794 } 1795 1796 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid, 1797 unsigned long cmd, void *arg) 1798 { 1799 struct vcpu *vcpu = vcpu_find(vm, vcpuid); 1800 int ret; 1801 1802 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid); 1803 1804 ret = ioctl(vcpu->fd, cmd, arg); 1805 1806 return ret; 1807 } 1808 1809 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid) 1810 { 1811 struct vcpu *vcpu; 1812 uint32_t size = vm->dirty_ring_size; 1813 1814 TEST_ASSERT(size > 0, "Should enable dirty ring first"); 1815 1816 vcpu = vcpu_find(vm, vcpuid); 1817 1818 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid); 1819 1820 if (!vcpu->dirty_gfns) { 1821 void *addr; 1822 1823 addr = mmap(NULL, size, PROT_READ, 1824 MAP_PRIVATE, vcpu->fd, 1825 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1826 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private"); 1827 1828 addr = mmap(NULL, size, PROT_READ | PROT_EXEC, 1829 MAP_PRIVATE, vcpu->fd, 1830 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1831 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec"); 1832 1833 addr = mmap(NULL, size, PROT_READ | PROT_WRITE, 1834 MAP_SHARED, vcpu->fd, 1835 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET); 1836 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed"); 1837 1838 vcpu->dirty_gfns = addr; 1839 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn); 1840 } 1841 1842 return vcpu->dirty_gfns; 1843 } 1844 1845 /* 1846 * VM Ioctl 1847 * 1848 * Input Args: 1849 * vm - Virtual Machine 1850 * cmd - Ioctl number 1851 * arg - Argument to pass to the ioctl 1852 * 1853 * Return: None 1854 * 1855 * Issues an arbitrary ioctl on a VM fd. 1856 */ 1857 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1858 { 1859 int ret; 1860 1861 ret = _vm_ioctl(vm, cmd, arg); 1862 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)", 1863 cmd, ret, errno, strerror(errno)); 1864 } 1865 1866 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1867 { 1868 return ioctl(vm->fd, cmd, arg); 1869 } 1870 1871 /* 1872 * KVM system ioctl 1873 * 1874 * Input Args: 1875 * vm - Virtual Machine 1876 * cmd - Ioctl number 1877 * arg - Argument to pass to the ioctl 1878 * 1879 * Return: None 1880 * 1881 * Issues an arbitrary ioctl on a KVM fd. 1882 */ 1883 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1884 { 1885 int ret; 1886 1887 ret = ioctl(vm->kvm_fd, cmd, arg); 1888 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)", 1889 cmd, ret, errno, strerror(errno)); 1890 } 1891 1892 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg) 1893 { 1894 return ioctl(vm->kvm_fd, cmd, arg); 1895 } 1896 1897 /* 1898 * Device Ioctl 1899 */ 1900 1901 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 1902 { 1903 struct kvm_device_attr attribute = { 1904 .group = group, 1905 .attr = attr, 1906 .flags = 0, 1907 }; 1908 1909 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute); 1910 } 1911 1912 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) 1913 { 1914 int ret = _kvm_device_check_attr(dev_fd, group, attr); 1915 1916 TEST_ASSERT(ret >= 0, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno); 1917 return ret; 1918 } 1919 1920 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd) 1921 { 1922 struct kvm_create_device create_dev; 1923 int ret; 1924 1925 create_dev.type = type; 1926 create_dev.fd = -1; 1927 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; 1928 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev); 1929 *fd = create_dev.fd; 1930 return ret; 1931 } 1932 1933 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test) 1934 { 1935 int fd, ret; 1936 1937 ret = _kvm_create_device(vm, type, test, &fd); 1938 1939 if (!test) { 1940 TEST_ASSERT(ret >= 0, 1941 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno); 1942 return fd; 1943 } 1944 return ret; 1945 } 1946 1947 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 1948 void *val, bool write) 1949 { 1950 struct kvm_device_attr kvmattr = { 1951 .group = group, 1952 .attr = attr, 1953 .flags = 0, 1954 .addr = (uintptr_t)val, 1955 }; 1956 int ret; 1957 1958 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, 1959 &kvmattr); 1960 return ret; 1961 } 1962 1963 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr, 1964 void *val, bool write) 1965 { 1966 int ret = _kvm_device_access(dev_fd, group, attr, val, write); 1967 1968 TEST_ASSERT(ret >= 0, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno); 1969 return ret; 1970 } 1971 1972 /* 1973 * VM Dump 1974 * 1975 * Input Args: 1976 * vm - Virtual Machine 1977 * indent - Left margin indent amount 1978 * 1979 * Output Args: 1980 * stream - Output FILE stream 1981 * 1982 * Return: None 1983 * 1984 * Dumps the current state of the VM given by vm, to the FILE stream 1985 * given by stream. 1986 */ 1987 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent) 1988 { 1989 int ctr; 1990 struct userspace_mem_region *region; 1991 struct vcpu *vcpu; 1992 1993 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode); 1994 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd); 1995 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size); 1996 fprintf(stream, "%*sMem Regions:\n", indent, ""); 1997 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) { 1998 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx " 1999 "host_virt: %p\n", indent + 2, "", 2000 (uint64_t) region->region.guest_phys_addr, 2001 (uint64_t) region->region.memory_size, 2002 region->host_mem); 2003 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, ""); 2004 sparsebit_dump(stream, region->unused_phy_pages, 0); 2005 } 2006 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, ""); 2007 sparsebit_dump(stream, vm->vpages_mapped, indent + 2); 2008 fprintf(stream, "%*spgd_created: %u\n", indent, "", 2009 vm->pgd_created); 2010 if (vm->pgd_created) { 2011 fprintf(stream, "%*sVirtual Translation Tables:\n", 2012 indent + 2, ""); 2013 virt_dump(stream, vm, indent + 4); 2014 } 2015 fprintf(stream, "%*sVCPUs:\n", indent, ""); 2016 list_for_each_entry(vcpu, &vm->vcpus, list) 2017 vcpu_dump(stream, vm, vcpu->id, indent + 2); 2018 } 2019 2020 /* Known KVM exit reasons */ 2021 static struct exit_reason { 2022 unsigned int reason; 2023 const char *name; 2024 } exit_reasons_known[] = { 2025 {KVM_EXIT_UNKNOWN, "UNKNOWN"}, 2026 {KVM_EXIT_EXCEPTION, "EXCEPTION"}, 2027 {KVM_EXIT_IO, "IO"}, 2028 {KVM_EXIT_HYPERCALL, "HYPERCALL"}, 2029 {KVM_EXIT_DEBUG, "DEBUG"}, 2030 {KVM_EXIT_HLT, "HLT"}, 2031 {KVM_EXIT_MMIO, "MMIO"}, 2032 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"}, 2033 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"}, 2034 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"}, 2035 {KVM_EXIT_INTR, "INTR"}, 2036 {KVM_EXIT_SET_TPR, "SET_TPR"}, 2037 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"}, 2038 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"}, 2039 {KVM_EXIT_S390_RESET, "S390_RESET"}, 2040 {KVM_EXIT_DCR, "DCR"}, 2041 {KVM_EXIT_NMI, "NMI"}, 2042 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"}, 2043 {KVM_EXIT_OSI, "OSI"}, 2044 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"}, 2045 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"}, 2046 {KVM_EXIT_X86_RDMSR, "RDMSR"}, 2047 {KVM_EXIT_X86_WRMSR, "WRMSR"}, 2048 {KVM_EXIT_XEN, "XEN"}, 2049 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT 2050 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"}, 2051 #endif 2052 }; 2053 2054 /* 2055 * Exit Reason String 2056 * 2057 * Input Args: 2058 * exit_reason - Exit reason 2059 * 2060 * Output Args: None 2061 * 2062 * Return: 2063 * Constant string pointer describing the exit reason. 2064 * 2065 * Locates and returns a constant string that describes the KVM exit 2066 * reason given by exit_reason. If no such string is found, a constant 2067 * string of "Unknown" is returned. 2068 */ 2069 const char *exit_reason_str(unsigned int exit_reason) 2070 { 2071 unsigned int n1; 2072 2073 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) { 2074 if (exit_reason == exit_reasons_known[n1].reason) 2075 return exit_reasons_known[n1].name; 2076 } 2077 2078 return "Unknown"; 2079 } 2080 2081 /* 2082 * Physical Contiguous Page Allocator 2083 * 2084 * Input Args: 2085 * vm - Virtual Machine 2086 * num - number of pages 2087 * paddr_min - Physical address minimum 2088 * memslot - Memory region to allocate page from 2089 * 2090 * Output Args: None 2091 * 2092 * Return: 2093 * Starting physical address 2094 * 2095 * Within the VM specified by vm, locates a range of available physical 2096 * pages at or above paddr_min. If found, the pages are marked as in use 2097 * and their base address is returned. A TEST_ASSERT failure occurs if 2098 * not enough pages are available at or above paddr_min. 2099 */ 2100 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num, 2101 vm_paddr_t paddr_min, uint32_t memslot) 2102 { 2103 struct userspace_mem_region *region; 2104 sparsebit_idx_t pg, base; 2105 2106 TEST_ASSERT(num > 0, "Must allocate at least one page"); 2107 2108 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address " 2109 "not divisible by page size.\n" 2110 " paddr_min: 0x%lx page_size: 0x%x", 2111 paddr_min, vm->page_size); 2112 2113 region = memslot2region(vm, memslot); 2114 base = pg = paddr_min >> vm->page_shift; 2115 2116 do { 2117 for (; pg < base + num; ++pg) { 2118 if (!sparsebit_is_set(region->unused_phy_pages, pg)) { 2119 base = pg = sparsebit_next_set(region->unused_phy_pages, pg); 2120 break; 2121 } 2122 } 2123 } while (pg && pg != base + num); 2124 2125 if (pg == 0) { 2126 fprintf(stderr, "No guest physical page available, " 2127 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n", 2128 paddr_min, vm->page_size, memslot); 2129 fputs("---- vm dump ----\n", stderr); 2130 vm_dump(stderr, vm, 2); 2131 abort(); 2132 } 2133 2134 for (pg = base; pg < base + num; ++pg) 2135 sparsebit_clear(region->unused_phy_pages, pg); 2136 2137 return base * vm->page_size; 2138 } 2139 2140 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min, 2141 uint32_t memslot) 2142 { 2143 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot); 2144 } 2145 2146 /* 2147 * Address Guest Virtual to Host Virtual 2148 * 2149 * Input Args: 2150 * vm - Virtual Machine 2151 * gva - VM virtual address 2152 * 2153 * Output Args: None 2154 * 2155 * Return: 2156 * Equivalent host virtual address 2157 */ 2158 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva) 2159 { 2160 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva)); 2161 } 2162 2163 /* 2164 * Is Unrestricted Guest 2165 * 2166 * Input Args: 2167 * vm - Virtual Machine 2168 * 2169 * Output Args: None 2170 * 2171 * Return: True if the unrestricted guest is set to 'Y', otherwise return false. 2172 * 2173 * Check if the unrestricted guest flag is enabled. 2174 */ 2175 bool vm_is_unrestricted_guest(struct kvm_vm *vm) 2176 { 2177 char val = 'N'; 2178 size_t count; 2179 FILE *f; 2180 2181 if (vm == NULL) { 2182 /* Ensure that the KVM vendor-specific module is loaded. */ 2183 close(open_kvm_dev_path_or_exit()); 2184 } 2185 2186 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r"); 2187 if (f) { 2188 count = fread(&val, sizeof(char), 1, f); 2189 TEST_ASSERT(count == 1, "Unable to read from param file."); 2190 fclose(f); 2191 } 2192 2193 return val == 'Y'; 2194 } 2195 2196 unsigned int vm_get_page_size(struct kvm_vm *vm) 2197 { 2198 return vm->page_size; 2199 } 2200 2201 unsigned int vm_get_page_shift(struct kvm_vm *vm) 2202 { 2203 return vm->page_shift; 2204 } 2205 2206 uint64_t vm_get_max_gfn(struct kvm_vm *vm) 2207 { 2208 return vm->max_gfn; 2209 } 2210 2211 int vm_get_fd(struct kvm_vm *vm) 2212 { 2213 return vm->fd; 2214 } 2215 2216 static unsigned int vm_calc_num_pages(unsigned int num_pages, 2217 unsigned int page_shift, 2218 unsigned int new_page_shift, 2219 bool ceil) 2220 { 2221 unsigned int n = 1 << (new_page_shift - page_shift); 2222 2223 if (page_shift >= new_page_shift) 2224 return num_pages * (1 << (page_shift - new_page_shift)); 2225 2226 return num_pages / n + !!(ceil && num_pages % n); 2227 } 2228 2229 static inline int getpageshift(void) 2230 { 2231 return __builtin_ffs(getpagesize()) - 1; 2232 } 2233 2234 unsigned int 2235 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages) 2236 { 2237 return vm_calc_num_pages(num_guest_pages, 2238 vm_guest_mode_params[mode].page_shift, 2239 getpageshift(), true); 2240 } 2241 2242 unsigned int 2243 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages) 2244 { 2245 return vm_calc_num_pages(num_host_pages, getpageshift(), 2246 vm_guest_mode_params[mode].page_shift, false); 2247 } 2248 2249 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size) 2250 { 2251 unsigned int n; 2252 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size); 2253 return vm_adjust_num_guest_pages(mode, n); 2254 } 2255